JP5596499B2 - Degradation evaluation method for anti-corrosion wires - Google Patents

Degradation evaluation method for anti-corrosion wires Download PDF

Info

Publication number
JP5596499B2
JP5596499B2 JP2010248405A JP2010248405A JP5596499B2 JP 5596499 B2 JP5596499 B2 JP 5596499B2 JP 2010248405 A JP2010248405 A JP 2010248405A JP 2010248405 A JP2010248405 A JP 2010248405A JP 5596499 B2 JP5596499 B2 JP 5596499B2
Authority
JP
Japan
Prior art keywords
grease
corrosion
wire
deterioration
electric wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010248405A
Other languages
Japanese (ja)
Other versions
JP2012098249A (en
Inventor
秀輝 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Original Assignee
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP2010248405A priority Critical patent/JP5596499B2/en
Publication of JP2012098249A publication Critical patent/JP2012098249A/en
Application granted granted Critical
Publication of JP5596499B2 publication Critical patent/JP5596499B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、架空送電線や架空地線、光ファイバと電線とを組み合わせた光ファイバ複合架空地線(OPGW)、ワイヤーなどにグリースを塗布または充填した防食電線の劣化評価方法に関する。   The present invention relates to a method for evaluating deterioration of an anticorrosion electric wire in which grease is applied or filled to an overhead power transmission line, an overhead ground wire, an optical fiber composite overhead ground wire (OPGW) in which an optical fiber and an electric wire are combined, a wire, or the like.

防食電線はグリースを塗布または充填した電線であり、グリースを用いない素線構造が同一の電線より腐食劣化しにくいと考えられていた。そのため、沿岸部の海塩や工業地帯の汚損物質による腐食が懸念される個所に採用されてきた。しかし、このような防食電線であっても、時間の経過とともに実装路の周辺の腐食因子の影響を受けて腐食が進行し、機械的・電気的諸性能のレベルが劣化する。また、防食電線と素線構造が同一の電線とを比較したときに、その耐食性に差異がない場合があることも確認されている。   The anticorrosion electric wire is an electric wire coated or filled with grease, and it has been considered that the wire structure not using the grease is less susceptible to corrosion deterioration than the same electric wire. For this reason, it has been adopted in places where there are concerns about corrosion due to sea salt in coastal areas and fouling substances in industrial areas. However, even with such a corrosion-proof electric wire, corrosion progresses with the influence of corrosion factors around the mounting path as time passes, and the level of various mechanical and electrical performances deteriorates. It has also been confirmed that there is a case where there is no difference in the corrosion resistance when comparing the anticorrosion electric wire and the electric wire having the same wire structure.

そこで、電力会社では、一定期間(例えば、35年以上)経年した送電線から一部の防食電線を採取して機械的性能調査を行い、防食電線の余寿命の診断を行っている。このようにして求められた余寿命の期間内に、実装路から防食電線を撤去して新品と交換(電線張り替え)することで、架空電線路の安全性を確保している。なお、電力会社では、これまでの調査結果から、内部腐食が発生した防食電線は外径が数ミリ増加することが確認されており、このような外径の増加をチェックするために、高倍率望遠鏡等を使用した外観点検も行っている。   Therefore, the electric power company collects a part of the corrosion-preventing electric wires from a transmission line aged for a certain period (for example, 35 years or more), conducts a mechanical performance investigation, and diagnoses the remaining life of the anti-corrosion electric wires. The safety of the overhead wireway is ensured by removing the anticorrosion wire from the mounting path and replacing it with a new one (replacement of the wire) within the remaining lifetime thus determined. In addition, electric power companies have confirmed that the outer diameter of corrosion-proof wires that have undergone internal corrosion will increase by several millimeters from the results of previous surveys. To check for such an increase in outer diameter, Appearance inspection is also performed using a telescope.

従来、防食電線の余寿命判断の方法として、X線照射により防食電線の透視画像から劣化状況を検査したり、防食電線の動歪み振幅を測定したりすることにより、その防食電線の劣化レベルを求め、防食電線の張り替えが必要となる規定レベルに達する時期を経験から割り出すことにより、防食電線の張り替えのための期間を求める方法がある(例えば、特許文献1または2参照)。   Conventionally, as a method for determining the remaining life of a corrosion-resistant electric wire, the deterioration level of the corrosion-proof electric wire can be determined by inspecting the deterioration state from a fluoroscopic image of the corrosion-proof electric wire by X-ray irradiation or measuring the dynamic strain amplitude of the corrosion-proof electric wire. There is a method for obtaining a period for replacing the anticorrosion electric wire by determining from experience the time to reach the specified level where the anticorrosion electric wire needs to be replaced (see, for example, Patent Document 1 or 2).

防食電線の実装路は沿岸部や工業地帯など様々であるため、実装路の周辺の腐食因子の影響を受ける防食電線の腐食形態は様々に異なり、その腐食速度も様々に異なっている。このため、特許文献1や2に記載のような経験に基づいた方法では、腐食速度を適正に評価することができず、適正な電線張り替え時期の決定が困難であるという問題があった。   Since there are various mounting paths for anticorrosive wires, such as coastal areas and industrial zones, the corrosion forms of the anticorrosive cables that are affected by the corrosion factors around the mounting path are different, and the corrosion rates are also different. For this reason, in the method based on experience as described in Patent Documents 1 and 2, the corrosion rate cannot be properly evaluated, and there is a problem that it is difficult to determine an appropriate wire replacement time.

この問題を解決するために、防食電線の性能劣化度を測定して得た測定データを、防食電線の実装路の周辺の腐食因子を模擬した加速劣化試験室内で加速劣化試験を行って性能劣化度を測定し作成した条体劣化度のマスターカーブに照合させて、防食電線の以後の余寿命を評価する方法が開発されている(例えば、特許文献3参照)。   In order to solve this problem, the measurement data obtained by measuring the degree of performance deterioration of the anticorrosion cable is subjected to an accelerated deterioration test in an accelerated deterioration test room that simulates the corrosion factors around the mounting path of the anticorrosion cable. A method for evaluating the remaining life of a corrosion-proof electric wire by collating it with a master curve of the degree of degradation of a strip formed by measuring the degree has been developed (see, for example, Patent Document 3).

なお、防食電線に使用されるグリースは、基油が80〜90wt%であり、その他に増ちょう剤10wt%〜20wt%と、微量な酸化防止剤等の添加剤とによって構成されている。その性能はJIS K−2220に規定されており、滴点・離油度・蒸発量が指標となっている。ここで、滴点は使用温度において滴下しないこと、離油度は100℃、24時間で円錐金網から分離する量、蒸発量は加熱空気99℃、22時間で蒸発する量である。   In addition, the grease used for the anticorrosive electric wire has a base oil of 80 to 90 wt%, and is composed of a thickener 10 wt% to 20 wt% and an additive such as a trace amount of antioxidant. The performance is defined in JIS K-2220, and the dropping point, oil separation degree, and evaporation amount are used as indexes. Here, the dropping point is not dropping at the operating temperature, the degree of oil separation is 100 ° C., the amount separated from the conical metal mesh in 24 hours, and the evaporation amount is the amount evaporating in the heated air 99 ° C., 22 hours.

主に防食電線導入初期に使用されていたグリース(以下、「旧グリース」という)は、増ちょう剤としてステアリン酸リチウムを用い、乳化(鹸化)させている。この鹸化繊維の中に鉱油を保持し、グリースとしての機能を得るものである。なお、使用されていた年代は、電線メーカーによって異なっている。また、近年多く使用されているグリース(以下、「現グリース」という)は、増ちょう剤としてポリウレア混合による繊維状結合(ウレア結合)に鉱油を保持させるタイプで、耐久性が高くなっている。この旧グリースおよび現グリースの一般的な性能を、表1に示す。   Grease (hereinafter referred to as “old grease”) used mainly at the beginning of the introduction of anticorrosion wires is emulsified (saponified) using lithium stearate as a thickener. Mineral oil is retained in the saponified fiber to obtain a function as a grease. In addition, the age which was used differs with electric wire manufacturers. In addition, grease (hereinafter referred to as “current grease”) that has been widely used in recent years is a type in which mineral oil is held in a fibrous bond (urea bond) by polyurea mixing as a thickener, and has high durability. Table 1 shows the general performance of the old grease and the current grease.

特開2005−181188号公報JP 2005-181188 A 特開2003−185551号公報JP 2003-185551 A 特開2008−64610号公報JP 2008-64610 A

電線メーカーは国内でも数社あり、防食電線の素線構造は同一でも、充填されるグリースがメーカー毎に異なっており、技術の進歩とともに変遷をしている。このため、使用されているグリースの耐久性が、電線メーカーや製造時期により異なっている。特許文献3に記載の方法では、電線メーカーや製造時期により異なるグリースの種類毎に、マスターカーブを得る必要があり、その作業量が膨大になるという課題があった。また、現在は製造中止になっており、その耐久性を評価できないグリースもあることから、マスターカーブが得られないことがあるという課題もあった。   There are several electric wire manufacturers in Japan, and even though the wire structure of the anticorrosion electric wire is the same, the grease to be filled differs from manufacturer to manufacturer, and it is changing with technological progress. For this reason, the durability of the grease used varies depending on the electric wire manufacturer and the production time. In the method described in Patent Document 3, it is necessary to obtain a master curve for each type of grease that differs depending on the electric wire manufacturer and production time, and there is a problem that the amount of work becomes enormous. In addition, there is a problem that the master curve may not be obtained because the production has been discontinued and some greases cannot be evaluated for durability.

本発明は、このような課題に着目してなされたもので、使用されているグリースの種類によらず、精度良く防食電線の劣化を評価することができる防食電線の劣化評価方法を提供することを目的としている。   The present invention has been made paying attention to such problems, and provides a method for evaluating the deterioration of a corrosion-resistant electric wire that can accurately evaluate the deterioration of the corrosion-resistant electric wire regardless of the type of grease used. It is an object.

また、本発明を開発するにあたり、本発明者等は、まず、外観点検により外径の増加が確認された防食電線を採取し、その腐食状態の観察を行った。その防食電線の腐食観察事例を、以下に示す。   In developing the present invention, the present inventors first collected a corrosion-proof electric wire whose increase in outer diameter was confirmed by appearance inspection, and observed its corrosion state. Examples of corrosion observation of the anticorrosion wires are shown below.

(1)Z2SBTACSR(中防食低ロス耐熱)780mmの腐食事例
275kV A線は、経過14年で著しい腐食に至った線路であり、その線路経過地は日本海沿岸に近い。そのため、海塩の影響を受けて腐食が進行すると考えられるが、周囲のACSRに比較して腐食の進展は著しく早かった。その特徴としては、ジャンパー線の腐食が著しく、12mm程度の外径増が確認され、そのグリースは内部の鋼心付近まで油分が消失していた。一方、径間部の腐食程度は、ジャンパー線より小さく、グリースの油分も中間層では消失しているが、鋼心付近では残存していた。
(1) Z2SBTACSR (medium prevention low loss heat resistance) 780 mm 2 corrosion example 275 kV A line is a track that has been markedly corroded in the past 14 years, and the track location is close to the coast of the Sea of Japan. For this reason, it is considered that the corrosion progresses under the influence of sea salt, but the progress of the corrosion is significantly faster than the surrounding ACSR. As its characteristics, the jumper wire was remarkably corroded, and an outer diameter increase of about 12 mm was confirmed, and the oil had disappeared to the vicinity of the inner steel core. On the other hand, the degree of corrosion at the span portion was smaller than that of the jumper wire, and the oil content of the grease disappeared in the intermediate layer, but remained in the vicinity of the steel core.

