JP5581791B2 - Cover glass for solid-state image sensor package - Google Patents
Cover glass for solid-state image sensor package Download PDFInfo
- Publication number
- JP5581791B2 JP5581791B2 JP2010101063A JP2010101063A JP5581791B2 JP 5581791 B2 JP5581791 B2 JP 5581791B2 JP 2010101063 A JP2010101063 A JP 2010101063A JP 2010101063 A JP2010101063 A JP 2010101063A JP 5581791 B2 JP5581791 B2 JP 5581791B2
- Authority
- JP
- Japan
- Prior art keywords
- cover glass
- package
- solid
- glass
- thermal expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Glass Compositions (AREA)
Description
本発明は、固体撮像素子を収納する樹脂製パッケージの前面に取り付けられ、固体撮像素子を保護すると共に透光窓として使用される固体撮像素子パッケージ用カバーガラスに関するものである。 The present invention relates to a cover glass for a solid-state image sensor package that is attached to the front surface of a resin package that houses a solid-state image sensor, protects the solid-state image sensor, and is used as a transparent window.
固体撮像素子は、受光素子であるLSIチップをパッケージ内に納め、その受光面に色分解モザイクフィルターを重ねてワイヤボンディングし、パッケージ開口部にカバーガラスを接着剤により封着した構造となっている。ここで用いられるカバーガラスは、パッケージとの気密封着によりLSIチップを保護するだけではなく受光面へ効率的に光を導入するため、内部欠陥の少ない光学的に均質な材料特性、高い透過率特性が要求される。また、このような用途に使用されるガラスは、パッケージと封着された時に割れや歪みが発生してはならない。すなわち、ガラスとパッケージ材質との熱膨張係数を適合させる必要がある。パッケージ材質としては、平均熱膨張係数が60〜75×10−7K−1のアルミナなどのセラミックが従来より用いられており、これに適合するカバーガラスとして平均熱膨張係数が45〜75×10−7K−1のホウケイ酸塩ガラスがある。 The solid-state imaging device has a structure in which an LSI chip as a light receiving element is housed in a package, a color separation mosaic filter is overlapped on the light receiving surface and wire bonding is performed, and a cover glass is sealed to the package opening with an adhesive. . The cover glass used here not only protects the LSI chip by hermetic sealing with the package, but also efficiently introduces light into the light receiving surface, so it has optically homogeneous material characteristics with low internal defects and high transmittance. Characteristics are required. Moreover, the glass used for such a use must not generate | occur | produce a crack and distortion, when sealed with a package. That is, it is necessary to match the thermal expansion coefficients of the glass and the package material. As the package material, ceramics such as alumina having an average coefficient of thermal expansion of 60 to 75 × 10 −7 K −1 have been conventionally used, and an average coefficient of thermal expansion of 45 to 75 × 10 10 is used as a cover glass suitable for this. There is a -7 K -1 borosilicate glass.
近年、デジタルカメラ等の撮像装置における軽量化やコストダウンを目的として、パッケージ材質の樹脂化が検討されている。樹脂材の平均熱膨張係数は110〜180×10−7K−1とセラミックよりも大きい。また、樹脂中にSiO2粉末を多量に含ませるなどして熱膨張係数を下げた樹脂製パッケージもあるが、そのようなものを含めても樹脂製パッケージの平均熱膨張係数はおおよそ95×10−7K−1以上である。そのため、従来のホウケイ酸塩ガラスを樹脂製パッケージに用いると両者の熱膨張係数が大きく相違することに起因して、パッケージの変形やカバーガラスのハガレが発生するおそれがあった。 In recent years, the use of resin as a package material has been studied for the purpose of reducing the weight and cost of an imaging apparatus such as a digital camera. The average thermal expansion coefficient of the resin material is 110 to 180 × 10 −7 K −1 , which is larger than that of ceramic. In addition, there is a resin package in which the thermal expansion coefficient is lowered by including a large amount of SiO 2 powder in the resin, but even if such a package is included, the average thermal expansion coefficient of the resin package is approximately 95 × 10. It is −7 K −1 or more. For this reason, when conventional borosilicate glass is used for a resin package, there is a possibility that deformation of the package or peeling of the cover glass may occur due to the large difference in thermal expansion coefficient between the two.
これに対し、樹脂製パッケージに好適なカバーガラスとして、フツリン酸ガラスが提案されている(特許文献1)。このガラスは、100〜300℃における平均線膨張係数が120〜180×10−7/℃であるフツリン酸ガラスであり、これにより樹脂製パッケージへの装着性に優れるとされている。 In contrast, fluorophosphate glass has been proposed as a cover glass suitable for a resin package (Patent Document 1). This glass is a fluorophosphate glass having an average coefficient of linear expansion at 100 to 300 ° C. of 120 to 180 × 10 −7 / ° C., which is considered to be excellent in mounting property to a resin package.
近年、固体撮像素子をパッケージに実装する工程として、リフロー方式を採用することが多くなってきている。リフローは、パッケージ内の所定の位置にハンダペーストを印刷した後、その上に部品を載せてからパッケージ全体を180〜250℃付近の温度(使用するハンダペーストの種類によって異なる)まで加熱し、ハンダペーストを溶融することでハンダ付けを行う工程である。この際、カバーガラスをパッケージに貼り付け、パッケージ内を気密封着した後、パッケージ全体を加熱するため、パッケージ内の気体が膨張してパッケージの内圧が上がる。この内圧は、パッケージとカバーガラスに均等にかかるが、カバーガラスは通常0.5mm程度の板厚の薄い板が使用されるため、内圧による負荷が大きく、変形して割れるおそれがある。
上記特許文献1に記載のフツリン酸ガラスは、光学ガラスに用いられる他のガラス組成系と比べてガラスの強度が低く、光学研磨を行うと端部に微小な欠けを生じる割合が高い。そのため、ガラスに外力が作用した際に、この端部を起点に破損するといった強度上の問題が懸念されている。
In recent years, a reflow method has been increasingly adopted as a process of mounting a solid-state imaging device on a package. In reflow, after solder paste is printed at a predetermined position in the package, components are placed on it, and then the entire package is heated to a temperature of around 180 to 250 ° C. (depending on the type of solder paste used). This is a step of soldering by melting the paste. At this time, after the cover glass is attached to the package and the inside of the package is hermetically sealed, the entire package is heated, so that the gas in the package expands and the internal pressure of the package increases. This internal pressure is equally applied to the package and the cover glass. However, since the cover glass is usually a thin plate having a thickness of about 0.5 mm, the load due to the internal pressure is large and the cover glass may be deformed and cracked.
The fluorophosphate glass described in Patent Document 1 has a lower glass strength than other glass composition systems used for optical glass, and has a high rate of minute chipping at the end when optical polishing is performed. Therefore, when an external force is applied to the glass, there is a concern about a problem in strength such that the glass is damaged starting from this end.
本発明は上記事情に鑑みてなされたもので、樹脂製パッケージの気密封着に好適に用いることができ、リフロー工程においても破損し難い強度を有する固体撮像素子パッケージ用カバーガラスを提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a cover glass for a solid-state imaging device package that can be suitably used for hermetic sealing of a resin package and has a strength that is not easily damaged even in a reflow process. Objective.
本発明者は、上記目的を達成するために鋭意検討を重ねた結果、特定の組成範囲のケイ酸塩ガラスが、樹脂製パッケージのカバーガラスとして上記の諸課題を解決し得ることを見出した。 As a result of intensive studies to achieve the above object, the present inventor has found that a silicate glass having a specific composition range can solve the above-mentioned problems as a cover glass for a resin package.
すなわち、本発明の固体撮像素子パッケージ用カバーガラスは、
質量%で、
SiO2 35〜57%、
Al2O3 6〜23%、
B2O3 0〜20%、
Li2O 0〜10%、
Na2O 0〜25%、
K2O 0〜10%、
ただし、Li2O+Na2O+K2O 15〜40%、
MgO+CaO+SrO+ZnO 0〜30%
を含有し、
As2O3、Sb2O3、SnO2を実質的に含有しないことを特徴とする。
That is, the cover glass for a solid-state imaging device package of the present invention is
% By mass
SiO 2 35~57%,
Al 2 O 3 6~23%,
B 2 O 3 0-20%,
Li 2 O 0-10%,
Na 2 O 0-25%,
K 2 O 0~10%,
However, Li 2 O + Na 2 O + K 2 O 15~40%,
MgO + CaO + SrO + ZnO 0-30%
Containing
As 2 O 3, Sb 2 O 3, characterized in that it does not contain SnO 2 substantially.
本発明の固体撮像素子パッケージ用カバーガラスは、50〜250℃の平均熱膨張係数が100〜140×10−7K−1であり、樹脂製のパッケージに取り付けられることが好ましい。 The cover glass for a solid-state imaging device package of the present invention has an average thermal expansion coefficient of 50 to 250 ° C. of 100 to 140 × 10 −7 K −1 and is preferably attached to a resin package.
本発明の固体撮像素子パッケージ用カバーガラスは、ヤング率が74GPa以上であることが好ましい。 The cover glass for a solid-state imaging device package of the present invention preferably has a Young's modulus of 74 GPa or more.
本発明によれば、樹脂製パッケージの気密封着に好適に用いることができ、かつリフロー工程などで外力が作用しても破損し難い強度を有する固体撮像素子パッケージ用カバーガラスを提供することが可能となる。 According to the present invention, it is possible to provide a cover glass for a solid-state imaging device package that can be suitably used for hermetic sealing of a resin package and has a strength that is not easily damaged even when an external force is applied in a reflow process or the like. It becomes possible.
本発明の固体撮像素子パッケージ用カバーガラスが取り付けられる樹脂製パッケージとしては、特に制限なく各種の樹脂材を用いることができる。具体的には、エポキシ樹脂、イミド樹脂、ポリイミド樹脂、シリコーン樹脂、アクリル樹脂、フェノール樹脂、不飽和ポリエステル樹脂等の熱硬化性樹脂やポリフェニレンサルファイド樹脂やポリスルホン樹脂等の熱可塑性樹脂を用いることができ、これら樹脂材に硬化剤や離型剤、充填剤などを適宜配合することも可能である。 As the resin package to which the cover glass for a solid-state imaging device package of the present invention is attached, various resin materials can be used without particular limitation. Specifically, thermosetting resins such as epoxy resins, imide resins, polyimide resins, silicone resins, acrylic resins, phenol resins, unsaturated polyester resins, and thermoplastic resins such as polyphenylene sulfide resins and polysulfone resins can be used. These resin materials can be appropriately mixed with a curing agent, a release agent, a filler and the like.
これら樹脂材からなるパッケージの平均熱膨張係数は、95〜180×10−7K−1であり、これらパッケージにカバーガラスを封着した際に割れや歪みが生じないよう、カバーガラスの平均熱膨張係数は、前述の樹脂材の平均熱膨張係数と類似する必要がある。本発明のカバーガラスは、50〜250℃の平均熱膨張係数が100〜140×10−7K−1であるため、樹脂材の平均熱膨張係数と類似しており、樹脂材のパッケージに取り付けた場合に割れや歪みが発生することなく気密封着することができる。 The average thermal expansion coefficient of the package made of these resin materials is 95 to 180 × 10 −7 K −1 , and the average heat of the cover glass does not cause cracking or distortion when sealing the cover glass to these packages. The expansion coefficient needs to be similar to the average thermal expansion coefficient of the resin material described above. Since the cover glass of the present invention has an average thermal expansion coefficient of 50 to 250 ° C. of 100 to 140 × 10 −7 K −1, it is similar to the average thermal expansion coefficient of the resin material, and is attached to the package of the resin material. In this case, it can be hermetically sealed without cracking or distortion.
次に、本発明のカバーガラスを構成する各成分の含有量(質量%)を上記のように限定した理由を以下に説明する。 Next, the reason why the content (% by mass) of each component constituting the cover glass of the present invention is limited as described above will be described below.
SiO2は、ガラスの網目構造を形成する主成分であるが、35%未満ではガラスの耐候性が悪くなり、57%を超えると溶解性が低下し、ガラス化し難くなる。好ましい範囲は40〜50%である。 SiO 2 is a main component that forms a network structure of glass. However, if it is less than 35%, the weather resistance of the glass is deteriorated, and if it exceeds 57%, the solubility is lowered and vitrification becomes difficult. A preferred range is 40-50%.
Al2O3は、ガラスの耐候性、ヤング率を向上させる成分であるが、6%未満ではその効果は得られず、23%を超えると失透性が強くなり、ガラス化が困難となる。好ましい範囲は10〜20%である。 Al 2 O 3 is a component that improves the weather resistance and Young's modulus of glass, but if it is less than 6%, the effect cannot be obtained, and if it exceeds 23%, devitrification becomes strong and vitrification becomes difficult. . A preferred range is 10 to 20%.
B2O3は、ガラスの構造を補強し、ガラス化を容易にする成分であるが、20%を超えると耐候性が低下する。好ましい範囲は15%以下である。 B 2 O 3 is a component that reinforces the structure of the glass and facilitates vitrification, but when it exceeds 20%, the weather resistance decreases. A preferred range is 15% or less.
Li2O、Na2O、K2Oは、溶解性を向上させ、平均熱膨張係数を主に調整する成分である。Li2Oは、10%を超えると耐候性が低下する。好ましい範囲は9.5%以下である。Na2Oは、25%を超えると耐候性が低下する。好ましい範囲は20%以下である。K2Oは、10%を超えると耐候性が低下する。好ましい範囲は7%以下である。Li2O、Na2O、K2Oの合量は、15%未満および40%を超えると所望の平均熱膨張係数が得られない。好ましい範囲は20〜35%である。また、ヤング率を向上させる効果は、Li2O>Na2O>K2Oの順であり、Li2Oを上記範囲内で多く含有させることが望ましい。 Li 2 O, Na 2 O, and K 2 O are components that improve solubility and mainly adjust the average thermal expansion coefficient. When Li 2 O exceeds 10%, the weather resistance decreases. A preferred range is 9.5% or less. When Na 2 O exceeds 25%, the weather resistance decreases. A preferable range is 20% or less. When K 2 O exceeds 10%, the weather resistance decreases. A preferable range is 7% or less. When the total amount of Li 2 O, Na 2 O, and K 2 O is less than 15% and exceeds 40%, a desired average thermal expansion coefficient cannot be obtained. A preferred range is 20-35%. The effect of improving the Young's modulus is in the order of Li 2 O> Na 2 O> K 2 O, and it is desirable to contain a large amount of Li 2 O within the above range.
MgO、CaO、SrO、ZnOは、溶解性を向上させる成分であるが、これらの合量が30%を超えると失透傾向が強まる。好ましい範囲は20%以下である。 MgO, CaO, SrO, and ZnO are components that improve solubility. However, when the total amount of these exceeds 30%, the tendency to devitrification increases. A preferable range is 20% or less.
As2O3、Sb2O3は、環境負荷物質であり、本発明のカバーガラスを構成する成分としては実質的に含有しない。
SnO2は、ガラスの溶融工程において溶解槽に白金を使用する場合、白金に対してダメージを与えるため、本発明のカバーガラスを構成する成分としては実質的に含有しない。
なお、実質的に含有しないとは、原料として意図して用いないことを意味しており、原料成分や製造工程から混入する不可避不純物については実質的に含有していないとみなす。また、前記不可避不純物を考慮し、実質的に含有しないこととは含有量が0.1%以下であることを意味する。
As 2 O 3 and Sb 2 O 3 are environmentally hazardous substances, and are not substantially contained as components constituting the cover glass of the present invention.
SnO 2 is not substantially contained as a component constituting the cover glass of the present invention because platinum is damaged when platinum is used in the melting tank in the glass melting step.
Note that “substantially not contained” means that it is not intended to be used as a raw material, and it is regarded as substantially free of raw material components and inevitable impurities mixed in from the manufacturing process. Further, considering the inevitable impurities, the fact that it does not contain substantially means that the content is 0.1% or less.
本発明の固体撮像素子用カバーガラスは、50〜250℃の平均熱膨張係数が100〜140×10−7K−1であることが好ましい。これにより、樹脂製パッケージと貼り合わせても、パッケージの変形やカバーガラスの剥がれが発生し難い。また、本発明の固体撮像素子用カバーガラスは、ヤング率が74GPa以上であることが好ましく、80GPa以上がより好ましい。これにより、固体撮像素子用パッケージの組立工程において、パッケージにカバーガラスが気密封着された状態でリフロー工程され、パッケージ内の内圧がカバーガラスに負荷された場合でも、カバーガラスの変形が小さいため、割れが発生し難い。 The cover glass for a solid-state image sensor of the present invention preferably has an average coefficient of thermal expansion of 50 to 250 ° C. of 100 to 140 × 10 −7 K −1 . Thereby, even if it bonds with a resin package, a deformation | transformation of a package and peeling of a cover glass do not generate | occur | produce easily. Further, the cover glass for a solid-state imaging device of the present invention preferably has a Young's modulus of 74 GPa or more, more preferably 80 GPa or more. As a result, in the assembly process of the solid-state imaging device package, the cover glass is reflowed in a state where the cover glass is hermetically sealed, and even when the internal pressure in the package is loaded on the cover glass, the deformation of the cover glass is small. , Cracking is difficult to occur.
本発明のガラスは、次のようにして作製することができる。まず得られるガラスが上記組成範囲となるように原料を秤量、混合する。この原料混合物を白金ルツボに収容し、電気炉内において1200〜1400℃の温度で加熱溶解する。十分に撹拌・清澄した後、金型内に鋳込み、徐冷した後、切断・研磨して平板状カバーガラスを得る。 The glass of the present invention can be produced as follows. First, the raw materials are weighed and mixed so that the obtained glass is in the above composition range. This raw material mixture is accommodated in a platinum crucible and heated and melted at a temperature of 1200 to 1400 ° C. in an electric furnace. After sufficiently stirring and clarifying, it is cast into a mold, slowly cooled, then cut and polished to obtain a flat cover glass.
以下、本発明の実施例および比較例を表1〜表3に示す。表中、例1〜例21が本発明の実施例であり、例22〜例24が比較例である。なお、表中のガラス組成は質量%で示す。 Examples of the present invention and comparative examples are shown in Tables 1 to 3 below. In the table, Examples 1 to 21 are examples of the present invention, and Examples 22 to 24 are comparative examples. In addition, the glass composition in a table | surface is shown by the mass%.
これらガラスは、表に示す組成となるよう原料を秤量・混合し、内容積約300ccの白金ルツボ内に入れて、1200〜1400℃で1〜3時間溶融、清澄、撹拌後、およそ300〜500℃に予熱した所定サイズのモールドに鋳込み後、約1℃/分で徐冷してサンプルとした。ガラスは、サンプル作製時に目視で観察し、泡や脈理のないことを確認した。ヤング率、強度試験(リフロー工程を想定)、平均熱膨張係数について、以下の方法により測定、評価を行った。 These glasses are weighed and mixed to have the composition shown in the table, placed in a platinum crucible with an internal volume of about 300 cc, melted at 1,200 to 1,400 ° C. for 1-3 hours, clarified, stirred, and then about 300 to 500 After casting into a mold of a predetermined size preheated to ° C., it was gradually cooled at about 1 ° C./min to prepare a sample. The glass was visually observed at the time of sample preparation, and it was confirmed that there were no bubbles or striae. The Young's modulus, strength test (assuming reflow process), and average thermal expansion coefficient were measured and evaluated by the following methods.
ヤング率は、長さ90mm、幅20mm、厚さ2mmの試験片を作成し、JIS R 1602 ファインセラミックスの弾性率試験方法の動的弾性率試験方法 (1)曲げ共振法に準拠して測定した。 Young's modulus was prepared by preparing a test piece having a length of 90 mm, a width of 20 mm, and a thickness of 2 mm, and a dynamic elastic modulus test method of the elastic modulus test method of JIS R 1602 fine ceramics. .
強度試験(リフロー工程を想定)は、次のように行った。溶融、成形されたガラスについて両面光学研磨を行い、長さ35mm、幅30mm、板厚0.5mmの矩形上基板とした。そして、エポキシ樹脂からなるパッケージの開口部であり、カバーガラスが当接する部分にディスペンサーを用いて紫外線硬化型樹脂を塗布した。次に、パッケージの開口部に実施例もしくは比較例のカバーガラスを載置し、カバーガラスのパッケージに対抗する面の反対側から紫外線ランプにより紫外線を照射して紫外線硬化型接着剤を硬化させ、カバーガラスをパッケージに接着(気密封着)した。このパッケージを加熱装置に入れ、150℃まで3分で昇温し、150℃で1分間保持、230℃まで30秒で昇温し、230℃で10秒保持した後、室温まで冷却し、この加熱・冷却プロセスにおいてカバーガラスの割れの発生有無を観察した。 The strength test (assuming a reflow process) was performed as follows. The fused and molded glass was subjected to double-sided optical polishing to obtain a rectangular upper substrate having a length of 35 mm, a width of 30 mm, and a plate thickness of 0.5 mm. And the ultraviolet curable resin was apply | coated to the opening part of the package which consists of an epoxy resin using the dispenser in the part which a cover glass contact | abuts. Next, the cover glass of the example or the comparative example is placed in the opening of the package, and the ultraviolet curable adhesive is cured by irradiating ultraviolet rays with an ultraviolet lamp from the opposite side of the surface facing the package of the cover glass, A cover glass was bonded (hermetic sealing) to the package. This package is put in a heating device, heated to 150 ° C. in 3 minutes, held at 150 ° C. for 1 minute, heated to 230 ° C. in 30 seconds, held at 230 ° C. for 10 seconds, cooled to room temperature, The occurrence of cracks in the cover glass was observed during the heating / cooling process.
平均熱膨張係数は、得られたガラスを棒状に加工し、熱分析装置(リガク社製、装置名:TMA8310)で熱膨張法により、昇温速度5℃/分で測定した。 The average coefficient of thermal expansion was measured by heating the obtained glass into a rod shape and using a thermal analyzer (manufactured by Rigaku Corporation, apparatus name: TMA8310) by a thermal expansion method at a heating rate of 5 ° C./min.
表1ないし表3の結果から明らかなように、実施例のガラスはリフロー工程を模した強度評価において、パッケージに貼り付けたカバーガラスに割れが発生することなく、変形に対する強度が高いことがわかる。また、実施例のガラスは、平均熱膨張係数が100〜140×10−7K−1であり、樹脂製パッケージの熱膨張係数と近いことがわかる。 As is apparent from the results of Tables 1 to 3, the strength of the glass of the example is high in the deformation without cracking in the cover glass attached to the package in the strength evaluation simulating the reflow process. . Moreover, the glass of an Example has an average thermal expansion coefficient of 100-140 * 10 < -7 > K < -1 >, and it turns out that it is close to the thermal expansion coefficient of resin-made packages.
以上のように、本発明のガラスは、平均熱膨張係数が100〜140×10−7K−1であり、樹脂製パッケージと貼り合わせた場合に熱膨張係数の差による剥がれや変形が発生しない。かつ、ヤング率が74GPa以上であり、リフロー工程においても割れが発生せず、固体撮像素子パッケージ用カバーガラスとして極めて有用なものである。 As described above, the glass of the present invention has an average thermal expansion coefficient of 100 to 140 × 10 −7 K −1 , and does not peel or deform due to the difference in thermal expansion coefficient when bonded to a resin package. . In addition, the Young's modulus is 74 GPa or more, and cracks do not occur in the reflow process, which is extremely useful as a cover glass for a solid-state imaging device package.
Claims (4)
SiO2 35〜57%、
Al2O3 6〜23%、
B2O3 0〜20%、
Li2O 6.0〜10%、
Na2O 0〜25%、
K2O 0〜10%、
ただし、Li2O+Na2O+K2O 15〜40%、
MgO+CaO+SrO+ZnO 0〜30%、
を含有し、実質的にAs2O3、Sb2O3、SnO2を含有しないことを特徴とする固体撮像素子パッケージ用カバーガラス。 % By mass
SiO 2 35~57%,
Al 2 O 3 6~23%,
B 2 O 3 0-20%,
Li 2 O 6.0 ~10%,
Na 2 O 0-25%,
K 2 O 0~10%,
However, Li 2 O + Na 2 O + K 2 O 15~40%,
MgO + CaO + SrO + ZnO 0-30%,
The solid-state image sensor package cover glass is characterized by containing As and containing substantially no As 2 O 3 , Sb 2 O 3 , or SnO 2 .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010101063A JP5581791B2 (en) | 2010-04-26 | 2010-04-26 | Cover glass for solid-state image sensor package |
CN201110112083.XA CN102249537B (en) | 2010-04-26 | 2011-04-22 | Covering glass for Solid-state imaging element package body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010101063A JP5581791B2 (en) | 2010-04-26 | 2010-04-26 | Cover glass for solid-state image sensor package |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011230942A JP2011230942A (en) | 2011-11-17 |
JP5581791B2 true JP5581791B2 (en) | 2014-09-03 |
Family
ID=44977167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010101063A Active JP5581791B2 (en) | 2010-04-26 | 2010-04-26 | Cover glass for solid-state image sensor package |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5581791B2 (en) |
CN (1) | CN102249537B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016098499A1 (en) * | 2014-12-16 | 2016-06-23 | 日本電気硝子株式会社 | Support glass substrate and laminate using same |
CN107721155A (en) * | 2017-10-30 | 2018-02-23 | 株洲醴陵旗滨玻璃有限公司 | High-strength thick glass substrate and preparation method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4314817A1 (en) * | 1993-04-30 | 1994-11-03 | Ivoclar Ag | Opalescent glass |
DE19721738C1 (en) * | 1997-05-24 | 1998-11-05 | Schott Glas | Aluminosilicate glass for flat displays and uses |
JP2008195602A (en) * | 2007-01-16 | 2008-08-28 | Nippon Electric Glass Co Ltd | Method for manufacturing tempered glass substrate and tempered glass substrate |
JP5743125B2 (en) * | 2007-09-27 | 2015-07-01 | 日本電気硝子株式会社 | Tempered glass and tempered glass substrate |
JP5339173B2 (en) * | 2007-09-27 | 2013-11-13 | 日本電気硝子株式会社 | Tempered glass substrate, glass and method for producing tempered glass substrate |
JP2009203155A (en) * | 2008-01-31 | 2009-09-10 | Ohara Inc | Optical glass |
WO2009131053A1 (en) * | 2008-04-21 | 2009-10-29 | 旭硝子株式会社 | Glass plate for display panel, method for producing the same, and method for producing tft panel |
-
2010
- 2010-04-26 JP JP2010101063A patent/JP5581791B2/en active Active
-
2011
- 2011-04-22 CN CN201110112083.XA patent/CN102249537B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN102249537B (en) | 2015-04-22 |
CN102249537A (en) | 2011-11-23 |
JP2011230942A (en) | 2011-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5732758B2 (en) | Cover glass for solid-state imaging device | |
US8174045B2 (en) | Glass for covering optical element, glass-covered light-emitting element and glass-covered light-emitting device | |
TWI714696B (en) | Manufacturing method of glass substrate, laminated substrate, laminated body and semiconductor package | |
CN109075128B (en) | Method for manufacturing hermetic package and hermetic package | |
JP5601319B2 (en) | Cover glass for solid-state image sensor package | |
WO2021015059A1 (en) | Laminated member | |
WO2021251247A1 (en) | Multilayer member | |
JP2007031565A (en) | Curable silicone resin composition, method for producing air-tight container or electronic part using the same | |
JP5581791B2 (en) | Cover glass for solid-state image sensor package | |
JPWO2006080459A1 (en) | Curable silicone resin composition, hermetic container and electronic component using the same | |
WO2006033380A1 (en) | Sealing composition, airtight container and overcoat of electronic part using same, and method for producing those | |
US10865141B2 (en) | Synthetic quartz glass lid precursor, synthetic quartz glass lid, and preparation methods thereof | |
JP5369408B2 (en) | Glass for optical element coating, glass-coated light-emitting element, and glass-coated light-emitting device | |
US6777358B2 (en) | Sealing glass composition | |
WO2022158457A1 (en) | Lamination member and glass composition | |
JP6595935B2 (en) | Adhesive for glass, method for producing glass adhesive, and method for producing glass bonded body | |
KR101001121B1 (en) | Sealing composition for optical element, sealing structure, and optical element | |
JP3125971B2 (en) | Low temperature sealing composition | |
US8323800B2 (en) | Method of bonding to gold surface and resultant combinations | |
JP7506566B2 (en) | Sealing and coating materials | |
JP7540440B2 (en) | Laminated material | |
WO2022014201A1 (en) | Protective cap, electronic device, and protective cap production method | |
JP4382509B2 (en) | Alumina and silicon carbide fused glass materials | |
WO2005100278A1 (en) | Double-glazed glass and method for manufacturing same | |
JPH0753237A (en) | Low-temperature sealing composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130208 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140225 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140421 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140617 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140630 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5581791 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |