JP5581735B2 - Nitride crystal manufacturing method and nitride crystal manufacturing apparatus - Google Patents

Nitride crystal manufacturing method and nitride crystal manufacturing apparatus Download PDF

Info

Publication number
JP5581735B2
JP5581735B2 JP2010045433A JP2010045433A JP5581735B2 JP 5581735 B2 JP5581735 B2 JP 5581735B2 JP 2010045433 A JP2010045433 A JP 2010045433A JP 2010045433 A JP2010045433 A JP 2010045433A JP 5581735 B2 JP5581735 B2 JP 5581735B2
Authority
JP
Japan
Prior art keywords
crystal growth
crystal
growth vessel
core tube
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010045433A
Other languages
Japanese (ja)
Other versions
JP2011178626A (en
Inventor
武克 山本
尚 峯本
健 畑山
大蔵 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2010045433A priority Critical patent/JP5581735B2/en
Publication of JP2011178626A publication Critical patent/JP2011178626A/en
Application granted granted Critical
Publication of JP5581735B2 publication Critical patent/JP5581735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、窒化物結晶製造方法および窒化物結晶製造装置に関するものである。   The present invention relates to a nitride crystal manufacturing method and a nitride crystal manufacturing apparatus.

従来の窒化物結晶製造装置を図3に示す。この窒化物結晶製造装置を用いて、窒化物結晶は、以下の様にして製造されていた。   A conventional nitride crystal manufacturing apparatus is shown in FIG. Using this nitride crystal manufacturing apparatus, the nitride crystal was manufactured as follows.

すなわち、育成炉1と、この育成炉内に配置された結晶成長容器6と、この結晶成長容器を加熱するヒーター3と、前記結晶成長容器内に原料ガスを供給する原料ガス供給部(図示せず)と、前記結晶成長容器内に設けた坩堝8と、この坩堝内に設けた原料液10を備えた構成となっていた。   That is, a growth furnace 1, a crystal growth vessel 6 disposed in the growth furnace, a heater 3 for heating the crystal growth vessel, and a source gas supply unit (not shown) for supplying a source gas into the crystal growth vessel 2), a crucible 8 provided in the crystal growth vessel, and a raw material solution 10 provided in the crucible.

このような構成において、窒化物結晶製造装置として、前記ヒーター3に対して前記結晶成長容器6内の温度を均一化するために結晶成長容器6を熱伝導性材料より形成したものを用いて、結晶成長容器6内の温度を均一化して結晶の品質を安定化したものもあった(例えば、これに類似する技術は下記特許文献1に記載されている)。   In such a configuration, as a nitride crystal manufacturing apparatus, in order to make the temperature in the crystal growth container 6 uniform with respect to the heater 3, a crystal growth container 6 formed of a heat conductive material is used. Some have stabilized the quality of the crystal by making the temperature in the crystal growth vessel 6 uniform (for example, a technique similar to this is described in Patent Document 1 below).

国際公開第2007/122867号International Publication No. 2007/122867

上記従来例における課題は、結晶の品質が劣化してしまうことであった。   The problem in the conventional example is that the quality of the crystal deteriorates.

すなわち、従来例においては、育成炉1内に配置された結晶成長容器6をヒーター3によって加熱する構成となっていたが、結晶成長容器6をヒーター3で直接加熱してしまうことは、結晶成長容器6内において、ヒーター3が直接加熱する部分と、それ以外の部分において温度差が発生してしまい、場所により結晶特性のバラツキが発生し、結晶品質が悪くなる問題があった。   That is, in the conventional example, the crystal growth vessel 6 disposed in the growth furnace 1 is heated by the heater 3. However, the crystal growth vessel 6 is directly heated by the heater 3. In the container 6, there is a problem that a temperature difference occurs between a portion directly heated by the heater 3 and a portion other than that, resulting in variations in crystal characteristics depending on the location, resulting in poor crystal quality.

そこで本発明は、結晶の品質向上を図ることを目的とするものである。   Therefore, an object of the present invention is to improve the quality of crystals.

そして、この目的を達成するために本発明は、準備工程と、その後の結晶育成工程とを有し、前記準備工程は、種基板と、結晶材料とアルカリ金属またはアルカリ土類金属を、坩堝に収納するとした第1の工程と、前記結晶育成工程は、複数の前記坩堝を結晶成長容器内に配置し、前記結晶成長容器を加熱手段の内側にある炉心管内に配置した状態で、前記炉心管を前記加熱手段により所定の温度で加熱し、前記結晶成長容器内の複数の前記坩堝の温度の差を10度未満とし、前記坩堝を原料ガス供給手段により所定の気圧の窒素雰囲気下にした状態で、前記種基板上に結晶を育成するとした第2の工程と、を備えたことにより、所期の目的を達成するものである。 And in order to achieve this object, the present invention has a preparation step and a subsequent crystal growth step, and the preparation step includes a seed substrate, a crystal material and an alkali metal or alkaline earth metal in a crucible. In the first step and the crystal growth step, the plurality of crucibles are arranged in a crystal growth vessel, and the crystal growth vessel is arranged in a reactor core tube inside a heating means. Is heated at a predetermined temperature by the heating means, the temperature difference between the plurality of crucibles in the crystal growth vessel is less than 10 degrees, and the crucible is in a nitrogen atmosphere at a predetermined pressure by the source gas supply means Thus, the intended purpose is achieved by including the second step of growing the crystal on the seed substrate.

以上のように本発明は、準備工程と、その後の結晶育成工程とを有し、前記準備工程は、種基板と、結晶材料とアルカリ金属またはアルカリ土類金属を、坩堝に収納するとした第の工程と、前記結晶育成工程は、前記坩堝を結晶成長容器内に配置し、この結晶成長容器6を炉心管4内に配置した状態で、この炉心管を加熱手段により所定の温度で加熱し、前記坩堝を原料ガス供給手段により所定の気圧の窒素雰囲気下にした状態で、前記種基板上に結晶を育成するとした第2の工程と、を備えたので、結晶の品質を向上することができる。   As described above, the present invention includes a preparatory step and a subsequent crystal growth step, and the preparatory step includes storing the seed substrate, the crystal material, and the alkali metal or alkaline earth metal in a crucible. And the step of growing the crystal, the crucible is placed in a crystal growth vessel, and the crystal growth vessel 6 is placed in the reactor core tube 4 and the furnace tube is heated at a predetermined temperature by a heating means. A second step in which the crucible is grown on the seed substrate in a state where the crucible is placed in a nitrogen atmosphere at a predetermined pressure by the source gas supply means, so that the quality of the crystal can be improved. .

すなわち、本発明においては、坩堝内の温度を均一化するために、結晶成長容器を炉心管内に配置し、この炉心管自体を加熱するようにしたので、炉心管内の温度が均一に保たれ、それによって結晶成長容器内に配置した坩堝内の温度の均一化が可能となるので、これによって結晶の品質を向上させることができることとなったものである。   That is, in the present invention, in order to make the temperature in the crucible uniform, the crystal growth vessel is arranged in the furnace core tube, and the core tube itself is heated, so that the temperature in the core tube is kept uniform, As a result, the temperature in the crucible placed in the crystal growth vessel can be made uniform, which improves the quality of the crystal.

本発明の一実施形態の窒化物結晶製造装置の構成図Configuration diagram of nitride crystal production apparatus of one embodiment of the present invention 温度測定実験図Temperature measurement experiment 従来の結晶製造装置の構成図Configuration of conventional crystal manufacturing equipment

以下、本発明の一実施形態を窒化物結晶製造装置の一例として窒化物結晶成長装置に適用したものを、添付図面を用いて説明する。   Hereinafter, an embodiment in which an embodiment of the present invention is applied to a nitride crystal growth apparatus as an example of a nitride crystal manufacturing apparatus will be described with reference to the accompanying drawings.

図1は、本発明の一実施形態における窒化物結晶成長装置の構成図である。育成炉1は、内部を高圧に加圧できるように圧力容器で作成されており、育成炉1の内部には、内部を高温に加熱できるように断熱材2で囲われた加熱手段としてのヒーター3が設置されている。この構成により、育成炉1内を加圧及び加熱が可能な構成となっている。さらに、このヒーター3の内部に、炉心管4を設置する。   FIG. 1 is a configuration diagram of a nitride crystal growth apparatus according to an embodiment of the present invention. The growth furnace 1 is made of a pressure vessel so that the inside can be pressurized to a high pressure, and the inside of the growth furnace 1 is a heater as a heating means surrounded by a heat insulating material 2 so that the inside can be heated to a high temperature. 3 is installed. With this configuration, the inside of the growth furnace 1 can be pressurized and heated. Further, a furnace core tube 4 is installed inside the heater 3.

なお、育成炉1及びヒーター3を含む断熱体2、炉心管4は、内部に結晶成長容器6を設置できる構造となっている。具体的には、本体と蓋の2部材で構成することにより、容易に内部に成長容器6を設置できる。   The heat insulator 2 including the growth furnace 1 and the heater 3 and the core tube 4 have a structure in which a crystal growth vessel 6 can be installed. Specifically, the growth vessel 6 can be easily installed in the inside by constituting the two members of the main body and the lid.

次に、育成炉1内に設置する結晶成長容器6を準備する行程を説明する。まず、アルミナ等の耐熱材料で作成されたカップ状の坩堝8に、結晶を成長させる種基板(図示せず)を設置する。さらに、結晶材料(例えば、ガリウム、アルミニウム、インジウム)とフラックスの役割を果たすアルカリ金属(例えば、リチウム、ナトリウム、カリウム)またはアルカリ土類金属(例えば、カルシウム、ストロンチウム、バリウム、ラジウム、ベリリウム、マグネシウム)とを所定の量に計って坩堝8に入れる。これらアルカリ金属およびアルカリ土類金属は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。   Next, the process of preparing the crystal growth vessel 6 installed in the growth furnace 1 will be described. First, a seed substrate (not shown) for growing crystals is placed in a cup-shaped crucible 8 made of a heat-resistant material such as alumina. In addition, crystalline materials (eg, gallium, aluminum, indium) and alkali metals (eg, lithium, sodium, potassium) or alkaline earth metals (eg, calcium, strontium, barium, radium, beryllium, magnesium) that act as fluxes Are put in a crucible 8 in a predetermined amount. These alkali metals and alkaline earth metals may be used alone or in combination of two or more.

なお、結晶材料とアルカリ金属またはアルカリ土類金属は、加熱することによって液化し、この図1に示す原料液10となる。この状態で結晶成長させても良いが、結晶成長中に原料液の蒸発が多くなるので、坩堝8に坩堝蓋9で蓋をすることによって蒸発が抑えることが出来る。その場合は、原料ガスが坩堝8内に流入できるように、坩堝8と坩堝蓋9の接触面に溝等を設けることによって、原料ガス流入路を確保する必要がある。結晶材料およびアルカリ金属の秤量や取り扱いは、アルカリ金属の酸化や水分吸着を回避するために、窒素ガスやアルゴンガスやネオンガスなどで置換されたグローブボックス中で行うことが好ましい。   Note that the crystal material and the alkali metal or alkaline earth metal are liquefied by heating to become the raw material liquid 10 shown in FIG. Although the crystal may be grown in this state, the evaporation of the raw material liquid increases during the crystal growth. Therefore, the evaporation can be suppressed by covering the crucible 8 with the crucible lid 9. In this case, it is necessary to secure a source gas inflow path by providing a groove or the like on the contact surface between the crucible 8 and the crucible lid 9 so that the source gas can flow into the crucible 8. The weighing and handling of the crystal material and the alkali metal are preferably performed in a glove box substituted with nitrogen gas, argon gas, neon gas, or the like in order to avoid oxidation of the alkali metal and moisture adsorption.

次に、原料の入った坩堝8を結晶成長容器6の中に設置する。このときに、坩堝8を縦方向へ多段に設置する場合は坩堝台11等を用いると良く、図に示すように坩堝蓋9の上に坩堝台11を設置する方法や、坩堝台11に脚を形成して坩堝蓋と坩堝台11を接触させない方法などがある。そして、坩堝8を結晶成長容器6に設置した後に、結晶成長容器蓋7で結晶成長容器6に蓋をして、グローブボックスから取り出し、炉心管4の内部に設置する。   Next, the crucible 8 containing the raw material is placed in the crystal growth vessel 6. At this time, when the crucibles 8 are installed in multiple stages in the vertical direction, a crucible base 11 or the like may be used. As shown in the figure, a method of installing the crucible base 11 on the crucible lid 9, And the crucible lid and the crucible base 11 are not brought into contact with each other. After the crucible 8 is installed in the crystal growth vessel 6, the crystal growth vessel 6 is covered with the crystal growth vessel lid 7, taken out from the glove box, and installed inside the furnace core tube 4.

その後、原料ガス供給装置(図示せず)から供給管12を通して結晶成長容器6に原料ガスを供給する。結晶成長容器6内を密閉状態として、原料ガス供給装置から供給管12を通して結晶成長容器6に原料ガスを直接供給することにより、不純物ガスが結晶成長容器6内に入るのを防ぐことが出来る。そして、供給した原料ガスのうち余分な原料ガスは、排気管13から結晶成長容器の外部に排出され、排出管14から育成炉の外部へ排出される。   Thereafter, the source gas is supplied from the source gas supply device (not shown) to the crystal growth vessel 6 through the supply pipe 12. By making the inside of the crystal growth vessel 6 hermetically sealed and supplying the source gas directly from the source gas supply device to the crystal growth vessel 6 through the supply pipe 12, it is possible to prevent the impurity gas from entering the crystal growth vessel 6. Then, excess source gas in the supplied source gas is discharged from the exhaust pipe 13 to the outside of the crystal growth vessel, and discharged from the discharge pipe 14 to the outside of the growth furnace.

なお、供給管12を育成炉1に連結して育成炉1に原料ガスを供給することにより、結晶成長容器6と結晶成長容器蓋7の隙間等から結晶成長容器6内に原料ガスを供給することも可能である。その場合は、排気管13が必要ない。   In addition, by connecting the supply pipe 12 to the growth furnace 1 and supplying the raw material gas to the growth furnace 1, the raw material gas is supplied into the crystal growth container 6 from the gap between the crystal growth container 6 and the crystal growth container lid 7. It is also possible. In that case, the exhaust pipe 13 is not necessary.

その後、熱電対(図示せず)や圧力調整器(図示せず)によって、育成炉1の温度および育成雰囲気の圧力を制御しながら加圧・加熱を行う。なお、結晶を生成するための原料の溶融および育成の条件は、原料である結晶材料やアルカリ金属の成分、および原料ガスの成分およびその圧力に依存するが、例えば、温度は700℃〜1100℃、好ましくは700℃〜900℃の低温が用いられる。圧力は20気圧(20×1.01325×10Pa)以上、好ましくは30気圧(30×1.01325×10Pa)〜100気圧(100×1.01325×10Pa)が用いられる。 Thereafter, pressurization and heating are performed while controlling the temperature of the growth furnace 1 and the pressure of the growth atmosphere by a thermocouple (not shown) and a pressure regulator (not shown). The conditions for melting and growing the raw material for generating crystals depend on the raw crystal material and the alkali metal component, the raw material gas component and the pressure thereof. For example, the temperature is 700 ° C. to 1100 ° C. Preferably, a low temperature of 700 ° C. to 900 ° C. is used. The pressure is 20 atm (20 × 1.01325 × 10 5 Pa) or more, preferably 30 atm (30 × 1.01325 × 10 5 Pa) to 100 atm (100 × 1.01325 × 10 5 Pa).

このように、育成温度に昇温することにより、坩堝内で結晶材料/アルカリ金属の融解液、つまり原料液10が形成され、この原料液10中に原料ガスが溶け込み、結晶材料と原料ガスとが反応して、種基板の上に結晶基板が育成される。   Thus, by raising the temperature to the growth temperature, a crystal material / alkali metal melt, that is, a raw material liquid 10 is formed in the crucible, and the raw material gas is dissolved in the raw material liquid 10. Reacts to grow a crystal substrate on the seed substrate.

本発明の一実施形態では、ヒーター3で結晶成長容器6を直接加熱するのではなく、炉心管4を介して熱していることが特徴となっている。つまり、側面及び底面からヒーター3で加熱された炉心管4は均熱体及び蓄熱体の役割を果たし、炉心管4内の温度が一定に保たれるようになる。この温度が一定に保たれた空間に結晶成長容器6を設置しているので、結晶成長容器内はさらに高精度で均熱性を保つことが可能となる。その結果、結晶成長容器6内の各坩堝8の温度も均一となり、成長条件のバラツキによる結晶特性のバラツキが無くなり、結晶品質の向上を図ることが可能となる。 In one embodiment of the present invention, rather than heating the crystal growth vessel 6 by the heater 3 direct, it is the distinctive feature that heating pressure through the furnace tube 4. That is, the core tube 4 heated by the heater 3 from the side surface and the bottom surface serves as a soaking body and a heat storage body, so that the temperature in the core tube 4 is kept constant. Since the crystal growth vessel 6 is installed in a space in which the temperature is kept constant, the inside of the crystal growth vessel can be maintained with high accuracy and soaking. As a result, the temperatures of the respective crucibles 8 in the crystal growth vessel 6 are also made uniform, there is no variation in crystal characteristics due to variations in growth conditions, and crystal quality can be improved.

この炉心管4は、結晶成長容器6内から発生するアルカリ蒸気と、ヒーター3加熱による高温にさらされることになるので、耐アルカリ性と耐熱性を有する材料(ステンレスやインコネル等)を用いると良く、再利用も可能となる。また、炉心管4をヒーター3から取り外し可能にしておくと、炉心管4に付着したアルカリ成分を除去可能になるので、育成炉1内の結晶成長環境を良い状態にキープすることができる。   Since this furnace core tube 4 is exposed to alkali vapor generated from the inside of the crystal growth vessel 6 and high temperature by heating the heater 3, it is good to use a material having resistance to alkali and heat (such as stainless steel or Inconel). Reuse is also possible. If the core tube 4 is removable from the heater 3, the alkali components attached to the core tube 4 can be removed, so that the crystal growth environment in the growth furnace 1 can be kept in a good state.

ここで、炉心管4自体は直接ヒーター3で加熱されているので、表面に温度バラツキが発生している。そこで、炉心管内に結晶成長容器台5を設置して、結晶成長容器台5の上に結晶成長容器6を設置すると、結晶成長容器6の底面が直接炉心管4に接しないので、結晶成長容器6の均熱性がさらに向上する。 Here, since the core tube 4 itself is directly heated by the heater 3, temperature variations occur on the surface. Therefore, when the crystal growth vessel base 5 is installed in the core tube 4 and the crystal growth vessel 6 is installed on the crystal growth vessel base 5, the bottom surface of the crystal growth vessel 6 does not directly contact the core tube 4, The soaking property of the growth vessel 6 is further improved.

さらに、結晶成長容器6の外周部のうち、一部で外径を大きくすることにより、外径が大きい部分だけが直接炉心管4に接するので接触面積が小さくなり、結晶成長容器6の均熱性がいっそう向上する。   Furthermore, by enlarging the outer diameter of a part of the outer peripheral portion of the crystal growth vessel 6, only the portion with the larger outer diameter is in direct contact with the core tube 4, so that the contact area is reduced, so Will improve further.

また、炉心管4をできるだけ温度バラツキがなく加熱できるように、ヒーター3は炉心管3の外周面に対向する位置だけでなく、底面に対向する位置にも設置すると良い。   In addition, the heater 3 may be installed not only at a position facing the outer peripheral surface of the core tube 3 but also at a position facing the bottom surface so that the core tube 4 can be heated with as little temperature variation as possible.

これらの効果を確認するために、炉心管4がある場合と無い場合で実験を行った。具体的には、図2に示すように3個の坩堝8を2段、合計6個配置して、それぞれの坩堝に熱電対(温度計)を設置し、図1の窒化物結晶成長装置で結晶成長条件まで加熱・加圧を行い、それぞれの坩堝8の温度を測定した。なお、温度は860℃、圧力は32気圧の条件で測定を行った。その結果を図2に示す。   In order to confirm these effects, experiments were conducted with and without the core tube 4. Specifically, as shown in FIG. 2, three crucibles 8 are arranged in two stages, a total of six, and a thermocouple (thermometer) is installed in each crucible, and the nitride crystal growth apparatus of FIG. Heating and pressing were performed up to the crystal growth conditions, and the temperature of each crucible 8 was measured. The temperature was measured at 860 ° C. and the pressure was 32 atm. The result is shown in FIG.

この結果から分かるように、炉心管4が無い場合は坩堝8間で最大12.8℃の温度バラツキが生じているが、炉心管4がある場合の温度バラツキは3.4℃まで大幅に減少している。他の実験において、温度が10℃違えば結晶特性が変わることが分かっており、炉心管4が無い場合は、坩堝8によって結晶特性がばらばらとなり、結晶品質が悪くなるので、炉心管4を加熱手段により所定の温度で加熱することで、結晶成長容器6の均熱性が保たれることとなる。   As can be seen from this result, there is a maximum temperature variation of 12.8 ° C. between the crucibles 8 without the core tube 4, but the temperature variation with the core tube 4 is greatly reduced to 3.4 ° C. doing. In other experiments, it has been found that if the temperature is different by 10 ° C., the crystal characteristics change, and if the core tube 4 is not present, the crucible 8 disperses the crystal characteristics and the crystal quality deteriorates. By heating at a predetermined temperature by the means, the soaking property of the crystal growth vessel 6 is maintained.

以上のように、炉心管4を用いることによって、結晶特性に影響を与えないレベルまで温度バラツキを抑えられるので、結晶品質向上を図ることができる。   As described above, by using the core tube 4, temperature variation can be suppressed to a level that does not affect the crystal characteristics, so that the crystal quality can be improved.

以上のように本発明は、準備工程と、その後の結晶育成工程とを有し、前記準備工程は、種基板と、結晶材料とアルカリ金属またはアルカリ土類金属を、坩堝に収納するとした第1の工程と、前記結晶育成工程は、前記坩堝を結晶成長容器内に配置し、この結晶成長容器を炉心管内に配置した状態で、この炉心管を加熱手段により所定の温度で加熱し、前記坩堝を原料ガス供給手段により所定の気圧の窒素雰囲気下にした状態で、前記種基板上に結晶を育成するとした第2の工程と、を備えたので、結晶の品質を向上することができる。   As described above, the present invention has a preparatory step and a subsequent crystal growth step, and the preparatory step includes a seed substrate, a crystal material, and an alkali metal or alkaline earth metal stored in a crucible. And in the crystal growth step, the crucible is arranged in a crystal growth vessel, and the furnace tube is heated at a predetermined temperature by a heating means in a state where the crystal growth vessel is arranged in the reactor core tube. And a second step in which the crystal is grown on the seed substrate in a state in which the material gas is supplied in a nitrogen atmosphere at a predetermined pressure by the source gas supply means, the quality of the crystal can be improved.

すなわち、本発明においては、坩堝内の温度を均一化するために、結晶成長容器を炉心管内に配置し、この炉心管自体を加熱するようにしたので、炉心管内の温度が均一に保たれ、それによって結晶成長容器内に配置した坩堝内の温度の均一化が可能となるので、これによって結晶の品質を向上させることができることとなったものである。   That is, in the present invention, in order to make the temperature in the crucible uniform, the crystal growth vessel is arranged in the furnace core tube, and the core tube itself is heated, so that the temperature in the core tube is kept uniform, As a result, the temperature in the crucible placed in the crystal growth vessel can be made uniform, which improves the quality of the crystal.

したがって、たとえば、窒化物結晶製造装置として広く活用が期待されるものである。   Therefore, for example, it is expected to be widely used as a nitride crystal manufacturing apparatus.

1 育成炉
2 断熱材
3 ヒーター
4 炉心管
5 結晶成長容器台
6 結晶成長容器
7 結晶成長容器蓋
8 坩堝
9 坩堝蓋
10 原料液
11 坩堝台
12 供給管
13 排気管
14 排出管
DESCRIPTION OF SYMBOLS 1 Growth furnace 2 Heat insulating material 3 Heater 4 Core tube 5 Crystal growth container stand 6 Crystal growth container 7 Crystal growth container lid 8 Crucible 9 Crucible lid 10 Raw material liquid 11 Crucible base 12 Supply pipe 13 Exhaust pipe 14 Exhaust pipe

Claims (5)

準備工程と、その後の結晶育成工程とを有し、
前記準備工程は、種基板と、結晶材料とアルカリ金属またはアルカリ土類金属を、坩堝に収納するとした第1の工程と、
前記結晶育成工程は、複数の前記坩堝を結晶成長容器内に配置し、前記結晶成長容器を加熱手段の内側にある炉心管内に配置した状態で、前記炉心管を前記加熱手段により所定の温度で加熱し、前記結晶成長容器内の複数の前記坩堝の温度の差を10度未満とし、前記坩堝を原料ガス供給手段により所定の気圧の窒素雰囲気下にした状態で、前記種基板上に結晶を育成するとした第2の工程と、を備えた窒化物結晶製造方法。
Having a preparation step and a subsequent crystal growth step,
The preparation step is a first step in which a seed substrate, a crystal material and an alkali metal or an alkaline earth metal are stored in a crucible;
In the crystal growth step, a plurality of the crucibles are arranged in a crystal growth vessel, and the crystal growth vessel is arranged in a furnace core tube inside the heating means, and the furnace core tube is heated at a predetermined temperature by the heating means. The crystal is formed on the seed substrate in a state where the temperature difference between the plurality of crucibles in the crystal growth vessel is less than 10 degrees and the crucible is placed in a nitrogen atmosphere at a predetermined pressure by a source gas supply means. A nitride crystal manufacturing method comprising: a second step to be grown.
加熱手段と、前記加熱手段の内部に配置された炉心管と、前記炉心管内に配置された結晶成長容器と、前記結晶成長容器内に原料ガスを供給する原料ガス供給部と、を備え、
前記炉心管は、前記加熱手段により所定の温度で加熱され、前記結晶成長容器内に配置された複数の前記坩堝の温度の差が10度未満となることを特徴とする窒化物結晶製造装置。
A heating unit, a core tube disposed inside the heating unit, a crystal growth vessel disposed in the core tube, and a source gas supply unit that supplies a source gas into the crystal growth vessel,
The furnace core tube is heated at a predetermined temperature by the heating means, and a temperature difference between the plurality of crucibles arranged in the crystal growth vessel is less than 10 degrees, and the nitride crystal manufacturing apparatus is characterized in that
前記結晶成長容器を前記炉心管の底面から所定の高さに保持する結晶成長容器台を設けた請求項2に記載の窒化物結晶製造装置。   The nitride crystal production apparatus according to claim 2, further comprising a crystal growth vessel table that holds the crystal growth vessel at a predetermined height from a bottom surface of the furnace core tube. 前記結晶成長容器の外周部分のうち、一部で外径を大きくした請求項2または3に記載の窒化物結晶製造装置。   The nitride crystal manufacturing apparatus according to claim 2 or 3, wherein an outer diameter of a part of the outer peripheral portion of the crystal growth vessel is increased. 前記加熱手段を、前記炉心管の外周面に対する位置と、底面に対する位置と、に設けた請求項2から4のいずれか一つに記載の窒化物結晶製造装置。 Said heating means, and a position against toward the outer peripheral surface of the core tube, a nitride crystal manufacturing apparatus according to the position of pairs toward the bottom, claim 2 provided on any one of four.
JP2010045433A 2010-03-02 2010-03-02 Nitride crystal manufacturing method and nitride crystal manufacturing apparatus Active JP5581735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010045433A JP5581735B2 (en) 2010-03-02 2010-03-02 Nitride crystal manufacturing method and nitride crystal manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010045433A JP5581735B2 (en) 2010-03-02 2010-03-02 Nitride crystal manufacturing method and nitride crystal manufacturing apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014146078A Division JP5828353B2 (en) 2014-07-16 2014-07-16 Nitride crystal manufacturing method and nitride crystal manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2011178626A JP2011178626A (en) 2011-09-15
JP5581735B2 true JP5581735B2 (en) 2014-09-03

Family

ID=44690553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010045433A Active JP5581735B2 (en) 2010-03-02 2010-03-02 Nitride crystal manufacturing method and nitride crystal manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5581735B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI437681B (en) * 2012-03-28 2014-05-11 Egalax Empia Technology Inc Wiring pattern for touch integrated circuit
WO2016084492A1 (en) * 2014-11-26 2016-06-02 日本碍子株式会社 Method and apparatus for producing group-13-element nitride crystals
JP6872346B2 (en) * 2016-10-26 2021-05-19 昭和電工株式会社 Single crystal growth device
JP2022055282A (en) * 2020-09-28 2022-04-07 Secカーボン株式会社 SiC SINGLE CRYSTAL GROWTH APPARATUS

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4414253B2 (en) * 2004-03-05 2010-02-10 株式会社リコー Group III nitride crystal manufacturing method
CN101405438B (en) * 2006-03-23 2012-06-27 日本碍子株式会社 Apparatus for producing nitride single crystal
WO2007108338A1 (en) * 2006-03-23 2007-09-27 Ngk Insulators, Ltd. Process and apparatus for producing nitride single crystal
JP2007254206A (en) * 2006-03-23 2007-10-04 Ngk Insulators Ltd Method for growing nitride single crystal
JP5353711B2 (en) * 2007-12-05 2013-11-27 株式会社リコー Crystal manufacturing method and crystal manufacturing apparatus for group III nitride crystal
JP2010037189A (en) * 2008-07-08 2010-02-18 Sumitomo Electric Ind Ltd Apparatus and method for growing crystal
CN102803583B (en) * 2009-06-11 2015-11-25 日本碍子株式会社 The cultural method of group III metal nitride single crystal and the reaction vessel for the method

Also Published As

Publication number Publication date
JP2011178626A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
US8999059B2 (en) Process for producing a nitride single crystal and apparatus therefor
KR20020059353A (en) Epitaxial growing method for growing aluminum nitride and growing chamber therefor
JP5581735B2 (en) Nitride crystal manufacturing method and nitride crystal manufacturing apparatus
US8986466B2 (en) Method for carburizing tantalum member, and tantalum member
JP5828353B2 (en) Nitride crystal manufacturing method and nitride crystal manufacturing apparatus
CN106068340A (en) The manufacture method of crystal of nitride
JP5744052B2 (en) Manufacturing apparatus and manufacturing method of aluminum nitride single crystal
JP2007119276A (en) Gallium nitride crystal, apparatus for growing the same, and method for producing the same
JP6697847B2 (en) Thermal insulation structure
KR20130000294A (en) Apparatus for fabricating ingot
JP5637778B2 (en) Method for producing polycrystalline gallium arsenide compound semiconductor
JP5573753B2 (en) SiC growth equipment
JP7398702B2 (en) Single crystal growth equipment and single crystal growth equipment protection method
JP2012012660A (en) Vapor deposition temperature measuring device, and vapor deposition apparatus
JP5651480B2 (en) Method for producing group 3B nitride crystals
JP2014084240A (en) Apparatus for producing single crystal of aluminum nitride
JP2013256424A (en) Apparatus for growing sapphire single crystal
JP2015140291A (en) Crucible for sapphire single crystal growth and method for manufacturing sapphire single crystal using the same
JP6230031B2 (en) Method for producing silicon carbide single crystal
JP5582585B2 (en) Crucible
JP2019167282A (en) Crystal growth apparatus
JP2018150581A (en) Vapor deposition apparatus
JP2014088281A (en) Sapphire single crystal producing apparatus
JP2011046573A (en) Method for producing compound semiconductor crystal
JP6060403B1 (en) Sapphire member manufacturing apparatus and sapphire member manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R151 Written notification of patent or utility model registration

Ref document number: 5581735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250