JP5590443B2 - Moving body outer wall - Google Patents

Moving body outer wall Download PDF

Info

Publication number
JP5590443B2
JP5590443B2 JP2010053835A JP2010053835A JP5590443B2 JP 5590443 B2 JP5590443 B2 JP 5590443B2 JP 2010053835 A JP2010053835 A JP 2010053835A JP 2010053835 A JP2010053835 A JP 2010053835A JP 5590443 B2 JP5590443 B2 JP 5590443B2
Authority
JP
Japan
Prior art keywords
rib
wall
moving body
fluid
body outer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010053835A
Other languages
Japanese (ja)
Other versions
JP2011185410A (en
Inventor
薫 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Original Assignee
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY filed Critical NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority to JP2010053835A priority Critical patent/JP5590443B2/en
Publication of JP2011185410A publication Critical patent/JP2011185410A/en
Application granted granted Critical
Publication of JP5590443B2 publication Critical patent/JP5590443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、移動体外壁に関し、より詳細には、航空機、高速列車、船舶等の高速移動体の表面に実装して、高速移動体の表面に接触する空気或は水等の流体との摩擦抵抗を低減し、推進力に要する燃料等のエネルギー消費を大幅に低減する、移動体外壁の構造に関する。 The present invention relates to a mobile outside wall, yo Ri in particular, aircraft, high speed trains, and mounted on the surface of the high-speed moving bodies such as a ship, a fluid air or water or the like into contact with the surface of the fast-moving objects It is related with the structure of the outer wall of a mobile body which reduces the frictional resistance of this, and significantly reduces energy consumption, such as a fuel required for propulsion.

周知のように、航空機、新幹線等の高速列車、そして船舶、また将来実現されるリニアモーターカー等の高速輸送機器は、旅客や貨物等の輸送対象を高速且つ大量に輸送するために、燃料や電力を大きく消費する。これら高速輸送機器を運用する企業体にとって、電力や燃料等のエネルギー消費を低減することは、当該企業体の利益率を向上するだけでなく、エネルギーの大部分を諸外国から輸入する我が国の負担を軽減するためにも、また環境負荷を低減するためにも極めて重要である。
高速輸送機器のエネルギー消費を低減するための試みは、あらゆる角度で研究され、技術が進化している。高速輸送機器のエネルギー効率を改善する技術のアプローチとしては、大まかには三通りの手法が考えられる。一つは、高速輸送機器に推進力を与えるエンジンやモータのエネルギー効率を改善するアプローチである。もう一つは、高速輸送機器を軽量化させるアプローチである。そして最後の一つは、高速輸送機器の機体に接触する空気や水等の流体との摩擦抵抗を低減させるアプローチである。本明細書は最後の摩擦抵抗について言及する。
As is well known, high-speed transportation equipment such as high-speed trains such as airplanes, bullet trains, and ships, and linear motor cars that will be realized in the future are used to transport fuel and cargo in order to transport passengers and cargo at high speed and in large quantities. It consumes a lot of power. For enterprises that operate these high-speed transportation equipment, reducing energy consumption such as electricity and fuel not only improves the profit margin of the enterprise, but also burdens Japan to import most of the energy from other countries. It is extremely important for reducing the environmental load and reducing the environmental load.
Attempts to reduce the energy consumption of high-speed transport equipment have been studied at all angles and technology has evolved. There are roughly three approaches to improving the energy efficiency of high-speed transportation equipment. One approach is to improve the energy efficiency of engines and motors that provide propulsion for high-speed transport equipment. Another approach is to reduce the weight of high-speed transportation equipment. The last one is an approach for reducing frictional resistance with a fluid such as air or water that comes into contact with the airframe of a high-speed transport device. This specification refers to the last frictional resistance.

特開2002−266816号公報JP 2002-266816 A

Science&Technology Trends September 2006 feature article 02:[2010年2月23日検索]、インターネット<URL:http://www.nistep.go.jp/achiev/ftx/jpn/stfc/stt066j/0609_03_featurearticles/0609fa02/200609_fa02.html>Science & Technology Trends September 2006 feature article 02: [Search February 23, 2010], Internet <URL: http://www.nistep.go.jp/achiev/ftx/jpn/stfc/stt066j/0609_03_featurearticles/0609fa02/200609_fa02. html>

従来、高速輸送機器の摩擦抵抗を低減する試みとしては、機体を流線型にする等の、古典的な流体摩擦の低減方法の他、機体表面に流体の流れに沿った筋状の凹凸を設ける等の、流体力学に基づく方法が提案されている。
特に、移動体外壁の表面に畝(うね)状のリブレット(riblet)を設けて、流体摩擦抵抗を低減する試みとしては、特許文献1及び非特許文献1に開示されるように、様々な形状のものが提案されている。しかし、これらの方法は何れも改善効果に限界があることが知られている。
Conventional attempts to reduce the frictional resistance of high-speed transportation equipment include, in addition to classical fluid friction reduction methods such as streamline the airframe, as well as providing streaky irregularities along the fluid flow on the airframe surface. A method based on hydrodynamics has been proposed.
In particular, as disclosed in Patent Document 1 and Non-Patent Document 1, various attempts have been made to reduce the fluid friction resistance by providing ridge-shaped riblets on the surface of the outer wall of the moving body. Shapes have been proposed. However, it is known that any of these methods has a limit in the improvement effect.

本発明は係る課題を解決し、従来の機体表面に実装するだけで流体摩擦抵抗を低減でき、エネルギー効率を改善する、新規な移動体外壁を提供することを目的とする。 The present invention solves the problem of only implemented in conventional aircraft surfaces can be reduced fluid friction resistance, to improve the energy efficiency, and to provide a novel moving outside wall.

上記課題を解決するため、本発明の移動体外壁は、流体の流れ方向に対し等周期長さを有し、この流体の流れの直交方向に対して等間隔にて左右に蛇行する第一のリブと、この第一のリブに対して流れ方向に線対称の形状で左右に蛇行する第二のリブとを表面に具備している。そして、第一のリブと第二のリブの周期長さをLx、第一のリブと第二のリブの最も近接する箇所の間隔をLz、及び第一のリブと第二のリブの高さをhとしたとき、Lx、Lz、hは、下記の式を満たすものとしている。

Figure 0005590443
但し、νは、移動体外壁に接触する流体の動粘度、τ は航速度及び移動体の進行方向の長さから計算した壁面摩擦応力τ 、ρは流体の密度ρである。 In order to solve the above-mentioned problems, the outer wall of the moving body of the present invention has a uniform period length with respect to the fluid flow direction , and is a first meandering left and right at equal intervals with respect to the orthogonal direction of the fluid flow. A rib and a second rib meandering left and right in a line-symmetric shape in the flow direction with respect to the first rib are provided on the surface . The period length of the first rib and the second rib is Lx, the distance between the closest positions of the first rib and the second rib is Lz, and the height of the first rib and the second rib Where Lx, Lz, and h satisfy the following formula.
Figure 0005590443
Where ν is the kinematic viscosity of the fluid in contact with the outer wall of the moving body, τ w is the wall friction stress τ w calculated from the navigation speed and the length of the moving body in the traveling direction , and ρ is the density ρ of the fluid.

移動体の機体表面に、流体の流れ方向に幅広部分と幅狭部分とが規則的に繰り返されるリブレットを設ける。流体はリブレットに沿って流れることで、流体と機体表面との間に発生する乱流に規則的な振動が加わり、乱れが減少し、流体摩擦が低減される。   A riblet in which a wide portion and a narrow portion are regularly repeated in the fluid flow direction is provided on the surface of the moving body. As the fluid flows along the riblet, regular vibration is added to the turbulent flow generated between the fluid and the airframe surface, the turbulence is reduced, and the fluid friction is reduced.

本発明によれば、従来の機体表面に実装するだけで流体摩擦抵抗を低減でき、エネルギー効率を改善する、新規な移動体外壁を提供することができる。 By the present invention lever, simply implemented in conventional aircraft surfaces can be reduced fluid friction resistance, to improve the energy efficiency, you to provide a novel moving outside wall.

本発明の実施形態である移動体外壁の斜視図である。It is a perspective view of the movable body outer wall which is embodiment of this invention. 移動体外壁を上から見た図と、移動体外壁の断面図である。It is the figure which looked at the moving body outer wall from the top, and sectional drawing of a moving body outer wall. 本実施形態の移動体外壁を実装する航空機の外観図である。It is an external view of the aircraft which mounts the mobile body outer wall of this embodiment. 本実施形態の移動体外壁の長さと、摩擦抵抗低減効果の関係を説明するグラフである。It is a graph explaining the relationship between the length of the mobile body outer wall of this embodiment, and a frictional resistance reduction effect. 移動体外壁のもう一つの実施形態を示す概略図である。It is the schematic which shows another embodiment of a moving body outer wall.

図1は、本発明の実施形態である移動体外壁の斜視図である。
移動体外壁101の表面には、畝状のリブレット102が設けられている。
流体は移動体外壁101の表面を矢印A105方向に流れる。リブレット102は、流体の流れる方向に沿って周期的に左右に蛇行するAリブ103と、Aリブ103と逆のパターンで周期的に左右に蛇行するBリブ104が、交互に配置されて構成される。
FIG. 1 is a perspective view of a moving body outer wall according to an embodiment of the present invention.
On the surface of the moving body outer wall 101, a rib-shaped riblet 102 is provided.
The fluid flows on the surface of the moving body outer wall 101 in the direction of arrow A105. The riblet 102 is configured by alternately arranging A ribs 103 that meander to the left and right periodically along the fluid flow direction and B ribs 104 that meander to the left and right in a pattern opposite to that of the A ribs 103. The

図2(a)及び(b)は、移動体外壁101を上から見た図と、移動体外壁101の断面図である。
図2(a)は移動体外壁101の上面図であり、図2(b)は移動体外壁101を図2(a)のa−a’線から見た断面図である。
図1及び図2(a)を見て判るように、Aリブ103とBリブ104は流体の流れる方向において線対称である。
Aリブ103及びBリブ104の形状と配置関係は、図2(a)及び(b)に示す、以下のパラメータで構成される。
・Aリブ103及びBリブ104の、流体の流れ方向の長さLx
・Aリブ103及びBリブ104の、流体の流れ方向に対する傾斜角θ
・Aリブ103及びBリブ104の、最も狭い箇所の幅Lz
・Aリブ103及びBリブ104の高さh
・Aリブ103及びBリブ104の厚みT
2A and 2B are a top view of the moving body outer wall 101 and a cross-sectional view of the moving body outer wall 101. FIG.
2A is a top view of the movable body outer wall 101, and FIG. 2B is a cross-sectional view of the movable body outer wall 101 seen from the line aa ′ in FIG.
As can be seen from FIGS. 1 and 2A, the A rib 103 and the B rib 104 are line symmetric in the direction of fluid flow.
The shape and arrangement relationship of the A rib 103 and the B rib 104 are configured by the following parameters shown in FIGS.
The length Lx in the fluid flow direction of the A rib 103 and the B rib 104
The inclination angle θ of the A rib 103 and the B rib 104 with respect to the fluid flow direction
The width Lz of the narrowest part of the A rib 103 and the B rib 104
・ Height h of A rib 103 and B rib 104
・ Thickness T of A rib 103 and B rib 104

厚みTは薄ければ薄いほど良い。現実的にはリブレット102の剛性を確保するためと、製造工程上の制約から、高さhとの兼ね合いで決定される。   The thinner the thickness T, the better. Actually, it is determined in consideration of the height h in order to ensure the rigidity of the riblet 102 and due to restrictions in the manufacturing process.

幅Lzと長さLxと高さhは、DNSの結果、以下のような値が最適であることが判った。   As a result of DNS, the following values of the width Lz, length Lx, and height h were found to be optimal.

Figure 0005590443
Figure 0005590443

上記(1)式にある「215.98」「14.75」及び「7.5」という定数は、DNSの結果からおよそ上下30%程度のマージンで有効であると思われる。したがって、上記(1)式は以下のように書き換えることができる。   The constants “215.98”, “14.75”, and “7.5” in the above equation (1) are considered to be effective with a margin of about 30% in the vertical direction from the DNS result. Therefore, the above equation (1) can be rewritten as follows.

Figure 0005590443
上記(1)式のパラメータのうち、動粘度ν及び流体密度ρは、対象の移動体周囲の流体が決まれば、流体の種類と温度、圧力等で一意に決まる。
壁面摩擦応力τは、例えば以下の式で決定される。
Figure 0005590443
Among the parameters of the above equation (1), the kinematic viscosity ν and the fluid density ρ are uniquely determined by the type of fluid, temperature, pressure, and the like if the fluid around the target moving body is determined.
Wall friction stress tau w is determined, for example, by the following equation.

Figure 0005590443
Figure 0005590443

或は、より正確には、流れ方向の位置xに応じてτは変化するので、以下の式で詳細に決定することもできる。 Or more precisely, since τ w changes according to the position x in the flow direction, it can be determined in detail by the following equation.

Figure 0005590443
Figure 0005590443

先ず、移動体の流れ方向長さLを得て、移動体の巡航速度Ulamを決定し、流体の動粘度νと流体の密度ρを算出する。次に、壁面摩擦応力τを、上記(3)式或は(4)式で算出する。τが得られれば、上記(1)式で幅Lz、長さLx及び高さhを得ることができる。角度θは現状では7.5°を採用しているが、まだ最適化の余地はあると思われる。 First, the flow direction length L of the moving body is obtained, the cruise speed U lam of the moving body is determined, and the kinematic viscosity ν of the fluid and the density ρ of the fluid are calculated. Next, the wall friction stress tau w, is calculated in the above (3) or (4). as long obtained tau w, it can be obtained above (1) in a width Lz, a length Lx and height h. Although the angle θ is currently 7.5 °, there is still room for optimization.

図3は、本実施形態の移動体外壁101を実装する航空機の外観図である。
航空機301に本発明を適用する場合、図1及び図2に示す外壁構造を、両翼を含めた機体全体に設ける。
一例として、実際の移動体に本発明を適用する場合の演算結果を記す。航空機として、ボーイング777−300の場合を記す。
幅Lzと長さLxと高さhは、それぞれ、81μm、1.2mm、41μmとなった。
FIG. 3 is an external view of an aircraft on which the movable body outer wall 101 of this embodiment is mounted.
When the present invention is applied to the aircraft 301, the outer wall structure shown in FIGS. 1 and 2 is provided on the entire body including both wings.
As an example, a calculation result when the present invention is applied to an actual moving body will be described. The case of Boeing 777-300 is described as an aircraft.
The width Lz, length Lx, and height h were 81 μm, 1.2 mm, and 41 μm, respectively.

図4は、本実施形態の移動体外壁101の長さと、摩擦抵抗低減効果の関係を説明するグラフである。実験の結果得られたデータである。
グラフの横軸は移動体外壁101の長さであり、縦軸は摩擦抵抗低減効果である。グラフ中、δは約10mmである。
摩擦抵抗低減効果は、移動体外壁101の長さが長くなればなる程、増大する傾向がはっきり認められる。
FIG. 4 is a graph for explaining the relationship between the length of the moving body outer wall 101 of the present embodiment and the frictional resistance reduction effect. It is the data obtained as a result of the experiment.
The horizontal axis of the graph is the length of the moving body outer wall 101, and the vertical axis is the frictional resistance reduction effect. In the graph, δ is about 10 mm.
It can be clearly seen that the frictional resistance reduction effect increases as the length of the moving body outer wall 101 increases.

以上説明したように、移動体外壁101にリブレット102を取り付ける。リブレット102の形状は上述の演算式に基づき、移動体の巡航速度と、流体の動粘度と、流体の移動方向における移動体の長さに基づいて算出できる。このようにして形状を決定したリブレット102を設けた移動体外壁101に摩擦抵抗低減効果が生じる。   As described above, the riblet 102 is attached to the movable body outer wall 101. The shape of the riblet 102 can be calculated based on the cruise speed of the moving body, the kinematic viscosity of the fluid, and the length of the moving body in the direction of movement of the fluid based on the above-described arithmetic expression. A frictional resistance reducing effect is produced on the outer wall 101 of the movable body provided with the riblet 102 whose shape is determined in this way.

リブレット102の材質や製造方法は特に限定されるものではない。リブレット102は可動部分が存在しないので、マイクロメートルオーダーの微小なリブレットを形成することができることと、リブレットが流体や塵埃によって損傷を受けない等の条件さえ満たせば、どのような材質、製造方法であってもよい。
一例としては、合成樹脂を用いたスタンプ工程、合成樹脂或は金属のエッチング工程、パテを含有する塗料を用いた塗布工程等、一般的な、壁面に微小な突起を形成するための工程を用いて、様々なリブレット形成方法が利用可能である。
また、非特許文献1に開示されているように、リブレット102を形成したシートを移動体外壁101に貼付する手法であってもよい。
The material and manufacturing method of the riblet 102 are not particularly limited. Since there are no moving parts, the riblet 102 can be formed into micrometer-order minute riblets, and any material and manufacturing method can be used as long as the riblet is not damaged by fluid or dust. There may be.
For example, a general process for forming minute protrusions on the wall surface, such as a stamping process using a synthetic resin, an etching process of a synthetic resin or metal, or an application process using a paint containing putty, is used. Various riblet forming methods can be used.
Further, as disclosed in Non-Patent Document 1, a method of sticking the sheet on which the riblets 102 are formed to the movable body outer wall 101 may be used.

本実施形態は、以下のような応用例が考えられる。
(1)リブレットの形状は、幅広の部分と幅狭の部分が流体の流れの方向に周期的に現れればよいので、必ずしも図1に示したような直線的な形状でなくともよい。
図5は移動体外壁のもう一つの実施形態を示す概略図である。つまり、リブレット502及びAリブ503とBリブ504の形状は、図5に示すように、サインカーブのような曲線形状であってもよい。
In this embodiment, the following application examples can be considered.
(1) The shape of the riblet is not necessarily a linear shape as shown in FIG. 1 because the wide portion and the narrow portion only have to appear periodically in the direction of fluid flow.
FIG. 5 is a schematic view showing another embodiment of the moving body outer wall. That is, the riblet 502, the A rib 503, and the B rib 504 may have a curved shape such as a sine curve as shown in FIG.

本実施形態では、移動体外壁101を開示した。
移動体外壁101の表面に、流体に対して周期的な変化を発生させるためのリブレット102を設けた。リブレット102の形状は、流体の動粘度と、移動体の巡航速度と、流体の移動方向における移動体の長さに基づいて算出される周期で決定される。リブレット102が移動体外壁101全体を覆うことで、移動体外壁101を取り巻く流体の乱れが減少し、流体摩擦が最大で約20%軽減できる。
In this embodiment, the movable body outer wall 101 was disclosed.
A riblet 102 for generating a periodic change with respect to the fluid is provided on the surface of the moving body outer wall 101. The shape of the riblet 102 is determined by a cycle calculated based on the kinematic viscosity of the fluid, the cruising speed of the moving body, and the length of the moving body in the moving direction of the fluid. By covering the entire moving body outer wall 101 with the riblet 102, the disturbance of the fluid surrounding the moving body outer wall 101 is reduced, and the fluid friction can be reduced by about 20% at the maximum.

以上、本発明の実施形態例について説明したが、本発明は上記実施形態例に限定されるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、他の変形例、応用例を含む。   The embodiment of the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and other modifications, Includes application examples.

101…移動体外壁、102…リブレット、103…Aリブ、104…Bリブ、301…航空機、502…リブレット、503…Aリブ、504…Bリブ   DESCRIPTION OF SYMBOLS 101 ... Mobile body outer wall, 102 ... Riblet, 103 ... A rib, 104 ... B rib, 301 ... Aircraft, 502 ... Riblet, 503 ... A rib, 504 ... B rib

Claims (1)

流体の流れ方向に対し等周期長さ且つ前記流れの直交方向に対して等間隔にて左右に蛇行する第一のリブと、
前記第一のリブに対して前記流れ方向に線対称の形状で左右に蛇行する第二のリブと
を表面に具備し、
前記第一のリブと前記第二のリブの前記周期長さ、前記第一のリブと前記第二のリブの最も近接する箇所の間隔及び前記第一のリブと前記第二のリブの高さは、前記周期長さをLx、前記最も近接する箇所の間隔をLz、前記高さをh、移動体外壁に接触する流体の動粘度をνとして、巡航速度及び移動体の進行方向の長さから壁面摩擦応力τ を得て、前記流体の密度ρから、
Figure 0005590443
で得られる、移動体外壁。
A first rib that meanders to the left and right at regular intervals in the direction of fluid flow and at equal intervals in the direction perpendicular to the flow;
A second rib meandering left and right in the shape of line symmetry in the flow direction with respect to the first rib ;
The periodic length of the first rib and the second rib, the interval between the closest positions of the first rib and the second rib, and the height of the first rib and the second rib Is the cruising speed and the length of the moving body in the traveling direction, where Lx is the period length, Lz is the distance between the closest points, h is the height, and v is the kinematic viscosity of the fluid contacting the outer wall of the moving body. To obtain the wall friction stress τ w from the density ρ of the fluid,
Figure 0005590443
The outer wall of the moving body obtained in
JP2010053835A 2010-03-10 2010-03-10 Moving body outer wall Active JP5590443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010053835A JP5590443B2 (en) 2010-03-10 2010-03-10 Moving body outer wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010053835A JP5590443B2 (en) 2010-03-10 2010-03-10 Moving body outer wall

Publications (2)

Publication Number Publication Date
JP2011185410A JP2011185410A (en) 2011-09-22
JP5590443B2 true JP5590443B2 (en) 2014-09-17

Family

ID=44791933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010053835A Active JP5590443B2 (en) 2010-03-10 2010-03-10 Moving body outer wall

Country Status (1)

Country Link
JP (1) JP5590443B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999469B2 (en) * 2011-11-11 2016-09-28 国立大学法人京都工芸繊維大学 Fluid resistance reducing structure and face or head wearing tool using the structure
JP6083580B2 (en) * 2015-08-28 2017-02-22 国立大学法人京都工芸繊維大学 Swimming goggles
NL2017402B1 (en) * 2016-09-01 2018-03-09 Univ Delft Tech Body provided with a superficial area adapted to reduce drag when the body is moving relative to a gaseous or watery medium
DE102017201782A1 (en) 2017-02-03 2018-08-09 Lufthansa Technik Ag Riblet structure
US20200391325A1 (en) * 2017-10-25 2020-12-17 Nikon Corporation Processing apparatus, and manufacturing method of movable body

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777211A (en) * 1993-06-28 1995-03-20 Mitsubishi Heavy Ind Ltd Plate-like body slip stream control device
JP2001050215A (en) * 1999-08-11 2001-02-23 浩伸 ▲黒▼川 Karman's vortex reducing body
JP4824190B2 (en) * 2001-03-07 2011-11-30 独立行政法人日本原子力研究開発機構 Turbulent friction resistance reduction surface
DE10217111A1 (en) * 2002-04-17 2003-11-06 Roehm Gmbh Solid with microstructured surface
JP5476639B2 (en) * 2008-06-30 2014-04-23 公益財団法人北九州産業学術推進機構 Flow resistance reduction structure

Also Published As

Publication number Publication date
JP2011185410A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5590443B2 (en) Moving body outer wall
Modi Moving surface boundary-layer control: a review
US10422363B2 (en) Structural component with a riblet surface
US20070194178A1 (en) Passive micro-roughness array for drag modification
US8240609B2 (en) System and method for reducing viscous force between a fluid and a surface
JP5476639B2 (en) Flow resistance reduction structure
JP2013002636A (en) Method of reducing resistance of streamlined body and its application
Cleaver et al. Thrust enhancement due to flexible trailing-edge of plunging foils
US20160009364A1 (en) Fluid Boundary Layer Control
CN103527575B (en) High speed surface damping device
ITMI20071271A1 (en) METHOD TO REDUCE FRIENDLY FRICTION BETWEEN A FLUID AND AN OBJECT
KR101887075B1 (en) Superhydrophobic three-layered structures flim for drag reduction and method of fabricating the same
Liang et al. An analytical investigation of two-dimensional and three-dimensional biplanes operating in the vicinity of a free surface
Ashraf et al. Thrust generation and wake structure for flow across a pitching airfoil at low Reynolds number
EP3782906A1 (en) Staggered periodic ribblets
US11614106B2 (en) Partially submerged periodic riblets
JP2002266816A (en) Turbulence frictional resistance reducing surface
EP2487371B1 (en) Wing structure and fairing device
Guvernyuk et al. The contribution of added mass force to formation of propulsive force of flapping airfoil in viscous fluid
EP3782904A1 (en) Submerged periodic riblets
Kim et al. A development and assessment of variable-incidence angle vortex generator at low Reynolds number of~ 5× 10 4
TW201821327A (en) Structure for reducing the drag of a ship and its application
JP5590442B2 (en) Friction resistance reduction device
JP2009092227A (en) Fine projection shape for eliminating fluid resistance and its arrangement constitution
Kornilov et al. AIP Conference Proceedings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140717

R150 Certificate of patent or registration of utility model

Ref document number: 5590443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250