JP5590553B2 - Organic semiconductor materials - Google Patents

Organic semiconductor materials Download PDF

Info

Publication number
JP5590553B2
JP5590553B2 JP2010135757A JP2010135757A JP5590553B2 JP 5590553 B2 JP5590553 B2 JP 5590553B2 JP 2010135757 A JP2010135757 A JP 2010135757A JP 2010135757 A JP2010135757 A JP 2010135757A JP 5590553 B2 JP5590553 B2 JP 5590553B2
Authority
JP
Japan
Prior art keywords
group
thin film
organic
carbon atoms
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010135757A
Other languages
Japanese (ja)
Other versions
JP2012001452A (en
Inventor
ジュン ヤン キム
大輔 横山
千波矢 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Tosoh Corp
Original Assignee
Kyushu University NUC
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Tosoh Corp filed Critical Kyushu University NUC
Priority to JP2010135757A priority Critical patent/JP5590553B2/en
Publication of JP2012001452A publication Critical patent/JP2012001452A/en
Application granted granted Critical
Publication of JP5590553B2 publication Critical patent/JP5590553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、新規なアミン化合物及びそれを用いた有機光電子デバイスに関するものである。   The present invention relates to a novel amine compound and an organic optoelectronic device using the same.

近年、有機EL素子や有機薄膜太陽電池のように、有機固体薄膜を利用した有機光電子デバイスの開発が精力的に行われている。これらのデバイスを構成する有機固体薄膜の厚さは一般的に数十〜数百nmである。従って、有機EL素子や有機薄膜太陽電池では、成膜時に均質且つ平滑なアモルファス薄膜を形成する材料が用いられている。一方、アモルファス状態は分子の配置がランダムであり、分子が完全に配向している結晶状態と比較すると、電荷の輸送においては不利な分子配置であると言える。有機固体薄膜の電荷輸送特性は、有機EL素子では駆動電圧、有機薄膜太陽電池では光電変換効率に影響する。従って、これらの素子に用いる材料には、成膜時にアモルファス状態を形成し、且つ高い電荷輸送特性を有することが求められる。このような中、近年、電子輸送性を有するオキサジアゾール誘導体(Bpy−OXD)がアモルファス薄膜内において基板面方向に配向する現象が報告されている(例えば、非特許文献1参照)。多入射角分光エリプソメトリーによるBpy−OXD薄膜の解析から、Bpy−OXDが成膜時に基板と平行方向に配向し、膜の厚み方向にスタッキングすることが明らかにされた。更に、分子の配向と電子移動度には相関があり、薄膜内での分子配向がアモルファス薄膜の電荷輸送性の向上に有効であることが示されている。このような背景から、有機固体薄膜を利用した有機光電子デバイスにおいて、配向性を有する材料の開発は、デバイス特性の向上に有効である。   In recent years, organic optoelectronic devices using organic solid thin films, such as organic EL elements and organic thin film solar cells, have been vigorously developed. The thickness of the organic solid thin film constituting these devices is generally several tens to several hundreds nm. Accordingly, materials that form a uniform and smooth amorphous thin film during film formation are used in organic EL elements and organic thin film solar cells. On the other hand, in the amorphous state, the arrangement of molecules is random, and it can be said that this is a disadvantageous arrangement in terms of charge transport compared to a crystalline state in which the molecules are completely oriented. The charge transport property of the organic solid thin film affects the driving voltage in the organic EL element and the photoelectric conversion efficiency in the organic thin film solar cell. Therefore, materials used for these elements are required to form an amorphous state during film formation and have high charge transport characteristics. Under such circumstances, in recent years, a phenomenon has been reported in which an oxadiazole derivative (Bpy-OXD) having an electron transport property is oriented in the substrate surface direction in an amorphous thin film (for example, see Non-Patent Document 1). Analysis of the Bpy-OXD thin film by multi-incidence angle spectroscopic ellipsometry revealed that Bpy-OXD was oriented in the direction parallel to the substrate during film formation and stacked in the thickness direction of the film. Furthermore, there is a correlation between the molecular orientation and the electron mobility, and it has been shown that the molecular orientation in the thin film is effective in improving the charge transport property of the amorphous thin film. From such a background, in the organic optoelectronic device using an organic solid thin film, the development of a material having orientation is effective in improving the device characteristics.

アミン化合物は、正孔輸送性を有すると共に蒸着法やスピンコート法によってアモルファス薄膜を形成することから、有機光電子デバイスに広く使用されている。例えば、4,4’−ビス[N−(1−ナフチル)−N−フェニル]ビフェニル(以下、NPDと略す)は、適当なイオン化ポテンシャルを有し、真空蒸着法によって均質なアモルファス薄膜を形成することから、有機EL素子の正孔輸送材料として汎用されている。しかしながら、NPDの正孔輸送特性は十分であるとは言えず、NPDを正孔輸送層に用いた有機EL素子の駆動電圧及びNPDをp層に用いた有機薄膜太陽電池の光電変換効率は改善の必要がある。NPDのアモルファス薄膜に関しても、多入射角分光エリプソメトリーによる配向解析がなされているが、NPDの薄膜内での分子配向はほぼランダムであると報告されている(例えば、非特許文献2参照)。従って、正孔輸送特性に優れるアモルファス膜を得るためには、成膜時に分子が配向するアミン化合物の開発が必要である。   Amine compounds are widely used in organic optoelectronic devices because they have hole transport properties and form an amorphous thin film by vapor deposition or spin coating. For example, 4,4′-bis [N- (1-naphthyl) -N-phenyl] biphenyl (hereinafter abbreviated as NPD) has an appropriate ionization potential and forms a homogeneous amorphous thin film by vacuum deposition. Therefore, it is widely used as a hole transport material for organic EL elements. However, it cannot be said that the hole transport characteristics of NPD are sufficient, and the driving voltage of the organic EL element using NPD as the hole transport layer and the photoelectric conversion efficiency of the organic thin film solar cell using NPD as the p layer are improved. There is a need for. Regarding the NPD amorphous thin film, orientation analysis by multi-incidence angle spectroscopic ellipsometry has been performed, but it has been reported that the molecular orientation in the NPD thin film is almost random (for example, see Non-Patent Document 2). Therefore, in order to obtain an amorphous film having excellent hole transport properties, it is necessary to develop an amine compound in which molecules are oriented during film formation.

Applied Physics Letter誌,2009年,第95巻,243303頁Applied Physics Letter, 2009, 95, 243303. Applied Physics Letter誌,2008年,第93巻,173302頁Applied Physics Letter, 2008, 93, 173302.

本発明は、有機光電子デバイスの正孔輸送材料に適したアミン化合物、更には該化合物の薄膜を用いた高性能な有機光電子デバイスを提供することを目的とする。   An object of the present invention is to provide an amine compound suitable for a hole transport material of an organic optoelectronic device, and further a high performance organic optoelectronic device using a thin film of the compound.

本発明者らは、鋭意検討した結果、特定の置換基を有する下記一般式(1)で表されるアミン化合物が正孔輸送特性に優れ、該化合物を正孔輸送層及び/又は正孔注入層に用いた有機EL素子の駆動電圧を改善し、該化合物をp層に用いた有機薄膜太陽電池の光電変換効率が高いことを見出し、本発明を完成するに至った。
即ち、本発明は、一般式(1)で表されるアミン化合物及びその用途に関するものである。
As a result of intensive studies, the present inventors have found that the amine compound represented by the following general formula (1) having a specific substituent has excellent hole transport properties, and the compound is used as a hole transport layer and / or a hole injection. The drive voltage of the organic EL element used for the layer was improved, and the photoelectric conversion efficiency of the organic thin-film solar cell using the compound for the p-layer was found, and the present invention was completed.
That is, the present invention relates to an amine compound represented by the general formula (1) and its use.

(式中、X〜X及びR〜R20は各々独立して水素原子、ハロゲン原子、炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、炭素数1〜18の直鎖、分岐若しくは環状のアルコキシ基、置換基を有してもよいアミノ基、置換基を有してもよい炭素数6〜50のアリール基又は置換基を有してもよい炭素数4〜50のヘテロアリール基を表す。但し、X〜Xの少なくとも2つは下記一般式(2)又は(3)で表される置換基である。) (Wherein, X 1 to X 4 and R 1 to R 20 are each independently a hydrogen atom, a halogen atom, a straight chain having 1 to 18 carbon atoms, a branched or cyclic alkyl group, or a straight chain having 1 to 18 carbon atoms. A branched or cyclic alkoxy group, an amino group which may have a substituent, an aryl group having 6 to 50 carbon atoms which may have a substituent, or an alkyl group which has 4 to 50 carbon atoms which may have a substituent. Represents a heteroaryl group, provided that at least two of X 1 to X 4 are substituents represented by the following general formula (2) or (3).

(式中、R21〜R28は各々独立して水素原子、ハロゲン原子、炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、炭素数1〜18の直鎖、分岐若しくは環状のアルコキシ基、置換基を有してもよいアミノ基、置換基を有してもよい炭素数6〜50のアリール基又は置換基を有してもよい炭素数4〜50のヘテロアリール基を表す。nは1〜3の整数である。) Wherein R 21 to R 28 are each independently a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 18 carbon atoms. A group, an amino group which may have a substituent, an aryl group having 6 to 50 carbon atoms which may have a substituent or a heteroaryl group having 4 to 50 carbon atoms which may have a substituent; n is an integer of 1 to 3.)

本発明による一般式(1)で表されるアミン化合物は、従来材料以上の高い正孔輸送特性を有するため、有機EL素子や有機薄膜太陽電池といった有機光電子デバイスの高性能化を実現することができる。   Since the amine compound represented by the general formula (1) according to the present invention has higher hole transport properties than those of conventional materials, it is possible to realize high performance of organic optoelectronic devices such as organic EL elements and organic thin film solar cells. it can.

図1は、実施例5,6及び比較例3,4で作製した素子の電流−電圧特性を示した図である。FIG. 1 is a graph showing current-voltage characteristics of the devices manufactured in Examples 5 and 6 and Comparative Examples 3 and 4. In FIG.

以下、本発明に関し詳細に説明する。
〔アミン化合物について〕
本発明の一般式(1)で表されるアミン化合物において、R〜R20は各々独立して水素原子、ハロゲン原子、炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、炭素数1〜18の直鎖、分岐若しくは環状のアルコキシ基、置換基を有してもよいアミノ基、置換基を有してもよい炭素数6〜50のアリール基又は置換基を有してもよい炭素数4〜50のヘテロアリール基を表す。
Hereinafter, the present invention will be described in detail.
[About amine compounds]
In the amine compound represented by the general formula (1) of the present invention, R 1 to R 20 are each independently a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, or a carbon number. 1-18 linear, branched or cyclic alkoxy groups, optionally substituted amino groups, optionally substituted aryl groups having 6 to 50 carbon atoms or substituents. A heteroaryl group having 4 to 50 carbon atoms is represented.

〜R20で示されるハロゲン原子としては、フッ素、塩素、臭素又はヨウ素原子が挙げられる。 Examples of the halogen atom represented by R 1 to R 20 include a fluorine, chlorine, bromine or iodine atom.

〜R20で示される炭素数1〜18の直鎖、分岐若しくは環状のアルキル基としては、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基、トリクロロメチル基、トリフルオロメチル基、シクロプロピル基、シクロヘキシル基等を例示することができるが、これらに限定されるものではない。 Specific examples of the linear, branched or cyclic alkyl group having 1 to 18 carbon atoms represented by R 1 to R 20 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and a sec-butyl group. , Tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group, trifluoromethyl group, cyclopropyl group, cyclohexyl group and the like, but are not limited thereto. It is not a thing.

〜R20で示される炭素数1〜18の直鎖、分岐若しくは環状のアルコキシ基としては、具体的には、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ステアリルオキシ基等を例示することができるが、これらに限定されるものではない。 Specific examples of the linear, branched or cyclic alkoxy group having 1 to 18 carbon atoms represented by R 1 to R 20 include methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, sec -Butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, stearyloxy group and the like can be exemplified, but are not limited thereto.

〜R20で示される置換基を有してもよいアミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジフェニルアミノ基、ジ(m−トリル)アミノ基、ジ(p−トリル)アミノ基、N−(m−トリル)フェニルアミノ基、N−(p−トリル)フェニルアミノ基、N−(1−ナフチル)フェニルアミノ基、N−(2−ナフチル)フェニルアミノ基、N−(4−ビフェニル)フェニルアミノ基、ジ(4−ビフェニル)アミノ基、ジ(2−ナフチル)アミノ基等を例示することができるが、これらに限定されるものではない。 Examples of the amino group optionally having a substituent represented by R 1 to R 20 include a dimethylamino group, a diethylamino group, a dipropylamino group, a dibutylamino group, a diphenylamino group, a di (m-tolyl) amino group, Di (p-tolyl) amino group, N- (m-tolyl) phenylamino group, N- (p-tolyl) phenylamino group, N- (1-naphthyl) phenylamino group, N- (2-naphthyl) phenyl An amino group, an N- (4-biphenyl) phenylamino group, a di (4-biphenyl) amino group, a di (2-naphthyl) amino group, and the like can be exemplified, but are not limited thereto.

〜R20で示される置換又は無置換の炭素数6〜50のアリール基としては、フェニル基、4−メチルフェニル基、3−メチルフェニル基、2−メチルフェニル基、4−エチルフェニル基、3−エチルフェニル基、2−エチルフェニル基、4−n−プロピルフェニル基、4−イソプロピルフェニル基、2−イソプロピルフェニル基、4−n−ブチルフェニル基、4−イソブチルフェニル基、4−sec−ブチルフェニル基、4−tert−ブチルフェニル基、4−n−ペンチルフェニル基、4−イソペンチルフェニル基、4−ネオペンチルフェニル基、4−n−ヘキシルフェニル基、4−n−オクチルフェニル基、4−n−デシルフェニル基、4−n−ドデシルフェニル基、4−シクロペンチルフェニル基、4−シクロヘキシルフェニル基、4−トリチルフェニル基、3−トリチルフェニル基、4−トリフェニルシリルフェニル基、3−トリフェニルシリルフェニル基、2,4−ジメチルフェニル基、2,5−ジメチルフェニル基、3,4−ジメチルフェニル基、3,5−ジメチルフェニル基、2,6−ジメチルフェニル基、2,3,5−トリメチルフェニル基、2,3,6−トリメチルフェニル基、3,4,5−トリメチルフェニル基、4−メトキシフェニル基、3−メトキシフェニル基、2−メトキシフェニル基、4−エトキシフェニル基、3−エトキシフェニル基、2−エトキシフェニル基、4−n−プロポキシフェニル基、3−n−プロポキシフェニル基、4−イソプロポキシフェニル基、2−イソプロポキシフェニル基、4−n−ブトキシフェニル基、4−イソブトキシフェニル基、2−sec−ブトキシフェニル基、4−n−ペンチルオキシフェニル基、4−イソペンチルオキシフェニル基、2−イソペンチルオキシフェニル基、4−ネオペンチルオキシフェニル基、2−ネオペンチルオキシフェニル基、4−n−ヘキシルオキシフェニル基、2−(2−エチルブチル)オキシフェニル基、4−n−オクチルオキシフェニル基、4−n−デシルオキシフェニル基、4−n−ドデシルオキシフェニル基、4−n−テトラデシルオキシフェニル基、4−シクロヘキシルオキシフェニル基、2−シクロヘキシルオキシフェニル基、4−フェノキシフェニル基、2−メチル−4−メトキシフェニル基、2−メチル−5−メトキシフェニル基、3−メチル−4−メトキシフェニル基、3−メチル−5−メトキシフェニル基、3−エチル−5−メトキシフェニル基、2−メトキシ−4−メチルフェニル基、3−メトキシ−4−メチルフェニル基、2,4−ジメトキシフェニル基、2,5−ジメトキシフェニル基、2,6−ジメトキシフェニル基、3,4−ジメトキシフェニル基、3,5−ジメトキシフェニル基、3,5−ジエトキシフェニル基、3,5−ジ−n−ブトキシフェニル基、2−メトキシ−4−エトキシフェニル基、2−メトキシ−6−エトキシフェニル基、3,4,5−トリメトキシフェニル基、4−フルオロフェニル基、3−フルオロフェニル基、2−フルオロフェニル基、2,3−ジフルオロフェニル基、2,4−ジフルオロフェニル基、2,5−ジフルオロフェニル基、2,6−ジフルオロフェニル基、3,4−ジフルオロフェニル基、3,5−ジフルオロフェニル基、4−(1−ナフチル)フェニル基、4−(2−ナフチル)フェニル基、3−(1−ナフチル)フェニル基、3−(2−ナフチル)フェニル基、1−ナフチル基、2−ナフチル基、4−メチル−1−ナフチル基、6−メチル−2−ナフチル基、4−フェニル−1−ナフチル基、6−フェニル−2−ナフチル基、2−アントリル基、9−アントリル基、10−フェニル−9−アントリル基、2−フルオレニル基、9,9−ジメチル−2−フルオレニル基、9,9−ジエチル−2−フルオレニル基、9,9−ジ−n−プロピル−2−フルオレニル基、9,9−ジ−n−オクチル−2−フルオレニル基、9,9−ジフェニル−2−フルオレニル基、9,9’−スピロビフルオレニル基、9−フェナントリル基、2−フェナントリル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、フルオランテニル基、ピレニル基、クリセニル基、ペリレニル基、ピセニル基、4−ビフェニリル基、3−ビフェニリル基、2−ビフェニリル基、p−ターフェニル基、m−ターフェニル基、o−ターフェニル基等を例示することができるが、これらに限定されるものではない。 Examples of the substituted or unsubstituted aryl group having 6 to 50 carbon atoms represented by R 1 to R 20 include a phenyl group, a 4-methylphenyl group, a 3-methylphenyl group, a 2-methylphenyl group, and a 4-ethylphenyl group. 3-ethylphenyl group, 2-ethylphenyl group, 4-n-propylphenyl group, 4-isopropylphenyl group, 2-isopropylphenyl group, 4-n-butylphenyl group, 4-isobutylphenyl group, 4-sec -Butylphenyl group, 4-tert-butylphenyl group, 4-n-pentylphenyl group, 4-isopentylphenyl group, 4-neopentylphenyl group, 4-n-hexylphenyl group, 4-n-octylphenyl group 4-n-decylphenyl group, 4-n-dodecylphenyl group, 4-cyclopentylphenyl group, 4-cyclohexylpheny Group, 4-tritylphenyl group, 3-tritylphenyl group, 4-triphenylsilylphenyl group, 3-triphenylsilylphenyl group, 2,4-dimethylphenyl group, 2,5-dimethylphenyl group, 3,4- Dimethylphenyl group, 3,5-dimethylphenyl group, 2,6-dimethylphenyl group, 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 3,4,5-trimethylphenyl group, 4-methoxyphenyl group, 3-methoxyphenyl group, 2-methoxyphenyl group, 4-ethoxyphenyl group, 3-ethoxyphenyl group, 2-ethoxyphenyl group, 4-n-propoxyphenyl group, 3-n-propoxyphenyl Group, 4-isopropoxyphenyl group, 2-isopropoxyphenyl group, 4-n-butoxyphenyl group, 4-isobutyl Xiphenyl group, 2-sec-butoxyphenyl group, 4-n-pentyloxyphenyl group, 4-isopentyloxyphenyl group, 2-isopentyloxyphenyl group, 4-neopentyloxyphenyl group, 2-neopentyloxyphenyl Group, 4-n-hexyloxyphenyl group, 2- (2-ethylbutyl) oxyphenyl group, 4-n-octyloxyphenyl group, 4-n-decyloxyphenyl group, 4-n-dodecyloxyphenyl group, 4 -N-tetradecyloxyphenyl group, 4-cyclohexyloxyphenyl group, 2-cyclohexyloxyphenyl group, 4-phenoxyphenyl group, 2-methyl-4-methoxyphenyl group, 2-methyl-5-methoxyphenyl group, 3 -Methyl-4-methoxyphenyl group, 3-methyl-5-methoxyphene Nyl group, 3-ethyl-5-methoxyphenyl group, 2-methoxy-4-methylphenyl group, 3-methoxy-4-methylphenyl group, 2,4-dimethoxyphenyl group, 2,5-dimethoxyphenyl group, 2 , 6-dimethoxyphenyl group, 3,4-dimethoxyphenyl group, 3,5-dimethoxyphenyl group, 3,5-diethoxyphenyl group, 3,5-di-n-butoxyphenyl group, 2-methoxy-4- Ethoxyphenyl group, 2-methoxy-6-ethoxyphenyl group, 3,4,5-trimethoxyphenyl group, 4-fluorophenyl group, 3-fluorophenyl group, 2-fluorophenyl group, 2,3-difluorophenyl group 2,4-difluorophenyl group, 2,5-difluorophenyl group, 2,6-difluorophenyl group, 3,4-difluorophenyl group, , 5-difluorophenyl group, 4- (1-naphthyl) phenyl group, 4- (2-naphthyl) phenyl group, 3- (1-naphthyl) phenyl group, 3- (2-naphthyl) phenyl group, 1-naphthyl Group, 2-naphthyl group, 4-methyl-1-naphthyl group, 6-methyl-2-naphthyl group, 4-phenyl-1-naphthyl group, 6-phenyl-2-naphthyl group, 2-anthryl group, 9- Anthryl group, 10-phenyl-9-anthryl group, 2-fluorenyl group, 9,9-dimethyl-2-fluorenyl group, 9,9-diethyl-2-fluorenyl group, 9,9-di-n-propyl-2 -Fluorenyl group, 9,9-di-n-octyl-2-fluorenyl group, 9,9-diphenyl-2-fluorenyl group, 9,9'-spirobifluorenyl group, 9-phenanthryl group, 2-phen Enthryl group, benzofluorenyl group, dibenzofluorenyl group, fluoranthenyl group, pyrenyl group, chrysenyl group, perylenyl group, picenyl group, 4-biphenylyl group, 3-biphenylyl group, 2-biphenylyl group, p-ter Examples thereof include, but are not limited to, a phenyl group, an m-terphenyl group, and an o-terphenyl group.

また、R〜R20で示される置換又は無置換の炭素数4〜50ヘテロアリール基としては、酸素原子、窒素原子及び硫黄原子のうち少なくとも一つのヘテロ原子を含有する芳香族基であり、例えば、4−キノリル基、4−ピリジル基、3−ピリジル基、2−ピリジル基、3−フリル基、2−フリル基、3−チエニル基、2−チエニル基、2−オキサゾリル基、2−チアゾリル基、2−ベンゾオキサゾリル基、2−ベンゾチアゾリル基、2−カルバゾリル基、ベンゾチオフェニル基、ベンゾイミダゾリル基、ジベンゾチオフェニル基等を例示することができるが、これらに限定されるものではない。 Further, examples of the substituted or unsubstituted carbon atoms 4-50 heteroaryl group represented by R 1 to R 20, an aromatic group containing at least one hetero atom of oxygen atom, nitrogen atom and sulfur atom, For example, 4-quinolyl group, 4-pyridyl group, 3-pyridyl group, 2-pyridyl group, 3-furyl group, 2-furyl group, 3-thienyl group, 2-thienyl group, 2-oxazolyl group, 2-thiazolyl Group, 2-benzoxazolyl group, 2-benzothiazolyl group, 2-carbazolyl group, benzothiophenyl group, benzoimidazolyl group, dibenzothiophenyl group and the like can be exemplified, but not limited thereto.

前記一般式(1)で表されるアミン化合物において、X〜Xは各々独立して水素原子、ハロゲン原子、炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、炭素数1〜18の直鎖、分岐若しくは環状のアルコキシ基、置換基を有してもよいアミノ基、置換基を有してもよい炭素数6〜50のアリール基又は置換基を有してもよい炭素数4〜50のヘテロアリール基を表す。但し、X〜Xの少なくとも2つは下記一般式(2)又は(3)で表される置換基である。


In the amine compound represented by the general formula (1), X 1 to X 4 are each independently a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, or 1 to 1 carbon atoms. 18 linear, branched or cyclic alkoxy groups, amino groups which may have substituents, aryl groups having 6 to 50 carbon atoms which may have substituents, or carbon atoms which may have substituents Represents 4-50 heteroaryl groups. However, at least two of X 1 to X 4 are substituents represented by the following general formula (2) or (3).


(式中、R21〜R28は各々独立して水素原子、ハロゲン原子、炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、炭素数1〜18の直鎖、分岐若しくは環状のアルコキシ基、置換基を有してもよいアミノ基、置換基を有してもよい炭素数6〜50のアリール基又は置換基を有してもよい炭素数4〜50のヘテロアリール基を表す。nは1〜3の整数である。) Wherein R 21 to R 28 are each independently a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 18 carbon atoms. A group, an amino group which may have a substituent, an aryl group having 6 to 50 carbon atoms which may have a substituent or a heteroaryl group having 4 to 50 carbon atoms which may have a substituent; n is an integer of 1 to 3.)

〜Xで示されるハロゲン原子、炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、炭素数1〜18の直鎖、分岐若しくは環状のアルコキシ基、置換基を有してもよいアミノ基、置換基を有してもよい炭素数6〜50のアリール基又は置換基を有してもよい炭素数4〜50のヘテロアリール基としては、前記R〜R20で例示した置換基が挙げられる。 It may have a halogen atom represented by X 1 to X 4 , a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 18 carbon atoms, or a substituent. Examples of the good amino group, the aryl group having 6 to 50 carbon atoms that may have a substituent, or the heteroaryl group having 4 to 50 carbon atoms that may have a substituent include those exemplified for R 1 to R 20 above. A substituent is mentioned.

前記一般式(2)及び(3)において、R21〜R28は各々独立して水素原子、ハロゲン原子、炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、炭素数1〜18の直鎖、分岐若しくは環状のアルコキシ基、置換基を有してもよいアミノ基、置換基を有してもよい炭素数6〜50のアリール基又は置換基を有してもよい炭素数4〜50のヘテロアリール基を表すが、これらの具体例としては、前記R〜R20で例示した置換基が挙げられる。
前記一般式(2)において、nは1〜3の整数を表す。
In the general formulas (2) and (3), R 21 to R 28 are each independently a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, or a C 1 to 18 carbon atoms. A linear, branched or cyclic alkoxy group, an amino group that may have a substituent, an aryl group having 6 to 50 carbon atoms that may have a substituent, or a carbon number that has 4 to 5 carbon atoms that may have a substituent Although 50 heteroaryl groups are represented, Specific examples of these include the substituents exemplified for R 1 to R 20 .
In the general formula (2), n represents an integer of 1 to 3.

〔配向パラメータSについて〕
前記一般式(1)で表されるアミン化合物の中で、基板上に成膜した際に分子平面が基板と平行方向に配向するものが好ましい。具体的には、基板上に形成した薄膜内における分子軸と基板法線方向のなす角をθ、薄膜の多入射角分光エリプソメトリー測定により得られる基板平行方向及び垂直方向の消衰係数をそれぞれk及びkとした場合、下記式(4)で表される配向パラメータSが−0.50〜−0.15である前記一般式(1)で表されるアミン化合物である。
S=(1/2)<3cosθ−1>=(k−k)/(k+2k) (4)
[Orientation parameter S]
Among the amine compounds represented by the general formula (1), those having a molecular plane oriented in a direction parallel to the substrate when the film is formed on the substrate are preferable. Specifically, the angle formed between the molecular axis and the substrate normal direction in the thin film formed on the substrate is θ, and the extinction coefficients in the substrate parallel direction and the vertical direction obtained by multi-incidence angle spectroscopic ellipsometry measurement of the thin film are respectively shown. If the k o and k e, an amine compound represented by the general formula orientation parameter S represented by the following formula (4) is -0.50~-0.15 (1).
S = (1/2) <3cos 2 θ-1> = (k e -k o) / (k e + 2k o) (4)

ここで用いる薄膜内における分子配向の評価方法は公知の手法であり、詳細はOrganic Electronics誌,2009年,第10巻,127頁に記載されている。また、薄膜を形成する方法としては、真空蒸着法、スピンコート法、キャスト法等の公知の方法を適用することができる。   The method for evaluating the molecular orientation in the thin film used here is a known technique, and details are described in Organic Electronics, 2009, Vol. 10, page 127. As a method for forming a thin film, a known method such as a vacuum deposition method, a spin coating method, or a casting method can be applied.

多入射角分光エリプソメトリー測定から得られる配向パラメータSが−0.50〜−0.15である前記一般式(1)で表されるアミン化合物は、薄膜内での分子間のπ電子の重なりが大きくなり、正孔輸送特性が向上する。   The amine compound represented by the general formula (1) in which the orientation parameter S obtained from multi-incidence angle spectroscopic ellipsometry measurement is −0.50 to −0.15 is an overlap of π electrons between molecules in the thin film. Increases and the hole transport property is improved.

多入射角分光エリプソメトリー測定から得られる配向パラメータSは、すべての分子が基板と平行方向に配向した場合に−0.50となる。また、分子が配向せずにランダムである場合は0.00となる。有機EL素子や有機薄膜太陽電池のように、基板と垂直方向に電荷を流す有機光電子デバイスでは、分子が基板と平行方向に配向し、分子間の軌道の重なりが大きい薄膜の方が、電荷を輸送する上で有利となる。従って、分子の配向がランダムに近い薄膜と比較すると、配向パラメータSが−0.50〜−0.15である薄膜は、分子間の軌道の重なりが大きくなり、高い電荷輸送特性を示す。   The orientation parameter S obtained from multi-incidence angle spectroscopic ellipsometry measurement is −0.50 when all molecules are oriented in a direction parallel to the substrate. Further, when the molecules are random without being oriented, the value is 0.00. In organic optoelectronic devices that flow charge in a direction perpendicular to the substrate, such as organic EL elements and organic thin-film solar cells, a thin film with molecules aligned in a direction parallel to the substrate and having a large overlap of orbits between molecules is more charged. This is advantageous for transportation. Therefore, as compared with a thin film with molecular orientation close to random, a thin film having an orientation parameter S of −0.50 to −0.15 has a large overlap of orbits between molecules and exhibits high charge transport characteristics.

以下に好ましい化合物を例示するが、これらの化合物に限定されるものではない。









































Preferred compounds are illustrated below, but are not limited to these compounds.









































〔アミン化合物の製造方法について〕
前記一般式(1)で表されるアミン化合物は、公知の方法によって合成することができる。例えば、ハロゲン化された下記一般式(5)で表されるテトラフェニルフェニレンジアミンと下記一般式(6)で表されるボロン酸化合物とを触媒存在下にカップリングすることにより合成することができる。

[Production method of amine compound]
The amine compound represented by the general formula (1) can be synthesized by a known method. For example, it can be synthesized by coupling a halogenated tetraphenylphenylenediamine represented by the following general formula (5) and a boronic acid compound represented by the following general formula (6) in the presence of a catalyst. .

(式中、R〜R20及びXは前記一般式(1)で表されるR〜R20及びX〜Xと同一の置換基を表し、Yはハロゲン原子を表す。mは0又は1の整数を表す。mのうち、少なくとも2つは、m=1である。) (Wherein R 1 to R 20 and X represent the same substituents as R 1 to R 20 and X 1 to X 4 represented by the general formula (1), Y represents a halogen atom, m represents Represents an integer of 0 or 1. At least two of m are m = 1.)

〔有機EL素子及び、有機薄膜太陽電池について〕
本発明の前記一般式(1)で表されるアミン化合物は、正孔輸送能に優れることから、有機光電子デバイスにおいて正孔輸送を担う層に使用することができる。
[About organic EL elements and organic thin-film solar cells]
Since the amine compound represented by the general formula (1) of the present invention is excellent in hole transport ability, it can be used in a layer responsible for hole transport in an organic optoelectronic device.

具体的には、有機EL素子の正孔輸送層及び/又は正孔注入層として使用することができる。前記一般式(1)で表されるアミン化合物を正孔輸送層及び/又は正孔注入層として使用した有機EL素子は、低駆動電圧化、高発光効率化及び耐久性が向上する。   Specifically, it can be used as a hole transport layer and / or a hole injection layer of an organic EL device. The organic EL device using the amine compound represented by the general formula (1) as a hole transport layer and / or a hole injection layer is improved in driving voltage, light emission efficiency, and durability.

前記一般式(1)で表されるアミン化合物からなる正孔注入層及び/又は正孔輸送層を形成する際には、必要に応じて2種類以上の材料を含有若しくは積層させてもよく、例えば、酸化モリブデン等の酸化物、7,7,8,8−テトラシアノキノジメタン、2,3,5,6−テトラフルオロ−7,7,8,8−テトラシアノキノジメタン、ヘキサシアノヘキサアザトリフェニレン等の公知の電子受容性材料を含有若しくは積層させてもよい。   When forming the hole injection layer and / or hole transport layer made of the amine compound represented by the general formula (1), two or more kinds of materials may be contained or laminated as necessary. For example, oxides such as molybdenum oxide, 7,7,8,8-tetracyanoquinodimethane, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, hexacyanohexahexa A known electron-accepting material such as azatriphenylene may be contained or laminated.

また、前記一般式(1)で表されるアミン化合物は、正孔輸送能に優れることから、有機薄膜太陽電池のp層としても使用することができる。前記一般式(1)で表されるアミン化合物をp層として使用した素子は、従来公知のアミン化合物を使用した素子と比較して、高い光電変換効率を得ることが可能となる。   Moreover, since the amine compound represented by the general formula (1) is excellent in hole transport ability, it can also be used as a p layer of an organic thin film solar cell. The device using the amine compound represented by the general formula (1) as the p layer can obtain higher photoelectric conversion efficiency as compared with a device using a conventionally known amine compound.

前記一般式(1)で表されるアミン化合物からなる薄膜(例えば、正孔輸送層、正孔注入層またはp層)を形成する方法としては、例えば真空蒸着法、スピンコート法、キャスト法等の公知の方法を適用することができる。   Examples of a method for forming a thin film (for example, a hole transport layer, a hole injection layer, or a p layer) made of an amine compound represented by the general formula (1) include a vacuum deposition method, a spin coating method, a cast method, and the like. The known methods can be applied.

以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれら実施例により限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited by these Examples.

H−NMR測定は、日本電子社製のECP400を用いて行った。
多入射角分光エリプソメトリーの測定は、J.A.Woollam社製のM−2000Uを用いて行った。
有機EL素子の電流電圧特性は、作製した素子に直流電流を印加し、アジレント・テクノロジー・インク社製のAgilent 4155C semiconductor parameter analyzerを用いて測定した。
1 H-NMR measurement was performed using ECP400 manufactured by JEOL Ltd.
Multi-incidence angle spectroscopic ellipsometry measurements are described in J. A. This was performed using M-2000U manufactured by Woollam.
The current-voltage characteristics of the organic EL element were measured using an Agilent 4155C semiconductor parameter analyzer manufactured by Agilent Technology, Inc. by applying a direct current to the manufactured element.

合成例1(1,4−ビス(ジフェニルアミノ)ベンゼンの合成[下記(7)式参照])
アルゴン気流下、100mlのフラスコに、ジフェニルアミン 2.97g(17.5mmol)を仕込み、30mlのテトラヒドロフランに溶解させた。室温下、エチルマグネシウムブロミド 2.41g(18.3mmol)を1時間かけて滴下し、更に4時間攪拌した。テトラヒドロフランを留去した後、トルエン 50ml、ジクロロ(1,2−ビス(ジフェニルホスフィノプロパン))ニッケル 2.08g(0.38mmol)、トリフェニルホスフィン 2.02g(0.76mmol)、1,4−ジブロモベンゼン 1.8g(7.6mmol)を加え、80℃で12時間攪拌した。室温まで冷却した後、反応液を5%塩酸水溶液に注いだ。炭酸ナトリウムで中和後、有機層を純水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下に濃縮した。得られた固体をアセトンで再結晶し、1,4−ビス(ジフェニルアミノ)ベンゼンの白色固体を1.88g単離した(収率59%)。
Synthesis Example 1 (Synthesis of 1,4-bis (diphenylamino) benzene [see the following formula (7)])
Under a stream of argon, 2.97 g (17.5 mmol) of diphenylamine was charged into a 100 ml flask and dissolved in 30 ml of tetrahydrofuran. At room temperature, 2.41 g (18.3 mmol) of ethylmagnesium bromide was added dropwise over 1 hour, and the mixture was further stirred for 4 hours. After the tetrahydrofuran was distilled off, 50 ml of toluene, 2.08 g (0.38 mmol) of dichloro (1,2-bis (diphenylphosphinopropane)) nickel, 2.02 g (0.76 mmol) of triphenylphosphine, 1,4- Dibromobenzene 1.8g (7.6mmol) was added, and it stirred at 80 degreeC for 12 hours. After cooling to room temperature, the reaction solution was poured into a 5% aqueous hydrochloric acid solution. After neutralizing with sodium carbonate, the organic layer was washed with pure water, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The obtained solid was recrystallized from acetone, and 1.88 g of a white solid of 1,4-bis (diphenylamino) benzene was isolated (yield 59%).

化合物の同定は、H−NMR測定により行った。
H−NMR(CDCl);7.24(dd,8H,J=8.80Hz,7.30Hz),7.10(d,8H,J=8.80Hz),6.98(t,4H,J=7.30Hz),6.98(s,4H)
The compound was identified by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 7.24 (dd, 8H, J = 8.80 Hz, 7.30 Hz), 7.10 (d, 8H, J = 8.80 Hz), 6.98 (t, 4H) , J = 7.30 Hz), 6.98 (s, 4H)

合成例2(1,4−ビス(ジ−(4−ブロモフェニル)アミノ)ベンゼンの合成[下記(7)式参照])
アルゴン気流下、0℃で200mlのフラスコに、合成例1で得られた1,4−ビス(ジフェニルアミノ)ベンゼン 6.00g(14.5mmol)をジメチルホルムアミド 50mlに溶解させた。そこに50mlのジメチルホルムアミドに溶解させたN−ブロモスクシンイミド 11.37g(63.9mmol)を滴下し、その後室温で1時間攪拌した。反応液を氷水に注ぎ、ジクロロメタンで抽出した。ジクロロメタン層を純水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下に濃縮した。得られた固体をエタノールで再結晶し、1,4−ビス(ジ−(4−ブロモフェニル)アミノ)ベンゼンの白色結晶を9.7g(13.3mmol)単離した(収率92%)。
Synthesis Example 2 (Synthesis of 1,4-bis (di- (4-bromophenyl) amino) benzene [see the following formula (7)])
Under an argon stream, 6.00 g (14.5 mmol) of 1,4-bis (diphenylamino) benzene obtained in Synthesis Example 1 was dissolved in 50 ml of dimethylformamide in a 200 ml flask at 0 ° C. Thereto was added dropwise 11.37 g (63.9 mmol) of N-bromosuccinimide dissolved in 50 ml of dimethylformamide, followed by stirring at room temperature for 1 hour. The reaction mixture was poured into ice water and extracted with dichloromethane. The dichloromethane layer was washed with pure water, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The obtained solid was recrystallized from ethanol to isolate 9.7 g (13.3 mmol) of white crystals of 1,4-bis (di- (4-bromophenyl) amino) benzene (yield 92%).

化合物の同定は、H−NMR測定により行った。
H−NMR(CDCl);7.35(d,8H,J=8.80Hz),6.95(s,4H),6.94(d,8H,J=8.80Hz)
The compound was identified by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 7.35 (d, 8H, J = 8.80 Hz), 6.95 (s, 4H), 6.94 (d, 8H, J = 8.80 Hz)

実施例1(化合物(A4)の合成)
アルゴン気流下、100mlのフラスコに、合成例2で得られた1,4−ビス(ジ−(4−ブロモフェニル)アミノ)ベンゼン 0.50g(0.69mmol)、2−チオフェンボロン酸 0.53g(4.12mmol)、テトラキス(トリフェニルホスフィン)パラジウム 0.047g(0.04mmol)、テトラヒドロフラン 50ml、20Mの炭酸カリウム水溶液 6.6mlを加え、48時間加熱還流した。室温まで冷却後、純水を添加し、ジクロロメタンで2回抽出した。ジクロロメタン抽出液を純水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下に濃縮した。得られた固体をトルエンで再結晶し、化合物(A4)の固体を0.33g(0.40mmol)単離した(収率59%)。
Example 1 (Synthesis of Compound (A4))
In a 100 ml flask under an argon stream, 0.50 g (0.69 mmol) of 1,4-bis (di- (4-bromophenyl) amino) benzene obtained in Synthesis Example 2 and 0.53 g of 2-thiopheneboronic acid (4.12 mmol), 0.047 g (0.04 mmol) of tetrakis (triphenylphosphine) palladium, 50 ml of tetrahydrofuran and 6.6 ml of 20M aqueous potassium carbonate solution were added, and the mixture was heated to reflux for 48 hours. After cooling to room temperature, pure water was added and extracted twice with dichloromethane. The dichloromethane extract was washed with pure water, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The obtained solid was recrystallized from toluene, and 0.33 g (0.40 mmol) of the solid of the compound (A4) was isolated (yield 59%).

化合物の同定は、H−NMR測定により行った。
H−NMR(DMSO−d);7.61(d,8H,J=8.80Hz),7.49(d,4H,J=5.12Hz),7.42(d,4H,J=5.12Hz),7.12(t,4H,J=5.12Hz),7.10(d,8H,J=8.80Hz),7.09(s,4H)
The compound was identified by 1 H-NMR measurement.
1 H-NMR (DMSO-d 6 ); 7.61 (d, 8H, J = 8.80 Hz), 7.49 (d, 4H, J = 5.12 Hz), 7.42 (d, 4H, J = 5.12 Hz), 7.12 (t, 4H, J = 5.12 Hz), 7.10 (d, 8H, J = 8.80 Hz), 7.09 (s, 4H)

実施例2(化合物(A8)の合成)
アルゴン気流下、100mlのフラスコに、合成例2で得られた1,4−ビス(ジ−(4−ブロモフェニル)アミノ)ベンゼン 0.50g(0.69mmol)、2−ベンゾチオフェンボロン酸 0.72g(4.12mmol)、テトラキス(トリフェニルホスフィン)パラジウム 0.047g(0.04mmol)、テトラヒドロフラン 50ml、20Mの炭酸カリウム水溶液 6.6mlを加え、48時間加熱還流した。室温まで冷却後、純水を添加し、ジクロロメタンで2回抽出した。ジクロロメタン抽出液を純水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下に濃縮した。得られた固体をトルエンで再結晶し、化合物(A8)の固体を0.41g(0.42mmol)単離した(収率62%)。
Example 2 (Synthesis of Compound (A8))
In a 100 ml flask under an argon stream, 0.50 g (0.69 mmol) of 1,4-bis (di- (4-bromophenyl) amino) benzene obtained in Synthesis Example 2 and 2-benzothiopheneboronic acid 72 g (4.12 mmol), tetrakis (triphenylphosphine) palladium 0.047 g (0.04 mmol), tetrahydrofuran 50 ml, 20 M aqueous potassium carbonate solution 6.6 ml were added, and the mixture was heated to reflux for 48 hours. After cooling to room temperature, pure water was added and extracted twice with dichloromethane. The dichloromethane extract was washed with pure water, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The obtained solid was recrystallized with toluene, and 0.41 g (0.42 mmol) of the solid of the compound (A8) was isolated (yield 62%).

化合物の同定は、H−NMR測定により行った。
H−NMR(CDCl);7.82(d,4H,J=7.68Hz),7.76(d,4H,J=7.68Hz),7.65(d,8H,J=8.80Hz),7.49(s,4H),7.31−7.35(m,8H),7.21(d,8H,J=7.68Hz),7.14(s,4H)
The compound was identified by 1 H-NMR measurement.
1 H-NMR (CDCl 3 ); 7.82 (d, 4H, J = 7.68 Hz), 7.76 (d, 4H, J = 7.68 Hz), 7.65 (d, 8H, J = 8) .80 Hz), 7.49 (s, 4H), 7.31-7.35 (m, 8H), 7.21 (d, 8H, J = 7.68 Hz), 7.14 (s, 4H)

実施例3(化合物(A4)の多入射角分光エリプソメトリー測定)
中性洗剤、純水、アセトン、イソプロピルアルコールで超音波洗浄後、イソプロピルアルコールによる沸騰洗浄したシリコン基板を真空蒸着装置に設置し、3×10−3Paになるまで、真空ポンプにて排気した。化合物(A4)を蒸着速度0.1nm/秒で100nm蒸着し、測定用の薄膜を形成した。作製した薄膜について、多入射角分光エリプソメータを用い、入射角を5°毎に45°〜75°の範囲、波長は245〜1000nmの範囲でエリプソメトリパラメータを測定した。得られたデータをJ.A.Woollam社製の解析ソフトWVASE32で解析し、配向パラメータSを算出した。化合物(A4)の蒸着膜はS=−0.19であり、化合物(A4)の分子平面はシリコン基板に対して平行方向に配向していた。
Example 3 (Multi-incidence angle spectroscopic ellipsometry measurement of compound (A4))
After ultrasonic cleaning with neutral detergent, pure water, acetone and isopropyl alcohol, the silicon substrate boiled and cleaned with isopropyl alcohol was placed in a vacuum deposition apparatus and evacuated with a vacuum pump until 3 × 10 −3 Pa. Compound (A4) was deposited to a thickness of 100 nm at a deposition rate of 0.1 nm / second to form a thin film for measurement. About the produced thin film, ellipsometry parameters were measured using a multi-incidence angle spectroscopic ellipsometer with an incident angle in the range of 45 ° to 75 ° every 5 ° and a wavelength in the range of 245 to 1000 nm. The data obtained is A. The orientation parameter S was calculated by analysis with Woollam analysis software WVASE32. The deposited film of the compound (A4) was S = −0.19, and the molecular plane of the compound (A4) was oriented in a direction parallel to the silicon substrate.

実施例4(化合物(A8)の多入射角分光エリプソメトリー測定)
化合物(A4)を(A8)に変更した以外は実施例3と同様の方法で、配向パラメータSを算出した。化合物(A8)の蒸着膜はS=−0.24であり、化合物(A8)の分子平面はシリコン基板に対して平行方向に配向していた。
Example 4 (Multi-incidence angle spectroscopic ellipsometry measurement of compound (A8))
The orientation parameter S was calculated in the same manner as in Example 3 except that the compound (A4) was changed to (A8). The deposited film of the compound (A8) was S = −0.24, and the molecular plane of the compound (A8) was oriented in a direction parallel to the silicon substrate.

比較例1(NPDの多入射角分光エリプソメトリー測定)
化合物(A4)をNPDに変更した以外は実施例3と同様の方法で、配向パラメータSを算出した。NPDの蒸着膜はS=−0.01であり、NPD分子の薄膜内での配置はランダムであった。
Comparative Example 1 (NPD multiple incidence angle spectroscopic ellipsometry measurement)
The orientation parameter S was calculated in the same manner as in Example 3 except that the compound (A4) was changed to NPD. The deposited film of NPD was S = −0.01, and the arrangement of NPD molecules in the thin film was random.

比較例2(比較化合物(a)の多入射角分光エリプソメトリー測定)
化合物(A4)を比較化合物(a)に変更した以外は実施例3と同様の方法で、配向パラメータSを算出した。比較化合物(a)の蒸着膜はS=−0.11であり、化合物(A4)及び(A8)と比較すると、薄膜内での分子配置はランダムであった。
Comparative Example 2 (multi-incidence angle spectroscopic ellipsometry measurement of comparative compound (a))
The orientation parameter S was calculated in the same manner as in Example 3 except that the compound (A4) was changed to the comparative compound (a). The deposited film of the comparative compound (a) was S = −0.11, and the molecular arrangement in the thin film was random as compared with the compounds (A4) and (A8).

実施例5(化合物(A4)の素子評価)
厚さ200nmのITO透明電極(陽極)を積層したガラス基板を中性洗剤、純水、アセトン、イソプロピルアルコールで超音波洗浄し、その後、イソプロピルアルコールによる沸騰洗浄を行なった。更に紫外線オゾン洗浄を行ない、真空蒸着装置へ設置後1×10−3Pa以下になるまで、真空ポンプにて排気した。まず、ITO透明電極上に化合物(A4)を蒸着速度0.3nm/秒で蒸着し、45nmの正孔注入層とした。引き続き、NPDを蒸着速度0.3nm/秒で5nm蒸着した後、トリス(8−キノリノラート)アルミニウムを蒸着速度0.3nm/秒で50nm蒸着して発光層とした。引続き、マグネシウムと銀の合金(10:1)を0.33nm/秒で100nm蒸着し、更に銀を蒸着速度0.1nm/秒で10nm蒸着して陰極を形成し、評価用の有機EL素子とした。このように作製した素子の電流−電圧特性を図1に、20mA/cmの電流を印加した駆動電圧を表1に示す。
Example 5 (Element evaluation of compound (A4))
The glass substrate on which the ITO transparent electrode (anode) having a thickness of 200 nm was laminated was subjected to ultrasonic cleaning with a neutral detergent, pure water, acetone and isopropyl alcohol, and then subjected to boiling cleaning with isopropyl alcohol. Further, ultraviolet ozone cleaning was performed, and after evacuation with a vacuum pump until 1 × 10 −3 Pa or less after installation in a vacuum deposition apparatus. First, the compound (A4) was deposited on the ITO transparent electrode at a deposition rate of 0.3 nm / second to form a 45 nm hole injection layer. Subsequently, NPD was deposited at 5 nm at a deposition rate of 0.3 nm / second, and then tris (8-quinolinolato) aluminum was deposited at 50 nm at a deposition rate of 0.3 nm / second to form a light emitting layer. Subsequently, an alloy of magnesium and silver (10: 1) was deposited to 100 nm at 0.33 nm / second, and silver was further deposited to 10 nm at a deposition rate of 0.1 nm / second to form a cathode. did. FIG. 1 shows the current-voltage characteristics of the device thus fabricated, and Table 1 shows the drive voltage to which a current of 20 mA / cm 2 was applied.

実施例6(化合物(A8)の素子評価)
化合物(A4)を化合物(A8)に変更した以外は実施例5と同様な有機EL素子を作製した。作製した素子の電流−電圧特性を図1に、20mA/cmの電流を印加した駆動電圧を表1に示す。
Example 6 (device evaluation of compound (A8))
An organic EL device was produced in the same manner as in Example 5 except that the compound (A4) was changed to the compound (A8). FIG. 1 shows the current-voltage characteristics of the fabricated device, and Table 1 shows the drive voltage to which a current of 20 mA / cm 2 was applied.

比較例3(NPDの素子評価)
化合物(A4)をNPDに変更した以外は実施例5と同様な有機EL素子を作製した。作製した素子の電流−電圧特性を図1に、20mA/cmの電流を印加した駆動電圧を表1に示す。
Comparative Example 3 (NPD element evaluation)
An organic EL device was produced in the same manner as in Example 5 except that the compound (A4) was changed to NPD. FIG. 1 shows the current-voltage characteristics of the fabricated device, and Table 1 shows the drive voltage to which a current of 20 mA / cm 2 was applied.

比較例4(比較化合物(a)の素子評価)
化合物(A4)を比較化合物(a)に変更した以外は実施例5と同様な有機EL素子を作製した。作製した素子の電流−電圧特性を図1に、20mA/cmの電流を印加した駆動電圧を表1に示す。
Comparative Example 4 (device evaluation of comparative compound (a))
An organic EL device was produced in the same manner as in Example 5 except that the compound (A4) was changed to the comparative compound (a). FIG. 1 shows the current-voltage characteristics of the fabricated device, and Table 1 shows the drive voltage to which a current of 20 mA / cm 2 was applied.

本発明のアミン化合物は、有機光電子デバイスの薄膜の材料として利用可能である。   The amine compound of the present invention can be used as a material for a thin film of an organic optoelectronic device.

Claims (3)

下記の(A4)または(A8)で表されるアミン化合物。
An amine compound represented by the following (A4) or (A8) .
請求項1記載のアミン化合物からなる薄膜であって、基板上に形成した薄膜内における分子軸と基板法線方向のなす角をθ、薄膜の多入射角分光エリプソメトリー測定により得られる基板平行方向及び垂直方向の消衰係数をそれぞれk及びkとした場合、下記式(4)で表される配向パラメータSが−0.50〜−0.15である薄膜。
S=(1/2)<3cosθ−1>=(k−k)/(k+2k) (4)
A thin film comprising the amine compound according to claim 1, wherein the angle formed between the molecular axis and the substrate normal direction in the thin film formed on the substrate is θ, and the substrate parallel direction obtained by multi-incidence angle spectroscopic ellipsometry measurement of the thin film and if the vertical extinction coefficient was k o and k e, respectively, a thin film orientation parameter S represented by the following formula (4) it is -0.50~-0.15.
S = (1/2) <3cos 2 θ-1> = (k e -k o) / (k e + 2k o) (4)
請求項1記載のアミン化合物からなる薄膜を用いた有機光電子デバイス。
An organic optoelectronic device using a thin film comprising the amine compound according to claim 1 .
JP2010135757A 2010-06-15 2010-06-15 Organic semiconductor materials Active JP5590553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010135757A JP5590553B2 (en) 2010-06-15 2010-06-15 Organic semiconductor materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010135757A JP5590553B2 (en) 2010-06-15 2010-06-15 Organic semiconductor materials

Publications (2)

Publication Number Publication Date
JP2012001452A JP2012001452A (en) 2012-01-05
JP5590553B2 true JP5590553B2 (en) 2014-09-17

Family

ID=45533847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010135757A Active JP5590553B2 (en) 2010-06-15 2010-06-15 Organic semiconductor materials

Country Status (1)

Country Link
JP (1) JP5590553B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140043551A (en) * 2012-09-24 2014-04-10 삼성디스플레이 주식회사 Organic light emitting diode, organic light emitting display panel having the organic light emitting diode and fabricating method for the organic light emitting display panel
JP6506330B2 (en) * 2017-03-02 2019-04-24 国立大学法人京都大学 Process for producing arylamines
CN107325017A (en) * 2017-07-28 2017-11-07 遵义医学院 A kind of synthetic method of 1,4 phenylenediamines of quaternary carboxylic acid N, N, N ', N ' four (4 ' carboxyl biphenyl base)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101506192A (en) * 2006-08-23 2009-08-12 出光兴产株式会社 Aromatic amine derivative and organic electroluminescent element using same

Also Published As

Publication number Publication date
JP2012001452A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
KR101293320B1 (en) Aromatic amine derivative and organic electroluminescent element using same
JP4403201B2 (en) Aromatic amine derivatives and organic electroluminescence devices using them
US8993805B2 (en) Benzofluorene compound and use thereof
JP6547831B2 (en) Organic light emitting device
TWI602799B (en) Compound for organic electroluminescent device and organic electroluminescent device including the same
US9698351B2 (en) Organic material for electroluminescent device
KR101638072B1 (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
JP5097700B2 (en) Organic electroluminescence device
JP2010195708A (en) Compound having carbazolyl group and use thereof
KR20100097180A (en) Aromatic amine derivatives and organic electroluminescent device employing these
KR20150002072A (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
JPWO2007132678A1 (en) Organic electroluminescence device
TW201035082A (en) Aromatic amine derivative and organic electroluminescent element
JP2009194042A (en) Charge transporting material for use of organic electroluminescence element containing carbazolyl group and its use
JP2022545320A (en) Aromatic amine compound, capping layer material, and light-emitting device
JP2013191649A (en) Organic electroluminescent element
TW201026705A (en) Nitrogen-containing heterocyclic derivative and organic electroluminescence element using nitrogen-containing heterocyclic derivative
JP5585044B2 (en) Carbazole compounds and uses thereof
JP5428263B2 (en) Amine derivatives and uses thereof
TWI703204B (en) Heteroaromatic compound and organic electroluminescence device using the same
JP5590553B2 (en) Organic semiconductor materials
JP7009877B2 (en) New carbazole compounds and their uses
TWI471308B (en) Organic compound and organic electroluminescence device employing the same
JP5716270B2 (en) Carbazole compounds and uses thereof
Kim et al. Blue light-emitting diodes from 2-(10-naphthylanthracene)-spiro [fluorene-7, 9′-benzofluorene] host material

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20100702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140723

R150 Certificate of patent or registration of utility model

Ref document number: 5590553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250