JP5597431B2 - Method for producing ultraviolet curable printed matter and ultraviolet curable printed matter using the same - Google Patents

Method for producing ultraviolet curable printed matter and ultraviolet curable printed matter using the same Download PDF

Info

Publication number
JP5597431B2
JP5597431B2 JP2010085953A JP2010085953A JP5597431B2 JP 5597431 B2 JP5597431 B2 JP 5597431B2 JP 2010085953 A JP2010085953 A JP 2010085953A JP 2010085953 A JP2010085953 A JP 2010085953A JP 5597431 B2 JP5597431 B2 JP 5597431B2
Authority
JP
Japan
Prior art keywords
ultraviolet
ultraviolet curable
printed matter
printing
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010085953A
Other languages
Japanese (ja)
Other versions
JP2011213075A (en
Inventor
誓 山本
竜志 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Graphics Corp
Original Assignee
DIC Graphics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Graphics Corp filed Critical DIC Graphics Corp
Priority to JP2010085953A priority Critical patent/JP5597431B2/en
Publication of JP2011213075A publication Critical patent/JP2011213075A/en
Application granted granted Critical
Publication of JP5597431B2 publication Critical patent/JP5597431B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、紫外線光源として発光ダイオード(LED)及び紫外線ランプ(UVランプ)を併用した紫外線硬化型印刷物の製造方法及び該方法を用いた紫外線硬化型印刷物に関する。   The present invention relates to a method for producing an ultraviolet curable print using a light emitting diode (LED) and an ultraviolet lamp (UV lamp) in combination as an ultraviolet light source, and an ultraviolet curable print using the method.

紫外線硬化型印刷物の製造には、光源として低圧、高圧水銀灯、キセノンランプ、メタルハライドランプ等の紫外線ランプ(UVランプ)が硬化システムとして広く用いられてきた。   In the production of ultraviolet curable prints, ultraviolet lamps (UV lamps) such as low pressure, high pressure mercury lamps, xenon lamps and metal halide lamps have been widely used as curing systems as light sources.

近年、これら紫外線ランプに変わる硬化システムとして、発光ダイオード(LED)を光源とした紫外線装置が開発され(例えば、特許文献1参照)、インクジェット方式等の印刷分野において、LED光源に対応する印刷物の製造方法、それに用いるインキ組成が検討されてきた(例えば、特許文献2および特許文献3参照)。UV−LEDは既存のUVランプ方式と比較して光源寿命が長く、省エネルギー性において大きく優れていることから、LED光源の実用化は印刷業界各社から強く要望されるものである。   In recent years, an ultraviolet device using a light emitting diode (LED) as a light source has been developed as a curing system that replaces these ultraviolet lamps (see, for example, Patent Document 1), and in the printing field such as an ink jet system, manufacture of printed matter corresponding to the LED light source. Methods and ink compositions used therefor have been studied (see, for example, Patent Document 2 and Patent Document 3). UV-LEDs have a longer light source life than existing UV lamp systems and are greatly superior in energy saving. Therefore, practical application of LED light sources is strongly requested by companies in the printing industry.

一方、UV−LEDの短所として、UVランプ光源と比較して紫外線硬化型組成物の皮膜乾燥性(硬化性)が大きく劣る点が挙げられ、本方式の普及が妨げられている。UV−LED光源は、特殊用途では発光ピーク波長200nm台も存在するものの発光強度が極めて弱く、印刷物の硬化用途に適用可能な発光強度を有する汎用のUV−LED光源は発光波長域が365〜420nmに限られている。そのため、広域波長の紫外線を発するUVランプ光源と比較して紫外線エネルギーの総量が小さく、光重合開始剤から生成するラジカルの発生量が少ない為に、重合反応が酸素阻害の影響を受けやすいことが挙げられる。また、相対的に短波長領域の紫外線エネルギー量が不足することから、LED照射により得られた紫外線組成物は、一般に皮膜表面の硬化性が劣る傾向が確認される。   On the other hand, the disadvantage of UV-LED is that the film drying property (curability) of the ultraviolet curable composition is greatly inferior to that of the UV lamp light source, and the spread of this method is hindered. The UV-LED light source has an emission peak wavelength of about 200 nm in a special application, but the emission intensity is extremely weak. It is limited to. Therefore, the total amount of ultraviolet energy is small compared to a UV lamp light source that emits ultraviolet light of a wide wavelength, and the amount of radicals generated from the photopolymerization initiator is small, so that the polymerization reaction is likely to be affected by oxygen inhibition. Can be mentioned. In addition, since the amount of ultraviolet energy in the relatively short wavelength region is relatively short, it is confirmed that UV compositions obtained by LED irradiation generally tend to have poor curability on the coating surface.

一方UVランプ光源によるUV乾燥方式は、硬化性は優れるが硬化時の皮膜収縮の影響によりプラスチックフィルム等への基材接着性が劣る傾向がある。その為、フィルム基材への印刷には、接着性に特化した皮膜収縮の少ないUVインキを用いる必要があるが、一般に紙基材に用いられるUVインキと比較して硬化性能は劣る傾向にある。従って印刷会社は用いる基材に応じてインキを使い分けなければならない、もしくはインキに接着する基材を選択しなければならない等の使用上の不便があった。   On the other hand, the UV drying method using a UV lamp light source is excellent in curability but tends to be inferior in substrate adhesion to a plastic film or the like due to the effect of film shrinkage during curing. Therefore, for printing on film substrates, it is necessary to use UV inks with less film shrinkage specialized for adhesion, but generally the curing performance tends to be inferior compared to UV inks used for paper substrates. is there. Therefore, the printing company has inconvenience in use, such as having to use the ink properly according to the substrate to be used, or selecting a substrate to be bonded to the ink.

LED照射方式での硬化性を改善する方策として、入力電流量を増すことで紫外線照射強度を上げる、もしくは光源に使用するUV−LEDの個数自体を増加することが挙げられる。これらは有効であるが、単に照射エネルギー量の増大に頼るものであり、UV−LED方式の本来の長所である省エネルギー性を損ねるものである。また入力電流量を増やす手法ではLED発光部での発熱によるエネルギー損失が増大し、発光効率が低下する上、場合によっては放熱性が維持出来ない為にLED素子が劣化し、光源寿命が損なわれてしまうという問題がある。   As a measure for improving the curability in the LED irradiation method, increasing the input current amount increases the ultraviolet irradiation intensity, or increases the number of UV-LEDs used for the light source. Although these are effective, they simply rely on an increase in the amount of irradiation energy and impair the energy saving, which is the original advantage of the UV-LED system. Also, the method of increasing the amount of input current increases energy loss due to heat generation in the LED light emitting section, lowers the light emission efficiency, and in some cases, the heat dissipation cannot be maintained, so that the LED element deteriorates and the light source life is impaired. There is a problem that it ends up.

同様に酸素阻害による硬化阻害を防ぐ為に、光源としてUV−LEDと水銀UVランプを組み合わせる手法が知られている(例えば、非特許文献1参照)。例えば主として低波長域の紫外線を発する水銀ランプを組み合わせることで、特に紫外線硬化型組成物の皮膜表面における硬化反応を改善することが可能である。   Similarly, in order to prevent curing inhibition due to oxygen inhibition, a method of combining a UV-LED and a mercury UV lamp as a light source is known (for example, see Non-Patent Document 1). For example, by combining a mercury lamp that mainly emits ultraviolet rays in a low wavelength region, it is possible to improve the curing reaction particularly on the film surface of the ultraviolet curable composition.

しかしながら、UVランプを組み合わせる手法はこれまで非特許文献1に示されるように、建材用途等におけるコーティングニスの硬化性向上の手段として提案されていたが、画像を形成する印刷用途では、まだ実例をみない。   However, as shown in Non-Patent Document 1, a method of combining a UV lamp has been proposed as a means for improving the hardening property of a coating varnish in a building material application or the like. I do not see.

特開2005−153193JP 2005-153193 A 特開2006−176734JP 2006-176734 A 特開2006−206875JP 2006-206875 A RADTECH REPORT MARCH/APRIL 2008 「UV−LED Curing It‘s Beginning to Look a Lot Like Christmas」RADTECH REPORT MARCH / APRIL 2008 "UV-LED Curing It's Beginning to Look a Lot Like Christmas"

本発明の課題は、優れた表面硬度を有するとともに、基材との密着性にも優れる紫外線硬化型印刷物を製造する方法及び該製造方法で得られる紫外線硬化型印刷物を提供することにある。   An object of the present invention is to provide a method for producing an ultraviolet curable print having excellent surface hardness and excellent adhesion to a substrate, and an ultraviolet curable print obtained by the production method.

本発明者らは、まず第一に基材上にオフセット印刷で画像形成した後、第一の紫外線光源としてのLED照射で基材との密着性を確保し、第二の紫外線光源としてのUVランプ照射で塗膜の硬度を得るという、機能分離の照射方式を採用することで、上記課題を達成できることを見出し、本発明に至った。   The present inventors firstly formed an image on a base material by offset printing, and then secured adhesion to the base material by LED irradiation as a first ultraviolet light source, and UV as a second ultraviolet light source. The present inventors have found that the above problem can be achieved by adopting a function-separated irradiation method in which the hardness of the coating film is obtained by lamp irradiation.

すなわち、本発明は、第一に基材上にオフセット印刷で網点等によるドット及び、又は線画で形成する画像を形成する工程(工程1)、発光ダイオード(LED)で紫外線を照射する工程(工程2)及び紫外線ランプで紫外線を照射する工程(工程3)をこの順に有することを特徴とする紫外線硬化型印刷物の製造方法を提供する。   That is, in the present invention, first, a step of forming an image formed by dots and line drawings or a line drawing by offset printing on a substrate (step 1), a step of irradiating ultraviolet rays with a light emitting diode (LED) ( There is provided a method for producing an ultraviolet curable printed material, comprising the step 2) and the step of irradiating ultraviolet rays with an ultraviolet lamp (step 3) in this order.

本発明は、第二に、前記した紫外線硬化型印刷物の製造方法によって得られる印刷物を提供する。   Secondly, the present invention provides a printed matter obtained by the above-described method for producing an ultraviolet curable printed matter.

本発明により、基材の表面に紫外線硬化型組成物の層を形成し、紫外線光源として第一にUV−LEDを用いることで、基材との密着性を確保でき、その後に、第二の紫外線光源としてUVランプ照射で、塗膜に十分な硬度を得ることができる。本発明を採用することにより、硬化・接着共に優れる印刷物を得ることが出来るだけでなく、UVインキやフィルム基材の汎用性が高まり、用途毎にインキや基材を入れ替える手間が省けることから、印刷会社の作業負担を軽減することが可能となる。   According to the present invention, a layer of an ultraviolet curable composition is formed on the surface of a substrate, and by first using a UV-LED as an ultraviolet light source, adhesion with the substrate can be secured, and then the second A sufficient hardness can be obtained for the coating film by irradiation with a UV lamp as an ultraviolet light source. By adopting the present invention, not only can prints excellent in both curing and adhesion be obtained, but the versatility of UV inks and film bases can be increased, and the trouble of replacing inks and bases for each application can be saved. It becomes possible to reduce the work burden of the printing company.

基材上にオフセット印刷で紫外線硬化性組成物の画像を形成する工程(工程1)、発光ダイオード(LED)で紫外線を照射する工程(工程2)及び紫外線ランプで紫外線を照射する工程(工程3)をこの順に有することを特徴とする紫外線硬化型印刷物の製造工程を経て印刷物を提供する。   A step of forming an image of an ultraviolet curable composition by offset printing on a substrate (step 1), a step of irradiating ultraviolet rays with a light emitting diode (LED) (step 2), and a step of irradiating ultraviolet rays with an ultraviolet lamp (step 3). ) In this order, the printed material is provided through a manufacturing process of an ultraviolet curable printed material.

本発明の紫外線硬化型印刷物の製造方法は、第一に基材上にオフセット印刷で網点等によるドット及び、又は線画で形成する画像を形成し、発光ピーク波長350〜420nm、紫外線積算光量が2〜12mJ/cm2、照射強度が100〜1000mW/cmの発光ダイオード(LED)で紫外線を照射する工程及び紫外線ランプで紫外線を照射する工程を経て印刷物を提供する。本発明は本例に限定されるものではない。   The method for producing an ultraviolet curable print of the present invention first forms an image formed by dots and / or line drawings by offset printing on a substrate, and has an emission peak wavelength of 350 to 420 nm and an integrated UV light amount. A printed matter is provided through a step of irradiating ultraviolet rays with a light emitting diode (LED) having an irradiation intensity of 2 to 12 mJ / cm 2 and an irradiation intensity of 100 to 1000 mW / cm and a step of irradiating ultraviolet rays with an ultraviolet lamp. The present invention is not limited to this example.

本発明の全構成図を図1に示す。印刷基材1はフィーダー部より印刷ユニット2に供給される。印刷ユニット2は複数の印刷ユニットを備えており、例えば通常のプロセスカラー印刷であれば墨色UVインキ、藍色UVインキ、紅色UVインキ、黄色UVインキを用いるので4ユニットを要する。また色数を付加する特色UVインキを加える構成である、もしくはUVOPニスを重ねる構成であれば、これに応じた数の印刷ユニットが必要と成る。通例では印刷ユニットの総数は1〜10程度である。   FIG. 1 shows the overall configuration of the present invention. The printing substrate 1 is supplied to the printing unit 2 from the feeder unit. The printing unit 2 includes a plurality of printing units. For example, if normal process color printing is used, black UV ink, indigo UV ink, red UV ink, and yellow UV ink are used, so four units are required. In addition, if the configuration is such that a special color UV ink for adding the number of colors is added, or if a configuration in which UVOP varnish is overlapped, the number of printing units corresponding to this is required. Typically, the total number of printing units is about 1-10.

印刷ユニット2により印刷された印刷基材1は、設置された紫外線LED照射機3の下部を通過する際に紫外線照射を受け、続けて設置された紫外線UVランプ4の下部を通過する際にも紫外線を受けることで印刷されたUVインキ層が硬化する。   The printing substrate 1 printed by the printing unit 2 is irradiated with ultraviolet rays when passing through the lower part of the installed ultraviolet LED irradiator 3 and also when passing through the lower part of the installed ultraviolet UV lamp 4. The printed UV ink layer is cured by receiving ultraviolet rays.

印刷ユニット2に塗工機5を加え、UVインキ層の上面にUVコーティングニス層を形成する場合の印刷構成図を図2に示すが、この印刷構成においても本発明で述べる印刷方法が適用でき、効果が得られることは勿論である。塗工機5は、チャンバー6、アニロックスロール7、ブランケット胴8及び圧胴9から構成されている。UVコーティングニスはチャンバー6内に収容され、アニロックスロール7とブランケット胴8を介して印刷基材1上のUVインキ層の上面に塗布され、UVコーティングニス層が形成される。UVコーティングニスを、チャンバー方式では無く、ロール方式により塗布する場合においても、同様に本発明で述べる印刷方法が適用でき、効果を得ることが可能である。ロール方式ではニス渡しロール間におけるロール間隔の調整により供給するニス量をコントロールすることが可能であるが、温度等、諸印刷条件によるニス供給量のフレが発生しにくい点においては、ニスの供給量をより均一に保つ点に優れるチャンバー方式を採用することが特に望ましい。   FIG. 2 shows a printing configuration diagram when the coating machine 5 is added to the printing unit 2 and a UV coating varnish layer is formed on the upper surface of the UV ink layer. The printing method described in the present invention can also be applied to this printing configuration. Of course, the effect can be obtained. The coating machine 5 includes a chamber 6, an anilox roll 7, a blanket cylinder 8 and an impression cylinder 9. The UV coating varnish is accommodated in the chamber 6 and applied to the upper surface of the UV ink layer on the printing substrate 1 through the anilox roll 7 and the blanket cylinder 8 to form a UV coating varnish layer. Even when the UV coating varnish is applied not by the chamber method but by the roll method, the printing method described in the present invention can be similarly applied and the effect can be obtained. In the roll method, it is possible to control the amount of varnish supplied by adjusting the roll interval between the varnish passing rolls. However, in the point that the varnish supply amount does not fluctuate due to various printing conditions such as temperature, varnish supply It is particularly desirable to employ a chamber system that excels in keeping the amount more uniform.

本発明の印刷物で使用する印刷基材としては、特に限定は無く、例えば、上質紙、コート紙、アート紙、模造紙、薄紙、厚紙等の紙、ポリエステル樹脂、アクリル樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、ポリビニルアルコール、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、エチレン酢酸ビニル共重合体、エチレンビニルアルコール共重合体、エチレンメタクリル酸共重合体、ナイロン、ポリ乳酸、ポリカーボネート等のフィルム又はシート、セロファン、アルミニウムフォイル、その他従来から印刷基材として使用されている各種基材を挙げることが出来るが、特にポリエチレン、ポリプロピレン、ポリエステル樹脂等のプラスチックフィルム基材に対して本発明の効果を得ることが可能である。   The printing substrate used in the printed matter of the present invention is not particularly limited. For example, paper such as fine paper, coated paper, art paper, imitation paper, thin paper, cardboard, polyester resin, acrylic resin, vinyl chloride resin, chloride. Vinylidene resin, polyvinyl alcohol, polyethylene, polypropylene, polyacrylonitrile, ethylene vinyl acetate copolymer, ethylene vinyl alcohol copolymer, ethylene methacrylic acid copolymer, nylon or polylactic acid, polycarbonate film or sheet, cellophane, aluminum foil In addition, various base materials conventionally used as printing base materials can be mentioned, but the effect of the present invention can be obtained particularly for plastic film base materials such as polyethylene, polypropylene, and polyester resin.

本発明の印刷物の製造に用いられる印刷インキとしては、紫外線発光ダイオードもしくはUVランプより発せられる紫外線に対して硬化する組成物であれば特に限定は無く、公知公用のUV−LEDインキ、UVインキを用いることが可能であり、例えば印刷方式に応じて、オフセット、水無し、グラビア、フレキソ、シルクスクリーン、インクジェット、その他従来から印刷用途に使用されているUV硬化性インキを採用することが可能である。   The printing ink used for the production of the printed matter of the present invention is not particularly limited as long as it is a composition that cures against ultraviolet rays emitted from ultraviolet light emitting diodes or UV lamps, and publicly known UV-LED inks and UV inks are used. For example, depending on the printing method, offset, waterless, gravure, flexo, silk screen, ink jet, and other UV curable inks conventionally used for printing can be adopted. .

本発明に利用出来るUVインキ、UVOPニス、及びUVコーティングニスの例としては、ダイキュアインキシリーズ、ダイキュアクリヤーシリーズ(以上、DICグラフィックス社製)が挙げられる。   Examples of the UV ink, UVOP varnish, and UV coating varnish that can be used in the present invention include the Dicure Ink Series and the Dicure Acrylic Series (above, manufactured by DIC Graphics).

本発明の印刷物を製造するために使用する紫外線発光ダイオード光源より発せられる紫外線の発光波長としては、例えば、発光ピーク波長が350〜420nm程度であるものが好ましい。   As the emission wavelength of ultraviolet rays emitted from the ultraviolet light emitting diode light source used for producing the printed material of the present invention, for example, those having an emission peak wavelength of about 350 to 420 nm are preferable.

本発明の印刷物を製造するために使用する紫外線発光ダイオード光源よりUV硬化性組成物へ照射される紫外線の積算光量値に関しては、印刷基材上のUV硬化性組成物の種別や印刷層の厚み等により異なる為、厳密には特定出来ず、適宜好ましい条件を選択するものであるが、例えば、積算光量値が1〜30mJ/cm程度であり、より好ましくは、2〜12mJ/cm程度である。 Regarding the cumulative amount of ultraviolet light irradiated to the UV curable composition from the ultraviolet light emitting diode light source used for producing the printed material of the present invention, the type of the UV curable composition on the printing substrate and the thickness of the printed layer For example, the integrated light quantity value is about 1 to 30 mJ / cm 2 , and more preferably about 2 to 12 mJ / cm 2. It is.

本発明の印刷物を製造するために使用する紫外線発光ダイオード光源より印刷基材上のUV硬化性組成物へ照射される紫外線の照射強度(mW/cm)に関しては、印刷方向に並べる紫外線発光ダイオード光源の個数、光源から組成物までの照射距離等の諸条件によっても適切な照射強度範囲が変動することから厳密には特定出来ず、適宜好ましい条件を選択するものであるが、例えば、50〜3000mW/cm程度であり、より好ましくは、100〜1000mW/cm程度である。 With respect to the irradiation intensity (mW / cm 2 ) of ultraviolet rays irradiated to the UV curable composition on the printing substrate from the ultraviolet light emitting diode light source used for producing the printed matter of the present invention, the ultraviolet light emitting diodes arranged in the printing direction. The appropriate irradiation intensity range varies depending on various conditions such as the number of light sources, the irradiation distance from the light source to the composition, etc., and thus cannot be strictly specified, and preferable conditions are appropriately selected. It was 3000 mW / cm 2 or so, more preferably about 100~1000mW / cm 2.

本発明の印刷物を製造するために使用する紫外線ランプ光源としては、公知公用のものを利用することが出来、メタルハライドランプ、水銀ランプ、キセノンランプ、エキシマランプ、等が挙げられる。   As the ultraviolet lamp light source used for producing the printed matter of the present invention, a publicly known one can be used, and examples thereof include a metal halide lamp, a mercury lamp, a xenon lamp, and an excimer lamp.

本発明の印刷物を製造するために使用する紫外線ランプ光源よりUV硬化性組成物へ照射される紫外線の積算光量値に関しては、印刷基材上のUV硬化性組成物の種別や印刷層の厚み等により異なる為、厳密には特定出来ず、適宜好ましい条件を選択するものであるが、例えば、積算光量値が20〜200mJ/cm程度であり、より好ましくは、30〜100mJ/cm程度である。 Regarding the cumulative amount of ultraviolet light irradiated to the UV curable composition from the ultraviolet lamp light source used for producing the printed material of the present invention, the type of the UV curable composition on the printing substrate, the thickness of the printed layer, etc. Therefore, it is not possible to specify exactly, and preferable conditions are selected as appropriate. For example, the integrated light amount value is about 20 to 200 mJ / cm 2 , and more preferably about 30 to 100 mJ / cm 2 . is there.

次に実施例により更に具体的に説明するが、本発明はこれらに限定されるものでは無い。   Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

印刷物の製造方法
〔実施例1〕
UVインキとしてダイキュアアビリオSU−2プロセス藍インキ(DICグラフィックス社製)を用い、簡易展色機(RIテスター、豊栄精工社製)を用い、0.125mlを使用して、PPフィルム(龍田化学社製、ハイピークリスタルST−200)上、約220cmの面積範囲に印刷した。紫外線発光ダイオード光源として、発光波長ピークが385nmである紫外線発光ダイオード照射装置(パナソニック電工社製、ANUD8002T01)を使用し、UVインキを印刷したPPフィルムに対して、紫外線発光ダイオード光源の直下を通過させるよう、照射距離1センチ、出力50%、1灯、ラインスピード120m/min.にて紫外線照射を施した。UNIMETER UIT−150−A(ウシオ電機社製)を用いてUV−LED光源より印刷物に照射された積算光量値及び照射強度を測定したところ、12mJ/cm、809mW/cmであった。続けて紫外線ランプ光源として、メタルハライドランプ(アイグラフィックス社製)を用い、印刷物に対して、紫外線ランプ光源の真下を通過させるよう、照射距離11センチ、出力120W/cm、3灯、ラインスピード120m/min.にて紫外線照射を施した。UNIMETER UIT−150−A(ウシオ電機社製)を用いてUVランプ光源より印刷物に照射された積算光量値を測定したところ、69mJ/cmであった。
Method for producing printed matter [Example 1]
Using UV ink, Dicure Abilio SU-2 process indigo ink (manufactured by DIC Graphics), using a simple color developing machine (RI tester, manufactured by Toyoe Seiko Co., Ltd.), using 0.125 ml, PP film (Tatsuta) It printed on the area range of about 220 cm < 2 > on a chemical company make, high crystal ST-200. As an ultraviolet light emitting diode light source, an ultraviolet light emitting diode irradiation device (Panasonic Electric Works, ANUD8002T01) having an emission wavelength peak of 385 nm is used, and a PP film printed with UV ink is passed directly under the ultraviolet light emitting diode light source. Irradiation distance 1 cm, output 50%, 1 light, line speed 120 m / min. UV irradiation was performed. When the integrated light quantity value and the irradiation intensity with which the printed matter was irradiated from the UV-LED light source were measured using UNIMETER UIT-150-A (USHIO INC.), They were 12 mJ / cm 2 and 809 mW / cm 2 . Subsequently, a metal halide lamp (made by Eye Graphics Co., Ltd.) was used as the ultraviolet lamp light source, and the printed distance was 11 cm, the output was 120 watts / cm, three lights, and the line speed was 120 m so as to pass directly under the ultraviolet lamp light source. / Min. UV irradiation was performed. The total amount of light irradiated onto the printed material from the UV lamp light source was measured using UNIMETER UIT-150-A (USHIO INC.), And found to be 69 mJ / cm 2 .

〔実施例2〜6〕
表1に示すインキ、UV−LED照射条件、UVランプ照射条件にて印刷物を製造した。UVインキとしてはダイキュアアビリオSU−2プロセス藍インキ(実施例2)、ダイキュアアビリオSU−1プロセス藍インキ(DICグラフィックス社製、実施例3,4)、ダイキュアハイブライトPTプロセス藍インキ(DICグラフィックス社製、実施例5,6)を用い、実施例1と同方法にてPPフィルム(ハイピークリスタルST−200)上に印刷し、紫外線照射を実施した。UV−LED照射条件に関しては、実施例2〜6においては照射距離1センチ、出力20%、1灯、ラインスピード120m/min.にて紫外線照射を施し、実施例1と同方法で積算光量値及び照射強度を測定したところ、5mJ/cm、438mW/cmであった。続けて紫外線照射を実施し、UVランプ照射条件に関しては、実施例2,3,5においては照射距離11センチ、出力120W/cm、3灯、ラインスピード120m/min.にて紫外線照射を施し、実施例1と同方法で積算光量値を測定したところ、69mJ/cmであった。実施例4,6においては照射距離11センチ、出力80W/cm、3灯、ラインスピード120m/min.にて紫外線照射を施し、実施例1と同方法で積算光量値を測定したところ、45mJ/cmであった。
[Examples 2 to 6]
Printed materials were produced under the ink conditions shown in Table 1, UV-LED irradiation conditions, and UV lamp irradiation conditions. Examples of UV inks include Dicure Abilio SU-2 Process Indigo Ink (Example 2), Dicure Abilio SU-1 Process Indigo Ink (manufactured by DIC Graphics, Examples 3 and 4), Dicure High Bright PT Process Indigo Ink. Using DIC Graphics, Examples 5 and 6, printing was performed on a PP film (Hype Crystal ST-200) in the same manner as in Example 1, and ultraviolet irradiation was performed. Regarding the UV-LED irradiation conditions, in Examples 2 to 6, the irradiation distance was 1 cm, the output was 20%, one lamp, and the line speed was 120 m / min. And the integrated light quantity value and the irradiation intensity were measured by the same method as in Example 1, and were 5 mJ / cm 2 and 438 mW / cm 2 . Subsequently, UV irradiation was performed. Regarding the UV lamp irradiation conditions, in Examples 2, 3, and 5, the irradiation distance was 11 cm, the output was 120 W / cm, the three lamps, the line speed was 120 m / min. And the integrated light quantity value was measured by the same method as in Example 1 and found to be 69 mJ / cm 2 . In Examples 4 and 6, the irradiation distance was 11 centimeters, the output was 80 W / cm, three lights, and the line speed was 120 m / min. When the integrated light quantity value was measured by the same method as in Example 1, it was 45 mJ / cm 2 .

〔比較例1〜8〕
表2、表3に示すインキ、UV−LED照射条件、UVランプ照射条件にて印刷物を製造した。インキは実施例1と同方法にてPPフィルム(ハイピークリスタルST−200)上に印刷し、紫外線照射を実施した。UVインキとしてはダイキュアアビリオSU−2プロセス藍インキ(比較例1,2)、ダイキュアアビリオSU−1プロセス藍インキ(比較例3,4,5)、ダイキュアハイブライトPTプロセス藍インキ(比較例6,7,8)を用いた。比較例2,4,7においてはUV−LED照射のみを実施し、照射距離1センチ、出力100%、1灯、ラインスピード120m/min.にて紫外線照射を施し、実施例1と同方法で積算光量値及び照射強度を測定したところ、22mJ/cm、999.9mW/cm以上(測定器の検出限界以上の数値)であった。比較例1,3,5,6,8においてはUVランプ照射のみを実施し、比較例1,3,6においては照射距離11センチ、出力120W/cm、3灯、ラインスピード120m/min.にて紫外線照射を施し、実施例1と同方法で積算光量値を測定したところ、69mJ/cmであった。比較例5,8においては照射距離11センチ、出力80W/cm、3灯、ラインスピード120m/min.にて紫外線照射を施し、実施例1と同方法で積算光量値を測定したところ、45mJ/cmであった。
[Comparative Examples 1-8]
Printed materials were produced under the ink, UV-LED irradiation conditions, and UV lamp irradiation conditions shown in Tables 2 and 3. The ink was printed on a PP film (Hype Crystal ST-200) in the same manner as in Example 1 and then irradiated with ultraviolet rays. Examples of UV inks include Dicure Abilio SU-2 Process Indigo Ink (Comparative Examples 1 and 2), Dicure Avillo SU-1 Process Indigo Ink (Comparative Examples 3, 4, and 5), Dicure High Bright PT Process Indigo Ink (Comparative) Examples 6, 7, 8) were used. In Comparative Examples 2, 4, and 7, only UV-LED irradiation was performed, the irradiation distance was 1 cm, the output was 100%, one lamp, and the line speed was 120 m / min. When the integrated light amount value and the irradiation intensity were measured by the same method as in Example 1, it was 22 mJ / cm 2 , 999.9 mW / cm 2 or more (numerical value exceeding the detection limit of the measuring device). . In Comparative Examples 1, 3, 5, 6, and 8, only UV lamp irradiation was performed, and in Comparative Examples 1, 3, and 6, the irradiation distance was 11 cm, the output was 120 W / cm, three lamps, and the line speed was 120 m / min. And the integrated light quantity value was measured by the same method as in Example 1 and found to be 69 mJ / cm 2 . In Comparative Examples 5 and 8, the irradiation distance was 11 centimeters, the output was 80 W / cm, three lights, and the line speed was 120 m / min. When the integrated light quantity value was measured by the same method as in Example 1, it was 45 mJ / cm 2 .

〔印刷物の評価方法〕
紫外線照射後における印刷物の乾燥性(硬化性)の評価方法としては、爪スクラッチテストによりインキの乾燥状態を確認し、次の5段階で評価した。
5・・・完全に乾燥しており、強い力で擦っても皮膜に傷が発生しない
4・・・ほぼ乾燥しており、強い力で擦ると皮膜に僅かに傷が発生する
3・・・ほぼ乾燥しており、強い力で擦ると皮膜に明確に傷が発生する
2・・・僅かに乾燥しており、弱い力でも皮膜に明確に傷が発生する
1・・・全く乾燥していない
[Evaluation method for printed matter]
As a method for evaluating the drying property (curability) of the printed matter after irradiation with ultraviolet rays, the dried state of the ink was confirmed by a nail scratch test and evaluated in the following five stages.
5 ... Completely dry, no scratches on the film even when rubbed with strong force 4 ... Almost dry, slightly rubbed on the film when rubbed with strong force 3 ... The film is almost dry, and the film is clearly scratched when rubbed with a strong force. 2 ... It is slightly dry, and the film is clearly scratched even with a weak force.

紫外線照射後における印刷物の接着性(密着性)の評価方法としては、テープ剥離テストにより確認した。セロハンテープを紫外線照射後のインキ皮膜に強く押し付け、素早く垂直方向に引き上げて剥がすことにより、インキ皮膜の基材上への接着状態を、次の5段階で評価した。
5・・・完全に接着しており、ほぼ全ての面積が剥離せず残っている
4・・・ほぼ接着しており、半分を超える面積が剥離せず残っている
3・・・ほぼ接着しており、約半分の面積が剥離せず残っている
2・・・僅かに接着しており、半分を超える面積が剥離する
1・・・全く接着していない、ほぼ全ての面積が剥離する
As an evaluation method of the adhesiveness (adhesiveness) of the printed matter after the ultraviolet irradiation, it was confirmed by a tape peeling test. The cellophane tape was strongly pressed against the ink film after being irradiated with ultraviolet rays, and quickly pulled up in the vertical direction and peeled off to evaluate the adhesion state of the ink film on the substrate in the following five stages.
5: Completely bonded, almost all area remains without peeling 4: Almost bonded, more than half area remains without peeling 3: Almost bonded About half of the area remains without peeling 2 ... Slightly adhered, more than half of the area peels 1 ... No adhesion, almost all area peels off

Figure 0005597431
Figure 0005597431

Figure 0005597431
Figure 0005597431

Figure 0005597431
Figure 0005597431

表1から表3中の数値は積算光量値であり、単位は(mJ/cm)である。 The numerical values in Tables 1 to 3 are integrated light quantity values, and the unit is (mJ / cm 2 ).

実施例1〜6の結果において、UV−LED照射とUVランプ照射を併用することで乾燥性、接着性共に実用上問題無い状態(3以上)にあることを確認した。   In the results of Examples 1 to 6, it was confirmed that both UV-LED irradiation and UV lamp irradiation were in a state where there was no practical problem (3 or more) in terms of drying and adhesion.

比較例1〜8の結果において、UV−LED照射のみ、もしくはUVランプ照射のみの条件では、乾燥性もしくは接着性が不足する状態(2以下)にあることを確認した。   In the results of Comparative Examples 1 to 8, it was confirmed that under conditions of only UV-LED irradiation or only UV lamp irradiation, the drying property or adhesiveness was in a state (2 or less).

本発明の紫外線硬化型印刷物の製造方法およびそれを用いた紫外線硬化型印刷物は、UV硬化による印刷が求められるグラフィックイメージの印刷、印字図形、プラスチック電子材料などにおいて、好適に用いることができる。   The method for producing an ultraviolet curable print of the present invention and the ultraviolet curable print using the same can be suitably used in graphic image printing, printed graphics, plastic electronic materials, and the like that require printing by UV curing.

本発明である紫外線硬化型印刷物をUVインキ或いはUVOPニスで印刷する工程を説明する工程図である。It is process drawing explaining the process of printing the ultraviolet curable printed material which is this invention with UV ink or UVOP varnish. 本発明である紫外線硬化型印刷物をUVインキ或いはUVOPニスで印刷し、加えて塗工機でUVコーティングニスを塗工する工程を説明する工程図である。It is process drawing explaining the process of printing the ultraviolet curable printed material which is this invention with UV ink or UVOP varnish, and also applying UV coating varnish with a coating machine.

1・・・印刷基材
2・・・印刷機(UVインキ、UVOPニスを印刷)
3・・・紫外線LED照射装置
4・・・紫外線ランプ照射装置
5・・・塗工機(UVコーティングニスを塗布)
6・・・チャンバー
7・・・アニロックスロール
8・・・ブランケット胴
9・・・圧胴
1 ... printing substrate 2 ... printing machine (printing UV ink, UVOP varnish)
3 ... UV LED irradiation device 4 ... UV lamp irradiation device 5 ... Coating machine (applying UV coating varnish)
6 ... Chamber 7 ... Anilox roll 8 ... Blanket cylinder 9 ... Impression cylinder

Claims (3)

基材上にオフセット印刷で紫外線硬化性組成物の画像を形成する工程(工程1)、発光ダイオード(LED)で紫外線を照射する工程(工程2)及び紫外線ランプで紫外線を照射する工程(工程3)をこの順に有する紫外線硬化型印刷物の製造方法であって、前記した発光ダイオード(LED)が、発光ピーク波長350〜420nm、紫外線積算光量が2〜12mJ/cm 、かつ照射強度が100〜1000mW/cm である発光ダイオード(LED)であることを特徴とする紫外線硬化型印刷物の製造方法。 A step of forming an image of an ultraviolet curable composition by offset printing on a substrate (step 1), a step of irradiating ultraviolet rays with a light emitting diode (LED) (step 2), and a step of irradiating ultraviolet rays with an ultraviolet lamp (step 3). ) the method of manufacturing a ultraviolet curable prints that Yusuke in this order, wherein the light emitting diode (LED) is the emission peak wavelength of 350 to 420 nm, UV integrated light quantity 2~12mJ / cm 2, and irradiation intensity It is a light emitting diode (LED) which is 100-1000 mW / cm < 2 > , The manufacturing method of the ultraviolet curable printed matter characterized by the above-mentioned. 前記した基材がプラスチックフィルムである請求項1に記載の紫外線硬化型印刷物の製造方法。 The method for producing an ultraviolet curable printed material according to claim 1, wherein the substrate is a plastic film. 請求項1又は2に記載の印刷物の製造方法によって得られる印刷物。 Prints obtained by the manufacturing method of the printed matter according to claim 1 or 2.
JP2010085953A 2010-04-02 2010-04-02 Method for producing ultraviolet curable printed matter and ultraviolet curable printed matter using the same Expired - Fee Related JP5597431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010085953A JP5597431B2 (en) 2010-04-02 2010-04-02 Method for producing ultraviolet curable printed matter and ultraviolet curable printed matter using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010085953A JP5597431B2 (en) 2010-04-02 2010-04-02 Method for producing ultraviolet curable printed matter and ultraviolet curable printed matter using the same

Publications (2)

Publication Number Publication Date
JP2011213075A JP2011213075A (en) 2011-10-27
JP5597431B2 true JP5597431B2 (en) 2014-10-01

Family

ID=44943315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010085953A Expired - Fee Related JP5597431B2 (en) 2010-04-02 2010-04-02 Method for producing ultraviolet curable printed matter and ultraviolet curable printed matter using the same

Country Status (1)

Country Link
JP (1) JP5597431B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013138173A (en) * 2011-11-28 2013-07-11 Ricoh Co Ltd Method for manufacturing organic electroluminescent element, and organic electroluminescent element
KR101621214B1 (en) * 2015-04-21 2016-05-16 주식회사 소포스 Method of high-fastness dying yarn using ultraviolet ray hardning
JP2016052799A (en) * 2016-01-21 2016-04-14 大日本印刷株式会社 Biomolecule print and producing method thereof
CN108995354A (en) * 2018-08-08 2018-12-14 深圳市瑞丰光电紫光技术有限公司 A kind of offset printing curing light source structure and printing machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007058957A1 (en) * 2007-12-07 2009-06-10 Heidelberger Druckmaschinen Ag Process for drying printed material
JP2010194897A (en) * 2009-02-25 2010-09-09 Mitsubishi Heavy Ind Ltd Drying apparatus for printing machine, and printing machine

Also Published As

Publication number Publication date
JP2011213075A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5005831B2 (en) Method of curing a substance by ultraviolet rays
TWI724087B (en) Photocurable inkjet printing ink composition and inkjet printing method
CN104910678B (en) Ultraviolet cured offset printing ink with LED as light source
JP6726190B2 (en) Method for producing flexographic printing plate by multiple exposure with UV-LED
JP2010000742A (en) Method for manufacturing ultraviolet curable printed material and ultraviolet curable printed material by the method
JP5597431B2 (en) Method for producing ultraviolet curable printed matter and ultraviolet curable printed matter using the same
JP6742878B2 (en) Container and manufacturing method thereof
JP2016521217A (en) Combination of UV curable inkjet and overprint varnish
US20060088674A1 (en) Ultraviolet curable barrier layers
WO2015025840A1 (en) Inkjet recording sheet, method for manufacturing inkjet recording sheet, printed article, method for manufacturing printed article, and ornamental glass
JP6509174B2 (en) Method of applying a coating or ink composition to a substrate and irradiating it, and its product
EP2960066B1 (en) Use of a resin printing plate precursor for laser engraving and method of manufacturing a printing plate
JP2020169251A (en) Active energy ray-curable ink, method of producing ink-cured product, and printed matter
CN107533292B (en) Method of making relief image printing plate
JP2021070718A (en) Active energy ray-curable ink for lithographic offset printing, method of producing ink cured product, and printed material
CN105980930B (en) Photosensitive resin composition
JP6259107B2 (en) Inkjet recording medium and method for producing the same, printed matter and method for producing the same, decorative glass, and roll
CN110997335A (en) Method for curing an ink or toner layer and printing system having a curing unit
US20070126833A1 (en) Digital printing using ultraviolet inks
JP2012035437A (en) Method for manufacturing ultraviolet-curable type printed matter and ultraviolet-curable type printed matter using the method
JP2018052609A (en) Container and method for producing the same
JP2011504424A (en) Method and apparatus for improving flexibility of ink printed on substrate by irradiation curing control
JP2021021077A (en) Active energy ray-curable ink, method for producing ink cured product, and printed matter
CN115505291B (en) UV (ultraviolet) ink, printing method using UV ink and application of UV ink
KR20080070096A (en) Primer composition for glass printing and printing method thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140811

R150 Certificate of patent or registration of utility model

Ref document number: 5597431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees