JP5596812B2 - Pattern generation apparatus and pattern shape evaluation apparatus - Google Patents
Pattern generation apparatus and pattern shape evaluation apparatus Download PDFInfo
- Publication number
- JP5596812B2 JP5596812B2 JP2013070935A JP2013070935A JP5596812B2 JP 5596812 B2 JP5596812 B2 JP 5596812B2 JP 2013070935 A JP2013070935 A JP 2013070935A JP 2013070935 A JP2013070935 A JP 2013070935A JP 5596812 B2 JP5596812 B2 JP 5596812B2
- Authority
- JP
- Japan
- Prior art keywords
- pattern
- data
- contour
- shape
- reference pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Description
本発明は、ウエハやレチクル等に製造された電子デバイスの回路パターンの撮影画像を利用して、回路パターンの形状を評価するパターン生成装置、およびパターン形状評価装置に関するものである。 The present invention relates to a pattern generation apparatus and a pattern shape evaluation apparatus for evaluating the shape of a circuit pattern using a captured image of a circuit pattern of an electronic device manufactured on a wafer, a reticle, or the like.
近年、半導体デバイスの性能向上や製造コスト低減を目的とした半導体デバイスの高密度集積化が進んでいる。半導体デバイスの高密度集積化を実現するためには、微細な回路パターンをシリコンウエハ上に形成するリソグラフィ技術の進歩が必要である。リソグラフィは回路パターンの原版となるマスクを作成し、露光装置でシリコンウエハ上に塗布した感光性受光樹脂(以下、レジストとする。)にマスクの回路パターンを転写する工程であり、位相シフトマスク技術や変形照明技術、スキャン露光方式や化学増幅レジスト材料など、様々な技術革新によって微細化のトレンドが維持されてきた。しかし、回路パターンの最小寸法が露光光源の波長を下回ったあたりからは、リソグラフィのプロセス条件が最適な状態から変動した場合の許容範囲(以下、プロセスウィンドウとする)が極端に小さくなるといった問題が発生している。 In recent years, high-density integration of semiconductor devices for the purpose of improving the performance of semiconductor devices and reducing manufacturing costs has been progressing. In order to realize high-density integration of semiconductor devices, progress in lithography technology for forming fine circuit patterns on a silicon wafer is necessary. Lithography is a process that creates a mask to be an original circuit pattern and transfers the circuit pattern of the mask onto a photosensitive light-receiving resin (hereinafter referred to as a resist) applied on a silicon wafer by an exposure apparatus. The trend of miniaturization has been maintained by various technological innovations such as, modified illumination technology, scan exposure method and chemically amplified resist material. However, since the minimum dimension of the circuit pattern falls below the wavelength of the exposure light source, there is a problem that the allowable range (hereinafter referred to as the process window) when the lithography process conditions change from the optimum state becomes extremely small. It has occurred.
プロセスウィンドウが極小化する原因は、露光光源の短波長化に伴う照明の不均一性,反射防止,ベーク,現像等のプロセス不均一性、マスク寸法の変動等多岐にわたるが、これらリソグラフィプロセスの変動要因は、露光光量の変動と同様の振る舞いをする実効ドーズ(以下、ドーズとする)と、フォーカス変動と同様の振る舞いをする実効フォーカス(以下、フォーカス)に分類することができる。このため、半導体製造メーカは、半導体の開発段階で、ドーズとフォーカスを段階的に変えてシリコンウエハ上に製造したテストパターンを測長SEMで計測し、正常なパターンを製造するためのドーズ範囲とフォーカス範囲のプロセスウィンドウを求める作業(以下、条件だし作業、特許文献1に開示)や、光学シミュレーションによるドーズ,フォーカスの変動要因解析作業を繰り返し行って、最適なリソグラフィ条件を導くことで、プロセスウィンドウの拡大を図っている。 There are various reasons for the minimization of the process window, such as non-uniform illumination due to shortening of the exposure light source, non-uniformity of processes such as antireflection, baking and development, and variations in mask dimensions. Factors can be classified into an effective dose (hereinafter referred to as “dose”) that behaves similarly to the change in exposure light amount and an effective focus (hereinafter referred to as “focus”) that behaves similarly to the focus change. For this reason, a semiconductor manufacturer measures a test pattern manufactured on a silicon wafer by changing a dose and a focus step by step in a semiconductor development stage, and measures a dose range for manufacturing a normal pattern. The process window is derived by repeatedly performing an operation for obtaining a process window in the focus range (hereinafter referred to as “conditioning operation”, disclosed in Patent Document 1) and a dose and focus variation factor analysis operation by optical simulation to derive optimum lithography conditions. Is expanding.
しかしながら、65nm以降のプロセスでは、パターンの高密度化,パターン形状の複雑化により、開発段階の条件だし作業で、全てのパターン形状,パターンの配置関係において最適なプロセスウィンドウを求めることが困難になっており、量産段階でプロセス変動によるパターン形状の変形をモニタリングすることが重要になっている。 However, in the process after 65 nm, it is difficult to obtain an optimum process window for all pattern shapes and pattern arrangements in the development stage due to the high density of patterns and the complexity of pattern shapes. Therefore, it is important to monitor the deformation of the pattern shape due to process variations at the mass production stage.
量産の段階でパターン形状の変形をモニタリングするためには、プロセス変動によるパターン形状の変形が無い、良品パターンを象ったパターン(以下、参照パターンとする)とチップ内のパターンの形状を比較して、パターンの形状変形量を求める手法が有効である。このようなパターン形状の評価手法として、電子デバイスの設計データを参照パターンとしてパターンの形状を評価する発明(特許文献2〜5)や、良品パターンを参照パターンとしてパターンの形状評価を行う発明(特許文献3)が開示されている。
In order to monitor the deformation of the pattern shape at the stage of mass production, the pattern shape in the chip (hereinafter referred to as the reference pattern) that does not deform the pattern shape due to process variations is compared with the pattern shape in the chip. Thus, a method for obtaining the pattern deformation amount is effective. As such pattern shape evaluation methods, inventions that evaluate pattern shapes using electronic device design data as reference patterns (
しかしながら、特許文献2〜5に開示の発明については、マスク製造装置や露光装置等の回路パターン製造装置の性能上の問題から、設計データの回路パターンの形状と全く等価な形状の回路パターンをシリコンウエハ上に形成することは困難であり、設計データの回路パターンを基準にした形状評価手法では、その形状の違いによって、誤った形状評価が行われるという問題がある。このような問題を対策するために特許文献4には、設計データの形状を、シリコンウエハ上に形成されるような形に予め変形させたパターンを参照パターンとし、パターンの形状評価を行う方法が開示されているが、製造パターンの形状を完全に予測することは困難であり、予測パターンと製造パターンの不一致により、誤った形状評価が行われるといった問題がある。
However, in the inventions disclosed in
以上の問題から、特許文献3に開示のある製造可能な回路パターンで最も良好なパターン(良品の回路パターンの撮影画像)を基準とした形状評価手法が有効ではあるが、一方で、電子デバイスの製造過程で回路パターンの個々に生じたエッジラフネス等の回路パターンの局所的な変形部位の影響によって誤った形状評価が行われるといった問題がある。更に、微細な回路パターンの形状評価を行うためには、その回路パターンを撮影する手段として一般的にSEMが利用されるが、SEMの構造上、撮影画像には多くのノイズや輝度ムラが含まれる。これらのノイズや輝度ムラはSEMの画像からパターンの形状を抽出する画像処理の弊害となり、良品パターンの正確なパターン形状が画像から抽出できないために、その抽出に失敗した部位について正確な形状評価が行えない、といった問題がある。更に参照パターンとしてふさわしい良品パターン、すなわち、プロセス変動が生じていない良品パターンが必ずしもウエハ上に製造されているという保証はない。
From the above problems, the shape evaluation method based on the best pattern (captured image of a good circuit pattern) disclosed in
上記課題を解決するために、本発明は、電子デバイスの回路パターンの形状評価に利用する参照パターンを生成する装置であって、少なくとも2つ以上の回路パターンの輪郭データから、パターンの検査に用いる参照パターンを生成する参照パターン生成手段を備え、当該参照パターン生成手段は、前記少なくとも2つ以上の輪郭データに挟まれる領域について、塗り潰し処理を実行し、当該塗り潰された領域に対する、細線化処理に基づいて、前記参照パターンを生成することを特徴としたパターン生成装置を提案する。 In order to solve the above-described problems, the present invention is an apparatus for generating a reference pattern used for shape evaluation of a circuit pattern of an electronic device, and is used for pattern inspection from contour data of at least two circuit patterns. Reference pattern generating means for generating a reference pattern is provided, the reference pattern generating means performs a filling process on an area sandwiched between the at least two or more contour data, and performs a thinning process on the filled area The present invention proposes a pattern generation apparatus characterized by generating the reference pattern.
また、電子デバイスの回路パターンの形状評価に利用する参照パターンを生成する装置であって、少なくとも2つ以上の回路パターンの輪郭データから、パターンの検査に用いる参照パターンを生成する参照パターン生成手段を備え、当該参照パターン生成手段は、前記少なくとも2つ以上の輪郭データを重ねて輪郭合成像を生成し、当該複数の輪郭データの重なった部位の特定に基づいて、前記参照パターンを生成することを特徴としたパターン生成装置を提案する。 Further, a reference pattern generation means for generating a reference pattern used for shape evaluation of a circuit pattern of an electronic device, the reference pattern generating means generating a reference pattern used for pattern inspection from contour data of at least two circuit patterns. And the reference pattern generation unit generates the contour composite image by superimposing the at least two or more contour data, and generates the reference pattern based on the identification of the overlapping portion of the plurality of contour data. A featured pattern generator is proposed.
また、本発明はパターン生成装置において、輪郭データと他の輪郭データのパターンマッチングを行って、輪郭データ間の重ね合わせ位置を特定する手段を有し、前記輪郭分布データ生成手段は、前記輪郭データ間の重ね合わせ位置に基づき、輪郭分布データを生成することを特徴とするものである。 In the pattern generation device, the present invention further includes means for performing pattern matching between the contour data and other contour data to specify an overlapping position between the contour data, and the contour distribution data generating means includes the contour data It is characterized in that contour distribution data is generated based on the overlapping position between them.
また、本発明は、パターン生成装置において、設計データと輪郭データとのパターンマッチングを行って、輪郭データの重ね合わせ位置を特定する手段を有し、前記輪郭分布データ生成手段は、前記設計データと前記輪郭データ間の重ね合わせ位置に基づき、輪郭分布データを生成することを特徴とするものである。 In the pattern generation device, the present invention further includes means for performing pattern matching between the design data and the contour data to identify the overlapping position of the contour data, and the contour distribution data generating means includes the design data and Contour distribution data is generated based on the overlapping position between the contour data.
また、本発明はパターン生成装置において、前記輪郭分布データ生成手段は、回路パターンの形状の規定値と前記輪郭データの形状を比較して、前記回路パターンの形状の規定値を満たす輪郭データのみを用いて輪郭分布データを生成することを特徴とするものである。 In the pattern generation apparatus according to the present invention, the contour distribution data generation unit compares only the contour data satisfying the prescribed value of the circuit pattern shape by comparing the prescribed value of the shape of the circuit pattern with the shape of the contour data. It is used to generate contour distribution data.
また、本発明は、パターン生成装置において、前記参照パターン生成手段は、前記輪郭分布データから、輪郭の分布を特定し、前記輪郭の分布範囲内に参照パターンを設定することを特徴とするものである。 Further, the present invention is the pattern generation device, wherein the reference pattern generation unit specifies a distribution of the contour from the contour distribution data, and sets a reference pattern within the distribution range of the contour. is there.
また、本発明はパターン生成装置において、前記参照パターン生成手段は、回路パターンの設計データの形状を参考にして、前記輪郭分布データから前記参照パターンを生成することを特徴とするものである。 In the pattern generation apparatus according to the present invention, the reference pattern generation means generates the reference pattern from the contour distribution data with reference to the shape of circuit pattern design data.
また、上記課題を解決するために、本発明はパターン形状評価装置において、前記輪郭分布データ生成手段と、参照パターン生成手段と、前記参照パターンと評価対象パターンの比較によって前記参照パターンに対する前記評価対象パターンの形状評価値を生成する形状評価手段を有することを特徴とするものである。 In order to solve the above problem, the present invention provides a pattern shape evaluation apparatus, wherein the contour distribution data generation unit, the reference pattern generation unit, and the evaluation target for the reference pattern by comparing the reference pattern and the evaluation target pattern It has a shape evaluation means for generating a pattern shape evaluation value.
また、本発明はパターン形状評価装置は、前記形状評価値を用いて、前記評価対象パターンの良否判定を行う良否判定手段と、を有することを特徴とするものである。 In addition, the present invention is characterized in that the pattern shape evaluation apparatus includes a quality determination unit that performs quality determination of the evaluation target pattern using the shape evaluation value.
また、本発明はパターン形状評価装置において、前記形状評価手段は、前記参照パターンと前記評価対象パターンの間隔を計測、もしくは、前記間隔の平均、もしくは、前記間隔の分散、もしくは、参照パターンに設けたパターン形状の変形を許容するための領域に対する前記評価対象パターンの内外、もしくは、前記参照パターンと前記評価対象パターンの面積のいずれかを前記評価対象パターンの形状評価値として算出することを特徴とし、前記良否判定手段は、これら前記形状評価値と、前記評価対象パターンを良否判定するための規定値の比較により、パターンの良否判定を行うことを特徴とするものである。 In the pattern shape evaluation apparatus according to the present invention, the shape evaluation unit may measure the interval between the reference pattern and the evaluation target pattern, or may provide an average of the intervals, a dispersion of the intervals, or a reference pattern. One of the inside and outside of the evaluation target pattern with respect to the region for allowing deformation of the pattern shape, or the area of the reference pattern and the evaluation target pattern is calculated as the shape evaluation value of the evaluation target pattern. The pass / fail judgment means performs the pass / fail judgment of the pattern by comparing the shape evaluation value with a predetermined value for judging pass / fail of the pattern to be evaluated.
また、本発明はパターン形状評価装置において、前記輪郭分布データ生成手段,参照パターン生成手段,前記形状評価手段,前記良否判定手段、の全ての手段、もしくは一部の手段と、前記評価対象パターンの撮影画像や、参照パターンを生成するための前記少なくとも2つ以上の回路パターンの撮影画像を取得する画像撮影手段と、前記撮影画像から前記回路パターンの輪郭データを抽出する手段と、前記パターン形状評価による前記撮影画像や前記輪郭データや、前記輪郭分布データや、前記参照パターンや、前記形状評価値や、前記良否判定結果のデータを保存するデータ記憶手段を有することを特徴とするものである。 In the pattern shape evaluation apparatus according to the present invention, all or a part of the contour distribution data generation unit, the reference pattern generation unit, the shape evaluation unit, the pass / fail determination unit, and the evaluation target pattern Image capturing means for acquiring captured images and captured images of the at least two or more circuit patterns for generating a reference pattern; means for extracting contour data of the circuit patterns from the captured images; and the pattern shape evaluation And a data storage means for storing the captured image, the contour data, the contour distribution data, the reference pattern, the shape evaluation value, and the quality determination result data.
また、本発明はパターン形状評価装置において、前記パターン形状評価装置は、前記画像撮影手段で前記回路パターンの撮影画像を取得するためのレシピを前記回路パターンの設計データから生成する手段を有することを特徴とするものである。 Also, the present invention provides a pattern shape evaluation apparatus, wherein the pattern shape evaluation apparatus includes means for generating a recipe for acquiring a photographed image of the circuit pattern from the circuit pattern design data by the image photographing means. It is a feature.
また、本発明はパターン形状評価装置において、前記パターン形状評価装置は、前記輪郭分布データや、前記参照パターンや、前記形状評価結果のデータを表示する手段を有することを特徴とするものである。 The pattern shape evaluation apparatus according to the present invention is characterized in that the pattern shape evaluation apparatus includes means for displaying the contour distribution data, the reference pattern, and data of the shape evaluation result.
また、本発明は、パターン形状評価装置において、前記パターン形状評価装置は、ユーザからの指示を前記参照パターン生成手段や、前記形状評価手段や、前記良品判定手段に反映させるためのデータ入力手段を有し、前記参照パターン生成手段や、前記形状評価手段,前記良品判定手段は、前記データ入力手段からの指示データに基づき、参照パターンの生成や形状評価を行うことを特徴とするものである。 In the pattern shape evaluation apparatus according to the present invention, the pattern shape evaluation apparatus further includes a data input unit for reflecting an instruction from a user to the reference pattern generation unit, the shape evaluation unit, and the non-defective product determination unit. The reference pattern generation unit, the shape evaluation unit, and the non-defective product determination unit perform generation of a reference pattern and shape evaluation based on instruction data from the data input unit.
また、上記課題を解決するために、本発明はパターン生成装置において、ユーザからの指示を前記参照パターン生成手段に反映させるためのデータ入力手段を有し、前記参照パターン生成手段は、前記データ入力手段からの指示データに基づき、参照パターンを生成することを特徴とするものである。 In order to solve the above-mentioned problem, the present invention provides a pattern generation apparatus comprising data input means for reflecting an instruction from a user to the reference pattern generation means, wherein the reference pattern generation means is the data input A reference pattern is generated based on instruction data from the means.
また、上記課題を解決するために、本発明はパターン形状評価装置において、前記形状評価値や前記良品判定結果をウエハマップに示した画像を生成し、前記データ表示手段に前記ウエハマップ画像を表示することを特徴とするものである。 In order to solve the above problems, the present invention provides a pattern shape evaluation apparatus that generates an image showing a wafer map showing the shape evaluation value and the non-defective product determination result, and displays the wafer map image on the data display means. It is characterized by doing.
本発明によれば、電子デバイスの回路パターンの形状評価に用いる参照パターンを、複数の回路パターンの撮影画像から生成することにより、回路パターンの製造条件に適合し、かつ回路パターン個々の歪みを抑えた参照パターンを生成できる。この参照パターンと評価対象パターンの比較を行うことにより、形状評価パターンの形状評価を高精度に行うことができる。 According to the present invention, a reference pattern used for evaluating the shape of a circuit pattern of an electronic device is generated from captured images of a plurality of circuit patterns, so that it conforms to the manufacturing conditions of the circuit pattern and suppresses distortion of each circuit pattern. A reference pattern can be generated. By comparing the reference pattern with the evaluation target pattern, the shape evaluation of the shape evaluation pattern can be performed with high accuracy.
本発明の実施の形態について図面を利用しながら説明する。 Embodiments of the present invention will be described with reference to the drawings.
図2に、本発明に係る回路パターンの画像を取得する走査型電子顕微鏡(Scanning Electron Microscope:以下、SEM)の構成概要ブロックを示す。電子光学系202は、電子線(一次電子)204を発生する電子銃203と、該電子銃203から発生した電子線204を収束させるコンデンサレンズ205と、収束された電子線204を偏向させる偏向器206と、二次電子を検出するためのExB偏向器207と、収束された電子線を半導体のウエハ201上に結像させる対物レンズ208とを備えて構成される。ウエハ201は、XYステージ217上に載置される。その結果、偏向器206および対物レンズ208は、ステージ217上に載置されたウエハ201上の任意の位置において電子線が焦点を結んで照射されるように、電子線の照射位置と絞りとを制御する。ところで、XYステージ217はウエハ201を移動させ、該ウエハ201の任意位置の画像撮像を可能にしている。そのため、XYステージ217により観察位置を変更することをステージシフト、偏向器206により電子線を偏向して観察位置を変更することをビームシフトと呼ぶ。一方、電子線が照射されたウエハ201からは、2次電子と反射電子が放出され、2次電子は二次電子検出器209により検出される。一方、反射電子は反射電子検出器210,211により検出される。なお、反射電子検出器210と211とは互いに異なる位置に設置されている。二次電子検出器209および反射電子検出器210,211で検出された2次電子および反射電子はA/D変換器212,213,214でデジタル信号に変換され、処理制御部215に入力されて画像メモリ252に格納され、CPU251や画像処理ハードウェアであるLSI253等で目的に応じた画像処理を行って回路パターンの形状評価が行われる。即ち、処理制御部215は、後述の撮像レシピ生成部225で作成された、パターンの形状評価手順を示す撮像レシピを基に形状評価ポイントを撮像するために、ステージコントローラ219や偏向制御部220に対して制御信号を送り、さらにウエハ201上の観察画像に対し各種画像処理を行う等の処理及び制御を行って回路パターンの形状評価を行う。
FIG. 2 shows a schematic configuration block of a scanning electron microscope (hereinafter referred to as SEM) that acquires an image of a circuit pattern according to the present invention. The electron
なお、処理制御部215は、光学顕微鏡(図示せず)等でウエハ201上のグローバルアライメントマークを観察することによりウエハ201の原点ずれやウエハの回転を補正するグローバルアライメント制御も含めてステージ217の位置及び移動を制御するステージコントローラ219と、偏向器206を制御して電子線のビームシフト(ビーム偏向)を制御する偏向制御部220と、対物レンズ208を制御してフォーカス制御するフォーカス制御部221とに接続される。さらに、処理制御部215は、入力手段を備えたディスプレイ216と接続してユーザに対して画像や形状評価結果等を表示するGUI(Graphcal User Interface)等の機能を有することになる。なお、反射電子像の検出器を2つ備えた実施例を示したが、前記反射電子像の検出器の数を増やすことも減らすことも可能である。また、処理制御部215における制御の一部又は全てを、CPUや画像の蓄積が可能なメモリを搭載した電子計算機等に割り振って処理・制御することも可能である。
The
処理制御部215は、更に回路パターンの座標、該座標に相当する位置決め用の設計データのテンプレート及びSEM観察の撮像条件(撮像倍率や画質等を含む)の情報等を含む撮像レシピを作成する撮像レシピ生成部225とネットワークまたはバス等を介して接続される。撮像レシピ生成部225は、設計データを取得するために、EDA(Electrnic Design Automation)ツールなどの設計システム230とネットワーク等を介して接続される。撮像レシピ生成部225は、形状評価すべきウエハ上の撮影ポイントの情報から、設計データを利用して撮影レシピを作成するものであり、例えば特開2006−3517146号に開示されている撮影レシピ作成装置がこれに相当する。設計データから撮影レシピを作成する概念は古くから提案されているものであり、設計データから撮影レシピを生成する方法,装置についてこれを限定するものではない。撮影レシピの作成は一般的にCPU,メモリ等を搭載した電子計算機のソフトウェア処理やCPU,ASIC,FPGA,メモリ等を搭載したハードウェア処理で実行する。
The
次に、ウエハ上の任意の形状評価ポイント(以下、EP)を観察するための撮像シーケンスについて図22を用いて説明する。また、図23に設計レイアウト2301上のEP2305に対するアドレッシングポイント(以下、AP)2303,オートフォーカスポイント(以下、FP)2302,スティグマ補正ポイントであるオートスティグマポイント(以下、SP)2306,ブライトネス,コントラスト調整ポイントであるブライトネス,コントラストポイント(以下、BP)2304、の設定例を示した図である。撮像シーケンスにおける撮像箇所ならびに撮像条件(撮像倍率や画質等を含む)、更にEPにおける形状評価条件は設計データと形状評価ポイントの情報に基づき、撮像レシピとして撮像レシピ生成部225で作成されて例えば記憶装置223に記憶されて管理される。
Next, an imaging sequence for observing an arbitrary shape evaluation point (hereinafter referred to as EP) on the wafer will be described with reference to FIG. Further, FIG. 23 shows an addressing point (hereinafter referred to as AP) 2303, an auto focus point (hereinafter referred to as FP) 2302, an auto stigma point (hereinafter referred to as SP) 2306 as a stigma correction point, brightness, and contrast adjustment for
まず、ウエハ201をステージ217上に取り付ける(2201)。次に、光学顕微鏡(図示せず)等で試料上のグローバルアライメントマークを観察することにより処理制御部215は試料の原点ずれや回転ずれを算出し、これらのずれ量を基にステージコントローラ219を介してステージ217を制御することによって補正する(2202)。次に、処理制御部215は、ステージ217を移動して、撮像レシピ生成部225で作成された撮像ポイントの座標及び撮像条件に従って撮像位置をAPに移動してEP撮像時よりも低倍の撮像条件で撮像する(2203)。ここでAPについて説明を加えておく。直接EPを観測しようとした場合、ステージの位置決め精度等の理由により観察箇所がSEMの視野からずれてしまう問題を解決するため、一旦位置決め用として予め撮像レシピ生成部225で作成されて記憶装置223に登録された座標が既知であるAPを一旦観察し、処理制御部215は予め撮像レシピ生成部225で作成されて記憶装置223に登録されたAPにおける設計データテンプレートと前記観察したAPのSEM画像とのマッチングを行うことによって設計データテンプレートの中心座標と実際にAPを観測した際の中心座標とのずれベクトルを検出する。次に、処理制御部215は、設計データテンプレートの座標とEPの座標との相対ベクトルから上記検出されたずれベクトルを差し引いた分だけ、偏向制御部220を介して偏向器206を制御してビームシフト(ビームの入射方向を傾けて照射位置を変更)をさせて、撮像位置を移動してEPを観察することにより、高い座標精度でEPを撮像することができることになる(一般的にビームシフトの位置決め精度はステージの位置決め精度よりも高い)。次に、処理制御部215の制御及び処理に基づいてビームシフトにより撮像位置をFPに移動して撮像してオートフォーカスのパラメータを求め、該求められたパラメータに基づいてオートフォーカスを行う(2204)。
First, the
次に、処理制御部215の制御及び処理に基づいて、ビームシフトにより撮像位置をSPに移動して撮像して非点収差補正のパラメータを求め、該求められたパラメータに基づいて自動非点収差補正(オートスティグマ補正)を行う(2205)。
Next, based on the control and processing of the
次に、処理制御部215の制御及び処理に基づいて、ビームシフトにより撮像位置をBPに移動して撮像してブライトネス&コントラスト調整のパラメータを求め、該求められたパラメータに基づいて自動ブライトネス&コントラスト調整を行う(2206)。なお、前述したステップ2203,2204,2205,2206におけるアドレッシング,オートフォーカス,オートスティグマ,オートブライトネス&コントラストは場合によって、一部あるいは全てが省略される、あるいは2203,2204,2205,2206の順番が任意に入れ替わる、あるいはAP,FP,SP,BP、の座標で重複するものがある(例えばオートフォーカス,オートスティグマを同一箇所で行う)等のバリエーションがある。最後に、処理制御部215の制御及び処理に基づいてビームシフトにより撮像位置をEPに移動して撮像し、記憶装置223に登録されたEPにおける設計データテンプレートと前記観察したEPのSEM画像とのマッチングを行って、SEM画像内における形状評価対象ポイントのシフト量を算出する(2207)。
Next, based on the control and processing of the
次に、EPのSEM画像や、EPマッチングによるシフト量を利用して本発明のパターンの形状評価を行う。パターンの形状評価では、最初にウエハ上の製造ポイントもしくはウエハが異なる複数のパターンの撮影画像からプロセス変動によるパターンの変形や、画像に含まれたノイズの影響によるパターンの形状の歪みや、個々のパターンが有するラフネスなどの歪みを抑えた参照パターンを生成する。次に、参照パターンと評価対象パターンの形状を比較して、参照パターンの形状に対する評価対象パターンの形状評価値を生成する。なお、上記複数のパターンは設計データ上では形状が等価な複数のパターンを示している。 Next, the pattern shape of the present invention is evaluated using the SEM image of the EP and the shift amount by EP matching. In pattern shape evaluation, first from the captured image of a plurality of patterns with different production points or wafers on the wafer, pattern deformation due to process fluctuations, distortion of the pattern shape due to the influence of noise included in the image, A reference pattern in which distortion such as roughness of the pattern is suppressed is generated. Next, the shape of the evaluation target pattern with respect to the shape of the reference pattern is generated by comparing the shape of the reference pattern with the shape of the evaluation target pattern. The plurality of patterns indicate a plurality of patterns whose shapes are equivalent on the design data.
複数のパターンとは、例えば以下(A)〜(D)のような条件のパターンである。なお、図3は、これらA〜Dの関係を示した図であり、2枚のウエハ301,305,ウエハ301内のショットエリア302,ショットエリア内のチップ303、チップ内のパターン304の関係を示した図である。ショットとは、一度に転写できる露光エリアであり、このショット内に複数のチップが存在している。
The plurality of patterns are, for example, patterns having conditions as shown in (A) to (D) below. FIG. 3 is a diagram showing the relationship between these A to D. The relationship between the two
(A)ウエハが異なる複数のパターン(例306)。
(B)ショットが異なる複数のパターン(例307)。
(C)同一ショット内でチップが異なる複数のパターン(例308)。
(D)同一チップ内で座標が異なる複数のパターン(例309)。
(A) A plurality of patterns with different wafers (Example 306).
(B) A plurality of patterns with different shots (Example 307).
(C) A plurality of patterns having different chips in the same shot (example 308).
(D) A plurality of patterns having different coordinates in the same chip (example 309).
なお、上記条件はあくまで一例であり、これらA〜Dが混在した複数のパターンを利用して参照パターンを生成してもよい。 The above condition is merely an example, and a reference pattern may be generated using a plurality of patterns in which these A to D are mixed.
以下、本発明のパターン形状評価方法について詳細を説明する。 Hereinafter, the pattern shape evaluation method of the present invention will be described in detail.
図1は本発明に係るパターン形状評価方法のフローチャートを示したものであり、処理制御部215のCPU251や画像メモリ252等を利用したソフトウェア処理で実行する。ただし、電子光学系202からの画像と撮影レシピ生成部225からの設計データテンプレートをLANやバス経由、また携帯型のメモリ、ハードディスクなどの記憶媒体経由で入力可能な電子計算機のCPU,メモリ等を利用したソフトウェア処理でも実行することもできる。以下、各ステップについて詳細を説明する。
FIG. 1 shows a flowchart of a pattern shape evaluation method according to the present invention, which is executed by software processing using the
最初に回路パターンの撮影画像を読み込む(101)。パターンの形状評価に用いる画像は、撮影レシピ生成部225で、上記A〜Dのような条件下にある、参照パターンの生成を目的とした複数のパターンと、評価対象パターンの画像を撮影するレシピを作成し、そのレシピで電子光学系202を制御することによって取得する。
First, a captured image of a circuit pattern is read (101). An image used for pattern shape evaluation is a recipe for capturing images of a plurality of patterns for the purpose of generating a reference pattern under the conditions A to D and an evaluation target pattern in the shooting
次に、画像から回路パターンの輪郭線を抽出する(102)。輪郭線の抽出は様々提案がされているが、例えば特開2006−66478号等で開示の手法や「R.Matsuoka、 New method of Contour based mask shape compiler、 SPIE Proc 6730−21、2007.9.21」に開示された手法等が適用できる。SEMでパターンを撮影すると、図4(a)のように、パターンの傾斜部や突起部が白帯状の像として画像化される。上記に開示した手法等を適用することによりこの白帯像401を図4(b)のような線画の輪郭データ403として抽出することができる。画像の読み込み(101)と輪郭抽出(102)は参照パターン生成用の画像および評価対象パターンの全ての画像に対し実行する(103)。
Next, the outline of the circuit pattern is extracted from the image (102). Contour extraction has been proposed in various ways. For example, the method disclosed in Japanese Patent Application Laid-Open No. 2006-66478, “R. Matsuoka, New method of Contour based mask shape compiler, SPIE Proc 6730-21, 2007.9. 21 ”can be applied. When a pattern is photographed with the SEM, as shown in FIG. 4A, an inclined portion and a protruding portion of the pattern are imaged as a white belt-like image. By applying the method disclosed above, the
次に、参照パターン生成用の画像から抽出した複数の輪郭データを用いて参照パターンを生成する。参照パターンの生成には、プロセス変動によるパターン形状の変形や、パターン個々に生じたラフネス等によるパターンの歪みや、画像に含まれたノイズによる輪郭の歪みを抑制するために、より多くのパターンを利用することが望ましい。
〔輪郭の合成〕
参照パターンを生成する事前準備として、図21(a)のように画像から抽出した複数の輪郭データ2101,2102を重ね合わせ、輪郭の合成像を生成する(104)。上述したようにステージの位置決め精度等の問題から、画像内におけるパターンの輪郭位置が輪郭データ毎に異なる場合は、画像内における輪郭の位置を考慮して輪郭データの重ね合わせを行う。重ね合わせ位置は、形状評価ポイントの特定に利用したEPのマッチング結果を利用することで自動的に特定できる。重ね合わせ位置を自動的に特定する方法について、図5を用いて説明する。図5(a)〜(c)は参照パターンの生成に用いる3枚の輪郭データを示している。これらはステージ位置精度等の問題で、画像内における輪郭位置が異なる。図5(d)はマッチングに利用する設計データテンプレートである。EPマッチングにより、設計データテンプレートに対するそれぞれの画像(e)(f)(g)のシフト量501〜503が検出できる。このシフト量を参考に図5(h)のように3つの輪郭データの重ね合わせ位置504を特定する。設計データと輪郭データの形状は異なるが、これらの形状差を吸収して高精度にマッチング位置を求め、シフト量を検出する手法は様々提案されおり、例えば特開2007−79982号で開示されている手法の適用より、シフト量を検出することができる。
Next, a reference pattern is generated using a plurality of contour data extracted from the reference pattern generation image. For the generation of the reference pattern, in order to suppress the deformation of the pattern due to process fluctuations, the distortion of the pattern caused by the roughness of each pattern, and the distortion of the contour due to the noise included in the image, more patterns are used. It is desirable to use it.
[Outline composition]
As a preliminary preparation for generating a reference pattern, a plurality of
輪郭データの重ね合わせの処理フローを図6に示す。最初に複数の輪郭データ(もしくは輪郭を抽出する前の画像)を読み込む(601)。次に、輪郭データ(もしくは輪郭を抽出する前の画像)と設計データテンプレートとのマッチングを行う(602)。マッチングによる結果から、それぞれの輪郭データと設計データテンプレートのシフト量を算出する(603)。次に、シフト量を基準とし、複数の輪郭データを重ね合わせた像を形成する(604)。輪郭合成像をメモリ等の書き込む(605)。 FIG. 6 shows a processing flow for superimposing contour data. First, a plurality of contour data (or an image before contour extraction) is read (601). Next, matching between the contour data (or the image before extracting the contour) and the design data template is performed (602). From the result of matching, the shift amount of each contour data and design data template is calculated (603). Next, an image is formed by superimposing a plurality of contour data on the basis of the shift amount (604). The contour composite image is written into the memory or the like (605).
また、一枚の画像内に重ね合わせの対象となるパターンが複数含まれている場合も、EPマッチングによるシフト量と、設計データから導いたパターンの間隔を利用することで、容易に重ね合わせることができる。図7の処理概要図と図8のフローチャートを用いて同一画像内の複数の輪郭データを合成する例を説明する。まず、輪郭データを読み込む(801)。次に設計データテンプレートと輪郭データ(もしくは輪郭を抽出する画像)のパターンマッチングを行う(802、EPマッチングに相当)。パターンマッチング結果より、シフト量(図7(a)701)を算出する(803)。次に、シフト量701と設計データ上でのパターンの配置間隔から、輪郭データ上の輪郭合成点702〜704と、合成領域705〜707を決定する。次に輪郭合成点702〜704と合成領域705〜707に基づき、輪郭合成像を生成する805。図7(b)は輪郭合成点702〜704を輪郭合成像の座標708に対応させ、合成領域705〜707の輪郭データを重ね合わせた像を示している。最後に輪郭合成像をメモリに書き込む(806)。なお、ユーザがディスプレイ216に接続された入力手段を介して輪郭合成点と合成領域を指定することも可能である。この場合、ディスプレイ216に輪郭データを表示し、入力手段で指定された輪郭合成点と合成領域をメモリに保存する。この輪郭合成点と合成領域を元に輪郭データの合成を行ってメモリに書き込む。
In addition, even when multiple images to be superimposed are included in one image, they can be easily superimposed using the shift amount by EP matching and the pattern interval derived from the design data. Can do. An example of synthesizing a plurality of contour data in the same image will be described using the processing outline diagram of FIG. 7 and the flowchart of FIG. First, contour data is read (801). Next, pattern matching is performed between the design data template and contour data (or an image from which the contour is extracted) (802, equivalent to EP matching). From the pattern matching result, the shift amount (FIG. 7A) 701 is calculated (803). Next, contour synthesis points 702 to 704 on the contour data and
輪郭合成像の例を図12(a)に示す。プロセス変動やパターン個々のラフネス等によって評価対象パターンの形状がそれぞれ異なる場合、輪郭の重ね合わせによって、図12(b)のようなパターン形状の分布(以下輪郭分布とする。)を持つ輪郭合成像が得られる。このような輪郭合成像から参照パターンを生成する(105)。
〔参照パターンの生成〕
輪郭合成像の輪郭の分布状態から所定の規則に基づき参照パターンを決定する。所定の規則とは、形状評価の目的によって変更されるべきものであり、これを限定したものではない。以下に輪郭合成像から参照パターンを生成する例を2つ説明する。
An example of the contour composite image is shown in FIG. When the evaluation target patterns have different shapes due to process fluctuations, individual pattern roughness, and the like, a contour composite image having a pattern shape distribution (hereinafter referred to as a contour distribution) as shown in FIG. Is obtained. A reference pattern is generated from such a contour composite image (105).
[Reference pattern generation]
A reference pattern is determined based on a predetermined rule from the contour distribution state of the contour composite image. The predetermined rule is to be changed according to the purpose of shape evaluation, and is not limited thereto. Two examples of generating a reference pattern from a contour composite image will be described below.
1)輪郭分布の平均形状
輪郭分布の平均的なポイントを参照パターン化する。この参照パターンと評価対象パターンの形状を比較することにより、平均的なパターン形状に対する評価対象パターンの形状評価が可能になる。図24(a)は、輪郭分布を示した図であり、輪郭分布の平均的なポイントを参照パターン(破線)化した例を示した図である。図24(c)は、輪郭分布Q−Pの直線上における輪郭の数をグラフ化した図であり、Q−P間の輪郭分布における平均的な参照パターンのポイント2401を示している。
1) Average shape of contour distribution An average point of the contour distribution is converted into a reference pattern. By comparing the shape of the reference pattern with the shape of the evaluation target pattern, the shape of the evaluation target pattern can be evaluated with respect to the average pattern shape. FIG. 24A is a diagram illustrating the contour distribution, and is a diagram illustrating an example in which an average point of the contour distribution is converted into a reference pattern (broken line). FIG. 24C is a graph showing the number of contours on a straight line of the contour distribution QP, and shows an average
輪郭分布の平均的なポイントを特定するためには、輪郭合成像を生成する際に輪郭が重なった数を輪郭合成像の画素値として保存しておく。更に、この輪郭合成像に対し、田村秀行著コンピュータ画像処理(以下、参考文献1とする)のP11平滑化と雑音除去の項にある移動平均フィルタ等を施すことにより、輪郭分布の平均的なポイントにピークを有する輪郭合成像が生成できる。最後に、輪郭分布内において連続したピーク位置を特定し、そのピーク位置を参照パターン(図23(a)中破線)とする。 In order to specify the average point of the contour distribution, the number of overlapping contours when the contour composite image is generated is stored as the pixel value of the contour composite image. Further, by applying a moving average filter or the like in the P11 smoothing and noise removal section of computer image processing (hereinafter referred to as Reference Document 1) by Hideyuki Tamura to this contour composite image, an average of the contour distribution is obtained. A contour composite image having a peak at a point can be generated. Finally, a continuous peak position in the contour distribution is specified, and the peak position is set as a reference pattern (broken line in FIG. 23A).
2)輪郭分布枠の中心形状
輪郭分布の範囲枠の中心を参照パターン化する。この参照パターンと評価対象パターンの形状を比較することにより、評価対象パターンの形状変形範囲の中心に対する評価対象パターンの形状評価が可能になる。図24(b)は、図24(a)と同様の輪郭分布と輪郭分布枠の中心位置を参照パターン(実線)化した例を示した図であり、図24(d)はQ−P間の直線上における輪郭線の数をグラフ化した図であり、Q−P間の輪郭分布枠2403,2404と、その輪郭分布枠2403,2404の中心位置に相当する参照パターンのポイント2402を示している。
2) Center shape of the contour distribution frame The center of the range frame of the contour distribution is converted into a reference pattern. By comparing the shapes of the reference pattern and the evaluation target pattern, it is possible to evaluate the shape of the evaluation target pattern with respect to the center of the shape deformation range of the evaluation target pattern. FIG. 24B is a diagram showing an example in which the same contour distribution and the center position of the contour distribution frame as in FIG. 24A are converted to a reference pattern (solid line), and FIG. FIG. 6 is a graph showing the number of contour lines on the straight line, and shows the
輪郭合成像から輪郭分布枠の中心を検出する方法についてフローチャートを図10に示す。 FIG. 10 shows a flowchart of a method for detecting the center of the contour distribution frame from the contour composite image.
最初に輪郭合成像を読み込む(1001)。次に輪郭の塗りつぶしを行う1002。図12(b)は図12(a)のような輪郭合成像の輪郭分布を拡大した図である。このように輪郭分布内には、輪郭が存在するポイントと輪郭が存在しないポイントがある。塗りつぶしとは、輪郭間の領域の画素に輪郭と同様の値を書き込む処理である。例えば、輪郭合成像が二値データであり、輪郭が存在するポイントの画素値が「1」で輪郭が存在しないポイントが「0」の場合、参考文献1のP154「収縮と膨張」の項にあるようなモフォロジーフィルタ(膨張処理→収縮処理)による画像処理手法を適用することで、図12(c)のように、輪郭にはさまれた領域の画素の値を全て「1」に変更することができる。
First, a contour composite image is read (1001). Next, a contour is filled 1002. FIG. 12B is an enlarged view of the contour distribution of the contour composite image as shown in FIG. Thus, in the contour distribution, there are a point where a contour exists and a point where a contour does not exist. Filling is a process of writing the same value as the outline to the pixels in the area between the outlines. For example, when the contour composite image is binary data, the pixel value of the point where the contour is present is “1”, and the point where the contour does not exist is “0”, the term of P154 “Shrinkage and expansion” in
次に、輪郭の塗りつぶし結果を用いて、輪郭分布の中心位置1203を検出する1103。中心位置の検出は、例えば参考文献1のP158の「細線化」の項にある細線化処理の適用により実現できる。細線化処理は、広範囲に分布したパターンの中心線を特定することを目的とした処理であり、塗りつぶされた輪郭分布を細線化することによって図12(d)に示すような輪郭分布の中心位置1203を求めることができる。この輪郭分布の中心位置を参照パターンとし、メモリ等に書き込む1004。
Next, the
また、参照パターン位置を輪郭分布枠の中心位置ではなく、例えば、図12(f)のように、輪郭分布の中心位置1203から外枠1202方向や内枠1201方向に数画素ずらしたポイント1213,1214にすることも可能である。このような参照パターンを生成する方法について、処理フローを図11に示す。なお、1101〜1103は図10に示した処理フロー1001〜1003と処理が等価なため、説明を省略する。
Further, the reference pattern position is not the center position of the contour distribution frame, but a
輪郭分布の中心位置を特定した後、図12(d)に示すような内枠1201と外枠1202を特定する1104。塗りつぶし後の輪郭の画素値が「1」で、それ以外の領域が「0」の輪郭分布像の場合、中心線1212に対し、画素値「0」から「1」に変化する部位を内枠1201,パターン形状の中心線1212に対し、「1」から「0」に変化する部位を外枠1202とする。輪郭分布像におけるパターン形状の中心線の位置は、図12(f)に示すようなEPマッチングによる設計データ1211と輪郭データ(複数パターンのうちいずれか一つ)のシフト量と設計データの回路パターン形状の中心線1212を利用することで、特定できる。図25を利用して設計データからパターン形状の中心線位置を求める方法を説明する。
After specifying the center position of the contour distribution, an
設計データは図25(a)に示したように、パターンの閉図形を構成する複数の頂点座標データ2501の集合として設計システム230等から提供される。この頂点座標を直線で接続したものが設計データのパターンである。この直線で構成されたパターンを描画し、パターンの内部を図25(b)のように塗りつぶした画像を作成する。例えば、設計データの直線と塗りつぶし領域の画素値を「1」、それ以外の領域を「0」とする。
As shown in FIG. 25A, the design data is provided from the
次に設計データのパターン内部を塗りつぶした画像に対し、前述した細線化処理を施すことで図25(c)のような設計データのパターン形状の中心線位置を特定することができる。 Next, the center line position of the pattern shape of the design data as shown in FIG. 25C can be specified by applying the thinning process described above to the image in which the design data pattern is filled.
このように特定した設計データのパターン形状の中心線位置と、EPマッチングのシフト量から、輪郭分布像における中心線1212を特定することができ、中心線1212と画素値の切り替え位置の位置関係により、内枠1201と外枠1202を特定できる。
The
パターン形状の中心位置を利用して、内枠1201,外枠1202を特定した後、輪郭分布の中心位置1203を基準とし、参照パターンの位置を特定する1105。「輪郭分布の中心位置に対して外枠方向にL画素のポイント」といった規定に基づき、参照パターンを特定する例を図26を用いて説明する。
After specifying the
最初に輪郭分布の中心位置1203のパターンに対し、上記で説明したモフォロジーフィルタ(膨張処理)を適用する。膨張処理はパターンの幅を拡張する処理である。輪郭分布の中心位置のパターンは1画素幅である。このパターンに膨張処理を1回施すことで、輪郭分布の中心位置の画素を中心とした3画素幅のパターンを生成することができる。図26に膨張処理の例を示す。図26は中心パターン2602と、輪郭分布の内枠2601,外枠2603を示した図である。中心パターン2602に対し膨張処理を1回施すと図26(a)の拡大ウィンドウのように、中心パターン2602の両サイドが1画素拡張される。膨張処理で新たに追加された画素は、中心パターン2602から1画素離れたポイントに存在する画素である。このため、1回目の膨張処理で新たに追加された画素に中心パターンからの距離値「1」を書き込む。この膨張処理と距離値の書き込みを繰り返すことによって、拡大ウィンドウ図26(b)のように輪郭分布の内枠2601と輪郭分布の外枠2603の間に存在する画素に中心パターンからの距離値を書き込むことができる。このようにして得られた輪郭分布の中心からの距離情報と、輪郭分布の内枠2601,外枠2603の関係を利用することにより、輪郭分布の中心から外枠方向にL画素のポイントを容易に特定できる。
First, the morphology filter (expansion process) described above is applied to the pattern at the
また、設計データのパターン形状に基づき、輪郭分布枠の中心位置を参照パターン化することも可能である。図9はEPマッチングによるシフト量に基づき、設計データ900と輪郭分布の内枠905,外枠903を重ね合わせた図である。輪郭分布枠間の中心位置908は、設計データ900の中心線901に対し、法線方向(中心線の端点909,910は扇状)に引いた直線上にある、内枠905と直線の交点906と外枠903と直線の交点907の中点として求めればよい。最後に中点の分布から近似直線および近似曲線を求め、参照パターンを生成する。
Further, based on the pattern shape of the design data, the center position of the contour distribution frame can be converted into a reference pattern. FIG. 9 is a diagram in which the
また、図12(e)のように、カーソル1210の操作によってユーザがディスプレイ216に接続された入力手段を介して参照パターンの位置を決定させることもできる。このような場合、ディスプレイ216に輪郭分布像を表示することで、ユーザが輪郭分布像を確認しながら、参照パターンを決定することができる。
In addition, as shown in FIG. 12E, the user can determine the position of the reference pattern via the input means connected to the
〔形状比較検査〕
次に輪郭合成像から生成した参照パターンと評価対象パターンの形状を比較し、参照パターンの形状に対する評価対象パターンの形状評価値を生成する106。形状評価値は、後述する評価対象パターンの良否判定に利用するデータである。
[Shape comparison inspection]
Next, the reference pattern generated from the contour composite image is compared with the shape of the evaluation target pattern, and a shape evaluation value of the evaluation target pattern with respect to the shape of the reference pattern is generated 106. The shape evaluation value is data used for determining whether the evaluation target pattern described later is acceptable.
処理フローを図13に示す。最初に参照パターンを読み込む1301。続いて、評価対象パターンの輪郭データを読み込む1302。次に参照パターンを用いて、以下に例示するような手法により、参照パターンの形状に対する評価対象パターンの形状の評価値を求め1303、その形状評価値をメモリ等に書き込む1304。以下、図14を利用して形状評価値を生成する3つの方法について説明するが、評価対象パターンの良否を判定できるような形状評価値の生成方法であればよいので、この生成方法に限定するものではない。
The processing flow is shown in FIG. First, a reference pattern is read 1301. Subsequently, the contour data of the evaluation target pattern is read 1302. Next, using the reference pattern, the evaluation value of the shape of the evaluation target pattern with respect to the shape of the reference pattern is obtained 1303 by a technique illustrated below, and the shape evaluation value is written in the
(1)パターンの間隔
図14(a)は、参照パターン1401と、評価対象パターン1402をEPマッチングのシフト量に基づき重ね合わせた像である。
(1) Pattern Interval FIG. 14A is an image in which the
図14(b)は図14(a)のような関係にある参照パターン1401と評価対象パターン1402の間隔を計測し、その間隔値を評価対象パターンの形状評価値とする例を示した図である。間隔の計測は、例えば、参照パターン上のポイント1409における参照パターンの法線方向に存在する評価対象パターンのポイント1410とその間隔1403を計測することで求めることができる。例えば参照パターン上のポイント1画素おきにこのような間隔計測を行うことで、参照パターンに対し、評価対象パターンの形状がどの程度変形しているのかを定量化できる。また、パターン間隔の平均や分散を求めて形状評価値とすることもできる。例えば、図17(a)は、参照パターン1702とパターン1703の間隔L(n)(n:パターン1703を構成する画素数)を、計測する例を示した図である。間隔計測では、パターン1703を構成する画素、もしくはサブ画素単位で、間隔値が生成されるため、輪郭データ領域1701における間隔値L(n)が膨大となる。このため、間隔値L(n)から、間隔の平均(ΣL(n)/n))や間隔の分散(Σ(L(n)−ΣL(n)/n))^2/n)を求めることによって、形状評価値を単純化する。これにより、例えば、図17(b)のようなパターン1704は、参照パターン1702の形状に対して全体的に膨張,収縮しているため、間隔分散値が小さく、間隔平均値が大きくなるといった傾向が形状評価値に表れる。また、図17(c)のようなパターン1705は、参照パターン1702の形状に対して、局所的に歪みが発生しているため、間隔分散値が大きくなるといった傾向が形状評価値に表れる。このような間隔計測による形状評価値を図15(a)のようなテーブル情報としてメモリ等に書き込む。
FIG. 14B is a diagram showing an example in which the interval between the
(2)形状変形許容範囲
図14(c)は図14(a)のような関係にある参照パターン1401に形状変形の許容範囲を示すバンド1404を設定し、評価対象パターン1402のバンド内外判定結果を形状評価値とする例を示した図である。例えば、前述のモフォロジーフィルタによる膨張処理を参照パターンに適用し、形状変形を許容できる範囲までパターンを拡張する。これにより、参照パターン1401に対する形状変形許容範囲を示すバンド1404を生成できる。そのバンド1404と評価対象パターン1402をEPマッチングのシフト量に基づき重ね合わせ、評価対象パターン1402上の各ポイントがバンド1404の内部に存在するのか外部に存在するのかを判定する。この結果を形状評価値として図15(b)のようなテーブル情報としてメモリ等に書き込む。
(2) Shape Deformation Allowable Range FIG. 14C shows a band inside / outside determination result of the
(3)パターンの面積
図14(d)は参照パターン1401が取り囲む領域1407と評価対象パターン1402が取り囲む領域1408を示した図である。これらの領域の面積は、パターンが取り囲む画素の数をカウントすることで求めることができる。この参照パターン1401に対する評価対象パターン1402の面積比を形状評価値としてメモリ等に書き込む。
〔良否判定〕
以上のように求めた形状評価値を利用して、パターンの良否判定を行う108。良否判定の処理フローを図16に示す。最初にそれぞれの評価対象パターンの形状評価値を読み込む1601。次に形状評価値と、良品の形状情報を定義したデータ(規定値)と比較し、評価対象パターンの良否を判定する1602。全ての評価対象パターンに対して判定を行い1605、最後に評価結果をメモリ等に書き込む。また良品と判定されたパターンと、異常と判定されたパターンのウエハ上のポイントをユーザに分かりやすく提供するために、図18のように、ウエハ1802上におけるパターンの位置と、良品の存在するエリア1801を示すウエハマップ画像を生成し、それをディスプレイに表示する。このようなウエハマップにより、ユーザは、プロセスの変動によってパターン形状の変形が大きくなるウエハ上のポイントを把握できることができる。
(3) Pattern Area FIG. 14D is a diagram showing a
[Pass / fail judgment]
Using the shape evaluation value obtained as described above, the quality of the pattern is determined 108. FIG. 16 shows a processing flow for pass / fail judgment. First, 1601 is read in the shape evaluation value of each evaluation target pattern. Next, the shape evaluation value is compared with data defining the shape information of the non-defective product (specified value), and the quality of the evaluation target pattern is determined 1602. The determination is made for all the
形状評価値の判定方法は、生成した形状評価値によって異なる。前述した(1)〜(3)の形状比較値に対する判定方法を以下に示す。 The method for determining the shape evaluation value differs depending on the generated shape evaluation value. A determination method for the shape comparison values (1) to (3) described above will be described below.
(1)パターンの間隔
形状評価によって求めた参照パターンと評価対象パターンの間隔値と、参照パターンに対する良品パターンの間隔値の比較を行い、評価対象パターンとの間隔が、良品パターンの間隔以上の部位をパターンの異常部位とみなし、異常判定部位が存在する評価対象パターンを異常と判定する。また、形状評価値がパターン間隔の分散や平均の場合も同様に、閾値処理により、パターンの異常を判定する。
(1) Pattern interval The reference pattern and evaluation target pattern interval values obtained by shape evaluation are compared with the non-defective pattern interval value relative to the reference pattern, and the interval between the evaluation target pattern and the non-defective pattern interval is greater than the non-defective pattern interval. Is regarded as an abnormal part of the pattern, and the evaluation target pattern in which the abnormality determination part exists is determined to be abnormal. Similarly, when the shape evaluation value is the dispersion or average of pattern intervals, pattern abnormality is determined by threshold processing.
(2)形状変形許容範囲
評価対象パターンにパターンの形状変形許容範囲外のパターン部位が存在する場合、評価対象パターンを異常パターンと判定する。ただし、上述したように、画像から抽出した輪郭データにはノイズ情報が含まれており、ノイズによる輪郭の変形が原因となって、誤判定が発生する可能性がある。このため、パターンの形状変形許容範囲をはみ出したパターン部位が一定以上の場合に異常パターンと判定するような閾値判定により、画像に含まれたノイズの影響による異常パターンの誤検出を低減することができる。
(2) Shape Deformation Allowable Range If there is a pattern portion outside the pattern deformation allowance range in the evaluation target pattern, the evaluation target pattern is determined as an abnormal pattern. However, as described above, the contour data extracted from the image includes noise information, and an erroneous determination may occur due to the deformation of the contour due to noise. For this reason, it is possible to reduce erroneous detection of an abnormal pattern due to the influence of noise included in an image by performing threshold determination such that an abnormal pattern is determined when a pattern part that exceeds the allowable range of shape deformation of the pattern is greater than a certain value. it can.
(3)面積
参照パターンの領域1407の面積比がN以上、もしくはM以下(M<N)の評価対象パターンを異常なパターンとして判定する。
(3) Area An evaluation target pattern in which the area ratio of the
以上説明したように、本発明によれば、電子デバイスの回路パターンの形状評価に用いる参照パターンを、複数の回路パターンの撮影画像から生成することにより、回路パターンの製造条件に適合し、かつ回路パターン個々の歪みを抑えた参照パターンを生成できる。この参照パターンと評価対象パターンの比較を行うことにより、形状評価パターンの形状評価を高精度に行うことができる。 As described above, according to the present invention, a reference pattern used for evaluating the shape of a circuit pattern of an electronic device is generated from captured images of a plurality of circuit patterns, so that the circuit pattern conforms to the manufacturing conditions of the circuit pattern. A reference pattern in which distortion of each pattern is suppressed can be generated. By comparing the reference pattern with the evaluation target pattern, the shape evaluation of the shape evaluation pattern can be performed with high accuracy.
実施例1では、設計データと輪郭データ(もしくは、輪郭を抽出する画像)のマッチング結果に基づいて輪郭データの重ね合わせ位置を特定する例を説明したが、設計データとのマッチング後に、設計データと評価対象パターンの形状不一致による微小な位置ずれや、ウエハの回転等による微小な位置ずれを検出し、重ね合わせ位置を微調整することで重ね合わせ精度を向上させることもできる。輪郭データを用いて重ね合わせ位置を微調整し、輪郭合成像を生成する処理フローを図19に示す。 In the first embodiment, the example in which the overlapping position of the contour data is specified based on the matching result between the design data and the contour data (or the image from which the contour is extracted) has been described. It is also possible to improve overlay accuracy by detecting a minute position shift due to a mismatch in the shape of the pattern to be evaluated and a minute position shift due to rotation of the wafer and finely adjusting the overlay position. FIG. 19 shows a processing flow for finely adjusting the overlay position using the contour data and generating a contour composite image.
まず、実施例1で説明したように、輪郭データを読み込み1901、設計データと評価対象パターンのマッチングを行って1902、シフト量を算出する1903。このシフト量に基づき2つの輪郭データを重ね合わせた例を図20(a)に示す。これは非常に極端な例ではあるが、輪郭データ2001に対し、輪郭データ2002は傾いている。このような輪郭データ間の回転や微小な位置ずれ検出するために、輪郭データ間のマッチングを行い1904、と位置補正量を算出する1905。
First, as described in the first embodiment, the contour data is read 1901, the design data is matched with the
具体的には評価対象パターンの輪郭データのうち、例えば輪郭データ2001をテンプレートとし、残りの評価対象パターンの輪郭データ2002に対し、輪郭データ間のマッチングを行って、位置補正量(回転角度,位置ずれ量)2003を算出する。
Specifically, among the contour data of the evaluation target pattern, for example, the
パターンマッチングでは、例えば、「CG−ARTS協会,ディジタル画像処理」P215に記載の一般化ハフ変換のようにテンプレートと、評価対象パターンのサイズが異なる(プロセス変動によるパターン形状変形は、一部の形状異常を除き、パターン形状を維持したまま、膨張,収縮しているケースがほとんどである。)場合や、テンプレートに対し評価対象パターンが回転している場合でも、良好にマッチングポイントを探索できるような手法を適用する。また、一般化ハフ変換以外にも、パターン間の回転角度や、パターンの変形に強健なマッチング手法は様々提案されており、輪郭データのマッチング手法について、これに限定したものではない。最後に、輪郭データ間のマッチングにより、検出した評価対象パターンの位置補正量2003に基づき評価対象パターンの回転補正を行い、重ね合わせ位置に相当するポイントで輪郭データの重ね合わせを行う。
In pattern matching, for example, the size of the pattern to be evaluated is different from the template as in the generalized Hough transform described in “CG-ARTS Association, Digital Image Processing” P215. Except for abnormalities, most of the cases are expanding and contracting while maintaining the pattern shape.) Even when the pattern to be evaluated is rotated relative to the template, the matching point can be searched well. Apply the method. In addition to the generalized Hough transform, various matching methods that are robust against the rotation angle between patterns and pattern deformation have been proposed, and the contour data matching method is not limited to this. Finally, by performing matching between the contour data, the rotation of the evaluation target pattern is corrected based on the detected
以上説明したように、本発明では、輪郭データの重ね合わせを行う前に、一つの輪郭データをテンプレートとした輪郭データ間の変形,回転を考慮した輪郭データ間のマッチングを行うことにより、輪郭データの位置補正量を算出することができ、その位置補正量に基づき、輪郭データの位置補正を行うことで輪郭データを高精度に重ね合わせることができる。これにより、パターン形状の形状評価に用いる参照パターンをより正確に生成できるようになり、この参照パターンと評価対象パターンの形状比較によって、パターンの高精度な形状評価を行うことができる。 As described above, in the present invention, before superimposing the contour data, the contour data is matched by considering the deformation and rotation between the contour data using one contour data as a template. The position correction amount can be calculated, and the contour data can be superimposed with high accuracy by correcting the position of the contour data based on the position correction amount. As a result, a reference pattern used for pattern shape shape evaluation can be generated more accurately, and the shape of the pattern can be evaluated with high accuracy by comparing the shape of the reference pattern with the pattern to be evaluated.
以下、プロセスウィンドウ計測を行う実施例について説明する。 Hereinafter, an example in which process window measurement is performed will be described.
実施例1〜2で説明した形状評価方法では、参照パターン生成用の複数のパターンと、評価対象パターンを別々のパターンとして説明したが、複数の評価対象パターンから参照パターンを生成し、その参照パターンを用いて評価対象パターンを形状評価することで、例えば、評価対象パターンの平均的な形状に対する評価対象パターンの形状の差異といった、評価対象パターンの形状バリエーションに対する相対的な形状評価を行うことができる。 In the shape evaluation method described in the first and second embodiments, the plurality of patterns for generating the reference pattern and the evaluation target pattern are described as separate patterns. However, the reference pattern is generated from the plurality of evaluation target patterns, and the reference pattern is generated. By evaluating the shape of the evaluation target pattern using, for example, it is possible to perform a relative shape evaluation with respect to the shape variation of the evaluation target pattern such as a difference in the shape of the evaluation target pattern with respect to the average shape of the evaluation target pattern. .
例えば、設計データ上では同一形状のパターンで、チップが異なるパターンを複数撮影し、各チップの撮影画像から、輪郭データを抽出し、輪郭分布データを生成する。この輪郭分布は、チップ間に発生したプロセス変動によるパターン形状のバリエーションを示すものである。次に、輪郭分布の平均的な位置を参照パターン化する。この参照パターンはチップ間に生じたプロセス変動によるパターン形状の平均的なポイントを示す。この参照パターンと評価対象パターンの間隔を、実施例1で説明したように計測することで、評価対象パターンがプロセス変動によって生じるパターン変形の平均的なポイントから、どの程度乖離しているのかを評価できる。 For example, a plurality of patterns with the same shape and different chips on the design data are photographed, contour data is extracted from the photographed image of each chip, and contour distribution data is generated. This contour distribution indicates variations in the pattern shape due to process variations occurring between chips. Next, the average position of the contour distribution is converted into a reference pattern. This reference pattern shows an average point of the pattern shape due to the process variation generated between the chips. By measuring the interval between the reference pattern and the evaluation target pattern as described in the first embodiment, it is evaluated how far the evaluation target pattern is deviated from the average point of pattern deformation caused by process variation. it can.
また、この乖離幅と実施例1で示したようなパターン形状の変形許容範囲を比較することにより、パターンの良否判定を行うことができる。この良否判定を全ての評価対象パターンに対して行う。 Further, the quality of the pattern can be determined by comparing the deviation width with the allowable deformation range of the pattern shape as shown in the first embodiment. This pass / fail judgment is performed for all the evaluation target patterns.
本発明によれば、複数の評価対象パターンから生成した参照パターンを評価対象パターンの形状評価に用いることで、評価対象パターンの形状バリエーションに対する評価対象パターンの相対的な評価を行うことができる。 ADVANTAGE OF THE INVENTION According to this invention, the relative evaluation of the evaluation object pattern with respect to the shape variation of an evaluation object pattern can be performed by using the reference pattern produced | generated from the some evaluation object pattern for the shape evaluation of an evaluation object pattern.
プロセス変動によるパターンの形状変形が比較的小さい複数のパターン画像を用いることにより、エッジラフネスやノイズによる小さなエッジの変形を排除した参照パターンを生成できる。近年のプロセスでは、OPC(Optical Proximity Correction)モデルのキャリブレーション向けにウエハ上に製造したパターンの輪郭データを用いるケースが増えている。OPCモデルの構築では、特に、画像に含まれたノイズによるパターンの変形を抑えることが重要とされるため、このように、プロセス変動がない複数のパターンから参照パターンを生成し、その参照パターンをキャリブレーションに利用することが有効である。 By using a plurality of pattern images whose pattern deformation due to process variation is relatively small, it is possible to generate a reference pattern excluding small edge deformation due to edge roughness or noise. In recent years, there are increasing cases of using contour data of a pattern manufactured on a wafer for calibration of an OPC (Optical Proximity Correction) model. In the construction of the OPC model, it is particularly important to suppress the deformation of the pattern due to noise included in the image. Thus, a reference pattern is generated from a plurality of patterns having no process variation, and the reference pattern is generated. It is effective to use for calibration.
輪郭合成の方法や、生成した参照パターンによる形状評価の方法は上述の実施例のものを利用できる。ただし、本実施例の目的は、プロセス変動によるパターン形状の変形が小さいパターンを利用して参照パターンを生成検出することであり、形状が大きく変形したパターンを用いて参照パターンを生成すると、参照パターンの形状も大きく変形する可能性がある。このため、例えば、図27に示すような輪郭データの合成手順の過程で、正常パターンか異常パターンかの判定を行い2701、正常なパターンのみを輪郭の合成対象とするような処理を適用する。これにより、エッジラフネスやノイズによる小さなエッジの変形とプロセス変動等の影響により発生した大きな変形を排除した参照パターンを生成できる。具体的には、パターンの代表的なポイントの間隔や、パターンと設計データの間隔等を計測し、その計測値と、正常なパターンの場合の間隔値(規定値)と比較する。
The contour synthesis method and the shape evaluation method based on the generated reference pattern can use those of the above-described embodiments. However, an object of the present embodiment is to generate and detect a reference pattern using a pattern whose pattern shape deformation due to process variation is small. When a reference pattern is generated using a pattern whose shape is greatly deformed, the reference pattern There is also a possibility that the shape of will greatly deform. Therefore, for example, in the process of synthesizing the contour data as shown in FIG. 27, it is determined whether the pattern is a normal pattern or an
以上説明したように、本発明では、実施例1〜3で説明した輪郭合成の前段階において、パターンが大きく歪んでいる輪郭データを、パターンの形状判定によって検出し、そのパターンを輪郭の合成対象から除外するといった処理を追加することにより、OPCのモデルキャリブレーションや、パターン形状の評価に適した参照パターンを生成できる。 As described above, in the present invention, in the stage before contour synthesis described in the first to third embodiments, contour data in which the pattern is greatly distorted is detected by pattern shape determination, and the pattern is subjected to contour synthesis. By adding a process such as excluding the reference pattern, it is possible to generate a reference pattern suitable for OPC model calibration and pattern shape evaluation.
本発明の技術は、ウエハやレチクル等を用いて製造される電子デバイスの回路パターンの撮影画像を利用して、この回路パターンの形状を評価する装置に広く適用することが可能である。 The technique of the present invention can be widely applied to an apparatus for evaluating the shape of a circuit pattern using a captured image of the circuit pattern of an electronic device manufactured using a wafer, a reticle, or the like.
201 ウエハ
202 電子光学系
203 電子銃
204 電子線
205 コンデンサレンズ
206 偏向器
207 ExB偏向器
208 対物レンズ
209 二次電子検出器
210,211 反射電子検出器
212〜214 A/D変換器
215 処理制御部
216 ディスプレイ
217 ステージ
219 ステージコントローラ
220 偏向制御部
221 フォーカス制御部
223 記憶装置
225 撮影レシピ生成部
230 設計システム
251 CPU
252 画像メモリ
253 LSI
301,305 ウエハ
302 ショット領域
303 チップ
304 チップ内パターン
306 ウエハが異なるパターンの関係
307 ショットが異なるパターンの関係
308 チップが異なるパターンの関係
309 FOV内のパターン
401 ホワイトバンド
402 背景
403 パターンの輪郭
501 シフト量A
502 シフト量B
503 シフト量C
504 輪郭の重ね合わせ位置
701 シフト量
702〜704 輪郭合成点
705〜707 合成領域
708 座標
900,1211 設計データ
901 設計データの中心線
902 設計データの中心線に対する法線
903,2603 輪郭分布の外枠
904 輪郭分布の中心
905,2601 輪郭分布の内枠
906,907,908 輪郭分布中心と法線の交点
909,910 設計データの中心線の端点
1201 内枠
1202 外枠
1203 輪郭分布の中心位置
1210 カーソル
1212 中心線
1213,1214 参照パターンの位置
1401,1702,2103 参照パターン
1402 評価対象パターン
1403 間隔
1404 バンド
1405 評価対象パターンの異常部位
1406 参照パターンに対する形状変形の許容範囲
1407,1408 領域
1409 参照パターン上のポイント
1410 ポイント
1701 輪郭データ領域
1703,1704,1705 パターン
1801 良否判定結果
2001,2002 輪郭データ
2101 輪郭データA
2102 輪郭データB
2003 位置補正量
2301 設計レイアウト
2302 フォーカスポイント
2303 アドレッシングポイント
2304 ブライトネス,コントラストポイント
2305 形状評価ポイント
2306 オートスティグマポイント
2401,2402 ポイント
2403,2404 輪郭分布枠
2501 頂点座標データ
2502 設計データの中心線
2602 中心パターン
201
252
301, 305
502 Shift amount B
503 Shift amount C
504
2102 Outline data B
2003
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013070935A JP5596812B2 (en) | 2013-03-29 | 2013-03-29 | Pattern generation apparatus and pattern shape evaluation apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013070935A JP5596812B2 (en) | 2013-03-29 | 2013-03-29 | Pattern generation apparatus and pattern shape evaluation apparatus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008031314A Division JP5276854B2 (en) | 2008-02-13 | 2008-02-13 | Pattern generation apparatus and pattern shape evaluation apparatus |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014160943A Division JP5868462B2 (en) | 2014-08-07 | 2014-08-07 | Pattern shape evaluation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013140179A JP2013140179A (en) | 2013-07-18 |
JP5596812B2 true JP5596812B2 (en) | 2014-09-24 |
Family
ID=49037684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013070935A Active JP5596812B2 (en) | 2013-03-29 | 2013-03-29 | Pattern generation apparatus and pattern shape evaluation apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5596812B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017096625A (en) * | 2014-02-21 | 2017-06-01 | 株式会社日立ハイテクノロジーズ | Pattern measurement device and computer program |
CN113701678B (en) * | 2021-09-18 | 2024-07-12 | 武汉光谷卓越科技股份有限公司 | Road surface flatness detection method based on line scanning three-dimension |
CN116080108B (en) * | 2023-02-17 | 2023-07-25 | 浙江恒亿达复合材料有限公司 | Data acquisition management system for production process of wind power glass fiber pultrusion plate |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3625236B2 (en) * | 1996-01-29 | 2005-03-02 | 株式会社ルネサステクノロジ | Defect inspection method for inspection pattern and semiconductor manufacturing process evaluation method |
JPH1173513A (en) * | 1997-06-25 | 1999-03-16 | Matsushita Electric Works Ltd | Device and method for pattern inspection |
JP3524853B2 (en) * | 1999-08-26 | 2004-05-10 | 株式会社ナノジオメトリ研究所 | Pattern inspection apparatus, pattern inspection method, and recording medium |
JP2006220644A (en) * | 2005-01-14 | 2006-08-24 | Hitachi High-Technologies Corp | Method and apparatus for inspecting pattern |
JP5156619B2 (en) * | 2006-02-17 | 2013-03-06 | 株式会社日立ハイテクノロジーズ | Sample size inspection / measurement method and sample size inspection / measurement device |
-
2013
- 2013-03-29 JP JP2013070935A patent/JP5596812B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013140179A (en) | 2013-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5276854B2 (en) | Pattern generation apparatus and pattern shape evaluation apparatus | |
JP5639797B2 (en) | Pattern matching method, image processing apparatus, and computer program | |
JP5030906B2 (en) | Panorama image synthesis method and apparatus using scanning charged particle microscope | |
JP5604067B2 (en) | Matching template creation method and template creation device | |
JP5422411B2 (en) | Outline extraction method and outline extraction apparatus for image data obtained by charged particle beam apparatus | |
KR101623135B1 (en) | Pattern evaluation device and pattern evaluation method | |
JP5313939B2 (en) | Pattern inspection method, pattern inspection program, electronic device inspection system | |
WO2010098017A1 (en) | Pattern measurement apparatus | |
JP5868462B2 (en) | Pattern shape evaluation device | |
WO2014208202A1 (en) | Pattern shape evaluation device and method | |
US20110286685A1 (en) | Image formation method and image formation device | |
JP5596812B2 (en) | Pattern generation apparatus and pattern shape evaluation apparatus | |
JP2008242112A (en) | Mask pattern evaluation device and manufacturing method of photomask | |
US10558127B2 (en) | Exposure condition evaluation device | |
US10346970B2 (en) | Inspection method for detecting a die defect | |
JP5604208B2 (en) | Defect detection apparatus and computer program | |
JP6001945B2 (en) | Pattern measuring apparatus and method | |
JP5241697B2 (en) | Alignment data creation system and method | |
US9947088B2 (en) | Evaluation condition setting method of semiconductor device, and evaluation condition setting apparatus | |
TW202001235A (en) | Image generation method | |
JP2011007757A (en) | Overlap determination method between imaging ranges, and chip selection method for overlapping determination object |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140507 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140625 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140715 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140807 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5596812 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |