JP5595491B2 - COMPOSITE CARBON MATERIAL INCREASING MIXTURE, CONTINUOUS MANUFACTURING METHOD, AND APPARATUS - Google Patents

COMPOSITE CARBON MATERIAL INCREASING MIXTURE, CONTINUOUS MANUFACTURING METHOD, AND APPARATUS Download PDF

Info

Publication number
JP5595491B2
JP5595491B2 JP2012518495A JP2012518495A JP5595491B2 JP 5595491 B2 JP5595491 B2 JP 5595491B2 JP 2012518495 A JP2012518495 A JP 2012518495A JP 2012518495 A JP2012518495 A JP 2012518495A JP 5595491 B2 JP5595491 B2 JP 5595491B2
Authority
JP
Japan
Prior art keywords
materials
resin
carbon nanotube
carbon
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012518495A
Other languages
Japanese (ja)
Other versions
JP2012532085A (en
Inventor
マンウ ジュン
ソンユン ジョン
ソンチョル ホン
ジュヒ ハン
ジュソク オ
ジンソ イ
スンヘ ド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanwha Chemical Corp
Original Assignee
Hanwha Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanwha Chemical Corp filed Critical Hanwha Chemical Corp
Publication of JP2012532085A publication Critical patent/JP2012532085A/en
Application granted granted Critical
Publication of JP5595491B2 publication Critical patent/JP5595491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/28Solid content in solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Description

【技術分野】
【0001】
本発明は、炭素ナノチューブ複合素材及びその製造方法に関し、炭素ナノチューブ、炭素ナノチューブ以外の1種以上の炭素化合物及び分散媒を含む混合物が亜臨界または超臨界条件において生成され、相互混和性が増大した炭素ナノチューブ複合素材及びこれを連続的に製造する方法に関する。
【背景技術】
【0002】
炭素ナノチューブ(Carbon nanotube;CNT)は、1991年その構造が初めて発見され、これに関する合成と物性、そして応用に関する研究が活発に行われている。また、CNTは、電気放電時Fe、Ni、Coなどのような遷移金属を添加すれば生成されることが確認され、本格的な研究は、1996年レーザー蒸発法によって相当量の試料を作り出してから始まった。このようなCNTは、グラファイト(Graphite)面がナノサイズの直径で丸く巻いた中が空いたチューブ形態であり、この際、グラファイト面が巻かれた角度及び構造によって電気的特性が導体または半導体などになる。また、CNTは、グラファイト壁の数によって、単一壁の炭素ナノチューブ(Single-walled carbon nanotube;SWCNT)、二重壁の炭素ナノチューブ(Double-walled carbon nanotube;DWCNT)、薄壁の炭素ナノチューブ(Thin multi-walled carbon nanotube)、多重壁の炭素ナノチューブ(Multi-walled carbon nanotube;MWCNT)、束状の炭素ナノチューブ(Roped carbon nanotube)に区分する。
【0003】
特に、CNTは、機械的強度及び弾性度に優れ、化学的に安定しており、環境親和性を有しており、電気的に導体及び半導体性を有するのみならず、直径が1nmから数十nmであり、長さが数μmから数十μmで、縦横比が約1,000に至る既存の如何なる物質よりも大きい。また、比表面積が非常に大きくて、将来の次世代の情報電子素材、高効率エネルギー素材、高能性の複合素材、親環境素材などの分野において21世紀を担う先端の新素材として脚光を浴びている。
【0004】
このような炭素ナノチューブは、現在ポリマーだけでなく、セラミック、金属などの基材において伝導性及び強化材料として利用されており、これに関する研究も活発に行われている。特に、炭素ナノチューブをポリマーなどの基材において伝導性などの物性を向上させるための素材として用いる場合、単独で用いた時の原料(炭素ナノチューブ)の経済的負担及び劣悪な分散性などの問題を克服するために、他の素材との混合を介して高伝導性複合素材を製造し、高付加価値の材料として用いようとする試みがなされている。
【0005】
これに対して、韓国の発明特許第706652号において、熱可塑性樹脂の80乃至99重量の炭素ナノチューブの0.1乃至10重量部、及び有機ナノクレイの0.1乃至10重量部を含む電気伝導性の熱可塑性樹脂組成物が提案された。
【0006】
また、韓国の特許公開第2006−52657号において、A)99.6乃至10重量部の一つの熱可塑性樹脂、B)0乃至50重量部の一つ以上のゴム−弾性重合体、C)0.2乃至10.0重量部の炭素ナノフィブリル、D)0.2乃至10.0重量部の一つ以上の微粒子炭素化合物、好ましくはカーボンブラックまたは黒鉛粉末、E)0乃至50重量部の一つ以上の充填剤及びまたは強化物質を含む組成物が提案された。
【0007】
しかし、前記特許方法は、炭素ナノチューブの性能を最大限に発揮するために炭素ナノチューブを基材内に分散することに依然として困難があり、電気伝導の流れを形成するには、複合素材の相互混和性が欠けているため、所望の伝導性を得るために炭素ナノチューブ及び複合素材が必要以上に用いられる可能性があり、この場合、むしろ基材の物性を悪化させる恐れがある。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】韓国特許第706652号
【特許文献2】韓国特許公開第2006−52657号
【発明の概要】
【発明が解決しようとする課題】
【0009】
上記のような問題点を解決するために、本発明の目的は、炭素ナノチューブ、炭素ナノチューブ以外の1種以上の炭素化合物及び分散媒を含む混合物を亜臨界または超臨界条件において処理し、混和性または分散性を増大させることにより、少量の添加で基材内において分散性に優れ伝導性が向上した炭素ナノチューブ複合素材及びその製造方法を提供することにある。
【課題を解決するための手段】
【0010】
上記目的を達成するために本発明は、炭素ナノチューブ、炭素ナノチューブ以外の1種以上の炭素化合物及び分散媒を含む混合物を50乃至400atmの亜臨界または超臨界条件において処理して生成された炭素ナノチューブ複合素材及びその製造方法とその装置を提供する。本発明による炭素ナノチューブ複合素材及びその製造方法は、亜臨界または超臨界条件において処理することにより、相互混和性及び結合力を増大させ、分散性に優れ伝導性が向上した炭素ナノチューブ複合素材が提供できるという長所がある。
【0011】
より具体的に、本発明は、前記混合物を亜臨界または超臨界条件において処理することにより、相互混和性または分散性が増大されることができる。また、酸化剤をさらに含む場合、前記酸化剤が前記混合物の粒子間に均一に浸透して表面を均一な濃度に酸化されるようにし、酸化剤を含んで亜臨界または超臨界処理をした場合、前記酸化剤の浸透力がさらに優れたものとなり、酸化反応がより均一で早く進む。従って、本発明による炭素ナノチューブ複合素材は、前記酸化反応により、相互結合力及び混和性がより増加することができる。相互混和性が増大した炭素ナノチューブ複合素材は、少量を添加してもポリマーなどの基材における分散性及び伝導性に優れるという長所がある。以下、本発明による炭素ナノチューブ複合素材に関してより詳細に説明する。
【0012】
本発明において、前記炭素化合物は、黒鉛、炭素繊維、カーボンブラック、グラフェン、フラーレン及びこれらの混合物からなる群から選ばれたものを用いることが好ましく、前記炭素ナノチューブは、単一壁(Single-walled)、二重壁(Double-walled)、薄い多重壁(Thin multi-walled)、多重壁(Multi-walled)、束状(Roped)及びこれらの混合物からなる群から選ばれることが好ましい。前記炭素ナノチューブと炭素化合物との混和性を効果的に増大させるのに好ましい重量比の範囲は、1:0.00001〜1:100であり、これに大きく制限されない。
【0013】
発明において用いられる前記分散媒は、水、脂肪族アルコール、二酸化炭素及びこれらの混合物からなる群から選ばれてもよい。
【0014】
本発明による前記炭素ナノチューブ複合素材は、相互混和性が増大されることにより、表面抵抗を減少させる効果を有することができ、下記式1を満たすことができる。
【0015】
[式1]
1×10Ω/□≦R≦1×10Ω/□
(前記Rは、前記炭素ナノチューブ複合素材が4重量%含まれたポリエチレン樹脂の表面抵抗である。)
【0016】
前記混合物は、前記亜臨界または超臨界条件において酸化剤をさらに含んで処理したものであり、前記酸化剤は、酸素、空気、オゾン、硝酸、過酸化水素、及びこれらの混合物から選ばれてもよく、炭素ナノチューブ及び炭素化合物100重量部に対して0.00001乃至30重量部を含むことが好ましい。
【0017】
以下、本発明による炭素ナノチューブ複合素材の製造方法を下記図面を参照してより詳細に説明する。
【0018】
本発明は、炭素ナノチューブ、炭素ナノチューブ以外の1種以上の炭素化合物及び分散媒を含む混合物を50乃至400atmの亜臨界または超臨界条件において処理して生成された炭素ナノチューブ複合素材の製造方法を提供し、より具体的には、
a)炭素ナノチューブ、炭素ナノチューブ以外の1種以上の炭素化合物及び分散媒を含む混合物を1乃至400atmの圧力で予熱槽に注入して予熱する段階と、
b)前記予熱された混合物を50乃至400atmの亜臨界または超臨界条件において処理する段階と、
c)前記b)段階の生成物を0乃至100℃に冷却及び1乃至10atmに減圧する段階と、
d)前記冷却/減圧された生成物を回収する段階と、
を含む炭素ナノチューブ複合素材製造方法を提供する。
【0019】
前記混合物は、前記亜臨界または超臨界条件において酸化剤をさらに含んで処理してもよく、前記酸化剤は、酸素、空気、オゾン、硝酸、過酸化水素及びこれらの混合物から選ばれてもよい。また、前記酸化剤は、炭素ナノチューブ及び炭素化合物100重量部に対して0.00001乃至30重量部を含んでもよい。前記酸化剤及び分散媒に対する具体的な説明は前記言及したため省略する。
【0020】
また、本発明は、炭素ナノチューブと、炭素ナノチューブ以外の、1種以上の炭素化合物及び分散媒を含む混合物を1乃至400atmの圧力で注入する予熱槽と、前記予熱槽を経た混合物が50乃至400atmで亜臨界または超臨界の処理を行う混和性増大のための反応槽と、前記混和性増大のための反応槽を経た混合物を0乃至100℃に冷却して、1乃至10atmに減圧する冷却/減圧槽と、前記冷却/減圧槽を経て生成物が回収される生成物貯蔵槽と、で構成される連続的に混合物の相互混和性または分散性を増大させる装置を提供する。
【0021】
以下、本発明に添付された図面を参照して本発明の好ましい一実施例を詳細に説明する。先ず、図面のうち、同一の構成要素または部品は、できる限り同一の参照符号を示していることに留意しなければならない。本発明を説明するにおいて、関連の公知機能あるいは構成に対する具体的な説明は、本発明の要旨を曖昧にしないために省略する。
【0022】
本明細書に用いられる程度を表す用語「約」、「実質的に」などは、言及された意味に固有の製造及び物質の許容誤差が提示される際、その数値またはその数値に近い意味で用いられ、本発明の理解を容易にするために正確または絶対的な数値が言及された開示内容を非良心的な侵害者が不当に利用することを防止するために用いられる。
【0023】
下記図1は、本発明による炭素ナノチューブ複合素材の製造過程を示したものであり、下記図2は、本発明の好ましい一実施例による炭素ナノチューブ複合素材の製造過程をより具体的に示した工程図である。
【0024】
図2を参照すると、本発明は、混合段階S100と、予熱段階S200と、混和性増大段階S300と、冷却/減圧段階S400と、生成物回収段階S500と、を含む炭素ナノチューブ複合素材の製造方法を提供する。また冷却/減圧後に濾過段階S410をさらに含むことができる。
【0025】
図3は、本発明の好ましい一実施例による炭素ナノチューブ複合素材を製造するための装置の工程図である。図3を参照すると、本発明の工程は、混合槽10と、予熱槽110と、混和性増大のための反応槽130と、冷却/減圧槽150と、生成物貯蔵槽170と、が含まれることができる。
【0026】
前記a)段階において、炭素ナノチューブ、炭素ナノチューブ以外の1種以上の炭素化合物及び分散媒を含む混合物は、予熱槽110に注入される前に混合槽10に投入され、循環ポンプ11によって混合物に製造される混合段階S100を経る。前記混合物は、炭素ナノチューブ及び炭素ナノチューブ以外の1種以上の炭素化合物を0.0001乃至30重量%含んでもよく、より好ましくは、0.001乃至5重量%を含んでもよい。
【0027】
前記炭素ナノチューブ及び炭素化合物が全体混合物において0.0001重量%未満である場合、生成物の回収量が非常に少なくなり、30重量%を超える場合、前記混合物の粘度上昇で高圧の注入が難しい。
【0028】
前記a)段階において予熱S200は、前記予熱槽110で行われ、前記混合物を1乃至400atmの圧力で注入して予熱してもよい。
【0029】
前記混合物が、1乃至400atm圧力で高圧ポンプ12を介して予熱槽110に投入される過程において、酸化剤を酸化剤の高圧注入ポンプ13を介して1乃至400atmの圧力でさらに投入されてもよく、前記混合物を酸化剤と接触して熱交換器14前端で前記混合物と酸化剤とがともに混合されて予熱槽110に投入され、予熱槽において50乃至370℃で予熱される。前記高圧注入ポンプ13を介して混合物と酸化剤とが注入される際、圧力が1atm未満である場合、混合物と酸化剤が予熱槽110及び反応槽130に注入されにくく、400atmを超えると、非常に高い圧力によりエネルギー損失がもたらされる可能性があり、亜臨界または超臨界処理時に反応性がそれ以上向上しない。
【0030】
前記予熱槽110は、前記混合物が以下の亜臨界または超臨界条件において処理される前に予め予熱して反応槽130の温度を一定に保持するためのものである。従って、前記予熱槽110の前端に熱交換器14を設けて前記混合物及び酸化剤を予熱させる役割を果たし、熱交換器14は、亜臨界または超臨界処理された生成物を冷却させる前にまず温度を下げて以後の冷却時に、消費されるエネルギー損失を防止する役割を行う。前記予熱槽の温度が50℃未満の場合、以後の亜臨界または超臨界処理の際に温度をさらに高くあげるようになってエネルギー損失の防止効果がなく、370℃を超えると、予熱の効果よりは温度をあげるエネルギー損失がかえって増加するため、熱交換器の設置の効果がなくなる可能性がある。前記予熱段階S200の後、混和性増大段階S300を経るが、前記混和性増大段階は亜臨界または超臨界処理をする段階を意味する。前記予熱槽110において予熱された混合物と酸化剤は、反応槽130に移送されて50乃至400atmの亜臨界または超臨界条件において処理してもよい。
【0031】
前記反応槽130の温度は、大きく制限されないが、50乃至600℃であることが好ましい。より詳細には、前記亜臨界処理の際の温度は、50乃至380℃が好ましく、100乃至350℃がさらに好ましい。亜臨界処理の際の圧力は50乃至260atmが好ましく、60乃至260atmがさらに好ましい。この際の処理時間は0.1分乃至60分であることが好ましく、1分乃至20分であることがさらに好ましい。
【0032】
一方、前記超臨界処理時の圧力は、150乃至400atmが好ましく、210乃至300atmがさらに好ましい。温度は、350乃至600℃であることが好ましく、370乃至500℃がさらに好ましい。この際の処理時間は、0.1分乃至60分間であることが好ましく、1分乃至15分間であることがさらに好ましい。
【0033】
この際、前記反応槽130において亜臨界または超臨界処理後に生成された生成物は、熱交換器14を経て100乃至370℃になるように1次冷却をしてもよく、前記1次冷却は、連続的に注入されて予熱された混合物及び酸化剤の予熱温度により、1次冷却を行ってもよい。また、連続的に投入された混合物及び酸化剤の予熱源は、反応槽130で処理された生成物により予熱されてもよく、これによってエネルギー損失が防止ができるという長所がある。
【0034】
前記亜臨界または超臨界処理後に生成された生成物は、冷却/減圧段階S400を経て0乃至100℃及び1乃至10atmで冷却/減圧されてもよい。前記熱交換器14によって1次冷却された生成物は冷却装置15を介して冷却してもよい。前記冷却温度は30乃至50℃に調節することが好ましい。
【0035】
前記冷却された生成物は、まず前記冷却された生成物の冷却された状態を保持したまま冷却/減圧槽150でキャピラリー減圧装置で10乃至100atmに先に減圧し、圧力調節装置16で1乃至10atmに最終減圧する。
【0036】
前記冷却/減圧を経た生成物を最終的に生成物貯蔵槽170に回収する段階S500が行なわれることができる。前記生成物は液状でも利用できるが、粉末形態でも利用することができる。前記粉末形態の生成物を得るために、前記c)段階後に生成物を高圧濾過させる段階である濾過段階S410をさらに含んでもよい。
【0037】
下記図4は、本発明の好ましい一実施例による炭素ナノチューブ複合素材を連続的に製造するための濾過装置が含まれた装置工程図である。前記亜臨界または超臨界処理を行って冷却した生成物を濾過させるため、0.001乃至10μmの空隙を有する高圧フィルターが並列に連結されてスイッチングモードで運転される濾過槽210、230がさらに含まれる。前記濾過槽210、230を介して濾過液211、231と濾過生成物213、233に分離排出され、前記濾過液211、231は濾過圧力調節装置16を通じて常圧状態に減圧されて濾過液貯蔵槽300に移送されて処理される。前記濾過槽210、230は必要容量に応じて1つ以上並列に設置できる。
【0038】
より具体的に、前記並列に連結された濾過槽210、230で混和性が向上した濾過生成物と濾過液に分離される際、前記濾過槽210に圧力がかかると、バルブを締めて濾過槽230を開け前記冷却した生成物を濾過させ、これと同時に、濾過槽210内の濾過生成物213を回収し、濾過液211は濾過液貯蔵槽300に移送されて処理される。
【0039】
前記と同一の方法で濾過槽230に圧力がかかると、バルブを締めて、濾過槽210に取り替えてこれを開けて連続的に冷却された生成物を濾過させ、濾過槽230内の濾過生成物233が回収され、濾過液231は、濾過液貯蔵槽300に移送されて処理される過程を繰り返して交互にスイッチングモードで濾過させることによって連続的な炭素ナノチューブ複合素材を製造するだけでなく、混和性をさらに増大させることができる。
【0040】
本発明はまた前記本発明によって製造された炭素ナノチューブ複合素材及び熱可塑性樹脂を含む樹脂組成物を提供する。
【0041】
前記樹脂組成物は、発泡剤をさらに含むことを特徴とし、前記発泡剤は大きく制限されないが、アゾジカルボキシルアミド、アゾビステトラゾールジアミノグアニジン、アゾビステトラゾールグアニジン、5−フェニルテトラゾール、ビステトラゾールグアニジン、ビステトラゾールピペラジン、ビステトラゾールジアンモニウム、N,N−ジニトロソペンタメチレンテトラミン、ヒドラゾジカルボキシルアミド及びこれらの混合物から選択されて用いることが好ましい。
【0042】
本発明において、前記熱可塑性樹脂は、ポリエチレン系樹脂、ポリアセタール系樹脂、ポリアクリレート系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、ポリビニル系樹脂、ポリフェニレンエーテル系樹脂、ポリオレフィン系樹脂、ポリアクリロニトリル−ブタジエン−スチレン共重合体樹脂、ポリアリレート系樹脂、ポリアミド系樹脂、ポリアミドイミド系樹脂、ポリアリールスルホン系樹脂、ポリエーテルイミド系樹脂、ポリエーテルスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリフッ素系樹脂、ポリイミド系樹脂、ポリエーテルケトン系樹脂、ポリベンゾオキサゾール系樹脂、ポリオキサジアゾール系樹脂、ポリベンゾチアゾール系樹脂、ポリベンゾイミダゾール系樹脂、ポリピリジン系樹脂、ポリトリアゾール系樹脂、ポリピロリジン系樹脂、ポリジベンゾフラン系樹脂、ポリスルホン系樹脂、ポリウレア系樹脂、ポリホスファゼン系樹脂からなる群から選ばれた一つまたは二つ以上の混合物を用いてもよい。
【0043】
本発明によって製造された炭素ナノチューブ複合素材を含む前記樹脂組成物は、伝導性塗料、静電分散材、静電分散塗料、伝導性素材、電磁波遮蔽材、電磁波吸収材、電磁波遮蔽塗料、電磁波吸収塗料、太陽電池用材料、色素増感太陽電池(DSSC)用電極材料、電気素子、電子素子、半導体素子、光電素子、ノートパソコン部品材料、コンピュータ部品材料、携帯電話部品材料、PDA(personal digital assistants)部品材料、ゲーム機用部品材料、ハウジング材料、透明電極材料、不透明電極材料、電界放出ディスプレイ(field emission display;FED)材料、バックライトユニット(back light unit;BLU)材料、液晶表示装置(liquid crystal display;LCD)材料、プラズマ表示パネル(plasma display panel;PDP)材料、発光ダイオード(luminescent diode;LED)材料、タッチパネル材料、電光板材料、広告看板材料、ディスプレイ素材、発熱体、放熱体、メッキ材料、触媒、助触媒、酸化剤、還元剤、自動車部品材料、船舶部品材料、航空機部品材料、デジタル封筒材料、保護テープ材料、接着剤材料、トレイ材料、クリーンルーム材料、運送機器部品材料、難燃素材、抗菌素材、金属複合材料、非鉄金属複合材料、医療機器部品材料、建材、床仕上げ材料、壁紙材料、光源部品材料、ランプ材料、光学機器部品材料、繊維製造機器部品材料、衣類製造機器部品材料、電気製品製造機器材料、電子製品製造機器材料からなる群から選ばれた一つ以上の材料に用いることができる。前記本発明におけるデジタル封筒は、各種の電子製品の帯電防止及び水分からの保護のために用いられる包装材を意味する。
【発明の効果】
【0044】
本発明による炭素ナノチューブ複合素材及びその製造方法は、亜臨界または超臨界条件において処理することにより、相互混和性、分散性及び結合力を増大させ、分散性に優れ伝導性が向上した炭素ナノチューブ複合素材が提供できるという長所がある。また、取り扱い及び廃水処理が容易であり、有害でない酸化剤をさらに含み、連続的な装置を通じて製造することにより、相互混和性、分散性及び結合力をさらに増大することができるという長所がある。
【0045】
本発明による炭素ナノチューブ複合素材は、多様な種類の溶媒及び高分子樹脂の基材により、従来に比べ高い分散性及び有機的結合力を有することができ、これにより電気伝導性、熱伝導性、強度、耐磨耗性、耐衝撃性、弾性及び発泡性の多様な物性を向上することができる。
【0046】
また、本発明により製造された炭化ナノチューブ複合素材を含む樹脂組成物は、伝導性塗料、静電分散材、静電分散塗料、伝導性素材、電磁波遮蔽材、電磁波吸収材、電磁波遮蔽塗料、電磁波吸収塗料、太陽電池用材料、色素増感太陽電池(DSSC)用電極材料、電気素子、電子素子、半導体素子、光電素子、ノートパソコン部品材料、コンピュータ部品材料、携帯電話部品材料、PDA(personal digital assistants)部品材料、ゲーム機用部品材料、ハウジング材料、透明電極材料、不透明電極材料、電界放出ディスプレイ(field emission display;FED)材料、バックライトユニット(back light unit;BLU)材料、液晶表示装置(liquid crystal display;LCD)材料、プラズマ表示パネル(plasma display panel;PDP)材料、発光ダイオード(luminescent diode;LED)材料、タッチパネル材料、電光板材料、広告看板材料、ディスプレイ素材、発熱体、放熱体、メッキ材料、触媒、助触媒、酸化剤、還元剤、自動車部品材料、船舶部品材料、航空機部品材料、デジタル封筒材料、保護テープ材料、接着剤材料、トレイ材料、クリーンルーム材料、運送機器部品材料、難燃素材、抗菌素材、金属複合材料、非鉄金属複合材料、医療機器部品材料、建材、床仕上げ材料、壁紙材料、光源部品材料、ランプ材料、光学機器部品材料、繊維製造機器部品材料、衣類製造機器部品材料、電気製品製造機器材料、電子製品製造機器材料からなる群から選ばれる一つ以上の材料に用いることができるため、多様な分野において高付加価値材料として用いることができるという長所がある。
【図面の簡単な説明】
【0047】
【図1】本発明による炭素ナノチューブ複合素材の製造過程を示した図面である。
【図2】本発明の好ましい一実施例による炭素ナノチューブ複合素材の製造過程を示した図面である。
【図3】本発明の好ましい一実施例による炭素ナノチューブ複合素材の製造の連続的な製造装置の工程図である。
【図4】本発明の好ましい一実施例による濾過装置が含まれた炭素ナノチューブ複合素材の製造の連続的な製造装置の工程図である。
【図5a】実施例1によって製造された炭素ナノチューブ複合素材の走査型電子顕微鏡写真である。
【図5b】比較例1における多重壁炭素ナノチューブとカーボンブラック混合物の走査型電子顕微鏡写真である。
【図6a】実施例3によって製造された炭素ナノチューブ複合素材の透過型電子顕微鏡写真である。
【図6b】比較例1の多重壁の炭素ナノチューブ及びカーボンブラック混合物の透過型電子顕微鏡写真である。
【発明を実施するための形態】
【0048】
下記の実施例を通じてより詳細に説明する。
【実施例1】
【0049】
多重壁の炭素ナノチューブ(ハンファナノテク社製MWCNT)10gとカーボンブラック(アメリカCabot社製Carbon-black)10gとを蒸留水980gと循環ポンプ11で混合して混合槽10で混合物を準備した。前記混合物を高圧注入ポンプ12を介して15g/min流速で予熱槽110に投入した。前記溶液は、熱交換器14を介して200乃至240℃で予熱された予熱槽110に投入した。
【0050】
前記予熱された混合物は、300℃及び230atm乃至250atmの亜臨界状態の混和性増大のために反応槽130に注入して反応槽内で亜臨界処理されるとともに相互混和性が増大され、前記混和性が増大した生成物は、また熱交換器14に移送されて200℃で1次冷却され、再び冷却装置15を介して約25℃の温度に冷却された後、連続的に相互混和性が増大した19.9gの炭素ナノチューブ複合素材を得た。
【0051】
[参考例1]
多重壁の炭素ナノチューブとカーボンブラックの炭素ナノチューブ複合素材の予熱の際に、熱交換器14の温度が350乃至370℃であることと、超臨界において温度を400℃に処理し、相互混和性を増大させたことを除いて、前記実施例1と同様に実施し、19.2gの炭素ナノチューブ複合素材生成物を得た。
【実施例3】
【0052】
酸素を245atm乃至252atmに圧縮された気象状態で熱交換器14の前端で0.04g/minの流速で注入して多重壁の炭素ナノチューブとカーボンブラック混合物と混合して予熱槽110に投入することを除いて、前記実施例1と同様に実施し、19.2gの炭素ナノチューブ複合素材生成物を得た。
【実施例4】
【0053】
前記実施例1と同様に実施し、カーボンブラックの代わりにカーボンファイバー(日本東レ社製carbon-fiber)を用いたことを除いて、前記実施例1と同様に反応して相互混和性が増大した19.9gの炭素ナノチューブ複合素材生成物を得た。
【実施例5】
【0054】
回転する二軸圧出機のホッパー(hopper)に、960gの低密度のポリエチレン(LDPE830;HCC)と、実施例1の方法により製造された40gの炭素ナノチューブ複合素材とを投入した。200℃の圧出機軸の回転によって高分子樹脂が応用され、炭素ナノチューブ複合素材と混練し、圧出機ダイ(die)を介して連続的に排出するようにした。圧出機から排出されるポリエチレン束(strand)をペレタイザー(pelletizer)を利用して通常の短いペレット(pellet)に製造した後、前記ペレットをプレスを利用して厚さ2mmのシートを製造した。
【実施例6】
【0055】
実施例3の方法により製造された炭素ナノチューブ複合素材40gを用いたことを除いて、前記実施例5と同様に実施した。
【実施例7】
【0056】
実施例4の方法により製造された炭素ナノチューブ複合素材40gを用いたことを除いて、前記実施例5と同様に実施した。
【0057】
[比較例1]
1対1に混合した多重壁の炭素ナノチューブ(ハンファナノテク社製MWCNT)及びカーボンブラック(アメリカCabot社製Carbon-black)混合物を一般の電動ミキサー(Electric-mixer;SHINIL社製ELECTRIC MIXER、SFM−1500NM)を利用して1分間分散させた後、ホッパーに直接投入したことを除いて、実施例5と同様に実施した。
【0058】
[比較例2]
1対1に混合した多重壁の炭素ナノチューブ(ハンファナノテク社製MWCNT)及びカーボンファイバー(日本東レ社製carbon-fiber)複合炭素素材の原料を一般の電動ミキサー(Electric-mixer;SHINIL社製ELECTRIC MIXER、SFM−1500NM)を利用して1分間分散させた後、ホッパーに直接投入したことを除いて、実施例5と同様に実施した。
【0059】
[試験例]
1.走査型電子顕微鏡(Scanning Electron Microscope;SEM)観察
走査型電子顕微鏡は、Hitachi社製S4800モデルであり、実施例1及び比較例1によって製造された炭素ナノチューブ複合素材を水に分散させ、ガラス上に落としてから完全に乾燥させた後、白金でメッキした後測定した。
【0060】
下記図5aは、前記実施例1の走査型電子顕微鏡を通じて観察した写真であって、前記実施例1で製造された炭素ナノチューブ複合素材は、亜臨界の過程を経りながら混和性が増大し、前記多重壁の炭素ナノチューブとカーボンブラックが均一に分散されていることを示す。下記図5bは、前記比較例1の多重壁の炭素ナノチューブとカーボンブラック混合物を一般の電動ミキサー(Electric-mixer;SHINIL社製ELECTRIC MIXER、SFM−1500NM)を利用して、1分間分散させた後、走査型電子顕微鏡で観察した写真である。下記図5aと比較した時、図5bは、多重壁の炭素ナノチューブとカーボンブラックが混和されず、ほとんど独立的に存在することを確認することができた。
【0061】
2.透過型電子顕微鏡(Transmission Electron Microscope;TEM)観察
透過型電子顕微鏡は、JEOL社のJEM−2100F(HR)モデルであり、試料は、ホーリックタイプのグリッドの上で測定した。下記図6aは、前記実施例3によって製造された炭素ナノチューブ複合素材を観察したものであって、前記実施例3で多重壁の炭素ナノチューブとカーボンブラックの混合物が亜臨界酸化過程を経りながら混和性が向上し、二つの炭素素材が均一に分散していることを示す。下記図6bは、比較例1の混合物を一般のホモミキサー(homo-mixer;SHINIL社製ELECTRIC MIXER、SFM−1500NM)を利用して1分間分散させた後、透過型電子顕微鏡で観察した写真である。下記図6bは、下記図6aと比較して二つの炭素素材が混和されず、ほとんど独立的に存在することを確認することができる。
【0062】
3.表面抵抗測定
実施例5、6、7と、比較例1、2の表面抵抗は、三菱社製Loresta GP(MCP−T600)を用いて、JIG K 7194/ASTM D991によって測定し、その結果を下記表1に示した。
【0063】
下記表1に示される、実施例5、6、7と、比較例1、2の表面抵抗を比較すると、混和性が増大した複合炭素素材が添加されたポリエチレンシートの表面抵抗がより低いということが分かる。
【0064】
【表1】
【符号の説明】
【0065】
10 混合槽
11 循環ポンプ
12 混合物高圧ポンプ
13 酸化剤高圧注入ポンプ
14 熱交換器
15 冷却装置
16 圧力調節装置
110 予熱槽
130 反応槽
150 冷却/減圧槽
170 貯蔵槽
210 濾過槽
211 濾過液
213 亜臨界または超臨界処理及び濾過後の濾過生成物
230 濾過槽
231 濾過液
233 亜臨界または超臨界処理及び濾過後の濾過生成物
300 濾過液貯蔵槽
【Technical field】
[0001]
The present invention relates to a carbon nanotube composite material and a method for producing the same, and a mixture containing carbon nanotubes, one or more types of carbon compounds other than carbon nanotubes and a dispersion medium is generated in subcritical or supercritical conditions, and the mutual miscibility is increased. The present invention relates to a carbon nanotube composite material and a method for continuously producing the same.
[Background]
[0002]
The structure of carbon nanotube (CNT) was first discovered in 1991, and research on the synthesis, physical properties, and application of this structure has been actively conducted. In addition, it is confirmed that CNTs are produced by adding transition metals such as Fe, Ni, Co, etc. during electrical discharge, and full-scale research has produced a considerable amount of samples by the laser evaporation method in 1996. It started from. Such a CNT is in the form of a tube in which a graphite (Graphite) surface is rolled with a nano-sized diameter and has a hollow inside. At this time, depending on the angle and structure around which the graphite surface is wound, the electrical characteristics may be a conductor or a semiconductor. become. In addition, CNTs have a single-walled carbon nanotube (SWCNT), a double-walled carbon nanotube (DWCNT), and a thin-walled carbon nanotube (Thin) depending on the number of graphite walls. It is divided into multi-walled carbon nanotubes, multi-walled carbon nanotubes (MWCNT), and bundled carbon nanotubes.
[0003]
In particular, CNTs have excellent mechanical strength and elasticity, are chemically stable, have environmental compatibility, have electrical conductivity and semiconducting properties, and have a diameter of 1 nm to several tens. It is larger than any existing material with a length of several μm to several tens of μm and an aspect ratio of about 1,000. In addition, it has a very large specific surface area, and has attracted attention as a leading new material for the 21st century in the fields of future next-generation information electronic materials, high-efficiency energy materials, high-performance composite materials, and environmentally friendly materials. Yes.
[0004]
Such carbon nanotubes are currently used not only as a polymer but also as a conductive and reinforcing material in substrates such as ceramics and metals, and research on this is being actively conducted. In particular, when carbon nanotubes are used as a material for improving physical properties such as conductivity in a substrate such as a polymer, problems such as the economic burden of raw materials (carbon nanotubes) and poor dispersibility when used alone In order to overcome this problem, attempts have been made to produce highly conductive composite materials through mixing with other materials and use them as high-value-added materials.
[0005]
In contrast, according to Korean Patent No. 7066652, electrical conductivity containing 80 to 99 parts by weight of carbon nanotubes of 0.1 to 10 parts by weight of carbon nanotubes and 0.1 to 10 parts by weight of organic nanoclays. A thermoplastic resin composition was proposed.
[0006]
In Korean Patent Publication No. 2006-52657, A) 99.6 to 10 parts by weight of one thermoplastic resin, B) 0 to 50 parts by weight of one or more rubber-elastic polymers, C) 0 .2 to 10.0 parts by weight of carbon nanofibrils, D) 0.2 to 10.0 parts by weight of one or more particulate carbon compounds, preferably carbon black or graphite powder, E) 0 to 50 parts by weight of one Compositions comprising one or more fillers and / or reinforcing materials have been proposed.
[0007]
However, the above-mentioned patented method still has difficulty in dispersing the carbon nanotubes in the substrate in order to maximize the performance of the carbon nanotubes. Due to the lack of properties, carbon nanotubes and composite materials may be used more than necessary to obtain the desired conductivity. In this case, the physical properties of the substrate may rather be deteriorated.
[Prior art documents]
[Patent Literature]
[0008]
[Patent Document 1] Korean Patent No. 706652
[Patent Document 2] Korean Patent Publication No. 2006-52657
SUMMARY OF THE INVENTION
[Problems to be solved by the invention]
[0009]
In order to solve the above-described problems, the object of the present invention is to treat a mixture containing carbon nanotubes, one or more carbon compounds other than carbon nanotubes, and a dispersion medium in subcritical or supercritical conditions, and miscibility. Alternatively, an object of the present invention is to provide a carbon nanotube composite material that is excellent in dispersibility and improved in conductivity in a base material by increasing the dispersibility and a method for producing the same.
[Means for Solving the Problems]
[0010]
In order to achieve the above object, the present invention relates to a carbon nanotube produced by treating a mixture containing carbon nanotubes, one or more carbon compounds other than carbon nanotubes, and a dispersion medium under subcritical or supercritical conditions of 50 to 400 atm. A composite material, a manufacturing method thereof, and an apparatus thereof are provided. The carbon nanotube composite material and the manufacturing method thereof according to the present invention provide a carbon nanotube composite material that has improved dispersibility and improved conductivity by increasing the mutual miscibility and bonding force by processing under subcritical or supercritical conditions. There is an advantage that you can.
[0011]
More specifically, according to the present invention, the miscibility or dispersibility can be increased by treating the mixture in subcritical or supercritical conditions. Further, when the oxidant is further included, the oxidant is uniformly between the particles of the mixturePenetrationWhen the surface is oxidized to a uniform concentration and the sub-critical or supercritical treatment is performed with an oxidant, the oxidant has a better permeability and the oxidation reaction proceeds more uniformly and quickly. . Therefore, the carbon nanotube composite material according to the present invention can further increase the mutual bonding force and miscibility due to the oxidation reaction. The carbon nanotube composite material having increased mutual miscibility has an advantage of being excellent in dispersibility and conductivity in a substrate such as a polymer even when a small amount is added. Hereinafter, the carbon nanotube composite material according to the present invention will be described in more detail.
[0012]
In the present invention, the carbon compound is preferably selected from the group consisting of graphite, carbon fiber, carbon black, graphene, fullerene and a mixture thereof, and the carbon nanotube is a single-walled ), Double-walled, thin multi-walled, multi-walled, bundled, and mixtures thereof. A preferable weight ratio range for effectively increasing the miscibility of the carbon nanotube and the carbon compound is 1: 0.00001 to 1: 100, but is not limited to this.
[0013]
The dispersion medium used in the invention may be selected from the group consisting of water, aliphatic alcohols, carbon dioxide, and mixtures thereof.
[0014]
The carbon nanotube composite material according to the present invention can have an effect of reducing surface resistance by increasing mutual miscibility, and can satisfy the following formula 1.
[0015]
[Formula 1]
1 × 102Ω / □ ≦ Rp≦ 1 × 108Ω / □
(RpIs the surface resistance of a polyethylene resin containing 4% by weight of the carbon nanotube composite material. )
[0016]
The mixture is further processed by further containing an oxidizing agent under the subcritical or supercritical conditions, and the oxidizing agent may be selected from oxygen, air, ozone, nitric acid, hydrogen peroxide, and a mixture thereof. It is preferable to contain 0.00001 to 30 parts by weight with respect to 100 parts by weight of the carbon nanotube and the carbon compound.
[0017]
Hereinafter, a method for producing a carbon nanotube composite material according to the present invention will be described in more detail with reference to the following drawings.
[0018]
The present invention provides a method for producing a carbon nanotube composite material produced by treating a carbon nanotube, a mixture containing one or more carbon compounds other than carbon nanotubes, and a dispersion medium under subcritical or supercritical conditions of 50 to 400 atm. And more specifically,
a) preheating by injecting a mixture containing carbon nanotubes, one or more carbon compounds other than carbon nanotubes, and a dispersion medium into a preheating tank at a pressure of 1 to 400 atm;
b) treating the preheated mixture at subcritical or supercritical conditions of 50 to 400 atm;
c) cooling the product of step b) to 0 to 100 ° C. and depressurizing to 1 to 10 atm;
d) recovering the cooled / depressurized product;
A method for producing a carbon nanotube composite material containing
[0019]
The mixture may be further treated with an oxidant in the subcritical or supercritical conditions, and the oxidant may be selected from oxygen, air, ozone, nitric acid, hydrogen peroxide, and mixtures thereof. . The oxidizing agent may include 0.00001 to 30 parts by weight with respect to 100 parts by weight of the carbon nanotube and the carbon compound. The specific explanation for the oxidizing agent and the dispersion medium is omitted because it has been mentioned above.
[0020]
In addition, the present invention provides a preheating tank in which a mixture containing carbon nanotubes and one or more carbon compounds other than carbon nanotubes and a dispersion medium is injected at a pressure of 1 to 400 atm, and a mixture having passed through the preheating tank has 50 to 400 atm. A reaction vessel for increasing miscibility in which a subcritical or supercritical treatment is carried out at a temperature, and a cooling / cooling in which the mixture that has passed through the reaction vessel for increasing miscibility is cooled to 0 to 100 ° C. and depressurized to 1 to 10 atm. There is provided an apparatus for continuously increasing the mutual miscibility or dispersibility of a mixture composed of a decompression tank and a product storage tank in which a product is recovered through the cooling / decompression tank.
[0021]
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. First, it should be noted that in the drawings, the same components or parts are denoted by the same reference numerals as much as possible. In describing the present invention, specific descriptions of related known functions or configurations are omitted so as not to obscure the subject matter of the present invention.
[0022]
As used herein, the terms “about”, “substantially” and the like indicate the numerical value, or a meaning close to that numerical value, when manufacturing and material tolerances inherent in the meaning mentioned are presented. It is used to prevent the unfair infringer from making unauthorized use of disclosures that are used to facilitate understanding of the present invention and that are referred to with exact or absolute numerical values.
[0023]
FIG. 1 shows a process for manufacturing a carbon nanotube composite material according to the present invention, and FIG. 2 shows a process more specifically showing a process for manufacturing a carbon nanotube composite material according to a preferred embodiment of the present invention. FIG.
[0024]
Referring to FIG. 2, the present invention provides a method of manufacturing a carbon nanotube composite material including a mixing step S100, a preheating step S200, a miscibility increasing step S300, a cooling / depressurizing step S400, and a product recovery step S500. I will provide a. Further, it may further include a filtration step S410 after cooling / depressurization.
[0025]
FIG. 3 is a process diagram of an apparatus for manufacturing a carbon nanotube composite material according to a preferred embodiment of the present invention. Referring to FIG. 3, the process of the present invention includes a mixing tank 10, a preheating tank 110, a reaction tank 130 for increasing miscibility, a cooling / decompression tank 150, and a product storage tank 170. be able to.
[0026]
In the step a), a mixture containing carbon nanotubes, one or more carbon compounds other than carbon nanotubes, and a dispersion medium is charged into the mixing tank 10 before being injected into the preheating tank 110, and produced into a mixture by the circulation pump 11. The mixing step S100 is performed. The mixture may contain 0.0001 to 30% by weight, more preferably 0.001 to 5% by weight of carbon nanotubes and one or more carbon compounds other than carbon nanotubes.
[0027]
When the carbon nanotubes and the carbon compound are less than 0.0001% by weight in the total mixture, the amount of product recovered becomes very small, and when the amount exceeds 30% by weight, high-pressure injection is difficult due to the increase in viscosity of the mixture.
[0028]
In step a), the preheating S200 may be performed in the preheating tank 110, and the mixture may be preheated by being injected at a pressure of 1 to 400 atm.
[0029]
In the process in which the mixture is charged into the preheating tank 110 via the high-pressure pump 12 at a pressure of 1 to 400 atm, an oxidant may be further charged at a pressure of 1 to 400 atm via the high-pressure injection pump 13 of oxidant. The mixture is brought into contact with an oxidant, and the mixture and the oxidant are mixed together at the front end of the heat exchanger 14 and charged into the preheating tank 110, and preheated at 50 to 370 ° C. in the preheating tank. When the mixture and the oxidant are injected through the high-pressure injection pump 13, if the pressure is less than 1 atm, the mixture and the oxidant are difficult to be injected into the preheating tank 110 and the reaction tank 130. High pressure can lead to energy loss, and the reactivity is not further improved during subcritical or supercritical processing.
[0030]
The preheating tank 110 is used to preheat the mixture before it is processed under the following subcritical or supercritical conditions to keep the temperature of the reaction tank 130 constant. Accordingly, a heat exchanger 14 is provided at the front end of the preheating tank 110 to play a role of preheating the mixture and the oxidant. The heat exchanger 14 firstly cools the subcritical or supercritical processed product before cooling. It plays the role of preventing energy loss during cooling after lowering the temperature. When the temperature of the preheating tank is less than 50 ° C., the temperature is further increased during the subsequent subcritical or supercritical processing, and there is no effect of preventing energy loss. However, there is a possibility that the effect of installing the heat exchanger may be lost because the energy loss that raises the temperature increases. The preheating step S200 is followed by a miscibility increasing step S300. The miscibility increasing step means a subcritical or supercritical process. The mixture and oxidant preheated in the preheating tank 110 may be transferred to the reaction tank 130 and processed under subcritical or supercritical conditions of 50 to 400 atm.
[0031]
The temperature of the reaction vessel 130 is not greatly limited, but is preferably 50 to 600 ° C. More specifically, the temperature during the subcritical treatment is preferably 50 to 380 ° C, and more preferably 100 to 350 ° C. The pressure during the subcritical treatment is preferably 50 to 260 atm, and more preferably 60 to 260 atm. The treatment time at this time is preferably 0.1 to 60 minutes, more preferably 1 to 20 minutes.
[0032]
On the other hand, the pressure during the supercritical treatment is preferably 150 to 400 atm, and more preferably 210 to 300 atm. The temperature is preferably 350 to 600 ° C, more preferably 370 to 500 ° C. The treatment time at this time is preferably 0.1 to 60 minutes, more preferably 1 to 15 minutes.
[0033]
At this time, the product generated after the subcritical or supercritical treatment in the reaction vessel 130 may be subjected to primary cooling so as to be 100 to 370 ° C. through the heat exchanger 14, The primary cooling may be performed according to the preheated temperature of the continuously injected and preheated mixture and the oxidizing agent. In addition, the preheated source of the mixture and the oxidizing agent that are continuously charged may be preheated by the product processed in the reaction vessel 130, which has the advantage that energy loss can be prevented.
[0034]
The product generated after the subcritical or supercritical treatment may be cooled / depressurized at 0 to 100 ° C. and 1 to 10 atm through the cooling / depressurization step S400. The product primarily cooled by the heat exchanger 14 may be cooled through a cooling device 15. The cooling temperature is preferably adjusted to 30 to 50 ° C.
[0035]
The cooled product is first decompressed to 10 to 100 atm by the capillary decompression device in the cooling / decompression tank 150 while maintaining the cooled state of the cooled product, and 1 to 1 by the pressure regulator 16. Final depressurization to 10 atm.
[0036]
The step S500 of finally recovering the cooled / depressurized product in the product storage tank 170 may be performed. The product can be used in liquid form, but can also be used in powder form. In order to obtain the product in powder form, it may further include a filtration step S410, which is a step of high-pressure filtration of the product after the step c).
[0037]
FIG. 4 is an apparatus process diagram including a filtration apparatus for continuously producing a carbon nanotube composite material according to a preferred embodiment of the present invention. Filtration in which a high-pressure filter having a gap of 0.001 to 10 μm is connected in parallel and operated in a switching mode in order to filter the cooled product by performing the subcritical or supercritical treatment.Tank 210 and 230 are further included. The filtrates 211 and 231 and the filtered products 213 and 233 are separated and discharged through the filtration tanks 210 and 230, and the filtrates 211 and 231 are reduced to a normal pressure state through the filtration pressure control device 16 to be stored in the filtrate storage tank. It is transferred to 300 and processed. One or more filtration tanks 210 and 230 may be installed in parallel according to the required capacity.
[0038]
More specifically, when the filtration tank 210 and 230 connected in parallel are separated into a filtered product and a filtrate having improved miscibility, when the pressure is applied to the filtration tank 210, the valve is closed and the filtration tank is closed. 230 is opened, the cooled product is filtered, and at the same time, the filtered product 213 in the filtering tank 210 is recovered, and the filtrate 211 is transferred to the filtrate storage tank 300 and processed.
[0039]
When pressure is applied to the filtration tank 230 in the same manner as described above, the valve is tightened, the filtration tank 210 is replaced and opened, and the continuously cooled product is filtered, and the filtration product in the filtration tank 230 is filtered. 233 is recovered, and the filtrate 231 is transferred to the filtrate storage tank 300 and processed in a repeated manner by alternately repeating the process in the switching mode to produce a continuous carbon nanotube composite material. Can be further increased.
[0040]
The present invention also provides a resin composition comprising a carbon nanotube composite material produced according to the present invention and a thermoplastic resin.
[0041]
The resin composition further includes a foaming agent, and the foaming agent is not largely limited, but azodicarboxylamide, azobistetrazole diaminoguanidine, azobistetrazole guanidine, 5-phenyltetrazole, bistetrazole guanidine, It is preferably used by being selected from bistetrazole piperazine, bistetrazole diammonium, N, N-dinitrosopentamethylenetetramine, hydrazodicarboxylamide, and mixtures thereof.
[0042]
In the present invention, the thermoplastic resin is a polyethylene resin, polyacetal resin, polyacrylate resin, polycarbonate resin, polystyrene resin, polyester resin, polyvinyl resin, polyphenylene ether resin, polyolefin resin, polyacrylonitrile. -Butadiene-styrene copolymer resin, polyarylate resin, polyamide resin, polyamideimide resin, polyarylsulfone resin, polyetherimide resin, polyethersulfone resin, polyphenylene sulfide resin, polyfluorine resin , Polyimide resin, polyether ketone resin, polybenzoxazole resin, polyoxadiazole resin, polybenzothiazole resin, polybenzimidazole resin, polypyridine resin Polytriazoles resin, Poripirorijin resins, polychlorinated dibenzofurans resins, polysulfone resins, polyurea resins may be used one or two or more mixtures selected from the group consisting of polyphosphazene resin.
[0043]
The resin composition comprising the carbon nanotube composite material produced according to the present invention is a conductive paint, electrostatic dispersion material, electrostatic dispersion paint, conductive material, electromagnetic wave shielding material, electromagnetic wave absorbing material, electromagnetic wave shielding paint, electromagnetic wave absorption Paints, materials for solar cells, electrode materials for dye-sensitized solar cells (DSSC), electrical elements, electronic elements, semiconductor elements, photoelectric elements, notebook computer parts materials, computer parts materials, mobile phone parts materials, PDA (personal digital assistants) ) Part materials, game console parts materials, housing materials, transparent electrode materials, opaque electrode materials, field emission display (FED) materials, back light unit (BLU) materials, liquid crystal display devices (liquid) crystal display (LCD) material, plasma display panel (PDP) material, luminescent diode (luminescent) diode (LED) material, touch panel material, lightning board material, advertising billboard material, display material, heating element, heat radiator, plating material, catalyst, promoter, oxidizing agent, reducing agent, automotive parts material, ship parts material, aircraft parts Materials, digital envelope materials, protective tape materials, adhesive materials, tray materials, clean room materials, transportation equipment parts materials, flame retardant materials, antibacterial materials, metal composite materials, non-ferrous metal composite materials, medical equipment parts materials, building materials, floor finishing One or more selected from the group consisting of materials, wallpaper materials, light source component materials, lamp materials, optical device component materials, textile manufacturing device component materials, clothing manufacturing device component materials, electrical product manufacturing device materials, and electronic product manufacturing device materials It can be used for the material. The digital envelope in the present invention means a packaging material used for preventing various electronic products from being charged and protecting from moisture.
【Effect of the invention】
[0044]
The carbon nanotube composite material according to the present invention and the method for producing the same are processed under subcritical or supercritical conditions to increase the mutual miscibility, dispersibility, and bonding force, and the carbon nanotube composite has excellent dispersibility and improved conductivity. There is an advantage that material can be provided. In addition, it is easy to handle and treat wastewater, and further includes a non-hazardous oxidant, and can be manufactured through a continuous apparatus to further increase the mutual miscibility, dispersibility, and bonding strength.
[0045]
The carbon nanotube composite material according to the present invention can have higher dispersibility and organic bond strength than before due to various types of solvents and polymer resin base materials, thereby providing electrical conductivity, thermal conductivity, Various physical properties such as strength, abrasion resistance, impact resistance, elasticity, and foamability can be improved.
[0046]
In addition, the resin composition containing the carbonized nanotube composite material produced according to the present invention includes conductive paint, electrostatic dispersion material, electrostatic dispersion paint, conductive material, electromagnetic wave shielding material, electromagnetic wave absorbing material, electromagnetic wave shielding paint, electromagnetic wave Absorbent paints, materials for solar cells, electrode materials for dye-sensitized solar cells (DSSC), electrical elements, electronic elements, semiconductor elements, photoelectric elements, notebook computer parts materials, computer parts materials, mobile phone parts materials, PDA (personal digital) assistants) component materials, game console component materials, housing materials, transparent electrode materials, opaque electrode materials, field emission display (FED) materials, back light unit (BLU) materials, liquid crystal display devices ( liquid crystal display (LCD) material, plasma display panel (PDP) material, luminescent diode (luminescent) diode (LED) material, touch panel material, lightning board material, advertising billboard material, display material, heating element, heat radiator, plating material, catalyst, promoter, oxidizing agent, reducing agent, automotive parts material, ship parts material, aircraft parts Materials, digital envelope materials, protective tape materials, adhesive materials, tray materials, clean room materials, transportation equipment parts materials, flame retardant materials, antibacterial materials, metal composite materials, non-ferrous metal composite materials, medical equipment parts materials, building materials, floor finishing One or more materials selected from the group consisting of materials, wallpaper materials, light source component materials, lamp materials, optical device component materials, textile manufacturing device component materials, clothing manufacturing device component materials, electrical product manufacturing device materials, and electronic product manufacturing device materials Since it can be used as a material, it can be used as a high value-added material in various fields.
[Brief description of the drawings]
[0047]
FIG. 1 is a view showing a manufacturing process of a carbon nanotube composite material according to the present invention.
FIG. 2 is a view illustrating a manufacturing process of a carbon nanotube composite material according to a preferred embodiment of the present invention.
FIG. 3 is a process diagram of a continuous manufacturing apparatus for manufacturing a carbon nanotube composite material according to a preferred embodiment of the present invention.
FIG. 4 is a process diagram of a continuous production apparatus for producing a carbon nanotube composite material including a filtration apparatus according to a preferred embodiment of the present invention.
5a is a scanning electron micrograph of the carbon nanotube composite material produced according to Example 1. FIG.
5b is a scanning electron micrograph of a mixture of multi-walled carbon nanotubes and carbon black in Comparative Example 1. FIG.
6a is a transmission electron micrograph of a carbon nanotube composite material produced according to Example 3. FIG.
6b is a transmission electron micrograph of a mixed-wall carbon nanotube and carbon black mixture of Comparative Example 1. FIG.
BEST MODE FOR CARRYING OUT THE INVENTION
[0048]
This will be described in more detail through the following examples.
[Example 1]
[0049]
10 g of multi-walled carbon nanotubes (MWCNT manufactured by Hanwha Nanotech) and 10 g of carbon black (Carbon-black manufactured by Cabot, USA) were mixed with 980 g of distilled water and the circulation pump 11 to prepare a mixture in the mixing tank 10. The mixture was charged into the preheating tank 110 through the high-pressure injection pump 12 at a flow rate of 15 g / min. The solution was charged into a preheating tank 110 preheated at 200 to 240 ° C. via a heat exchanger 14.
[0050]
The preheated mixture is injected into the reaction vessel 130 to increase the miscibility in a subcritical state of 300 ° C. and 230 atm to 250 atm, and is subcritically treated in the reaction vessel and the mutual miscibility is increased. The product with increased properties is also transferred to the heat exchanger 14 where it is primarily cooled at 200 ° C. and again cooled to a temperature of about 25 ° C. via the cooling device 15 before being continuously intermiscible. An increased 19.9 g of carbon nanotube composite material was obtained.
[0051]
[Reference Example 1]
When preheating the multi-wall carbon nanotube and carbon black carbon nanotube composite material, the temperature of the heat exchanger 14 is 350 to 370 ° C. Except for the increase, the same procedure as in Example 1 was performed to obtain 19.2 g of a carbon nanotube composite material product.
[Example 3]
[0052]
Oxygen is injected at a flow rate of 0.04 g / min at the front end of the heat exchanger 14 in a weather state compressed to 245 atm to 252 atm, mixed with the multi-walled carbon nanotube and carbon black mixture, and charged into the preheating tank 110. Example 1 was carried out in the same manner as in Example 1 to obtain 19.2 g of a carbon nanotube composite material product.
[Example 4]
[0053]
The reaction was carried out in the same manner as in Example 1 except that carbon fiber (carbon-fiber manufactured by Nippon Toray Co., Ltd.) was used instead of carbon black. 19.9 g of carbon nanotube composite material product was obtained.
[Example 5]
[0054]
960 g of low density polyethylene (LDPE830; HCC) and 40 g of the carbon nanotube composite material produced by the method of Example 1 were charged into a hopper of a rotating biaxial extruder. The polymer resin was applied by rotating the extruder shaft at 200 ° C., kneaded with the carbon nanotube composite material, and continuously discharged through the extruder die. A polyethylene strand discharged from the press machine was manufactured into a normal short pellet using a pelletizer, and then the pellet was manufactured into a sheet having a thickness of 2 mm using a press.
[Example 6]
[0055]
The same operation as in Example 5 was performed except that 40 g of the carbon nanotube composite material produced by the method of Example 3 was used.
[Example 7]
[0056]
The same operation as in Example 5 was performed except that 40 g of the carbon nanotube composite material produced by the method of Example 4 was used.
[0057]
[Comparative Example 1]
Multi-walled carbon nanotubes (MWCNT manufactured by Hanwha Nanotech Co., Ltd.) and carbon black (Carbon-black manufactured by Cabot Inc., USA) mixed in a one-to-one relationship with a general electric mixer (Electric MIXER; SHINIL ELECTRIC MIXER, SFM-1500NM) ) Was dispersed for 1 minute, and then the same operation as in Example 5 was performed except that it was directly charged into the hopper.
[0058]
[Comparative Example 2]
Multi-walled carbon nanotubes (MWCNT manufactured by Hanwha Nanotech Co., Ltd.) and carbon fiber (carbon-fiber manufactured by Toray Industries, Inc.) mixed in a one-to-one basis. General electric mixer (Electric MIXER manufactured by SHINIL) , SFM-1500NM) for 1 minute, and then the same as Example 5 except that it was directly charged into the hopper.
[0059]
[Test example]
1. Scanning Electron Microscope (SEM) observation
The scanning electron microscope is an S4800 model manufactured by Hitachi, in which the carbon nanotube composite material produced in Example 1 and Comparative Example 1 was dispersed in water, dropped onto glass, dried completely, and then platinum. Measured after plating.
[0060]
FIG. 5a is a photograph observed through the scanning electron microscope of Example 1, wherein the carbon nanotube composite material produced in Example 1 has increased miscibility while undergoing a subcritical process. It shows that the multi-walled carbon nanotubes and carbon black are uniformly dispersed. FIG. 5b shows a case where the multi-wall carbon nanotube and carbon black mixture of Comparative Example 1 is dispersed for 1 minute using a general electric mixer (Electric MIXER, SFM-1500NM, manufactured by SHINIL). It is the photograph observed with the scanning electron microscope. When compared with FIG. 5a below, FIG. 5b confirmed that the multi-walled carbon nanotubes and carbon black were immiscible and exist almost independently.
[0061]
2. Transmission electron microscope (TEM) observation
The transmission electron microscope was a JEOL JEM-2100F (HR) model, and the sample was measured on a horic type grid. FIG. 6a is a view of the carbon nanotube composite material manufactured according to Example 3, in which a mixture of multi-walled carbon nanotubes and carbon black is mixed while undergoing a subcritical oxidation process. This shows that the two carbon materials are uniformly dispersed. FIG. 6b below is a photograph of the mixture of Comparative Example 1 observed with a transmission electron microscope after being dispersed for 1 minute using a general homomixer (ELECTRIC MIXER manufactured by SHINIL, SFM-1500NM). is there. FIG. 6b below can confirm that the two carbon materials are not mixed and exist almost independently compared to FIG. 6a below.
[0062]
3. Surface resistance measurement
The surface resistances of Examples 5, 6, and 7 and Comparative Examples 1 and 2 were measured by JIG K 7194 / ASTM D991 using a Loresta GP (MCP-T600) manufactured by Mitsubishi Corp. The results are shown in Table 1 below. Indicated.
[0063]
Comparing the surface resistances of Examples 5, 6, and 7 and Comparative Examples 1 and 2 shown in Table 1 below, the surface resistance of the polyethylene sheet added with the composite carbon material with increased miscibility is lower. I understand.
[0064]
[Table 1]
[Explanation of symbols]
[0065]
10 Mixing tank
11 Circulation pump
12 Mixture high pressure pump
13 Oxidant high-pressure injection pump
14 Heat exchanger
15 Cooling device
16 Pressure regulator
110 Preheating tank
130 reactor
150 Cooling / decompression tank
170 Storage tank
210 Filtration tank
211 Filtrate
213 Filtration product after subcritical or supercritical treatment and filtration
230 Filtration tank
231 Filtrate
233 Filtration product after subcritical or supercritical treatment and filtration
300 Filtrate storage tank

Claims (16)

炭素ナノチューブ、炭素ナノチューブ以外の1種以上の炭素化合物及び分散媒を含む混合物を50乃至380℃、50乃至260atmの亜臨界条件において処理して生成された複合素材であって、
前記炭素化合物が、カーボンブラック又は炭素繊維である、炭素ナノチューブ複合素材。
A composite material produced by treating a carbon nanotube, a mixture containing one or more carbon compounds other than carbon nanotubes, and a dispersion medium under subcritical conditions of 50 to 380 ° C. and 50 to 260 atm ,
A carbon nanotube composite material , wherein the carbon compound is carbon black or carbon fiber .
炭素ナノチューブが、単一壁(Single-walled)、二重壁(Double-walled)、多重壁(Multi-walled)、束状(Roped)及びこれらの混合物からなる群から選ばれる請求項1に記載の炭素ナノチューブ複合素材。 The carbon nanotube is selected from the group consisting of single-walled, double-walled, multi-walled, bundled, and mixtures thereof. Carbon nanotube composite material. 分散媒が、水、脂肪族アルコール、二酸化炭素及びこれらの混合物からなる群から選ばれる請求項1に記載の炭素ナノチューブ複合素材。 The carbon nanotube composite material according to claim 1, wherein the dispersion medium is selected from the group consisting of water, aliphatic alcohol, carbon dioxide, and a mixture thereof. 炭素ナノチューブ複合素材が、下記式1を満たすことを特徴とする請求項1に記載の炭素ナノチューブ複合素材。
[式1]
1×10Ω/□≦R≦1×10Ω/□
(前記Rは、前記炭素ナノチューブ複合素材が4重量%含まれたポリエチレン樹脂の表面抵抗である。)
The carbon nanotube composite material according to claim 1, wherein the carbon nanotube composite material satisfies the following formula 1.
[Formula 1]
1 × 10 2 Ω / □ ≦ R p ≦ 1 × 10 8 Ω / □
( Rp is the surface resistance of a polyethylene resin containing 4% by weight of the carbon nanotube composite material.)
混合物が、亜臨界条件において酸化剤をさらに含んで処理することを特徴とする請求項1に記載の炭素ナノチューブ複合素材。 The carbon nanotube composite material according to claim 1, wherein the mixture is further processed by further containing an oxidizing agent under subcritical conditions. 炭素ナノチューブと炭素化合物との重量比が、1:0.00001〜1:100である請求項1に記載の炭素ナノチューブ複合素材。 The carbon nanotube composite material according to claim 1, wherein a weight ratio of the carbon nanotube to the carbon compound is 1: 0.00001 to 1: 100. 炭素ナノチューブ、炭素ナノチューブ以外の1種以上の炭素化合物及び分散媒を含む混合物を50乃至380℃、50乃至260atmの亜臨界条件において処理する複合素材の製造方法であって、
前記炭素化合物が、カーボンブラック又は炭素繊維である、炭素ナノチューブ複合素材の製造方法。
A method for producing a composite material comprising treating a carbon nanotube, a mixture containing one or more carbon compounds other than carbon nanotubes, and a dispersion medium under subcritical conditions of 50 to 380 ° C. and 50 to 260 atm ,
A method for producing a carbon nanotube composite material, wherein the carbon compound is carbon black or carbon fiber .
混合物が、炭素ナノチューブ及び炭素ナノチューブ以外の1種以上の炭素化合物を0.0001乃至30重量%含む請求項に記載の炭素ナノチューブ複合素材の製造方法。 The method for producing a carbon nanotube composite material according to claim 7 , wherein the mixture contains 0.0001 to 30% by weight of carbon nanotubes and one or more carbon compounds other than carbon nanotubes. 分散媒が、水、脂肪族アルコール、二酸化炭素及びこれらの混合物からなる群から選ばれることを特徴とする請求項に記載の炭素ナノチューブ複合素材の製造方法。 The method for producing a carbon nanotube composite material according to claim 7 , wherein the dispersion medium is selected from the group consisting of water, aliphatic alcohol, carbon dioxide, and a mixture thereof. 混合物が、亜臨界条件において酸化剤をさらに含んで処理されることを特徴とする請求項に記載の炭素ナノチューブ複合素材の製造方法。 The method for producing a carbon nanotube composite material according to claim 7 , wherein the mixture is further treated with an oxidizing agent under subcritical conditions. 酸化剤が、酸素、空気、オゾン、硝酸、過酸化水素、及びこれらの混合物から選ばれる請求項10に記載の炭素ナノチューブ複合素材の製造方法。 The method for producing a carbon nanotube composite material according to claim 10 , wherein the oxidizing agent is selected from oxygen, air, ozone, nitric acid, hydrogen peroxide, and a mixture thereof. 酸化剤が、炭素ナノチューブ及び炭素化合物100重量部に対して0.00001乃至30重量部含まれる請求項10に記載の炭素ナノチューブ複合素材の製造方法。 The method for producing a carbon nanotube composite material according to claim 10 , wherein the oxidizing agent is contained in an amount of 0.00001 to 30 parts by weight with respect to 100 parts by weight of the carbon nanotube and the carbon compound. 請求項1乃至の何れか1項に記載の炭素ナノチューブ複合素材と、熱可塑性樹脂とを含む樹脂組成物。 A resin composition comprising the carbon nanotube composite material according to any one of claims 1 to 6 and a thermoplastic resin. 樹脂組成物が、発泡剤をさらに含むことを特徴とする請求項13に記載の樹脂組成物。 The resin composition according to claim 13 , further comprising a foaming agent. 熱可塑性樹脂が、ポリエチレン系樹脂、ポリカーボネート系樹脂及びポリスチレン系樹脂を含むポリオレフィン系樹脂、ポリアセタール系樹脂、ポリアクリレート系樹脂、ポリエステル系樹脂、ポリビニル系樹脂、ポリフェニレンエーテル系樹脂、ポリアクリロニトリル−ブタジエン−スチレン共重合体樹脂、ポリアリレート系樹脂、ポリアミド系樹脂、ポリアミドイミド系樹脂、ポリアリールスルホン系樹脂、ポリエーテルイミド系樹脂、ポリエーテルスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリフッ素系樹脂、ポリイミド系樹脂、ポリエーテルケトン系樹脂、ポリベンゾオキサゾール系樹脂、ポリオキサジアゾール系樹脂、ポリベンゾチアゾール系樹脂、ポリベンゾイミダゾール系樹脂、ポリピリジン系樹脂、ポリトリアゾール系樹脂、ポリピロリジン系樹脂、ポリジベンゾフラン系樹脂、ポリスルホン系樹脂、ポリウレア系樹脂、ポリホスファゼン系樹脂からなる群から選ばれた一つまたは二つ以上の混合物である請求項13または14に記載の樹脂組成物。 The thermoplastic resin is polyethylene resin, polyolefin resin including polycarbonate resin and polystyrene resin, polyacetal resin, polyacrylate resin, polyester resin, polyvinyl resin, polyphenylene ether resin, polyacrylonitrile-butadiene-styrene. Copolymer resin, polyarylate resin, polyamide resin, polyamideimide resin, polyarylsulfone resin, polyetherimide resin, polyethersulfone resin, polyphenylene sulfide resin, polyfluorine resin, polyimide resin , Polyether ketone resin, polybenzoxazole resin, polyoxadiazole resin, polybenzothiazole resin, polybenzimidazole resin, polypyridine resin, polytriazo Le resins, Poripirorijin resin, polychlorinated dibenzofurans resins, polysulfone resins, polyurea resins, according to claim 13 or 14, which is one or a mixture of two or more selected from the group consisting of polyphosphazene resin Resin composition. 樹脂組成物が、混和性が増大した炭素ナノチューブ複合素材を含み、伝導性塗料、静電分散材、静電分散塗料、伝導性素材、電磁波遮蔽材、電磁波吸収材、電磁波遮蔽塗料、電磁波吸収塗料、太陽電池用材料、色素増感太陽電池(DSSC)用電極材料、電気素子、電子素子、半導体素子、光電素子、ノートパソコン部品材料、コンピュータ部品材料、携帯電話部品材料、PDA(personal digital assistants)部品材料、ゲーム機用部品材料、ハウジング材料、透明電極材料、不透明電極材料、電界放出ディスプレイ(field emission display;FED)材料、バックライトユニット(back light unit;BLU)材料、液晶表示装置(liquid crystal display;LCD)材料、プラズマ表示パネル(plasma display panel;PDP)材料、発光ダイオード(luminescent diode;LED)材料、タッチパネル材料、電光板材料、広告看板材料、ディスプレイ素材、発熱体、放熱体、メッキ材料、触媒、助触媒、酸化剤、還元剤、自動車部品材料、船舶部品材料、航空機部品材料、デジタル封筒材料、保護テープ材料、接着剤材料、トレイ材料、クリーンルーム材料、運送機器部品材料、難燃素材、抗菌素材、金属複合材料、非鉄金属複合材料、医療機器部品材料、建材、床仕上げ材料、壁紙材料、光源部品材料、ランプ材料、光学機器部品材料、繊維製造機器部品材料、衣類製造機器部品材料、電気製品製造機器材料及び電子製品製造機器材料からなる群から選ばれた一つ以上の材料に用いられることを特徴とする請求項13に記載の樹脂組成物。 The resin composition contains a carbon nanotube composite material with increased miscibility, and is a conductive paint, electrostatic dispersion material, electrostatic dispersion paint, conductive material, electromagnetic wave shielding material, electromagnetic wave absorbing material, electromagnetic wave shielding paint, electromagnetic wave absorbing paint , Materials for solar cells, electrode materials for dye-sensitized solar cells (DSSC), electrical elements, electronic elements, semiconductor elements, photoelectric elements, notebook computer parts materials, computer parts materials, mobile phone parts materials, PDA (personal digital assistants) Component materials, component materials for game machines, housing materials, transparent electrode materials, opaque electrode materials, field emission display (FED) materials, back light unit (BLU) materials, liquid crystal displays (liquid crystals) display: LCD material, plasma display panel (PDP) material, luminescent diode (LE) ) Materials, touch panel materials, lightning board materials, advertising billboard materials, display materials, heating elements, radiators, plating materials, catalysts, promoters, oxidants, reducing agents, automotive parts materials, marine parts materials, aircraft parts materials, digital Envelope materials, protective tape materials, adhesive materials, tray materials, clean room materials, transportation equipment parts materials, flame retardant materials, antibacterial materials, metal composite materials, non-ferrous metal composite materials, medical equipment parts materials, building materials, floor finish materials, wallpaper One or more materials selected from the group consisting of materials, light source component materials, lamp materials, optical device component materials, textile manufacturing device component materials, clothing manufacturing device component materials, electrical product manufacturing device materials, and electronic product manufacturing device materials The resin composition according to claim 13 , wherein the resin composition is used.
JP2012518495A 2009-06-30 2010-06-30 COMPOSITE CARBON MATERIAL INCREASING MIXTURE, CONTINUOUS MANUFACTURING METHOD, AND APPARATUS Active JP5595491B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2009-0059129 2009-06-30
KR1020090059129A KR101470524B1 (en) 2009-06-30 2009-06-30 Blending improvement carbon-composite having Carbon-nanotube and its continuous manufacturing method
PCT/KR2010/004242 WO2011002222A2 (en) 2009-06-30 2010-06-30 Blending improvement carbon-composite having carbon-nanotube and its continuous manufacturing method and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014082603A Division JP5875622B2 (en) 2009-06-30 2014-04-14 COMPOSITE CARBON MATERIAL INCREASING MIXTURE, CONTINUOUS MANUFACTURING METHOD, AND APPARATUS THEREOF

Publications (2)

Publication Number Publication Date
JP2012532085A JP2012532085A (en) 2012-12-13
JP5595491B2 true JP5595491B2 (en) 2014-09-24

Family

ID=43411600

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012518495A Active JP5595491B2 (en) 2009-06-30 2010-06-30 COMPOSITE CARBON MATERIAL INCREASING MIXTURE, CONTINUOUS MANUFACTURING METHOD, AND APPARATUS
JP2014082603A Active JP5875622B2 (en) 2009-06-30 2014-04-14 COMPOSITE CARBON MATERIAL INCREASING MIXTURE, CONTINUOUS MANUFACTURING METHOD, AND APPARATUS THEREOF

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014082603A Active JP5875622B2 (en) 2009-06-30 2014-04-14 COMPOSITE CARBON MATERIAL INCREASING MIXTURE, CONTINUOUS MANUFACTURING METHOD, AND APPARATUS THEREOF

Country Status (8)

Country Link
US (1) US9567222B2 (en)
EP (1) EP2448862A4 (en)
JP (2) JP5595491B2 (en)
KR (1) KR101470524B1 (en)
CN (1) CN102471049B (en)
CA (1) CA2766987C (en)
TW (1) TW201105576A (en)
WO (1) WO2011002222A2 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485191B (en) * 2009-10-09 2015-05-21 Ube Industries A colored polyimide molded article and a method for producing the same
WO2011107495A1 (en) * 2010-03-02 2011-09-09 Total Petrochemicals Research Feluy Nanocomposites with improved homogeneity
KR101294204B1 (en) * 2010-07-14 2013-08-07 세종대학교산학협력단 Carbon nanotube-polymer nanocomposite and producing method of the same
JP5977015B2 (en) 2010-11-30 2016-08-24 ローム アンド ハース カンパニーRohm And Haas Company Stable reactive thermosetting formulations of reducing sugars and amines
US9997785B2 (en) 2011-06-23 2018-06-12 Molecular Rebar Design, Llc Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom
EP2723682B1 (en) * 2011-06-23 2016-03-30 Molecular Rebar Design, LLC Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom
KR101329974B1 (en) * 2012-01-12 2013-11-13 한화케미칼 주식회사 A resin composition for EMI shielding, comprising carbon hydride composite
JP5497110B2 (en) 2012-07-03 2014-05-21 昭和電工株式会社 Method for producing composite carbon fiber
JP5497109B2 (en) 2012-07-03 2014-05-21 昭和電工株式会社 Composite carbon fiber
US8920932B2 (en) * 2012-07-19 2014-12-30 Empire Technology Development Llc Recycling carbon fibers from epoxy using solvent cracking
CN104718170A (en) 2012-09-04 2015-06-17 Ocv智识资本有限责任公司 Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
US20140097003A1 (en) * 2012-10-05 2014-04-10 Tyco Electronics Amp Gmbh Electrical components and methods and systems of manufacturing electrical components
KR101238667B1 (en) * 2012-10-19 2013-03-04 (주)케이티에스 Manufacturing method for both sides impregnated heating-plate using carbon fiber heating-plate for graphene
KR101434565B1 (en) * 2012-11-15 2014-09-04 주식회사 엑사이엔씨 Thick membrane type PTC heating element with Conductive paste composition
JP2014118315A (en) * 2012-12-14 2014-06-30 Sekisui Chem Co Ltd Flaky graphite production device, and method for producing the same
WO2014143925A1 (en) * 2013-03-15 2014-09-18 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Carbon nanotubes and graphene patches and implants for biological tissue
RU2561343C2 (en) * 2013-08-19 2015-08-27 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Laser generator of three-dimensional nanocomposites
KR101648139B1 (en) * 2013-08-21 2016-08-12 한화케미칼 주식회사 Graphene, method for preparing graphene, and apparatus for preparing graphene
JP5490957B1 (en) * 2013-10-25 2014-05-14 清二 加川 Heat dissipation film, and method and apparatus for manufacturing the same
CN103734958B (en) * 2014-01-23 2015-04-29 哈尔滨工业大学 Preparation method for filling materials in ultra-light warm clothes and application of filling material in ultra-light warm clothes
CN104072767B (en) * 2014-06-20 2016-08-03 贵州中航聚电科技有限公司 A kind of preparation method of the carbon nano-fiber nitride type conductive polymer composite of the high and low leakage current of specific capacity
TWI654074B (en) * 2015-02-12 2019-03-21 台灣奈米碳素股份有限公司 Method for producing composite material containing carbon material by using high energy thrust
US9550907B2 (en) * 2015-02-27 2017-01-24 Gates Corporation Carbon nanostructure preblends and their applications
CN107206389B (en) * 2015-03-10 2021-09-17 海佩里恩催化国际公司 Method for co-processing nanocarbon in carbon black and products obtained thereby
KR20160114388A (en) * 2015-03-24 2016-10-05 한화케미칼 주식회사 Method for preparing fine graphite particles having high functionality and dispersibility
KR102018289B1 (en) * 2015-05-13 2019-09-04 주식회사 엘지화학 Method for preparation of high concentrated carbon nanotube/graphene dispersion
CN105645996B (en) * 2016-02-24 2019-03-15 常州富烯科技股份有限公司 A kind of preparation method of explosion-proof graphene bubble plate and obtained product and application
US10971734B2 (en) * 2016-03-16 2021-04-06 Nec Corporation Planar structural body containing fibrous carbon nanohorn aggregate
KR101896103B1 (en) * 2016-07-04 2018-10-04 류도영 Carbon nanotubes and conductive polymer composite material produced is mixed utilization and efficient composition
CN106315111B (en) * 2016-08-23 2018-09-04 青岛红远祥自动化设备有限公司 A kind of production line particle conveyer belt
KR102018716B1 (en) 2016-12-27 2019-09-05 롯데첨단소재(주) Resin composition and articles manufactured using the same
CN106882798B (en) * 2017-02-09 2020-06-05 广东派勒智能纳米科技股份有限公司 Preparation process of graphene and carbon nanotube composite material
CN108822465B (en) * 2017-09-29 2020-12-08 彭章义 Flame-retardant insulation board and preparation method thereof
KR102653892B1 (en) 2018-08-30 2024-04-02 삼성전자주식회사 Slurry composition for chemical mechanical polishing, method of manufacturing the same, and method of fabricating semiconductor device
CN109970259A (en) * 2019-03-26 2019-07-05 程金生 A kind of general hospital's medical sewage graphene purification method and device
CN112552816B (en) * 2020-11-03 2022-02-11 北京猎鹰科技有限公司 Composite material for absorbing mid-infrared rays and far-infrared rays, and preparation method and application thereof
CN114538419B (en) * 2020-11-26 2023-08-18 江苏天奈科技股份有限公司 Preparation method and equipment of dispersible carbon nano tube powder
CN114621621A (en) * 2020-12-14 2022-06-14 清华大学 Light absorber prefabricated liquid and preparation method thereof
CN113444357B (en) * 2021-07-27 2022-07-08 上海交通大学 Preparation method of flexible regenerated carbon fiber electromagnetic shielding composite material
KR102471503B1 (en) * 2021-10-26 2022-11-28 회명산업 주식회사 Black paste composition for coating protection film of plasmadisplay panel and cured product thereof
CN114891314A (en) * 2022-06-10 2022-08-12 山东亿科化学有限责任公司 High-performance conductive ABS composite material and preparation method thereof

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052654B1 (en) * 1999-05-13 2004-01-28 Union Carbide Chemicals & Plastics Technology Corporation Cable semiconducting shield
MXPA02000576A (en) 1999-07-21 2002-08-30 Hyperion Catalysis Int Methods of oxidizing multiwalled carbon nanotubes.
DE10259498A1 (en) 2002-12-19 2004-07-01 Bayer Ag Conductive thermoplastics with soot and carbon nanofibrils
JP2004292231A (en) 2003-03-26 2004-10-21 Canon Inc Production process of nanocarbon material
DE602004010506D1 (en) * 2003-04-24 2008-01-17 Carbon Nanotechnologies Inc Conductive carbon nanotube polymer
JP2004331777A (en) * 2003-05-06 2004-11-25 Hideko Yamaguchi Polycondensation composite composition and its manufacturing process
CN1813023A (en) * 2003-05-22 2006-08-02 塞威公司 Nanocomposites and methods thereto
US20050070658A1 (en) * 2003-09-30 2005-03-31 Soumyadeb Ghosh Electrically conductive compositions, methods of manufacture thereof and articles derived from such compositions
CN100436307C (en) 2003-11-07 2008-11-26 中国科学院上海硅酸盐研究所 Hydroxyapatite / carbon nanometer tube nanometer compound powder body and in-situ synthetic method
WO2005069955A2 (en) * 2004-01-21 2005-08-04 Idaho Research Foundation, Inc. Supercritical fluids in the formation and modification of nanostructures and nanocomposites
JP4035619B2 (en) * 2004-03-22 2008-01-23 国立大学法人信州大学 CNT surface modification method
JP4630011B2 (en) * 2004-06-29 2011-02-09 株式会社イノアックコーポレーション Method for producing conductive resin molded body and conductive resin molded body
JP4908745B2 (en) 2004-08-09 2012-04-04 双葉電子工業株式会社 Carbon nanotube composite material and manufacturing method thereof
CN1272394C (en) 2004-11-25 2006-08-30 西安交通大学 Method for preparing conductive polyaniline electromagnetic interference screening paint
US20060183841A1 (en) 2005-02-11 2006-08-17 Ashish Aneja Thermally stable thermoplastic resin compositions, methods of manufacture thereof and articles comprising the same
FR2885131B1 (en) 2005-04-27 2008-03-07 Arkema Sa POLYMER-BASED CELL STRUCTURE COMPRISING CARBON NANOTUBES, PREPARATION METHOD AND APPLICATIONS THEREOF
JP2008169402A (en) 2005-04-28 2008-07-24 Tokyo Univ Of Agriculture & Technology Electrochemical reaction process
JP2007022896A (en) 2005-07-13 2007-02-01 Sannan:Kk Method for continuously producing nanocarbon, and device therefor
JP2009521535A (en) 2005-08-08 2009-06-04 キャボット コーポレイション Polymer composition comprising nanotubes
EP1845124A1 (en) 2006-04-14 2007-10-17 Arkema France Conductive carbon nanotube-polymer composite
CN100485086C (en) * 2006-04-14 2009-05-06 中国科学院金属研究所 Preparation method for depositing cerium dioxide on carbon nano-tube in overcritical water
DE102006035773A1 (en) 2006-08-01 2008-02-07 Bayer Technology Services Gmbh Process for the preparation of carbon nanoparticle-polymer mixtures by gas phase polymerization
WO2008068042A2 (en) * 2006-12-04 2008-06-12 Universite Catholique De Louvain Polymer composite material structures comprising carbon based conductive loads
KR100706652B1 (en) 2006-12-26 2007-04-13 제일모직주식회사 Electroconductive thermoplastic resin composition and plastic article
KR100943125B1 (en) 2006-12-29 2010-02-18 주식회사 삼양사 Antistatic resin composition
CN100486891C (en) * 2007-07-03 2009-05-13 郑州大学 Method for realizing modification of carbon nano-tube by using polymer crystallization
JP2009082910A (en) * 2007-09-14 2009-04-23 Toyota Motor Corp Fine-particle composite, process for producing the fine-particle composite, catalyst for solid polymer electrolyte fuel cell, and solid polymer electrolyte fuel cell
KR101034580B1 (en) * 2008-05-29 2011-05-12 한화케미칼 주식회사 Continuous method and apparatus of functionalizing Carbon Nanotube
US8696938B2 (en) * 2008-08-25 2014-04-15 Nanotek Instruments, Inc. Supercritical fluid process for producing nano graphene platelets
KR101147259B1 (en) * 2008-09-30 2012-05-21 한화케미칼 주식회사 Continuous method and apparatus of purifying Carbon Nanotube

Also Published As

Publication number Publication date
KR20110001557A (en) 2011-01-06
TW201105576A (en) 2011-02-16
EP2448862A2 (en) 2012-05-09
JP5875622B2 (en) 2016-03-02
JP2014205611A (en) 2014-10-30
EP2448862A4 (en) 2014-10-22
KR101470524B1 (en) 2014-12-08
WO2011002222A2 (en) 2011-01-06
CN102471049A (en) 2012-05-23
US9567222B2 (en) 2017-02-14
CN102471049B (en) 2015-08-26
CA2766987C (en) 2015-12-15
WO2011002222A3 (en) 2011-04-14
JP2012532085A (en) 2012-12-13
US20120112134A1 (en) 2012-05-10
CA2766987A1 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP5595491B2 (en) COMPOSITE CARBON MATERIAL INCREASING MIXTURE, CONTINUOUS MANUFACTURING METHOD, AND APPARATUS
Nan et al. A multifunctional thermal management paper based on functionalized graphene oxide nanosheets decorated with nanodiamond
Zhang et al. Magnetic and mechanical properties of polyvinyl alcohol (PVA) nanocomposites with hybrid nanofillers–graphene oxide tethered with magnetic Fe3O4 nanoparticles
Steurer et al. Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide
KR101034579B1 (en) Continuous methods and apparatus of functionalizing Carbon Nanotube
US9162896B2 (en) Method for making polymer composites containing graphene sheets
Han et al. Preparation of polyurethane nanocomposites via covalent incorporation of functionalized graphene and its shape memory effect
Li et al. Graphene/thermoplastic polyurethane nanocomposites: Surface modification of graphene through oxidation, polyvinyl pyrrolidone coating and reduction
Zhang et al. A review on hybridization modification of graphene and its polymer nanocomposites
Dao et al. Water-dispersible graphene designed as a Pickering stabilizer for the suspension polymerization of poly (methyl methacrylate)/graphene core–shell microsphere exhibiting ultra-low percolation threshold of electrical conductivity
Nayak et al. Surface modification/functionalization of carbon materials by different techniques: An overview
Hong et al. Effects of oxidative conditions on properties of multi-walled carbon nanotubes in polymer nanocomposites
Gou et al. Processing of polymer nanocomposites
KR101337867B1 (en) Carbon nano material-polymer composite and method for producing the same
Jimenez et al. Oxidized carbon nanofiber/polymer composites prepared by chaotic mixing
Wang et al. Ultra-robust and high-toughness graphene oxide papers via synergistic strengthening by addition of carbon-nanotubes and copper ions
Bian et al. HDPE composites strengthened–toughened synergistically by l‐aspartic acid functionalized graphene/carbon nanotubes hybrid nanomaterials
Park et al. Carbon nanotube-poly (vinyl alcohol) hybrid aerogels: Improvements in the surface area and structural stability by internal morphology control
Fu et al. Graphene/polyamide-6 microsphere composites with high electrical and mechanical performance
Li et al. Plasma functionalization for improving dispersion and interfacial bonding of multi-wall carbon nanotubes in cyanate ester/epoxy nanocomposites
Fang et al. Controllable edge modification of multi-layer graphene for improved dispersion stability and high electrical conductivity
Yadav et al. Thermal, mechanical and water barrier properties of graphene oxide/polyvinyl alcohol/polyol composite films
Song et al. Research on WPU‐RGO/ATP‐Fe3O4/chitosan composites with excellent electrical and magnetic properties
Fariha et al. Advances in PVC-Based Blend Nanocomposites
Belyakov Carbon nanotubes for the synthesis of ceramic matrix composites (cleaning, dispersion, surface modification)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140805

R150 Certificate of patent or registration of utility model

Ref document number: 5595491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250