(2)PZACSR(高品位アルミ中防食)610mmの腐食事例
154kV B線は、経過37年であり、定期点検時において径間部の電線外径が11mm増大している個所が発見された。赤外線カメラを用いて外径増大個所を観察したところ、常時許容電流の30%程度の潮流において、周囲の電線に比較して約1℃の温度上昇が確認されたことから、早急に張替を行い、撤去電線の調査を実施した。図7に示すように、調査結果としては、圧縮型耐張クランプ先付近に、著しい外径の増大が3個所あり、より線残存強度は規格抗張力の98%に低下しており、グリースは鋼心部まで劣化が進み、油分が失われた状態であった。一方、クランプ先から数m離れると腐食は無く、グリースには油分が残存している状況であった。また、腐食が発生した径間全ての外観点検と径間の1/4付近、1/2付近の解体調査とを行ったが、クランプ先以外は腐食が無いことを確認した。この線路の経過地は太平洋沿岸の工業地帯であり、海側からの風(風向の発生頻度×風速)は、日本海側の1/5程度であるが、海塩および汚損物質の影響で腐食に至ったものと考えられる。
(2) PZACSR (corrosion protection in high-grade aluminum) 610 mm 2 Corrosion example 154 kV B line has been 37 years old, and a portion where the outer diameter of the wire in the span portion has increased by 11 mm during regular inspection was found. When an outside diameter increase point was observed using an infrared camera, a temperature rise of about 1 ° C was confirmed compared to the surrounding electric wire at a current of about 30% of the allowable current at all times. Conducted a survey of the removed wires. As shown in FIG. 7, as a result of the investigation, there are three remarkable increases in the outer diameter in the vicinity of the compression-type tension clamp tip, and the stranded residual strength is reduced to 98% of the standard tensile strength. The deterioration progressed to the center and the oil was lost. On the other hand, there was no corrosion when several meters away from the clamp tip, and the grease remained oily. Further, all appearance inspections of the spans where corrosion occurred and dismantling investigations near 1/4 and 1/2 of the spans were carried out, and it was confirmed that there was no corrosion except for the clamp points. The course of this track is an industrial area along the Pacific coast, and the wind from the sea side (wind direction frequency x wind speed) is about 1/5 that of the Sea of Japan, but corroded by the influence of sea salt and pollutants. It is thought that it came to.

このように、防食電線の腐食観察事例からは、グリースが健全であれば防食効果が発揮できていることが確認されている。このことから、本発明者等は、グリースの成分の変化が防食電線の腐食を進展させるものと考え、さらに、グリースの劣化要因として、水分や汚損物質の混入による軟化・漏洩、通電電流による熱劣化等を推定し、これらの要因の確認および特定を行うことにより、本発明に至った。   As described above, it has been confirmed from the corrosion observation example of the anticorrosion electric wire that the anticorrosion effect can be exhibited if the grease is healthy. Therefore, the present inventors consider that the change in the grease component causes the corrosion of the anticorrosion electric wire to progress, and further, as a deterioration factor of the grease, softening / leakage due to mixing of moisture and fouling substances, heat due to the energizing current The present invention has been achieved by estimating deterioration and confirming and identifying these factors.

本発明に係る防食電線の劣化評価方法は、防食電線に塗布または充填されたグリースの油分の量を測定して初期状態からの前記グリースの油分の低下量を求め、前記グリース内のアルミ水酸化物の有無を赤外分光法で検出し、前記グリースの油分の低下量と前記アルミ水酸化物の有無の結果とを合わせて、前記防食電線の劣化を評価することを、特徴とする。この場合、前記グリースに含まれる増ちょう剤の劣化状態を観察し、その結果も合わせて前記防食電線の劣化を評価してもよい。
また、本発明に係る防食電線の劣化評価方法は、防食電線に塗布または充填されたグリースの油分の量を測定して初期状態からの前記グリースの油分の低下量を求め、前記グリースに含まれる増ちょう剤の劣化状態を観察し、前記グリースの油分の低下量と前記増ちょう剤の劣化状態の結果とを合わせて、前記防食電線の劣化を評価してもよい。
本発明に係る防食電線の劣化評価方法は、防食電線に塗布または充填されたグリースの油分の低下量に基づいて評価を行うことにより、使用されているグリースの種類によらず、精度良く防食電線の劣化を評価することができる。また、防食電線の腐食部位ではグリース内に腐食生成物としてのアルミ水酸化物が存在しているため、グリース内のアルミ水酸化物の有無を検出することにより、防食電線の劣化の評価精度を高めることができる。また、増ちょう剤の劣化状態とグリースの油分量の低下との間には関係があるものと考えられるため、増ちょう剤の劣化状態を観察することにより、防食電線の劣化の評価精度を高めることができる。
The deterioration evaluation method for a corrosion-resistant electric wire according to the present invention measures the amount of grease in the grease applied or filled in the corrosion-proof electric wire to determine the amount of decrease in the grease from the initial state , and aluminum hydroxide in the grease The presence or absence of an object is detected by infrared spectroscopy, and the deterioration of the anticorrosion electric wire is evaluated by combining the decrease in the oil content of the grease and the result of the presence or absence of the aluminum hydroxide . In this case, the deterioration state of the thickening agent contained in the grease may be observed, and the deterioration of the anticorrosion wire may be evaluated together with the result.
In addition, the deterioration evaluation method for a corrosion-proof wire according to the present invention measures the amount of grease in the grease applied or filled in the corrosion-proof wire to determine the amount of decrease in the grease from the initial state, and is included in the grease. The deterioration state of the thickening agent may be observed, and the deterioration amount of the anticorrosion wire may be evaluated by combining the amount of decrease in the oil content of the grease and the result of the deterioration state of the thickening agent.
The degradation evaluation method for a corrosion-resistant electric wire according to the present invention performs an evaluation based on the amount of decrease in the oil content of grease applied or filled in the corrosion-proof electric wire, so that the corrosion-proof electric wire can be accurately performed regardless of the type of grease used. Can be evaluated. In addition, since aluminum hydroxide as a corrosion product is present in the grease at the corrosion site of the anticorrosion wire, detecting the presence or absence of aluminum hydroxide in the grease increases the evaluation accuracy of the deterioration of the anticorrosion wire. Can be increased. In addition, since it is considered that there is a relationship between the deterioration state of the thickener and the decrease in the oil content of the grease, the evaluation accuracy of the deterioration of the anticorrosion wire is improved by observing the deterioration state of the thickener. be able to.

本発明に係る防食電線の劣化評価方法は、前記グリースの油分の量が55wt%まで低下したとき、前記防食電線が劣化していると評価してもよい。また、求められたグリースの油分の低下量と防食電線の使用期間とに基づいて、防食電線の腐食発生時期としてグリースの油分が55wt%まで低下する時期を求めてもよい。この場合、防食電線の余寿命を求めることができる。例えば、図6に示すように、初期状態でグリースの油分の量が90wt%で、10年間使用された防食電線のグリースの油分の測定量が70wt%であった場合、10年間でのグリースの油分の低下量は20wt%となり、グリースの油分が55wt%まで低下する時期、すなわち防食電線の腐食発生時期(余寿命)は7.5年後(架線直後からの寿命は17.5年)となる。求められた腐食発生時期までの余寿命の期間内に、余寿命を求めた防食電線に対応する送電線の張り替えを行うことにより、送電線の安全性を確保することができる。   The deterioration evaluation method for a corrosion-resistant electric wire according to the present invention may evaluate that the corrosion-proof electric wire is deteriorated when the amount of oil in the grease is reduced to 55 wt%. Further, based on the determined amount of decrease in the oil content of the grease and the period of use of the anticorrosion wire, the time when the oil content of the grease decreases to 55 wt% may be determined as the corrosion occurrence time of the anticorrosion wire. In this case, the remaining life of the anticorrosion electric wire can be obtained. For example, as shown in FIG. 6, when the amount of grease in the initial state is 90 wt% and the measured amount of grease in the anticorrosion wire used for 10 years is 70 wt%, the amount of grease in 10 years The amount of decrease in oil content is 20 wt%, and the time when the grease oil content decreases to 55 wt%, that is, the corrosion occurrence time (remaining life) of the anticorrosive electric wire is 7.5 years later (17.5 years after the overhead wire) Become. The safety of the transmission line can be ensured by replacing the transmission line corresponding to the anticorrosion electric wire for which the remaining life has been obtained within the period of the remaining life until the required corrosion occurrence time.

本発明によれば、使用されているグリースの種類によらず、精度良く防食電線の劣化を評価することができる防食電線の劣化評価方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the deterioration evaluation method of a corrosion-proof electric wire which can evaluate deterioration of a corrosion-proof electric wire accurately can be provided irrespective of the kind of used grease.

本発明の実施の形態の防食電線の劣化評価方法に関する、送電線として使用された防食電線のPZACSR 610mmの(a)グリースの採取位置、(b)腐食部位のグリースの油分量を示す防食電線の断面図である。(A) Grease collecting position of PZACSR 610 mm 2 of (C) corrosion-preventing electric wire used as a power transmission line and (b) the amount of grease oil in the corroded portion related to the method for evaluating deterioration of the anti-corrosive electric wire according to the embodiment of the present invention FIG. 本発明の実施の形態の防食電線の劣化評価方法に関する、加速劣化試験方法を示す説明図である。It is explanatory drawing which shows the accelerated deterioration test method regarding the deterioration evaluation method of the corrosion-proof electric wire of embodiment of this invention. 本発明の実施の形態の防食電線の劣化評価方法に関する、(a)ACSR試料、(b)SBACSR試料、(c)ACSR試料+SBACSR試料の加速劣化試験によるグリースの油分量と内層アルミ線の引張荷重残存率との関係を示すグラフである。(A) ACSR sample, (b) SBACSR sample, (c) Grease oil content and tensile load on inner layer aluminum wire by accelerated degradation test of ACSR sample + SBACSR sample It is a graph which shows the relationship with a residual rate. 本発明の実施の形態の防食電線の劣化評価方法の、送電線として使用された防食電線のPZACSR 610mmの(a)油分14.7%、(b)油分44.2%、(c)油分49.0%、(d)油分59.0%のグリースのFT−IRスペクトルを示すグラフである。(A) Oil content 14.7%, (b) Oil content 44.2%, (c) Oil content of PZACSR 610mm 2 of the corrosion-proof wire used as a power transmission line in the method for evaluating deterioration of the corrosion-proof wire according to the embodiment of the present invention. It is a graph which shows the FT-IR spectrum of the grease of 49.0% and (d) oil content 59.0%. 本発明の実施の形態の防食電線の劣化評価方法の、送電線として使用された防食電線のPZACSR 610mmの(a)径間1/4付近の健全部位、(b)クランプ付近の腐食部位のグリースに含まれる増ちょう剤の電子顕微鏡写真である。In the method for evaluating deterioration of a corrosion-proof wire according to the embodiment of the present invention, (a) a healthy portion of the corrosion-resistant wire used as a transmission line of PZACSR 610 mm 2 (a) near a quarter of the span, (b) a corrosion portion near the clamp. It is an electron micrograph of the thickener contained in grease. 本発明に係る防食電線の劣化評価方法の、防食電線の寿命を求めるための経過年数とグリースの油分量との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the elapsed years for calculating | requiring the lifetime of a corrosion-proof electric wire of the deterioration evaluation method of the corrosion-proof electric wire which concerns on this invention, and the oil content of grease. 送電線として使用された防食電線のPZACSR 610mmの(a)クランプ付近、(b)径間1/4付近の観察結果を示す図面である。PZACSR 610 mm of 2 (a) clamp around the anticorrosion wires used as transmission lines, it illustrates a (b) span 1/4 vicinity observations.

図1乃至図5は、本発明の実施の形態の防食電線の劣化評価方法を示している。
以下、具体的な実施例に基づいて、本発明の実施の形態の防食電線の劣化評価方法について説明する。
1 to 5 show a method for evaluating deterioration of a corrosion-proof electric wire according to an embodiment of the present invention.
Hereinafter, based on a specific Example, the deterioration evaluation method of the corrosion-proof electric wire of embodiment of this invention is demonstrated.

送電線として使用されていた鋼心アルミより線から成る防食電線の154kV(PZACSR610mm)B線を使用して、グリースの油分の低下量と防食電線の劣化との関係について検討を行った。まず、防食電線のPZACSR610mmは、アルミ素線部が三層構造であるため、それぞれの層間のグリースを採取し、残存油分を測定した。グリースは、専用のペンチを使用して防食電線の外側の層に隙間を設け、そこから採取した。このようにして採取したグリースの重量を測定後、ろ紙で包み、溶剤(ヘキサン)で油分を抽出後、ろ紙内の残渣物重量を測定し、[グリース重量−残渣物重量=油分]の式から残存油分の量を求めた。 Using a 154 kV (PZACSR 610 mm 2 ) B wire of a corrosion-proof electric wire made of a steel core aluminum wire used as a power transmission line, the relationship between the amount of decrease in grease oil and the deterioration of the corrosion-proof electric wire was examined. First, since PZACSR 610 mm 2 of the anticorrosion electric wire has a three-layer structure of the aluminum wire portion, the grease between the respective layers was collected and the residual oil content was measured. The grease was collected from a gap in the outer layer of the anticorrosion wire using a special pliers. After measuring the weight of the grease collected in this way, wrap it with filter paper, extract the oil content with a solvent (hexane), measure the weight of the residue in the filter paper, and calculate from the formula of [grease weight−residue weight = oil content]. The amount of residual oil was determined.

防食電線の腐食部位および健全部位のグリースの残存油分の測定結果を表2に示す。また、防食電線のグリースの採取位置を図1(a)に、腐食部位のグリースの油分の測定結果を図1(b)に示す。表2および図1(b)に示すように、グリースの初期油分量は、一般的に80wt%〜90wt%であるが、腐食部位では、6本層から18本層に向かって、防食電線の外側になるほど油分の低下量が大きくなっていることが確認された。また、グリースの残存油分が59wt%のときには腐食は発生しておらず、グリースの残存油分が49wt%以下のとき、腐食が発生していることが確認された。腐食していない層や部位でも油分の減少が確認され、今後腐食に進展すると考えられる。   Table 2 shows the measurement results of the residual oil content of the grease at the corrosion site and the healthy site of the anticorrosion wire. Further, FIG. 1A shows the grease collecting position of the anticorrosion electric wire, and FIG. 1B shows the measurement result of the oil content of the grease at the corrosion site. As shown in Table 2 and FIG. 1 (b), the initial oil content of the grease is generally 80 wt% to 90 wt%, but at the corroded portion, from 6 layers to 18 layers, It was confirmed that the amount of decrease in the oil became larger toward the outside. Further, it was confirmed that corrosion did not occur when the residual oil content of the grease was 59 wt%, and corrosion occurred when the residual oil content of the grease was 49 wt% or less. A decrease in oil content has been confirmed even in uncorroded layers and parts, and it is considered that corrosion will progress in the future.

表2に示すように、グリースの油分の低下量と、防食電線の劣化との間には正の相関があることが確認された。このことから、本発明の実施の形態の防食電線の劣化評価方法でグリースの油分の量を測定して初期状態からのグリースの油分の低下量を求めることにより、防食電線の劣化を評価することができるといえる。また、防食電線の使用期間とその間のグリースの油分の低下量とから、防食電線の腐食発生時期を求めることができることも示唆される。   As shown in Table 2, it was confirmed that there was a positive correlation between the amount of decrease in the oil content of the grease and the deterioration of the anticorrosion wire. From this, the deterioration of the corrosion-proof electric wire is evaluated by measuring the amount of grease oil by the deterioration evaluation method of the corrosion-proof electric wire according to the embodiment of the present invention and determining the amount of decrease in the oil content of the grease from the initial state. Can be said. It is also suggested that the corrosion occurrence time of the anticorrosive electric wire can be obtained from the period of use of the anticorrosive electric wire and the amount of decrease in the oil content of the grease during that period.

鋼心アルミより線から成る防食電線のZ2ACSR410mmの新品と、それを150℃で15日間加熱した加熱劣化品とを用いて、加速劣化試験装置により腐食実験を行った。図2に示すように、実験は、径間部とジャンパー線とを模擬した試料を用いて劣化様相を比較するとともに、素線間の隙間の影響を評価するため、ジャンパー線の弛みを1.5mとして、支持長さを3m、4m、5mとした試料を架線した。なお、加熱劣化品の初期のグリース油分は、防食電線で腐食が発生していない60wt%とした。グリース油分の測定試料として、初期材、径間模擬、JP(ジャンパー模擬)3m、JP4m、JP5mのものを使用した。ジャンパー模擬の測定試料は、弛度底部のものを採取して使用した。この腐食実験の結果を表3に示す。 A corrosion test was conducted with an accelerated deterioration test apparatus using a new Z2ACSR 410 mm 2 anticorrosion wire made of steel core aluminum wire and a heat deteriorated product heated at 150 ° C. for 15 days. As shown in FIG. 2, the experiment was conducted by comparing the deterioration aspects using a sample simulating the span portion and the jumper wire, and evaluating the influence of the gap between the strands in order to compare the slackness of the jumper wire. A sample with a support length of 3 m, 4 m, and 5 m was installed as 5 m. The initial grease oil content of the heat-deteriorated product was 60 wt% where corrosion did not occur in the anticorrosion wire. As a measurement sample of the grease oil, samples of initial material, span simulation, JP (jumper simulation) 3 m, JP 4 m, and JP 5 m were used. As a measurement sample for simulating a jumper, a sample having a bottom of the sag was collected and used. The results of this corrosion experiment are shown in Table 3.

表3に示すように、径間模擬よりもジャンパー模擬のグリース油分の量が大きく低下しており、加熱劣化品では腐食も発生している。このことから、グリースの油分の低下量と、防食電線の劣化との間には相関があり、グリースの油分が53wt%以下まで低下すると、防食効果が発揮できなくなり腐食が発生していることが確認された。このことから、グリースの油分の量を測定して初期状態からのグリースの油分の低下量を求めることにより、防食電線の劣化を評価することができるといえる。   As shown in Table 3, the amount of grease oil in the jumper simulation is significantly lower than that in the span simulation, and corrosion is also generated in the heat-deteriorated product. This indicates that there is a correlation between the amount of grease reduced and the deterioration of the anti-corrosion wire. If the grease oil decreases to 53 wt% or less, the anti-corrosion effect cannot be exhibited and corrosion occurs. confirmed. From this, it can be said that the deterioration of the anticorrosion electric wire can be evaluated by measuring the amount of oil in the grease and determining the amount of decrease in the oil in the grease from the initial state.

また、表3に示すように、ジャンパーの大きさとグリース油分の低下量との間には明確な関係が認められなかったものの、曲げによる素線間の隙間が防食電線の劣化に影響することが明らかとなった。これは、素線間の隙間から水や汚損物質が浸入することにより、グリースが劣化するためであり、曲げにより隙間が発生するジャンパー線や圧縮による“わらい”の発生する圧縮型耐張クランプ付近では、特に劣化が早く腐食が発生しやすいことを示している。   Moreover, as shown in Table 3, although a clear relationship was not recognized between the jumper size and the amount of decrease in the grease oil content, the gap between the strands due to bending may affect the deterioration of the corrosion-proof electric wire. It became clear. This is due to the deterioration of grease due to the ingress of water and fouling substances through the gap between the strands. Near the compression type tension clamp where the gap is generated by bending and the "soft" is generated by compression. Shows that the deterioration is particularly rapid and corrosion is likely to occur.

鋼心アルミより線(ACSR)から成る防食電線、および低ロス型鋼心アルミより線(SBACSR)から成る防食電線を使用して、それぞれの新品と、それを150℃で15日間加熱した加熱劣化品とを用いて、図2と同様の方法で腐食実験を行った。測定試料として、初期材、径間模擬、JP(ジャンパー模擬)3m、JP4m、JP5mのものを使用した。ジャンパー模擬の測定試料は、弛度底部のものを採取して使用した。それぞれの測定試料について、グリースの油分量と内層アルミ線の引張荷重残存率との関係を求め、その結果を図3に示す。   Using a corrosion-resistant electric wire made of steel core aluminum stranded wire (ACSR) and a corrosion-resistant electric wire made of low-loss type steel core aluminum stranded wire (SBACSR), each new product and a heat-deteriorated product heated at 150 ° C for 15 days The corrosion experiment was conducted in the same manner as in FIG. As the measurement sample, an initial material, a span simulation, JP (jumper simulation) 3 m, JP 4 m, and JP 5 m were used. As a measurement sample for simulating a jumper, a sample having a bottom of the sag was collected and used. For each measurement sample, the relationship between the oil content of the grease and the tensile load remaining rate of the inner layer aluminum wire was determined, and the results are shown in FIG.

図3に示すように、ACSRもSBACSRもともに、グリースの油分量が低下すると、アルミ線の引張荷重残存率も低下し、電線の腐食劣化が進行することが確認された。また、グリースの油分量が約55wt%より低くなると、アルミ線の引張荷重残存率は急激に低下し、電線の腐食劣化が急速に進展する傾向が明らかとなった。このことから、グリースの油分の量を測定して初期状態からのグリースの油分の低下量を求めることにより、防食電線の劣化を評価することができるといえる。   As shown in FIG. 3, it was confirmed that when both the ACSR and SBACSR reduce the oil content of the grease, the tensile load residual ratio of the aluminum wire also decreases and the corrosion deterioration of the wire proceeds. Further, when the oil content of the grease was lower than about 55 wt%, the tensile load remaining rate of the aluminum wire rapidly decreased, and the tendency for the corrosion deterioration of the wire to progress rapidly was revealed. From this, it can be said that the deterioration of the anticorrosion electric wire can be evaluated by measuring the amount of oil in the grease and determining the amount of decrease in the oil in the grease from the initial state.

送電線として使用されていた鋼心アルミより線から成る防食電線の154kV(PZACSR610mm)B線を使用して、グリース内の腐食生成物としてのアルミ水酸化物の有無と防食電線の劣化との関係について検討を行った。グリース内のアルミ水酸化物の有無を調べるため、FT−IR(フーリエ変換型赤外分光法)により、それぞれ防食電線のグリースの油分14.7%、44.2%、49.0%、59.0%の部位でのグリースのスペクトルを測定した。その測定結果を図4に示す。 Using the 154kV (PZACSR610mm 2 ) B wire of a corrosion-proof wire made of steel core aluminum wire used as a power transmission line, the presence or absence of aluminum hydroxide as a corrosion product in grease and the deterioration of the corrosion-proof wire The relationship was examined. In order to investigate the presence or absence of aluminum hydroxide in the grease, the oil content of the grease of the anticorrosion electric wire was 14.7%, 44.2%, 49.0%, 59 by FT-IR (Fourier transform infrared spectroscopy), respectively. The spectrum of grease at the 0.0% site was measured. The measurement results are shown in FIG.

図4に示すように、特に腐食が進んでいると考えられるグリースの油分14.7%の部位(図4(a))のFT−IRスペクトルでは、OH結合および酸化アルミに起因するピークが明瞭に確認されたが、油分59.0%の健全部位(図4(d))では全く確認されていない。これは、防食電線の素線間の隙間に水や汚損物質が浸入し、腐食生成物であるアルミ水酸化物のAl(OH)が発生したためであると考えられる。なお、図4(d)と比べたときの、図4(a)および(b)でのピーク付近での乱れやベースの上昇は、グリース中に水が混入しているためと推定される。このことから、防食電線のグリース内のアルミ水酸化物の有無を検出することにより、防食電線の劣化を評価することができるといえる。 As shown in FIG. 4, in the FT-IR spectrum of the 14.7% oil content (FIG. 4 (a)) of the grease, which is considered to be particularly corroded, peaks due to OH bonds and aluminum oxide are clear. However, it was not confirmed at all in the healthy part (FIG. 4D) having an oil content of 59.0%. This is presumably because water or fouling substances entered the gaps between the strands of the anticorrosion wire, and aluminum hydroxide Al (OH) 3 as a corrosion product was generated. Note that the disturbance near the peak in FIGS. 4A and 4B and the rise of the base when compared with FIG. 4D are presumed to be because water is mixed in the grease. From this, it can be said that the deterioration of the anticorrosive electric wire can be evaluated by detecting the presence or absence of the aluminum hydroxide in the grease of the anticorrosive electric wire.

送電線として使用されていた鋼心アルミより線から成る防食電線の154kV(PZACSR610mm)B線を使用して、グリースに含まれる増ちょう剤の劣化状態と、防食電線の劣化との関係について検討を行った。増ちょう剤は繊維構造をしており、グリースの基油を保持する役割を果たしている。この増ちょう剤の劣化がグリースの劣化に影響を与えると考えられるため、防食電線の腐食部位および健全部位のグリースに含まれる増ちょう剤の状態を、電子顕微鏡により観察した。その観察結果を図5に示す。 Using the 154kV (PZACSR610mm 2 ) B wire of a corrosion-proof wire made of steel core aluminum wire used as a transmission line, the relationship between the deterioration state of the thickener contained in the grease and the deterioration of the corrosion-proof wire is examined. Went. The thickener has a fiber structure and plays the role of retaining the base oil of the grease. Since the deterioration of the thickener is considered to affect the deterioration of the grease, the state of the thickener contained in the corrosion portion of the corrosion-preventing electric wire and the healthy portion of the grease was observed with an electron microscope. The observation results are shown in FIG.

図5に示すように、腐食部位でも健全部位でも繊維構造は認められず、球体の残渣物が観察された。この残渣物は、時間の経過に伴う海塩や汚損物質等の腐食因子の影響や通電電流の熱の影響により、増ちょう剤の繊維構造が分断・変質したものと考えられる。このように増ちょう剤が分断・変質すると、グリースが軟化・漏洩すると考えられることから、この残渣物が、グリースの基油が漏れ出る原因になっていると推定される。このように、増ちょう剤の劣化は、今後のグリースの油分の低下が早まることを評価できるものである。このことから、増ちょう剤の劣化状態を観察することにより、防食電線の劣化を評価することができるといえる。
As shown in FIG. 5, no fiber structure was observed at the corrosion site or the healthy site, and spherical residues were observed. This residue is considered to be due to the effect of corrosion factors such as sea salt and fouling substances and the influence of heat of the energizing current on the fiber structure of the thickener. If the thickener is divided or altered in this way, it is considered that the grease is softened and leaked. Therefore, it is estimated that this residue causes the base oil of the grease to leak out. As described above, the deterioration of the thickener can be evaluated as an early reduction of the oil content of the grease. From this, it can be said that the deterioration of the corrosion-proof electric wire can be evaluated by observing the deterioration state of the thickener.

Claims (4)

防食電線に塗布または充填されたグリースの油分の量を測定して初期状態からの前記グリースの油分の低下量を求め、
前記グリース内のアルミ水酸化物の有無を赤外分光法で検出し、
前記グリースの油分の低下量と前記アルミ水酸化物の有無の結果とを合わせて、前記防食電線の劣化を評価することを、
特徴とする防食電線の劣化評価方法。
Measure the amount of oil in the grease applied or filled to the anticorrosion wire to determine the amount of grease decrease from the initial state,
The presence or absence of aluminum hydroxide in the grease is detected by infrared spectroscopy,
In combination with the amount of decrease in the oil content of the grease and the result of the presence or absence of the aluminum hydroxide, to evaluate the deterioration of the anticorrosion wire,
A method for evaluating deterioration of a corrosion-resistant electric wire, which is a feature.
防食電線に塗布または充填されたグリースの油分の量を測定して初期状態からの前記グリースの油分の低下量を求め、Measure the amount of oil in the grease applied or filled to the anticorrosion wire to determine the amount of grease decrease from the initial state,
前記グリースに含まれる増ちょう剤の劣化状態を観察し、Observe the deterioration state of the thickener contained in the grease,
前記グリースの油分の低下量と前記増ちょう剤の劣化状態の結果とを合わせて、前記防食電線の劣化を評価することを、In combination with the amount of decrease in the oil content of the grease and the result of the deterioration state of the thickener, evaluating the deterioration of the anticorrosion wire,
特徴とする防食電線の劣化評価方法。A method for evaluating deterioration of a corrosion-resistant electric wire, which is characterized
前記グリースに含まれる増ちょう剤の劣化状態を観察し、その結果も合わせて前記防食電線の劣化を評価することを、特徴とする請求項記載の防食電線の劣化評価方法。 The state of deterioration of the thickener contained in the grease was observed, deterioration evaluation method of anti-corrosion electric wire according to claim 1, wherein evaluating the results together degradation of the corrosion wire, characterized. 前記グリースの油分の量が55wt%まで低下したとき、前記防食電線が劣化していると評価することを、特徴とする請求項1、2または3記載の防食電線の劣化評価方法。
Wherein when the amount of oil in the grease is lowered to 55 wt%, to evaluate said anticorrosive wire is degraded, according to claim 1, 2 or 3 methods deterioration evaluation of corrosion wire, wherein.
JP2010248405A 2010-11-05 2010-11-05 Degradation evaluation method for anti-corrosion wires Expired - Fee Related JP5596499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010248405A JP5596499B2 (en) 2010-11-05 2010-11-05 Degradation evaluation method for anti-corrosion wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010248405A JP5596499B2 (en) 2010-11-05 2010-11-05 Degradation evaluation method for anti-corrosion wires

Publications (2)

Publication Number Publication Date
JP2012098249A JP2012098249A (en) 2012-05-24
JP5596499B2 true JP5596499B2 (en) 2014-09-24

Family

ID=46390309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010248405A Expired - Fee Related JP5596499B2 (en) 2010-11-05 2010-11-05 Degradation evaluation method for anti-corrosion wires

Country Status (1)

Country Link
JP (1) JP5596499B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085193A (en) * 2012-10-23 2014-05-12 Hitachi Ltd Life expectancy estimation method for grease and optical diagnostic device
JP6051276B1 (en) * 2015-08-20 2016-12-27 東京電設サービス株式会社 Remaining life diagnosis method for oil-impregnated resin film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4809543B2 (en) * 2001-05-16 2011-11-09 古河電気工業株式会社 Anticorrosion heat resistant transmission line
JP4181465B2 (en) * 2003-09-04 2008-11-12 三菱電機株式会社 Grease oil fraction measurement method
JP2009014547A (en) * 2007-07-05 2009-01-22 Nsk Ltd Observation method for solid substance, grease evaluation method, and method for manufacturing bearing

Also Published As

Publication number Publication date
JP2012098249A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
CN104166068B (en) Power system steel-cored aluminium strand failure analysis method
Molnár et al. The influence of corrosion on the life of steel ropes and prediction of their decommissioning
JP5596499B2 (en) Degradation evaluation method for anti-corrosion wires
Velásquez et al. Methodology for overhead line conductor remaining life aging infrastructure and asset management
Lequien et al. Characterization of an aluminum conductor steel reinforced (ACSR) after 60 years of operation
KR20120008123A (en) Method technology of non-destructive life prediction of aged overhead conductor
Holt et al. An initial study into silver corrosion in transformers following oil reclamation
Harvard et al. Aged ACSR conductors. I. Testing procedures for conductors and line items
Soliman Machine reliability and condition monitoring: a comprehensive guide to predictive maintenance planning
Zhang et al. Research on TIG welding gap corrosion resistance of X52/825 metallurgical clad pipein H2S/CO2 environment
JP2012202792A (en) Life prediction method for optical fiber compound overhead ground line
JP2008064610A (en) Deterioration diagnosing method of aerial strip
AU2022271412A1 (en) Lubricant for use in electric and hybrid vehicles and methods of using the same
CN106769823A (en) Method based on the damaged in-service drag-line residual life of Defect Equivalent treatment assessment oversheath
Achiriloaiei et al. Studies on the Effects of Environmental Pollution on ACSR Conductors
US20150192559A1 (en) Diagnosis method and maintenance method for oil-filled electrical equipment
Weyer Material Evaluation: Self Damping Wire SD/ACSR Conductor Failures
Duffett Dissection, Measurement and Analysis of a Recovered Damaged Flexible Riser
Lee et al. Mechanical and electrical characteristics analysis of the ACSR affected by high temperature
Toll et al. Condition Assessments of 50-Year Old Low Voltage Power Cables
Lee et al. Study on change of surface and tension load characteristics of ACSR exposed to an artificial flame
JP5079936B1 (en) Diagnostic method for oil-filled electrical equipment
Basak et al. Non-destructive evaluation of haulage ropes in mono-cable aerial ropeways: a comparative case study
JP2017048450A (en) Corrosion-proof electric cable oil content reduction percentage predicting method, corrosion-proof electric cable inspection time predicting method, corrosion-proof electric cable life expectancy predicting method, and corrosion-proof electric cable checking method
Lee et al. RETRACTED CHAPTER: Estimation of Deterioration Degree in Overhead Transmission Lines by Tension Load Analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140807

R150 Certificate of patent or registration of utility model

Ref document number: 5596499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees