JP5595132B2 - Biomass storage device - Google Patents

Biomass storage device Download PDF

Info

Publication number
JP5595132B2
JP5595132B2 JP2010133241A JP2010133241A JP5595132B2 JP 5595132 B2 JP5595132 B2 JP 5595132B2 JP 2010133241 A JP2010133241 A JP 2010133241A JP 2010133241 A JP2010133241 A JP 2010133241A JP 5595132 B2 JP5595132 B2 JP 5595132B2
Authority
JP
Japan
Prior art keywords
air
biomass
storage tank
humidity
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010133241A
Other languages
Japanese (ja)
Other versions
JP2011255941A (en
Inventor
良則 寺澤
義仁 清水
恒樹 山内
裕喜 立川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010133241A priority Critical patent/JP5595132B2/en
Publication of JP2011255941A publication Critical patent/JP2011255941A/en
Application granted granted Critical
Publication of JP5595132B2 publication Critical patent/JP5595132B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、バイオマスを貯留するバイオマス貯留装置に係り、特に、バイオマスが保有する水分の影響を受ける貯留槽内部の湿度管理を可能としたバイオマス貯留装置に関する。   The present invention relates to a biomass storage device that stores biomass, and more particularly, to a biomass storage device that enables humidity management inside a storage tank that is affected by moisture held by biomass.

近年、産業用火力プラント等において燃料の多様化が急速に進み、従来多く用いられてきた化石燃料の他に、燃料の一つとしてバイオマスを用いる設備が増えている。バイオマスは、COの排出抑制に寄与し且つ非枯渇性資源であることなどからその活用が推進されており、これに応じて各種プラント設備では石炭等の化石燃料からバイオマスに切り替えたり、化石燃料等の他の燃料とバイオマスとの混焼に切り替えたりしている。 In recent years, the diversification of fuels has rapidly progressed in industrial thermal power plants and the like, and facilities that use biomass as one of the fuels are increasing in addition to the fossil fuels that have been widely used. Biomass is promoted because it contributes to CO 2 emission control and is a non-depleting resource, and in response to this, various plant facilities switch from fossil fuels such as coal to biomass, Or other fuels and biomass co-firing.

例えば、バイオマスと石炭等の他の燃料とを混焼する設備では、運び込まれたバイオマスは一旦貯留槽に貯留され、あらかじめ設定された割合となるように他の燃料と混合され燃焼炉に供給される。
このような設備で利用される燃料の貯留槽は、従来バイオマスに特化した貯留槽はほとんど用いられておらず、石炭等の他の固形燃料用の貯留槽が多く用いられていた。その一般的な構造は、上部に燃料投入口を有し、底部に燃料を所定量切り出して排出する燃料排出口を有しており、燃料排出口から排出された燃料はベルトコンベア等の搬送手段により燃料利用先である負荷側へ運搬されるようになっている。
For example, in a facility that co-fires biomass and other fuels such as coal, the brought-in biomass is temporarily stored in a storage tank, mixed with other fuels at a preset ratio, and supplied to the combustion furnace. .
As the fuel storage tank used in such facilities, a storage tank specialized for biomass has been rarely used, and a storage tank for other solid fuel such as coal has been used in many cases. The general structure has a fuel inlet at the top and a fuel outlet that cuts out and discharges a predetermined amount of fuel at the bottom, and the fuel discharged from the fuel outlet is transport means such as a belt conveyor. Thus, the fuel is transported to the load side where the fuel is used.

ここで、バイオマス用の貯留槽として、特許文献1(実用新案登録第3123376号公報)に飲料用抽出粕の貯留タンクの構成が開示されている。この貯留タンクは、タンク内に設けられた撹拌部や圧空ブローノズル等により飲料用抽出粕が圧縮、固化することを防止し、飲料用抽出粕の円滑な排出を可能としている。また、特許文献2(特許第4402243号公報)には、貯留槽に撹拌手段とスクリューフィーダとを設け、均一且つ連続的にバイオマス等の粒状物を供給するようにした供給装置の構成が開示されている。   Here, as a biomass storage tank, Patent Document 1 (Utility Model Registration No. 3123376) discloses a configuration of a storage tank for a beverage extractor. This storage tank prevents the beverage extraction basket from being compressed and solidified by an agitating part, a compressed air blow nozzle or the like provided in the tank, and enables the beverage extraction basket to be smoothly discharged. Further, Patent Document 2 (Japanese Patent No. 4402243) discloses a configuration of a supply device in which a stirrer and a screw feeder are provided in a storage tank so that particulate matter such as biomass is supplied uniformly and continuously. ing.

実用新案登録第3123376号公報Utility Model Registration No. 3123376 特許第4402243号公報Japanese Patent No. 4402243

しかしながら、バイオマスは石炭等の化石燃料よりも水分保有量が高く、これにより従来は燃料貯留装置でバイオマス特有の不具合が顕在化していた。
例えばバイオマスに多く用いられるバークは、平均20〜30重量%程度の水分を保有しており、貯留槽上部においてバークの水分は実測値で20重量%程度であるが、下部では50重量%程度になる。このことから、以下の現象により貯留槽で水の垂れ落ちが起きると考えられる。
However, biomass has a higher moisture content than fossil fuels such as coal, and this has conventionally caused problems peculiar to biomass in fuel storage devices.
For example, bark, which is often used for biomass, has an average water content of about 20-30% by weight, and the water content of bark is about 20% by weight in the upper part of the storage tank, but about 50% by weight in the lower part. Become. From this, it is considered that the dripping of water occurs in the storage tank due to the following phenomenon.

まず、貯留槽内のバイオマスの水分が蒸発し、貯留槽の天井または側壁で冷却され結露して再度水となり、貯留槽の内壁を伝って底部へ移行する。そして、貯留槽の底部に移行した水は、そのまま貯留槽から排出されるか、又は一旦底部のバイオマスが吸収し、バイオマスの自重により搾り出されて貯留槽から排出される。
このようにしてバイオマスが保有する水分が貯留槽から垂れ落ち、コンベアレール部の腐食を引き起こしたりして、コンベアが破損するという問題があった。
First, the moisture of the biomass in the storage tank evaporates, and is cooled at the ceiling or side wall of the storage tank and dewed to become water again, and moves to the bottom through the inner wall of the storage tank. And the water which moved to the bottom part of a storage tank is discharged | emitted from a storage tank as it is, or the biomass of a bottom part once absorbs, is squeezed out by the dead weight of biomass, and is discharged | emitted from a storage tank.
In this way, there is a problem that the moisture held by the biomass hangs down from the storage tank and causes corrosion of the conveyor rail portion, thereby damaging the conveyor.

一般の固形燃料用の貯留槽では水分保有量が高い固形燃料は想定しておらず、また特許文献1や特許文献2に開示される従来のバイオマス用貯留槽においても上記したような問題への対策は講じられていない。
よって、バイオマスの保有する水分に起因したコンベア等の貯留槽周辺機器の腐食等の問題を解消するために、貯留槽内部の湿度管理とそれに付随する技術を確立することが求められている。
In general solid fuel storage tanks, solid fuel with a high water content is not assumed, and the conventional biomass storage tanks disclosed in Patent Document 1 and Patent Document 2 also solve the above-mentioned problems. No measures are taken.
Therefore, in order to eliminate problems such as corrosion of storage tank peripheral equipment such as a conveyor due to moisture held by biomass, it is required to establish humidity management inside the storage tank and a technology associated therewith.

本発明はかかる従来技術の問題に鑑み、バイオマスが保有する水分の影響により貯留槽周辺機器に腐食等の問題が生じることを防止できるバイオマス貯留装置を提供することを目的とする。   An object of the present invention is to provide a biomass storage device capable of preventing problems such as corrosion in a storage tank peripheral device due to the influence of moisture held by biomass.

上記の課題を解決するために、本発明に係るバイオマス貯留装置は、
バイオマスを貯留する貯留槽と、前記貯留槽の底部から切り出された前記バイオマスを搬送する搬送手段とを有するバイオマス貯留装置において、
前記貯留槽の側壁に設けた開口と、前記開口と前記バイオマスが供給される負荷間を接続する配管と、前記配管上に設けられ、前記開口を介して貯留槽内の空気を引き抜く吸引手段と、該吸引手段の吸込み側の前記配管上に接続され、槽外から希釈空気を引き込み前記貯留槽からの引抜空気に合流させる分岐管と、前記分岐管上に設けた、前記希釈空気の供給量を調整する希釈空気量調整手段とを具えるとともに、前記配管上に前記引抜空気又は引抜空気と希釈空気の合流空気の湿度を検出する湿度検出手段を設け、該湿度検出手段よりの検知出力に基づいて希釈空気量調整手段を制御して、分岐管の接続部から負荷までの配管上で合流空気が結露しない湿度範囲に設定することを特徴とする。
In order to solve the above problems, the biomass storage device according to the present invention is:
In a biomass storage apparatus having a storage tank for storing biomass and a transport means for transporting the biomass cut out from the bottom of the storage tank,
An opening provided in the side wall of the storage tank, the piping which the open port biomass connecting the load to be supplied, is provided on the pipe, suction means to pull the air inside the reservoir through the opening When connected to the suction side of the pipe of the suction means, the branch pipe to join the extraction air from the reservoir draws dilution air from outside the tank, provided on the branch pipe, the supply of the dilution air A dilution air amount adjusting means for adjusting the amount, and a humidity detecting means for detecting the humidity of the drawn air or the combined air of the drawn air and the diluted air is provided on the pipe, and a detection output from the humidity detecting means Based on the above, the dilution air amount adjusting means is controlled to set a humidity range in which the combined air does not condense on the pipe from the connecting portion of the branch pipe to the load .

本発明によれば、貯留槽内の空気を側壁の開口から引き抜く構成としているため、貯留槽内を飽和蒸気圧未満に保つことができる。よって、バイオマスから蒸発した水分による貯留槽内の結露を防止でき、貯留槽からの水分の垂れ落ちが発生しないことから搬送手段等の貯留槽周辺機器の腐食や摩耗、破損等の不具合を防止できる。
このとき、開口からの引抜空気は湿度が高いため引抜空気が通過する配管や吸引手段等が結露して不具合を生じることが考えられるが、本発明では吸引手段より上流側で引抜空気に希釈空気を合流させ湿度を下げるようにしたため、分岐管より下流側の配管や吸引手段等の機器の結露を防止可能である。なお、希釈空気とは、槽内の引抜空気よりも湿度が低い空気であり、好適には外気である。
According to this invention, since it is set as the structure which draws out the air in a storage tank from opening of a side wall, the inside of a storage tank can be kept below saturated vapor pressure. Therefore, it is possible to prevent condensation in the storage tank due to moisture evaporated from the biomass, and it is possible to prevent problems such as corrosion, wear, and breakage of peripheral equipment of the storage tank such as a transport means because no dripping of water from the storage tank occurs. .
At this time, since the extraction air from the opening is high in humidity, it is considered that the piping through which the extraction air passes and the suction means, etc., may condense and cause problems, but in the present invention the diluted air is extracted upstream from the suction means. Since the humidity is lowered by joining the pipes, it is possible to prevent dew condensation of equipment such as piping and suction means downstream of the branch pipe. The diluted air is air having a lower humidity than the drawn air in the tank, and is preferably outside air.

また、前記貯留槽から前記バイオマスを供給される前記負荷が燃焼炉であって、前記燃焼炉に前記配管が接続され、前記引抜空気と前記希釈空気の合流空気を燃焼用空気の少なくとも一部として用いることが好ましい。
これは、貯留槽内にはバイオマスの煤塵や微量の臭気成分が含まれるが、これらを含む引抜空気を希釈空気とともに燃焼炉に投入することで煤塵や臭気成分を燃焼させ無害化することができる。したがって、引抜空気を処理するための空気浄化装置等を新たに設置する必要がなくなりコストの増加を防げる。
Further, the load supplied with the biomass from the storage tank is a combustion furnace, the pipe is connected to the combustion furnace, and the combined air of the extraction air and the dilution air is used as at least a part of the combustion air It is preferable to use it.
This is because the storage tank contains soot of biomass and a small amount of odor components, but by putting extracted air containing these into the combustion furnace together with dilution air, the soot and odor components can be burned and rendered harmless. . Therefore, it is not necessary to newly install an air purification device or the like for treating the drawn air, and an increase in cost can be prevented.

さらに、前記分岐管上に、前記希釈空気の供給量を調整する希釈空気量調整手段を設けることが好ましい。この希釈空気量調整手段は、手動制御であっても自動制御であってもよい。
一般にバイオマスはその水分保有量が一定ではなく、これにより引抜空気の湿度が変動したり、また引抜空気若しくは希釈空気の温度も変動することがあるが、本構成のように希釈空気量調整手段を設けることで、上記したような条件変動に対応して希釈空気の供給量を調整することが可能となり、合流空気が配管上で結露することを確実に防止できる。
Furthermore, it is preferable to provide dilution air amount adjusting means for adjusting the supply amount of the dilution air on the branch pipe. This dilution air amount adjusting means may be manual control or automatic control.
In general, biomass does not have a constant moisture content, which may cause the humidity of the drawn air to fluctuate and the temperature of the drawn air or diluted air to fluctuate. By providing, it becomes possible to adjust the supply amount of dilution air in response to the above-described condition fluctuations, and it is possible to reliably prevent the combined air from condensing on the pipe.

さらにまた、前記引抜空気又は前記引抜空気と前記希釈空気の合流空気の湿度を検出する湿度検出手段を設け、前記湿度検出手段で検出した湿度に基づいて前記合流空気が結露しない湿度範囲となるように前記希釈空気量調整手段を制御することが好ましい。
なお、合流空気が結露しない湿度範囲とは、分岐管の接続部から負荷までの配管上で合流空気が結露しない湿度範囲をいう。
このように、湿度検出手段で検出した湿度に基づいて希釈空気量調整手段を制御する構成とすることにより、希釈空気量調整手段を精度良く制御でき、合流空気が配管上で結露することをより確実に防止できる。
Furthermore, humidity detection means for detecting the humidity of the extracted air or the combined air of the extracted air and the diluted air is provided so that the combined air falls within a humidity range based on the humidity detected by the humidity detecting means. It is preferable to control the dilution air amount adjusting means.
In addition, the humidity range where condensed air does not condense means the humidity range where condensed air does not condense on piping from the connection part of a branch pipe to load.
In this way, by adopting a configuration in which the dilution air amount adjusting means is controlled based on the humidity detected by the humidity detecting means, the dilution air amount adjusting means can be controlled with high accuracy, and the combined air can be more condensed on the pipe. It can be surely prevented.

また、前記貯留槽の前記開口に、空気通過部を有し、槽内部に向けて下方に傾斜した板状のバイオマス流出防止手段を設けることが好ましい。
このように、バイオマス流出防止手段を設けることにより、開口から主として貯留槽内の空気のみを吸引し、バイオマスが開口から槽外へ流出することを防止できる。さらにこのバイオマス流出防止手段は槽内部に向けて下方に傾斜した板状の構成を有するため、貯留槽内部で結露水が生じた場合であっても、結露水は側壁からバイオマス流出防止手段を伝って槽内部へ流下するため、貯留槽外部へ水分が流出することがなく貯留槽周辺機器の流出水分による不具合の発生を防止できる。
Moreover, it is preferable to provide a plate-like biomass outflow prevention means having an air passage portion and inclined downward toward the inside of the tank at the opening of the storage tank.
Thus, by providing the biomass outflow prevention means, it is possible to suck only the air in the storage tank mainly from the opening and prevent the biomass from flowing out of the tank from the opening. Further, since this biomass outflow prevention means has a plate-like configuration inclined downward toward the inside of the tank, even when condensed water is generated inside the storage tank, the condensed water is transmitted from the side wall to the biomass outflow prevention means. Therefore, the water does not flow out of the storage tank, and it is possible to prevent the occurrence of problems due to the outflow water of the storage tank peripheral equipment.

上記した構成に加えて、前記バイオマス流出防止手段の傾斜角が、前記バイオマスの安息角を超える角度に設定されていることが好ましく、これによりバイオマス流出防止手段上にバイオマスが堆積することを防止できる。   In addition to the above-described configuration, it is preferable that the inclination angle of the biomass outflow prevention means is set to an angle exceeding the repose angle of the biomass, thereby preventing biomass from being deposited on the biomass outflow prevention means. .

また、前記貯留槽の側壁外側に前記開口を囲繞するようにバッファ空間を形成するケーシングを設け、前記ケーシングに前記配管を接続した構成とすることが好ましい。
このように、開口と配管との間にバッファ空間を設けることにより、開口からバイオマスが流出した場合であってもこのバッファ空間に留まり、配管が閉塞することを防止できる。
Further, it is preferable that a casing for forming a buffer space is provided outside the side wall of the storage tank so as to surround the opening, and the piping is connected to the casing.
Thus, by providing the buffer space between the opening and the pipe, it is possible to prevent the pipe from being blocked due to staying in the buffer space even when biomass flows out from the opening.

以上記載のように本発明によれば、貯留槽内の空気を側壁の開口から引き抜く構成としたためバイオマスから蒸発した水分による貯留槽内の結露を防止でき、貯留槽からの水分の垂れ落ちが発生しないことから貯留槽周辺機器の腐食や摩耗、破損等の不具合を防止でき、且つ、貯留槽からの引抜空気に希釈空気を合流させて湿度を下げるようにしたため、配管や吸引手段等の機器の結露を防止可能である。   As described above, according to the present invention, since the air in the storage tank is drawn out from the opening of the side wall, condensation in the storage tank due to water evaporated from the biomass can be prevented, and dripping of water from the storage tank occurs. Therefore, it is possible to prevent problems such as corrosion, wear, and damage on the storage tank peripheral equipment, and to reduce the humidity by joining diluted air to the extraction air from the storage tank. Condensation can be prevented.

本発明の実施形態に係るバイオマス貯留装置の基本構成図である。It is a basic lineblock diagram of a biomass storage device concerning an embodiment of the present invention. ダンパの開度制御を説明する図である。It is a figure explaining the opening degree control of a damper. 貯留槽の開口付近を拡大した図であり、(A)は側断面図で、(B)は(A)のX−X断面図である。It is the figure which expanded the opening vicinity of the storage tank, (A) is a sectional side view, (B) is XX sectional drawing of (A). バイオマス流出防止手段を説明する図である。It is a figure explaining a biomass outflow prevention means. バイオマス流出防止手段の他の構成例を示す図であり、(A)は側断面図で、(B−1)は(A)のY方向矢視図(他の構成例1)で、(B−2)はY方向矢視図(他の構成例2)である。It is a figure which shows the other structural example of a biomass outflow prevention means, (A) is a sectional side view, (B-1) is a Y direction arrow view (other structural example 1) of (A), (B -2) is a view in the Y direction (another configuration example 2). 本発明の実施形態の一例であり、火力発電プラントの全体構成図である。1 is an example of an embodiment of the present invention, and is an overall configuration diagram of a thermal power plant.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1を参照して、本発明の実施形態に係るバイオマス貯留装置の基本構成を説明する。
バイオマス貯留装置の主要構成は、バイオマスを貯留する貯留槽1と、貯留槽1から負荷側へバイオマスを搬送する搬送コンベア10とを有するとともに、貯留槽1の側壁に設けた開口5から負荷側へ延設した配管11と、配管11上に設けた小型ファン12と、小型ファン12の吸込み側の配管11に接続した分岐管21とを有する。
なお、バイオマスとは、光合成によって作り出される生物由来の資源でエネルギー利用可能なものをいい、その中でも本実施形態では特に、バーク、間伐材、建設廃材、製材残材等の木質系バイオマスを所定大きさ以下まで破砕したものであることが好ましい。
With reference to FIG. 1, the basic composition of the biomass storage apparatus which concerns on embodiment of this invention is demonstrated.
The main configuration of the biomass storage apparatus includes a storage tank 1 that stores biomass and a transport conveyor 10 that transports biomass from the storage tank 1 to the load side, and from an opening 5 provided on the side wall of the storage tank 1 to the load side. The pipe 11 extends, a small fan 12 provided on the pipe 11, and a branch pipe 21 connected to the pipe 11 on the suction side of the small fan 12.
Biomass refers to a bio-derived resource created by photosynthesis that can be used for energy, and in this embodiment, in particular, woody biomass such as bark, thinned wood, construction waste, and remaining lumber is of a predetermined size. It is preferable that the material is crushed to a thickness below.

貯留槽1は、槽本体2の上部に燃料投入口3が設けられ、底部に燃料排出部4が設けられ、側壁に開口5が形成されている。槽本体2は、バイオマスから発生する煤塵や臭気成分が飛散することを防止するために密閉型となっている。燃料投入口3は開閉可能となっており、ここから適宜バイオマスが投入される。燃料排出部4は、槽内のバイオマスを所定量ずつ切り出して排出する構成となっており、切り出し量調整手段と排出口とを有する。切り出し量調整手段には、例えば図1に示すような旋回スクリューレクレーマや特許文献2に開示されるようなスクリューフィーダを用いることができる。開口5は、槽本体2の側壁に設けられ、より好ましくは槽本体2の側壁の下部に設けられる。開口5の形状は方形であっても円形であってもよい。また、この開口5は、槽本体2に対して一つだけ設けてもよいし、周方向に複数設けてもよい。なお、図1では一例として、開口5を槽本体2に一つだけ設けた場合を示している。   The storage tank 1 has a fuel inlet 3 at the top of the tank body 2, a fuel discharge part 4 at the bottom, and an opening 5 in the side wall. The tank body 2 is a sealed type in order to prevent dust and odor components generated from biomass from being scattered. The fuel input port 3 can be opened and closed, and biomass is appropriately input from here. The fuel discharge unit 4 is configured to cut out and discharge a predetermined amount of biomass in the tank, and has a cut-out amount adjusting means and a discharge port. As the cut-out amount adjusting means, for example, a turning screw reclaimer as shown in FIG. 1 or a screw feeder as disclosed in Patent Document 2 can be used. The opening 5 is provided in the side wall of the tank body 2, and more preferably in the lower part of the side wall of the tank body 2. The shape of the opening 5 may be square or circular. Further, only one opening 5 may be provided for the tank body 2 or a plurality of openings 5 may be provided in the circumferential direction. In addition, in FIG. 1, the case where only one opening 5 is provided in the tank main body 2 is shown as an example.

搬送コンベア10は、貯留槽1の燃料排出部4の近傍に設けられ、この燃料排出部4より排出されたバイオマスを負荷側へ搬送する。この搬送コンベア10には、例えばベルトコンベアが用いられる。
ここで、本実施形態において負荷とは、バイオマスを少なくとも原料の一部として用いてエネルギーを生成する装置であり、例えば燃焼炉や生物処理装置やバイオエタノール製造装置等であるが、好適には、少なくとも燃料の一部として木質系バイオマスを用いる燃焼炉(乾留、炭化炉を含む)であるとよい。
The conveyor 10 is provided in the vicinity of the fuel discharge part 4 of the storage tank 1, and conveys the biomass discharged from the fuel discharge part 4 to the load side. For example, a belt conveyor is used as the conveyor 10.
Here, the load in the present embodiment is a device that generates energy using biomass as at least a part of the raw material, for example, a combustion furnace, a biological treatment device, a bioethanol production device, etc. It is good that it is a combustion furnace (including dry distillation and carbonization furnace) using woody biomass as at least a part of fuel.

配管11は、一端側が貯留槽1の開口5に接続され、他端側が負荷へ接続される。この配管11上には、開口5を介して貯留槽1内の空気を引き抜く吸引手段として小型ファン12が設けられており、槽内から引き抜いた引抜空気を負荷へ導くようになっている。小型ファンは、貯留槽1内が飽和蒸気圧未満に保たれるように連続的に又は適宜断続的に作動される。
さらに、小型ファン12の吸込み側の配管11、すなわち開口5と小型ファン12の間の配管11には分岐管21が接続されており、槽外から希釈空気を引き込み貯留槽からの引抜空気に合流させるようになっている。なお、希釈空気とは、槽内の引抜空気よりも湿度が低い空気であり、好適には外気である。
One end of the pipe 11 is connected to the opening 5 of the storage tank 1 and the other end is connected to a load. A small fan 12 is provided on the pipe 11 as a suction means for extracting the air in the storage tank 1 through the opening 5 and guides the extracted air extracted from the tank to the load. The small fan is continuously or appropriately intermittently operated so that the inside of the storage tank 1 is maintained below the saturated vapor pressure.
Further, a branch pipe 21 is connected to the pipe 11 on the suction side of the small fan 12, that is, the pipe 11 between the opening 5 and the small fan 12, and draws dilution air from the outside of the tank and joins the drawn air from the storage tank. It is supposed to let you. The diluted air is air having a lower humidity than the drawn air in the tank, and is preferably outside air.

このように本実施形態によれば、貯留槽1内の空気を側壁の開口5から引き抜く構成としているため、貯留槽1内を飽和蒸気圧未満に保つことができる。よって、バイオマスから蒸発した水分による貯留槽1内の結露を防止でき、貯留槽1からの水分の垂れ落ちが発生しないことから搬送コンベア10等の貯留槽周辺機器の腐食や摩耗、破損等の不具合を防止できる。
このとき、開口5からの引抜空気は湿度が高いため引抜空気が通過する配管11や小型ファン12等が結露して不具合を生じることが考えられるが、本実施形態では小型ファン12より上流側で引抜空気に希釈空気を合流させ湿度を下げるようにしたため、分岐管21より下流側の配管11や小型ファン12等の機器の結露を防止可能である。
Thus, according to this embodiment, since it is set as the structure which draws out the air in the storage tank 1 from the opening 5 of a side wall, the inside of the storage tank 1 can be kept below saturated vapor pressure. Therefore, dew condensation in the storage tank 1 due to moisture evaporated from the biomass can be prevented, and no dripping of water from the storage tank 1 occurs, so that problems such as corrosion, wear, and damage of peripheral equipment of the storage tank such as the conveyor 10 Can be prevented.
At this time, since the extraction air from the opening 5 is high in humidity, it is considered that the piping 11 through which the extraction air passes, the small fan 12, etc. may condense and cause problems, but in the present embodiment, on the upstream side of the small fan 12. Since the dilution air is merged with the drawn air to reduce the humidity, it is possible to prevent dew condensation on equipment such as the pipe 11 and the small fan 12 on the downstream side of the branch pipe 21.

また、本実施形態においては、分岐管21上に、希釈空気の供給量を調整する希釈空気量調整手段としてダンパ22を設ける。このダンパ22は、手動制御であっても自動制御であってもよい。
一般にバイオマスはその水分保有量が一定ではなく、これにより引抜空気の湿度が変動したり、また引抜空気若しくは希釈空気の温度も変動することがあるが、本構成のようにダンパ22を設けることで、上記したような条件変動に対応して希釈空気の供給量を調整することが可能となり、合流空気が配管11上で結露することを確実に防止できる。
Further, Oite to the present embodiment, on the branch pipe 21, provided with a damper 22 as dilution air amount adjusting means for adjusting the supply amount of dilution air. The damper 22 may be manually controlled or automatically controlled.
In general, the amount of moisture held in biomass is not constant, which may cause the humidity of the drawn air to fluctuate and the temperature of the drawn air or diluted air to fluctuate. However, by providing the damper 22 as in this configuration, In addition, it becomes possible to adjust the supply amount of the dilution air in response to the above-described condition variation, and it is possible to reliably prevent the merging air from condensing on the pipe 11.

さらにまた、本実施形態においは、引抜空気又は引抜空気と希釈空気の合流空気の湿度を検出する湿度検出手段23を設け、この湿度検出手段23で検出した湿度に基づいて、合流空気が結露しない湿度範囲となるようにダンパ22を制御する。なお、合流空気が結露しない湿度範囲とは、分岐管21の接続部から負荷までの配管11上で合流空気が結露しない湿度範囲をいう。 Furthermore, the Te embodiment smell, the humidity detecting means 23 for detecting the humidity of the confluent air in the dilution air and drawing air or drawing air provided, based on the humidity detected by the humidity detecting means 23, confluent air condensing The damper 22 is controlled so that the humidity range is not exceeded. In addition, the humidity range where condensed air does not condense means the humidity range where condensed air does not condense on the piping 11 from the connection part of the branch pipe 21 to a load.

図1では好ましい構成例として、湿度検出手段23を小型ファン12より下流側に設け、合流空気の湿度を検出するようにしている。このように合流後の合流空気の湿度を検出することで合流空気が結露しない湿度範囲となったことを確認することもできる。この湿度検出手段の他に、合流空気の温度又は引抜空気と希釈空気のそれぞれの温度を検出する温度検出手段(図示略)を設けてもよく、温度検出手段で検出された空気温度に基づいて配管11内で合流空気が結露しない正確な湿度範囲を算出することが好ましい。これに加えて、負荷近傍における合流空気の温度を検出する温度検出手段を設け、最も温度低下して結露しやすい合流空気の温度を検出し、合流空気が結露しない正確な湿度範囲を算出することがより好ましい。このようにして求められた湿度範囲となるように、ダンパ22を制御して希釈空気の供給量を調整する。   In FIG. 1, as a preferred configuration example, the humidity detecting means 23 is provided downstream of the small fan 12 so as to detect the humidity of the combined air. By detecting the humidity of the merged air after merging in this way, it can also be confirmed that the humidity range where the merging air is not condensed is obtained. In addition to the humidity detecting means, temperature detecting means (not shown) for detecting the temperature of the combined air or the temperatures of the drawn air and the diluted air may be provided. Based on the air temperature detected by the temperature detecting means. It is preferable to calculate an accurate humidity range in which the combined air does not condense in the pipe 11. In addition to this, temperature detection means for detecting the temperature of the merging air in the vicinity of the load is provided, the temperature of the merging air that is most likely to condense due to temperature drop is detected, and an accurate humidity range in which the merging air does not condense is calculated. Is more preferable. The damper 22 is controlled to adjust the supply amount of dilution air so that the humidity range obtained in this way is obtained.

しかしこの構成に限定されるものではなく、湿度検出手段23を開口5から分岐管21の接続部の間に設けてもよい。この場合、引抜空気と希釈空気のそれぞれの湿度と温度に基づいて引抜空気と希釈空気の混合割合を算出し、希釈空気の供給量をダンパ22で調整する。例えば、抜き出し空気が温度30℃(相対湿度100%)、希釈空気が温度15℃(相対湿度50%)であり、合流後の合流空気が配管11下流側で15℃(希釈空気と同様)まで温度低下する場合、希釈空気を引抜空気の約3倍以上で混合させればよい。   However, the present invention is not limited to this configuration, and the humidity detecting means 23 may be provided between the opening 5 and the connecting portion of the branch pipe 21. In this case, the mixing ratio of the drawn air and the diluted air is calculated based on the respective humidity and temperature of the drawn air and the diluted air, and the supply amount of the diluted air is adjusted by the damper 22. For example, the extracted air has a temperature of 30 ° C. (relative humidity 100%), the diluted air has a temperature of 15 ° C. (relative humidity 50%), and the merged air after merging reaches 15 ° C. (similar to the diluted air) downstream of the pipe 11. When the temperature decreases, the dilution air may be mixed at about 3 times or more of the extraction air.

このように、湿度検出手段23で検出した湿度に基づいてダンパ22を制御する構成とすることにより、ダンパ22を精度良く制御でき、合流空気が配管11上で結露することをより確実に防止できる。   Thus, by setting it as the structure which controls the damper 22 based on the humidity detected by the humidity detection means 23, the damper 22 can be controlled with a sufficient precision and it can prevent more reliably that condensed air condenses on the piping 11. FIG. .

ここで、図2を参照して、ダンパ22の具体的な制御方法を説明する。
湿度検出手段23で合流空気の湿度を検出する場合(図1参照)、合流空気の湿度があらかじめ設定した湿度H1となるまでは、ダンパ22は一定の基準開度に制御する。この湿度H1は、配管11終端(負荷側)においても合流空気が結露しない湿度の上限値である。なお、この上限値は誤差等による安全域を含む。
一方、合流空気の湿度が湿度H1以上となったら、検出湿度に対して比例的にダンパ22の開度を開くように制御する。
このように、設定した湿度H1を基準として、湿度H1以下ではダンパ22を基準開度に維持し、湿度H1以上ではダンパ22を開側に制御する2段階制御を行なうことにより、ダンパ22の制御を容易にし、且つ確実な結露防止が可能となる。
Here, a specific control method of the damper 22 will be described with reference to FIG.
When the humidity of the merged air is detected by the humidity detecting means 23 (see FIG. 1), the damper 22 is controlled to a constant reference opening until the humidity of the merged air reaches a preset humidity H1. This humidity H1 is an upper limit value of the humidity at which the combined air does not condense even at the end of the pipe 11 (load side). This upper limit value includes a safety range due to an error or the like.
On the other hand, when the humidity of the combined air becomes equal to or higher than the humidity H1, control is performed to open the opening of the damper 22 in proportion to the detected humidity.
As described above, the damper 22 is controlled by performing the two-stage control in which the damper 22 is maintained at the reference opening when the humidity is equal to or lower than the humidity H1, and the damper 22 is controlled to be opened when the humidity is equal to or higher than the humidity H1. Can be easily prevented and condensation can be reliably prevented.

また、本実施形態に係るバイオマス貯留装置は、図3乃至図5に示すように、貯留槽1の開口5にバイオマス流出防止手段6を設けることが好ましい。
バイオマス流出防止手段6は、空気を通過させる空気通過部7を有し、貯留槽内部に向けて下方に傾斜した板状に形成される。このバイオマス流出防止手段6は、空気通過部7から主として空気のみを通過させる構成となっており、バイオマスが空気に巻き込まれて槽外へ流出することを阻止する。さらに、バイオマス流出防止手段6は貯留槽内部に向けて下方に傾斜した板状に形成されているため、槽内に結露水が生じた場合であってもこの結露水は側壁からバイオマス流出防止手段6を伝って槽内部へ流下する。したがって、貯留槽外部へ水分が流出することがなく貯留槽周辺機器の流出水分による不具合の発生を防止できる。
Moreover, it is preferable that the biomass storage apparatus which concerns on this embodiment provides the biomass outflow prevention means 6 in the opening 5 of the storage tank 1, as shown in FIG. 3 thru | or FIG.
The biomass outflow prevention means 6 has an air passage portion 7 through which air passes and is formed in a plate shape inclined downward toward the inside of the storage tank. The biomass outflow prevention means 6 is configured to allow only air to pass mainly from the air passage portion 7, and prevents the biomass from being caught in the air and flowing out of the tank. Furthermore, since the biomass outflow prevention means 6 is formed in a plate shape inclined downward toward the inside of the storage tank, even when condensed water is generated in the tank, the condensed water is prevented from flowing out from the side wall by the biomass outflow prevention means. It flows down to the inside of the tank through 6. Therefore, moisture does not flow out to the outside of the storage tank, and it is possible to prevent the occurrence of problems due to the outflow moisture of the storage tank peripheral equipment.

図3を参照して、バイオマス流出防止手段6の具体的な構成例を説明する。ここで図3は、貯留槽の開口付近を拡大した図であり、(A)は側断面図で、(B)は(A)のX−X断面図である。
バイオマス流出手段6は、開口5に水平方向に架け渡された長尺な板部材6aが鉛直方向に多段に配設された構成を有する。板部材6a同士の間には間隙が形成され、この間隙が空気通過部7となっている。板部材6aは、貯留槽内部に向けて下方に傾斜して設置されている。
With reference to FIG. 3, the specific structural example of the biomass outflow prevention means 6 is demonstrated. Here, FIG. 3 is an enlarged view of the vicinity of the opening of the storage tank, (A) is a side sectional view, and (B) is an XX sectional view of (A).
The biomass outflow means 6 has a configuration in which long plate members 6a that are stretched horizontally in the opening 5 are arranged in multiple stages in the vertical direction. A gap is formed between the plate members 6 a, and this gap serves as an air passage portion 7. The plate member 6a is installed to be inclined downward toward the inside of the storage tank.

図4は図3に示したバイオマス流出手段を詳細に説明する図である。
同図に示すように、水平面に対する板部材6aの傾斜角度θ1は、バイオマスの安息角を超える角度に設定されていることが好ましい。これにより板部材6a上にバイオマスが堆積することを防止できる。
また、バイオマス流出手段6は、空気通過部7からのバイオマスの流出を防止するために以下の条件を満たすように設計することが好ましい。
隣接する2つの板部材6aの面の距離dをバイオマスの粒径未満に設定するか、若しくは板部材6aの上端とこれに隣接する板部材6aの下端とを結ぶ面と、水平面とでなす角度θ2がバイオマスの安息角未満となるように設定する。これらの少なくとも一方、好ましくは両方の条件を満たすようにバイオマス流出手段6を設計することで、空気通過部7からのバイオマスの流出を確実に防止できる。
さらにまた、板部材6aは、貯留槽内部に向けて下方に傾斜して設置されていることから、槽外への水分の流出を防止可能である。
FIG. 4 is a diagram for explaining the biomass outflow means shown in FIG. 3 in detail.
As shown in the figure, the inclination angle θ1 of the plate member 6a with respect to the horizontal plane is preferably set to an angle exceeding the repose angle of biomass. Thereby, it is possible to prevent biomass from being deposited on the plate member 6a.
The biomass outflow means 6 is preferably designed to satisfy the following conditions in order to prevent the outflow of biomass from the air passage portion 7.
The distance d between the surfaces of the two adjacent plate members 6a is set to be less than the particle size of biomass, or the angle formed by the surface connecting the upper end of the plate member 6a and the lower end of the plate member 6a adjacent thereto and the horizontal plane θ2 is set to be less than the angle of repose of biomass. By designing the biomass outflow means 6 so as to satisfy at least one of these, preferably both conditions, the outflow of biomass from the air passage portion 7 can be reliably prevented.
Furthermore, since the plate member 6a is installed to be inclined downward toward the inside of the storage tank, it is possible to prevent moisture from flowing out of the tank.

また、図3に示すように、貯留槽1の側壁外側に開口5を囲繞するようにバッファ空間9を形成するケーシング8を設け、このケーシング8に配管11を接続する構成としてもよい。このように、開口5と配管11との間にバッファ空間9を設けることにより、開口5からバイオマスが流出した場合であってもこのバッファ空間9に留まり、配管11が閉塞することを防止できる。
このとき、ケーシング8に開閉自在な清掃口8aを設けて、バイオマスのダスト等により空気通過部7に詰まりが発生した場合にこれを除去できる構造とすることが好ましい。
Further, as shown in FIG. 3, a casing 8 that forms a buffer space 9 may be provided outside the side wall of the storage tank 1 so as to surround the opening 5, and a pipe 11 may be connected to the casing 8. Thus, by providing the buffer space 9 between the opening 5 and the pipe 11, even when biomass flows out from the opening 5, it remains in the buffer space 9 and can prevent the pipe 11 from being blocked.
At this time, it is preferable that the casing 8 is provided with a freely openable / closable cleaning port 8a so that it can be removed when the air passage 7 is clogged with biomass dust or the like.

図5はバイオマス流出防止手段の他の構成例を示す図であり、(A)は側断面図で、(B−1)は(A)のY方向矢視図(他の構成例1)で、(B−2)はY方向矢視図(他の構成例2)である。
図5(A)に示すように、このバイオマス流出防止手段6は、開口5の全面を覆うように配置された一枚の板状に形成されている。
FIG. 5 is a diagram showing another configuration example of biomass outflow prevention means, (A) is a side sectional view, and (B-1) is a view in the Y direction of (A) (another configuration example 1). (B-2) is a view in the Y direction (another configuration example 2).
As shown in FIG. 5 (A), this biomass outflow prevention means 6 is formed in a single plate shape arranged so as to cover the entire surface of the opening 5.

さらに、図5(B−1)の他の構成例1に示すように、バイオマス流出防止手段6は鉛直方向に櫛歯が並んだ櫛型に形成されていてもよい。この場合、櫛歯間の隙間が空気通過部7となる。櫛歯は貯留槽内部に向けて下方に傾斜して配置され、水分は櫛歯を伝って槽内部に流れ落ちるようになっている。
さらにまた、図5(B−2)の他の構成例2に示すように、バイオマス流出防止手段6を、枠型にメッシュが嵌め込まれた構成としてもよい。この場合、メッシュが空気通過部7となる。枠型及びメッシュは貯留槽内部に向けて下方に傾斜して配置され、水分は枠型又はメッシュを伝って槽内部に流れ落ちるようになっている。
Furthermore, as shown in another configuration example 1 of FIG. 5B-1, the biomass outflow prevention means 6 may be formed in a comb shape in which comb teeth are arranged in the vertical direction. In this case, the gap between the comb teeth becomes the air passage portion 7. The comb teeth are arranged so as to incline downward toward the inside of the storage tank, and moisture flows down into the tank through the comb teeth.
Furthermore, as shown in another configuration example 2 of FIG. 5 (B-2), the biomass outflow prevention means 6 may have a configuration in which a mesh is fitted in a frame shape. In this case, the mesh becomes the air passage portion 7. The frame mold and the mesh are arranged so as to be inclined downward toward the inside of the storage tank, and moisture flows down into the tank through the frame mold or the mesh.

次に、図6を参照して、本実施形態のバイオマス貯留装置が適用されるプラントの一例を説明する。図6は火力発電プラントの全体構成図である。なお、バイオマス貯留装置の詳細な構成については、既に説明しているため省略する。
火力発電プラントは、主に、バイオマス貯留装置と、燃焼炉30と、フィルタ33を含む排ガス処理装置と、誘引送風機34と、煙突35とを備える。
Next, an example of a plant to which the biomass storage apparatus of the present embodiment is applied will be described with reference to FIG. FIG. 6 is an overall configuration diagram of the thermal power plant. In addition, since it has already demonstrated about the detailed structure of the biomass storage apparatus, it abbreviate | omits.
The thermal power plant mainly includes a biomass storage device, a combustion furnace 30, an exhaust gas treatment device including a filter 33, an induction blower 34, and a chimney 35.

燃焼炉30は、一例として流動床ボイラを図示しているが、燃焼炉30の種類はこれに限定されるものではない。バイオマス貯留装置の貯留槽1から切り出されたバイオマスは搬送コンベア10により搬送され、他の燃料と混合されて燃焼炉30に投入される。
また、貯留槽1の開口5から延設された配管11は燃焼炉30の底部に接続され、この配管11上には前述したように分岐管21、小型ファン12が設けられている。さらに、小型ファン12より下流側の配管11上には押し込み送風機15が設けられ、その吸込み側の配管11に燃焼用空気の主空気を引き込む分岐管25が接続されている。
Although the combustion furnace 30 has illustrated the fluidized bed boiler as an example, the kind of the combustion furnace 30 is not limited to this. The biomass cut out from the storage tank 1 of the biomass storage device is transported by the transport conveyor 10, mixed with other fuels, and charged into the combustion furnace 30.
A pipe 11 extending from the opening 5 of the storage tank 1 is connected to the bottom of the combustion furnace 30, and the branch pipe 21 and the small fan 12 are provided on the pipe 11 as described above. Further, a pusher blower 15 is provided on the pipe 11 on the downstream side of the small fan 12, and a branch pipe 25 that draws main air of combustion air is connected to the pipe 11 on the suction side.

この構成により、貯留槽1から引き抜かれた引抜空気は希釈空気と混合された後、主空気とさらに混合されて燃焼炉30の底部より炉内に投入され、燃焼用空気として用いられる。ここで合流空気は主燃焼用空気として用いられる場合を示しているが、燃焼炉30の上部空間に合流空気を投入して二次燃焼用空気として用いることもできる。   With this configuration, the extracted air extracted from the storage tank 1 is mixed with the diluted air, and further mixed with the main air, and then introduced into the furnace from the bottom of the combustion furnace 30 to be used as combustion air. Here, the case where the combined air is used as the main combustion air is shown, but the combined air can be supplied to the upper space of the combustion furnace 30 and used as the secondary combustion air.

このように、小型ファン12の下流側に、燃焼用空気の主空気を引き込む分岐管25と押し込み送風機15とを設ける構成としたため全体としての配管構造を小型化できる。また、貯留槽1からの引抜空気を希釈空気や主空気とともに燃焼炉30に投入するようにしたため、引抜空気に含まれる煤塵や臭気成分を燃焼させ無害化することができる。したがって、引抜空気を処理するための空気浄化装置等を新たに設置する必要がなくなりコストの増加を防げる。   As described above, since the branch pipe 25 and the pusher blower 15 for drawing the main air of the combustion air are provided on the downstream side of the small fan 12, the overall piping structure can be reduced in size. Moreover, since the extraction air from the storage tank 1 is input into the combustion furnace 30 together with the dilution air and the main air, the dust and odor components contained in the extraction air can be burned and rendered harmless. Therefore, it is not necessary to newly install an air purification device or the like for treating the drawn air, and an increase in cost can be prevented.

1 貯留槽
2 槽本体
5 開口
6 バイオマス流出防止手段
6a 板部材
7 空気通過部
8 ケーシング
8a 清掃口
9 バッファ空間
10 搬送コンベア
11 配管
12 小型ファン
15 押し込み送風機
21、25 分岐管
22 ダンパ
23 湿度検出手段
30 燃焼炉
DESCRIPTION OF SYMBOLS 1 Storage tank 2 Tank main body 5 Opening 6 Biomass outflow prevention means 6a Plate member 7 Air passage part 8 Casing 8a Cleaning port 9 Buffer space 10 Conveyor 11 Pipe 12 Small fan 15 Push-in fan 21, 25 Branch pipe 22 Damper 23 Humidity detection means 30 Combustion furnace

Claims (6)

バイオマスを貯留する貯留槽と、前記貯留槽の底部から切り出された前記バイオマスを搬送する搬送手段とを有するバイオマス貯留装置において、
前記貯留槽の側壁に設けた開口と、前記開口と前記バイオマスが供給される負荷間を接続する配管と、前記配管上に設けられ、前記開口を介して貯留槽内の空気を引き抜く吸引手段と、該吸引手段の吸込み側の前記配管上に接続され、槽外から希釈空気を引き込み前記貯留槽からの引抜空気に合流させる分岐管と、前記分岐管上に設けた、前記希釈空気の供給量を調整する希釈空気量調整手段とを具えるとともに、前記配管上に前記引抜空気又は引抜空気と希釈空気の合流空気の湿度を検出する湿度検出手段を設け、該湿度検出手段よりの検知出力に基づいて希釈空気量調整手段を制御して分岐管の接続部から負荷までの配管上で合流空気が結露しない湿度範囲に設定したことを特徴とするバイオマス貯留装置。
In a biomass storage apparatus having a storage tank for storing biomass and a transport means for transporting the biomass cut out from the bottom of the storage tank,
An opening provided in the side wall of the storage tank, the piping which the open port biomass connecting the load to be supplied, is provided on the pipe, suction means to pull the air inside the reservoir through the opening When connected to the suction side of the pipe of the suction means, the branch pipe to join the extraction air from the reservoir draws dilution air from outside the tank, provided on the branch pipe, the supply of the dilution air A dilution air amount adjusting means for adjusting the amount, and a humidity detecting means for detecting the humidity of the drawn air or the combined air of the drawn air and the diluted air is provided on the pipe, and a detection output from the humidity detecting means A biomass storage device characterized in that the dilution air amount adjusting means is controlled based on the above and is set to a humidity range in which the merging air does not condense on the piping from the connecting portion of the branch pipe to the load .
前記貯留槽から前記バイオマスを供給される前記負荷が燃焼炉であって、
前記燃焼炉に前記配管が接続され、前記引抜空気と前記希釈空気の合流空気を燃焼用空気の少なくとも一部として用いることを特徴とする請求項1に記載のバイオマス貯留装置。
The load supplied with the biomass from the storage tank is a combustion furnace,
The biomass storage device according to claim 1, wherein the piping is connected to the combustion furnace, and the combined air of the extraction air and the dilution air is used as at least a part of the combustion air.
湿度検出手段を前記吸引手段より下流側に設け、分岐管の接続部から負荷までの配管上合流空気の湿度を検出するようにしたことを特徴とする請求項1又は2に記載のバイオマス貯留装置。 The biomass storage device according to claim 1 or 2, wherein a humidity detection means is provided downstream of the suction means to detect the humidity of the combined air on the pipe from the branch pipe connection portion to the load. . 前記貯留槽の前記開口に、空気通過部を有し、槽内部に向けて下方に傾斜した板状のバイオマス流出防止手段を設けたことを特徴とする請求項記載のバイオマス貯留装置。 Wherein the opening of the reservoir has an air passage section, biomass storage device according to claim 1, characterized in that a plate-like biomass outflow preventing section which is inclined downward toward the inside the tank. 前記バイオマス流出防止手段の傾斜角が、前記バイオマスの安息角を超える角度に設定されていることを特徴とする請求項に記載のバイオマス貯留装置。 The biomass storage device according to claim 4 , wherein an inclination angle of the biomass outflow prevention means is set to an angle exceeding an angle of repose of the biomass. 前記貯留槽の側壁外側に前記開口を囲繞するようにバッファ空間を形成するケーシングを設け、前記ケーシングに前記配管を接続したことを特徴とする請求項1乃至のいずれか一項に記載のバイオマス貯留装置。 The biomass according to any one of claims 1 to 5 , wherein a casing that forms a buffer space is provided outside the side wall of the storage tank so as to surround the opening, and the pipe is connected to the casing. Storage device.
JP2010133241A 2010-06-10 2010-06-10 Biomass storage device Expired - Fee Related JP5595132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010133241A JP5595132B2 (en) 2010-06-10 2010-06-10 Biomass storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010133241A JP5595132B2 (en) 2010-06-10 2010-06-10 Biomass storage device

Publications (2)

Publication Number Publication Date
JP2011255941A JP2011255941A (en) 2011-12-22
JP5595132B2 true JP5595132B2 (en) 2014-09-24

Family

ID=45472581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010133241A Expired - Fee Related JP5595132B2 (en) 2010-06-10 2010-06-10 Biomass storage device

Country Status (1)

Country Link
JP (1) JP5595132B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013112993A2 (en) * 2012-01-26 2013-08-01 Microcoal, Inc. Apparatus and methods for treating solids by electromagnetic radiation
CN102941987B (en) * 2012-10-19 2015-05-20 宁波东来化工有限公司 Catalyst measuring tank
EP2801540B1 (en) * 2013-05-06 2017-08-30 ADMEDE AB Advanced Mechanical Design AB System comprising a ventilation system for biomass pellets storage for reduction of carbon monoxide concentrations
US9810480B2 (en) 2015-06-12 2017-11-07 Targeted Microwave Solutions Inc. Methods and apparatus for electromagnetic processing of phyllosilicate minerals

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010796U (en) * 1983-06-30 1985-01-24 豊国工業株式会社 Receipt hoppa
JPH081322B2 (en) * 1987-11-13 1996-01-10 鹿島建設株式会社 Aroma generator built into the air conditioner
JPH04293427A (en) * 1991-03-20 1992-10-19 Nkk Corp Low-temperature silo
JPH08261420A (en) * 1995-03-27 1996-10-11 Shigeru Saito Gravel bed furnace
JP2006016688A (en) * 2004-05-31 2006-01-19 Jfe Steel Kk Finish-heat treatment method for iron powder and apparatus therefor
JP4725712B2 (en) * 2005-01-25 2011-07-13 オヤマダエンジニアリング株式会社 Solid fuel combustion equipment

Also Published As

Publication number Publication date
JP2011255941A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5595132B2 (en) Biomass storage device
US9945556B2 (en) Fossil-fuel power generation system assisted by waste incineration
CN102607043B (en) Method and device for synergetic stable incineration of sludge and solid waste and dioxin emission suppression
CA2798537A1 (en) Reduced fossil fuel in an oxidizer downstream of a biomass furnace
CN107461746A (en) A kind of small-sized domestic garbage pyrolysis gasification oven and cleaning system
MXPA06011665A (en) Probe and system for extracting gases from a process environment.
CN109654502A (en) A method of using hot plate furnace Direct Disposal multiphase solid waste
RU2306485C1 (en) Ash trapper
JP2010264401A (en) Flue gas denitration apparatus
JP6322116B2 (en) Incineration plant
US20150246361A1 (en) Method and device for separating fine-grained fractions from the cinders of a waste incineration plant
EP2889537B1 (en) Combustion facility with drying plant
CN205773425U (en) A kind of have the acid regeneration station brown iron oxide cooling down processing system mending wind function
JP6628280B2 (en) Fuel supply device and power generation device
CN116425243A (en) Boiler system
EP2949993A1 (en) Heating apparatus
CN211913307U (en) Boiler flue gas dust removal and pollution reduction equipment with spiral cooling smoke pipe
CN104478243B (en) Method for treating sludge by cement kiln and cement kiln system for treating sludge by grate cooler
CN211799615U (en) A flue gas processing apparatus for gangue brick is made
CN207330990U (en) A kind of pipe-line system of tempering furnace burner
CN212999195U (en) Gas-material separation device, activated carbon transportation system and adsorption and desorption system
CN217031199U (en) Kitchen waste treatment device
CN210527703U (en) A protection is cleared away wind device for weighing feeder
CN219037596U (en) Presintering furnace system suitable for denitrification facility
CN214249561U (en) Full-automatic horizontal boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140805

R151 Written notification of patent or utility model registration

Ref document number: 5595132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees