JP5581068B2 - Charged particle beam device and method for adjusting charged particle beam device - Google Patents

Charged particle beam device and method for adjusting charged particle beam device Download PDF

Info

Publication number
JP5581068B2
JP5581068B2 JP2010012733A JP2010012733A JP5581068B2 JP 5581068 B2 JP5581068 B2 JP 5581068B2 JP 2010012733 A JP2010012733 A JP 2010012733A JP 2010012733 A JP2010012733 A JP 2010012733A JP 5581068 B2 JP5581068 B2 JP 5581068B2
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
image
focusing
focusing lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010012733A
Other languages
Japanese (ja)
Other versions
JP2011150956A (en
Inventor
渉 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010012733A priority Critical patent/JP5581068B2/en
Publication of JP2011150956A publication Critical patent/JP2011150956A/en
Application granted granted Critical
Publication of JP5581068B2 publication Critical patent/JP5581068B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、荷電粒子線装置及び荷電粒子線装置の調整方法に係り、特に浮遊磁場等の影響を抑制しつつ、ビーム走査を行うことが可能な荷電粒子線装置及び荷電粒子線装置の調整方法に関する。   The present invention relates to a charged particle beam apparatus and a method for adjusting a charged particle beam apparatus, and more particularly to a charged particle beam apparatus and a charged particle beam apparatus adjusting method capable of performing beam scanning while suppressing the influence of a stray magnetic field or the like. About.

走査電子顕微鏡(SEM:Scannig Electron Microscope)は、電子ビームを偏向器によって試料面上を走査し、試料から発生した二次電子等を検出して、試料の形状や特徴等の画像、或いはラインプロファイルと呼ばれる波形信号を生成する装置である。走査電子顕微鏡は、像の取得時に、振動,騒音や浮遊磁場等の外乱が加わると像揺れ等の像障害を引き起こす。一例として、デバイス等のパターンの長さを測定する走査電子顕微鏡(CD−SEM:Critical Dimension-Scannig Electron Microscope)においては、外乱の発生具合により、パターンの測定値が異なってしまうと、測定値の再現性が悪くなる。そのため、外乱による像障害を低減することが重要となっており、数々の手段が用いられている。   A scanning electron microscope (SEM) scans an electron beam on a sample surface with a deflector, detects secondary electrons generated from the sample, and images or shape profiles of the sample. Is a device for generating a waveform signal called. The scanning electron microscope causes image disturbance such as image shaking when disturbances such as vibration, noise, and stray magnetic field are applied during image acquisition. As an example, in a scanning electron microscope (CD-SEM: Critical Dimension-Scannig Electron Microscope) that measures the length of a pattern of a device or the like, if the measured value of the pattern varies due to the occurrence of disturbance, Reproducibility is poor. For this reason, it is important to reduce image disturbance due to disturbance, and a number of means are used.

具体的には、振動に対しては、除振台の上に電子顕微鏡を設置することで、床から伝わる振動の影響を低減させる手法が知られている。騒音に対しては、特許文献1に説明されているように、外部の騒音と逆位相の音を発生させて、騒音の影響を低減させる手法がある。浮遊磁場に対しては、特許文献2に説明されているように、磁場シールド材で走査電子顕微鏡を覆うことや、特許文献3に説明されているように、外部磁界をキャンセルするための磁界を発生する手法が知られている。   Specifically, a technique for reducing the influence of vibration transmitted from the floor by installing an electron microscope on a vibration isolation table is known. For noise, as described in Patent Document 1, there is a method of reducing the influence of noise by generating sound having an opposite phase to external noise. For the stray magnetic field, as described in Patent Document 2, a scanning electron microscope is covered with a magnetic field shielding material, and as described in Patent Document 3, a magnetic field for canceling an external magnetic field is used. The technique that occurs is known.

また、他にも像揺れを低減するために、特許文献4に説明されているようなビームの副走査の周期を外乱成分の整数倍とする手法や、像ドリフトを抑制するために、特許文献5に説明されているように、積算されるフレーム間で位置を補正して画像積算する手法が知られている。   In addition, in order to reduce the image shake, a technique for setting the sub-scanning period of the beam as an integer multiple of the disturbance component as described in Patent Document 4, and Patent Document in order to suppress image drift. As described in FIG. 5, there is known a method of performing image integration by correcting the position between frames to be integrated.

特開平10−148235号公報JP 10-148235 A 特開2001−143999号公報JP 2001-143999 A 特開昭58−214256号公報JP 58-214256 A 特開平11−154481号公報Japanese Patent Laid-Open No. 11-154481 WO03/044821号公報WO03 / 044821 publication

上記各引用文献に説明された技術は、外乱を低減し、像取得時の像障害を防ぐのに有効である。しかしながら、除去することのできる外乱の大きさには、限界があるため、常時または一時的に限界を超える外乱が発生した場合、外乱の影響は低減されるものの完全には除去できず、像障害が発生する。加えて、上記技術では、外乱を低減させるための外部装置が必要であり、電子顕微鏡のシステム構成が複雑となる可能性がある。この結果、メンテナンス性が低下する可能性がある。   The techniques described in the above cited references are effective in reducing disturbances and preventing image disturbances during image acquisition. However, since there is a limit to the magnitude of disturbances that can be removed, when disturbances exceeding the limits occur constantly or temporarily, the effects of disturbances are reduced, but they cannot be completely removed, and image disturbance Will occur. In addition, the above technique requires an external device for reducing disturbance, and the system configuration of the electron microscope may be complicated. As a result, the maintainability may be reduced.

より具体的には、磁気シールドを採用する場合、外乱抑制のためには、その厚みを増加させる必要があり、装置の大型化やメンテナンス性の低下が懸念される。また、磁界の発生,画像積算時の位置合わせ、或いは走査線の周期の調整によって、外乱を相殺,抑制する手法によっても、ある程度の外乱抑制を行うことができるが、浮遊磁場等の影響を直接的に低減しているわけではなく、他の磁界の発生や画像処理等によって、恰もビームに対する浮遊磁場等の影響がないような処理を行っているだけであるため、浮遊磁場への根本的な対策となっているわけではない。   More specifically, when a magnetic shield is employed, it is necessary to increase the thickness in order to suppress disturbance, and there is a concern about an increase in the size of the apparatus and a decrease in maintainability. In addition, the disturbance can be suppressed to some extent by a method of canceling and suppressing the disturbance by generating a magnetic field, alignment at the time of image integration, or adjusting the period of the scanning line. It is not necessarily reduced, but only the processing that does not have the influence of the stray magnetic field on the beam due to the generation of other magnetic fields and image processing, etc. It is not a countermeasure.

以下に、荷電粒子線装置の光学条件の調整によって、ビームに対する浮遊磁場の直接的な影響を抑制することを目的とする荷電粒子線装置、及び荷電粒子線装置の調整方法について説明する。   Hereinafter, a charged particle beam device and a method for adjusting the charged particle beam device for the purpose of suppressing the direct influence of the stray magnetic field on the beam by adjusting the optical conditions of the charged particle beam device will be described.

上記目的を達成するための一態様として、荷電粒子源と対物レンズの間に、荷電粒子ビームの集束位置を調整する集束レンズを備えた荷電粒子線装置において、当該集束レンズによる荷電粒子ビームの集束位置を変化させると共に、当該集束位置を変化させる過程で検出される荷電粒子に基づいて、異なる複数の集束位置における検出信号を取得し、像揺れ量或いは像ずれ量の評価値が相対的に小さい集束位置の集束レンズ条件を選択する荷電粒子線装置、及び荷電粒子線装置の調整方法を提案する。   As one aspect for achieving the above object, in a charged particle beam apparatus including a focusing lens for adjusting a focusing position of a charged particle beam between a charged particle source and an objective lens, focusing of the charged particle beam by the focusing lens is performed. Based on the charged particles detected in the process of changing the focusing position and changing the focusing position, detection signals at a plurality of different focusing positions are acquired, and the evaluation value of the image shake amount or the image shift amount is relatively small. A charged particle beam apparatus for selecting a focusing lens condition at a focusing position and a method for adjusting the charged particle beam apparatus are proposed.

上記構成によれば、浮遊磁場のビームへの影響を抑制し得る光学条件の設定が可能となる。   According to the above configuration, it is possible to set an optical condition capable of suppressing the influence of the stray magnetic field on the beam.

走査電子顕微鏡の概略説明図。Schematic explanatory drawing of a scanning electron microscope. 光学条件調整工程を示すフローチャート。The flowchart which shows an optical condition adjustment process. レンズの励磁電流値と分解能の関係を示す図。The figure which shows the relationship between the excitation current value of a lens, and resolution. レンズの励磁電流値と像揺れ量の関係を示す図。The figure which shows the relationship between the exciting current value of a lens, and the amount of image shaking. 像揺れ量が大きいときに形成されるラインプロファイルと、像揺れ量が小さいときに形成されるラインプロファイルとの違いを説明する図。The figure explaining the difference between the line profile formed when the amount of image shake is large, and the line profile formed when the amount of image shake is small. 設定した励磁電流値と像揺れ量の関係を示す図。The figure which shows the relationship between the set excitation current value and the amount of image shaking. 設定した励磁電流値と像揺れ量の関係を示す図。The figure which shows the relationship between the set excitation current value and the amount of image shaking.

以下、主に複雑な外部装置を使用することなく、常時または一時的に発生した浮遊磁場により引き起こされた像揺れを画像取得中に検出し、当該検出に基づいて、各光学要素を調整することで、浮遊磁場による像揺れを低減する荷電粒子線装置、及び荷電粒子線装置の調整方法について説明する。   Hereinafter, without using a complicated external device, image fluctuation caused by a stray magnetic field generated constantly or temporarily is detected during image acquisition, and each optical element is adjusted based on the detection. Now, a charged particle beam apparatus that reduces image fluctuation due to a stray magnetic field and a method for adjusting the charged particle beam apparatus will be described.

より具体的には、荷電粒子ビームのクロスオーバ位置(集束位置)によって、浮遊磁場が荷電粒子ビームに与える影響が異なることを利用して、浮遊磁場によって発生した像揺れを検出し、各光学要素を調整することで、浮遊磁場による像揺れを低減する機能を備えた荷電粒子線装置について説明する。なお、以下の実施例では、荷電粒子線装置の1種である走査電子顕微鏡を例に採って説明するが、走査電子顕微鏡だけではなく、浮遊磁場の影響が懸念される他の荷電粒子線装置(集束イオンビーム装置など)への適用も可能である。   More specifically, image fluctuations generated by the stray magnetic field are detected by utilizing the fact that the influence of the stray magnetic field on the charged particle beam differs depending on the crossover position (focusing position) of the charged particle beam. A charged particle beam apparatus having a function of reducing image shake due to a stray magnetic field by adjusting the above will be described. In the following embodiments, a scanning electron microscope, which is one type of charged particle beam apparatus, will be described as an example. However, not only the scanning electron microscope but also other charged particle beam apparatuses in which the influence of stray magnetic fields is a concern. (Application to a focused ion beam device or the like) is also possible.

具体的な効果の一例として、上述のような手法をCD−SEMに適用することによって、画像、或いはラインプロファイルの取得中に、浮遊磁場による像揺れを低減することができ、デバイスのパターン等の測定値の再現性の劣化を防ぐことができる。   As an example of a specific effect, by applying the above-described method to a CD-SEM, image fluctuation due to a stray magnetic field can be reduced during acquisition of an image or a line profile. It is possible to prevent deterioration of the reproducibility of measured values.

以下に浮遊磁場により引き起こされた像揺れを画像取得中に検出し、浮遊磁場による像揺れを低減することが可能な走査電子顕微鏡について、図面を用いて説明する。   Hereinafter, a scanning electron microscope capable of detecting image fluctuation caused by a stray magnetic field during image acquisition and reducing the image fluctuation due to the stray magnetic field will be described with reference to the drawings.

図1は、走査電子顕微鏡の構成を概略的に示す図である。図1において、この走査電子顕微鏡は、電子源1,アノード電極2,第1集束レンズ4,非点補正レンズ5,絞り6,第2集束レンズ7,走査偏向コイル8,対物レンズ9,シンチレータ12,光電子増倍管13,電子顕微鏡制御装置14を備えている。   FIG. 1 is a diagram schematically showing the configuration of a scanning electron microscope. In FIG. 1, this scanning electron microscope includes an electron source 1, an anode electrode 2, a first focusing lens 4, an astigmatism correction lens 5, an aperture 6, a second focusing lens 7, a scanning deflection coil 8, an objective lens 9, and a scintillator 12. , A photomultiplier tube 13 and an electron microscope control device 14.

以下、図1を用いて像の取得中に浮遊磁場により引き起こされた像揺れを検出し、浮遊磁場による像揺れを低減する走査電子顕微鏡の光学系と、その動作を説明する。   Hereinafter, an optical system of a scanning electron microscope that detects image fluctuation caused by a stray magnetic field during image acquisition and reduces image fluctuation due to the stray magnetic field and its operation will be described with reference to FIG.

電子源1とアノード電極2間に引出電圧を印加すると、電子源1から電子ビーム3が直線光軸に沿って放出される。電子ビーム3は数十mradまで広がった電子ビーム3aを持っており、第1集束レンズ4,第2集束レンズ7で結像したあと、さらに対物レンズ9で縮小して、試料10の表面に微小なクロスオーバを形成する。   When an extraction voltage is applied between the electron source 1 and the anode electrode 2, an electron beam 3 is emitted from the electron source 1 along the linear optical axis. The electron beam 3 has an electron beam 3a that spreads to several tens of mrad. After image formation by the first focusing lens 4 and the second focusing lens 7, the electron beam 3 is further reduced by the objective lens 9 and is minutely applied to the surface of the sample 10. A strong crossover.

この時、電子ビーム3の開き角あるいは電子ビーム電流量は、第1集束レンズ4と対物レンズ9の間に設置した絞り6で制限される。さらにこの電子ビーム3は走査偏向コイル8によって試料10上をX,Y方向の二次元を走査される。   At this time, the opening angle of the electron beam 3 or the amount of electron beam current is limited by the diaphragm 6 installed between the first focusing lens 4 and the objective lens 9. Further, the electron beam 3 is scanned two-dimensionally in the X and Y directions on the sample 10 by the scanning deflection coil 8.

試料10より放出された電子11(二次電子、および/または反射電子)は対物レンズ9のレンズ作用を受けながら上昇する。上昇した電子11は正の高電圧を印加したシンチレータ12に衝突して光を発し、光電子増倍管13によって電気信号に変換され増幅した後、走査電子顕微鏡像(SEM像)として観察できる。この時、像観察時の非点収差の補正は、非点補正レンズ5を用いる。   The electrons 11 (secondary electrons and / or reflected electrons) emitted from the sample 10 rise while receiving the lens action of the objective lens 9. The raised electrons 11 collide with the scintillator 12 to which a positive high voltage is applied, emit light, and are converted into an electric signal by the photomultiplier tube 13 and amplified, and can be observed as a scanning electron microscope image (SEM image). At this time, the astigmatism correction lens 5 is used to correct astigmatism during image observation.

また、図1で説明する実施例では、試料から放出された電子を直接検出器で検出する手法を採用しているが、これに限られることなく、例えば、一旦変換電極等で新たな二次電子に変換して、それを検出器で検出する手法としても良い。また、集束レンズは、2つとしているが、これに限られることなく、3つ以上備えていてもよい。   In the embodiment described with reference to FIG. 1, a technique for directly detecting electrons emitted from a sample with a detector is employed. However, the present invention is not limited to this. It is good also as the method of converting into an electron and detecting it with a detector. Further, although there are two focusing lenses, the number is not limited to this, and three or more focusing lenses may be provided.

図1で説明する走査電子顕微鏡の各光学要素は、光学系制御装置15に接続されており、この光学系制御装置15によって各光学要素への印加電圧,励磁電流が調整される。また画像処理装置16は、得られたSEM像に現れた浮遊磁場による像揺れを検出できる機能を有している。更に、光学系制御装置15と画像処理装置16は、電子顕微鏡制御装置14に接続されており、この電子顕微鏡制御装置14によって全ての調整は自動で行われる。   Each optical element of the scanning electron microscope described in FIG. 1 is connected to an optical system control device 15, and the applied voltage and excitation current to each optical element are adjusted by the optical system control device 15. Further, the image processing device 16 has a function of detecting image fluctuation due to a stray magnetic field appearing in the obtained SEM image. Furthermore, the optical system control device 15 and the image processing device 16 are connected to the electron microscope control device 14, and all adjustments are automatically performed by the electron microscope control device 14.

次に図2に示すフローチャートをもとに、浮遊磁場による像揺れを検出し、浮遊磁場による像揺れを低減したSEM像を生成する方法について説明する。まず、ステップ100では光学系制御装置15により、この走査電子顕微鏡の構成において、初期値として予め設定してある励磁電流値(I0)を集束レンズに印加して、電子ビームを走査偏向コイルにて、一次元方向(ここでは、X方向とする)の一ラインを走査し、一ライン分の検出信号を取得する。次にステップ101において、光学系制御装置15による制御によって、集束レンズの励磁電流値(電子ビームのクロスオーバ位置)をI1およびI2に設定して、再度同一ラインの検出信号を取得する。検出信号は、ラインプロファイルのような波形信号であっても良いし、画像信号のような二次元的な情報であっても良い。 Next, based on the flowchart shown in FIG. 2, a method for detecting an image fluctuation due to a stray magnetic field and generating an SEM image with reduced image fluctuation due to the stray magnetic field will be described. First, in step 100, in the configuration of this scanning electron microscope, the excitation current value (I 0 ) set in advance as an initial value is applied to the focusing lens by the optical system control device 15, and the electron beam is applied to the scanning deflection coil. Then, one line in the one-dimensional direction (here, the X direction) is scanned to obtain a detection signal for one line. Next, in step 101, the excitation current value (electron beam crossover position) of the focusing lens is set to I 1 and I 2 under the control of the optical system control device 15, and the detection signal of the same line is acquired again. The detection signal may be a waveform signal such as a line profile, or may be two-dimensional information such as an image signal.

1およびI2の値は、以下のように求めた値である。励磁電流値を変化させると、図3に示すように、分解能が変化するため、予め、SEM像の取得が可能な分解能となる範囲(焦点深度の範囲)の励磁電流値(ImaxおよびImin)を求めておく。焦点深度の範囲は、光学倍率と画素分解能の関係により、決定されるが、任意に設定してもよい。ただし、画素分解能よりも小さくする。I1は、図3に示すように、初期値(I0)とImaxの中間値とする。同様に、I2は、初期値(I0)とIminの中間値とする。なお、変化させることのできる励磁電流値の範囲は、この焦点深度の範囲内とする。 The values of I 1 and I 2 are values obtained as follows. When the excitation current value is changed, as shown in FIG. 3, the resolution changes. Therefore, the excitation current values (I max and I min ) in the range (focal depth range) within which the SEM image can be acquired are obtained in advance. ) The focal depth range is determined by the relationship between the optical magnification and the pixel resolution, but may be arbitrarily set. However, it is smaller than the pixel resolution. As shown in FIG. 3, I 1 is an intermediate value between the initial value (I 0 ) and I max . Similarly, I 2 is an intermediate value between the initial value (I 0 ) and I min . The range of the excitation current value that can be changed is within the range of the focal depth.

浮遊磁場がある場合、クロスオーバ位置と加わった浮遊磁場の位置関係により、例えば、図4に示すように、像揺れ量が変化する。浮遊磁場が、走査電子顕微鏡のどの位置から加わったかは、わからないことが多いため、第1集束レンズ,第2集束レンズのどちらか一方、または両方変化させて、自動でSEM像を取得する。このとき、電子ビーム電流量は一定量となるように、アノード電極2にて調整される。また、(S100)と同じ場所のSEM像を取得する際の電子ビームの走査方向は、(S100)で走査した方向と同じ方向でも、逆の方向でもよい。また、再度、集束レンズの電流値をI1からI2の間で変化させて、いくつかの条件での検出信号を取得してもよい。 When there is a stray magnetic field, the amount of image fluctuation varies depending on the positional relationship between the crossover position and the added stray magnetic field, for example, as shown in FIG. Since it is often unknown from which position of the scanning electron microscope the stray magnetic field is applied, one or both of the first focusing lens and the second focusing lens are changed to automatically acquire an SEM image. At this time, the amount of electron beam current is adjusted by the anode electrode 2 so as to be constant. Further, the scanning direction of the electron beam when acquiring the SEM image at the same location as in (S100) may be the same direction as the scanning direction in (S100) or the opposite direction. In addition, the current value of the focusing lens may be changed again between I 1 and I 2 to acquire detection signals under some conditions.

なお、本実施例では所定範囲の中で、励磁電流を調整する例について説明したが、これに限られることはなく、例えば静電レンズの場合は、当該静電レンズに印加される印加電圧がレンズ強度を表す指標となる。また、励磁電流,印加電圧以外にレンズ強度を示す指標を設けて、その値を基準に調整を行うようにしても良い。次にステップ102において、画像処理装置16にて、予め登録されているテンプレートとのマッチングを行うか、図5に示すように、得られたSEM像のラインプロファイルを作成し、ラインプロファイルの傾き等の比較や、波形マッチングを行うことによって、像揺れ量を求める。像揺れ量は、例えば基準となるテンプレートと検出信号との位置ずれ量であり、当該位置ずれ量は既知のパターンマッチング技術にて検出することができる。なお、像ずれ量は画素数やラインプロファイルのピーク位置のずれで表すようにしても良いし、当該画素数やずれ量を他の評価値で表現するようにしても良い。評価値の一例としては、ずれ量の程度に応じてランク付けを行い、当該ランクを図4の縦軸の変数とすること等が考えられる。   In this embodiment, the example in which the excitation current is adjusted in the predetermined range has been described. However, the present invention is not limited to this. For example, in the case of an electrostatic lens, the applied voltage applied to the electrostatic lens is It becomes an index representing the lens strength. In addition to the excitation current and applied voltage, an index indicating the lens strength may be provided, and adjustment may be performed based on the value. Next, in step 102, the image processing device 16 performs matching with a pre-registered template or creates a line profile of the obtained SEM image as shown in FIG. The image shake amount is obtained by comparing the above and waveform matching. The image shake amount is, for example, the amount of positional deviation between the reference template and the detection signal, and the amount of positional deviation can be detected by a known pattern matching technique. Note that the image shift amount may be expressed by the number of pixels or the shift of the peak position of the line profile, and the number of pixels or the shift amount may be expressed by other evaluation values. As an example of the evaluation value, ranking may be performed according to the degree of deviation, and the rank may be used as a variable on the vertical axis in FIG.

このようにして求められた像揺れ量と、励磁電流値との関係を求め、複数の励磁電流値と像揺れ量の関係を、関数式を用いた近似を行う。   The relationship between the image shake amount thus obtained and the excitation current value is obtained, and the relationship between the plurality of excitation current values and the image shake amount is approximated using a functional equation.

次にステップ103において、ステップ102にて求められた関係式に基づいて、像揺れ量が最小となる極小点があるかを判定する。この場合、複数の像ずれ量の内、他の像ずれ量と比較して、相対的に小さい像ずれ量となる励磁電流値が選択されるが、例えば像ずれ量に関し、所定の閾値を設けておき、この閾値を下回った励磁電流値を選択するようにしても良い。   Next, in step 103, based on the relational expression obtained in step 102, it is determined whether there is a local minimum point at which the image shake amount is minimum. In this case, an excitation current value that is a relatively small image shift amount compared with other image shift amounts is selected from among a plurality of image shift amounts. For example, a predetermined threshold is provided for the image shift amount. In addition, an excitation current value that is lower than the threshold value may be selected.

図6に示すように、極小点がある場合は、ステップ105に移行する。図7に示すように、極小点がなく、I1またはI2において、最小となる場合は、ステップ104に移行する。 As shown in FIG. 6, when there is a minimum point, the process proceeds to step 105. As shown in FIG. 7, when there is no minimum point and the value is minimum in I 1 or I 2 , the process proceeds to step 104.

ステップ104にて、像揺れ量がI1で最小になった場合は励磁電流値をImaxに、同様に、I2で最小になった場合はIminに設定して、検出信号を取得し、ステップ102と同じ要領で、像揺れ量が最小となる励磁電流値を算出する。検出信号を取得する励磁電流値は、Imax,Iminに限らず、I1からImax、IminからI2の間の値にしてもよい。 In step 104, the excitation current value when the image shake amount is minimized with I 1 to I max, Likewise, when it becomes minimum at I 2 is set to I min, it acquires the detection signal In the same manner as in step 102, an excitation current value that minimizes the image shake amount is calculated. Excitation current value for obtaining a detection signal, I max, not limited to the I min, from I 1 I max, may be a value between I min of I 2.

ステップ103〜105で求めた像揺れ量が最小となるように各光学要素を調整して、再度、同一ラインを走査し、像揺れが低減されたSEM像を生成する。この場合、改めてオートフォーカスを行うようにするようにしても良い。   Each optical element is adjusted so that the image shake amount obtained in steps 103 to 105 is minimized, and the same line is scanned again to generate an SEM image with reduced image shake. In this case, autofocus may be performed again.

なお、ステップ106にて、Y方向に一ライン分移動し、その上でステップ101〜105を実行すると共に、この工程を繰り返して、像揺れが低減された二次元平面のSEM像を生成するようにしても良い。これにより、一時的に発生した浮遊磁場による像揺れも、補正することができる。なお、複数ライン単位でずれを評価するようにしても良い。   In step 106, the line is moved by one line in the Y direction, and then steps 101 to 105 are executed. At the same time, this process is repeated to generate a two-dimensional plane SEM image with reduced image shaking. Anyway. Thereby, it is also possible to correct image fluctuation due to a stray magnetic field temporarily generated. Note that the deviation may be evaluated in units of a plurality of lines.

本実施例では、像揺れを低減した励磁電流値を求めてから、SEM像を生成させる例について主に説明をしたが、ステップ101において、励磁電流値をある一定の間隔で変化させて、SEM像を取得した後に、一ライン毎に浮遊磁場の影響が低減されたSEM像を選択し、二次元平面のSEM像を生成してもよい。   In the present embodiment, the example in which the SEM image is generated after obtaining the excitation current value with reduced image fluctuation has been mainly described. However, in step 101, the excitation current value is changed at a certain interval, and the SEM image is generated. After acquiring the image, an SEM image in which the influence of the stray magnetic field is reduced for each line may be selected to generate a two-dimensional plane SEM image.

以上で、浮遊磁場による像揺れを低減したSEM像の自動生成は完了となる。   Thus, the automatic generation of the SEM image in which the image shake due to the stray magnetic field is reduced is completed.

1 電子源
2 アノード電極
3 電子ビーム
3a 広がった電子ビーム
4 第1集束レンズ
5 非点補正レンズ
6 絞り
7 第2集束レンズ
8 走査偏向コイル
9 対物レンズ
10 試料
11 二次電子
12 シンチレータ
13 光電子増倍管
14 電子顕微鏡制御装置
15 光学系制御装置
16 画像処理装置
DESCRIPTION OF SYMBOLS 1 Electron source 2 Anode electrode 3 Electron beam 3a Spread electron beam 4 First focusing lens 5 Astigmatism correction lens 6 Aperture 7 Second focusing lens 8 Scanning deflection coil 9 Objective lens 10 Sample 11 Secondary electron 12 Scintillator 13 Photomultiplier Tube 14 Electron microscope control device 15 Optical system control device 16 Image processing device

Claims (8)

荷電粒子源から放出される荷電粒子ビームをX方向及びY方向に偏向する走査偏向器と、前記荷電粒子源と対物レンズの間に、荷電粒子ビームの集束位置を調整する集束レンズを備えた荷電粒子線装置の調整方法において、
当該集束レンズによる荷電粒子ビームの集束位置を変化させると共に、当該集束位置を変化させる過程で検出される荷電粒子に基づいて、異なる集束位置における検出信号を取得し、当該検出信号に基づいて形成される波形信号、或いは画像の前記X方向、或いは前記X方向及びY方向への像揺れ量、或いは像ずれ量を算出し、当該像揺れ量或いは像ずれ量の評価値が相対的に小さい集束位置の集束レンズ条件を選択することを特徴とする荷電粒子線装置の調整方法。
A charging device comprising a scanning deflector for deflecting a charged particle beam emitted from a charged particle source in the X direction and the Y direction, and a focusing lens for adjusting a focusing position of the charged particle beam between the charged particle source and the objective lens. In the adjustment method of the particle beam device,
A detection signal at a different focusing position is acquired based on the charged particles detected in the process of changing the focusing position while the focusing position of the charged particle beam by the focusing lens is changed , and formed based on the detection signal. A focal position where the evaluation value of the image shake amount or the image shift amount is relatively small , and the image shake amount or the image shift amount in the X direction or the X direction and the Y direction of the image is calculated. A method for adjusting a charged particle beam apparatus, wherein the focusing lens condition is selected.
請求項1において、
前記集束レンズによる荷電粒子ビームの集束位置の変化の範囲は、荷電粒子ビームの所定の分解能を維持する範囲に設定されることを特徴とする荷電粒子線装置の調整方法。
In claim 1,
A method for adjusting a charged particle beam apparatus, wherein a range of change of a focusing position of the charged particle beam by the focusing lens is set to a range in which a predetermined resolution of the charged particle beam is maintained.
請求項1において、
所定の走査線単位で前記像揺れ量あるいは像ずれ量の評価値を求めることを特徴とする荷電粒子線装置の調整方法。
In claim 1,
A method for adjusting a charged particle beam apparatus, wherein an evaluation value of the image shake amount or the image shift amount is obtained in a predetermined scanning line unit.
請求項3において、
前記所定の走査線単位で、前記集束レンズ条件を選択することを特徴とする荷電粒子線装置の調整方法。
In claim 3,
The method for adjusting a charged particle beam apparatus, wherein the focusing lens condition is selected in units of the predetermined scanning line.
荷電粒子源と、当該荷電粒子源から放出される荷電粒子ビームをX方向及びY方向に偏向する走査偏向器と、当該荷電粒子源から放出される荷電粒子ビームを集束する対物レンズと、当該荷電粒子源と対物レンズとの間に配置されると共に前記荷電粒子ビームを集束する集束レンズと、当該集束レンズを制御する制御装置を備えた荷電粒子線装置において、
当該制御装置は、当該集束レンズによる荷電粒子ビームの集束位置を変化させると共に、当該集束位置を変化させる過程で検出される荷電粒子に基づいて、異なる複数の集束位置における検出信号を取得し、当該検出信号に基づいて形成される波形信号、或いは画像の前記X方向、或いは前記X方向及びY方向への像揺れ量、或いは像ずれ量を算出し、当該像揺れ量或いは像ずれ量の評価値が相対的に小さい集束位置の集束レンズ条件を選択することを特徴とする荷電粒子線装置。
A charged particle source, a scanning deflector that deflects a charged particle beam emitted from the charged particle source in the X and Y directions, an objective lens that focuses the charged particle beam emitted from the charged particle source, and the charged In a charged particle beam apparatus comprising a focusing lens that is disposed between a particle source and an objective lens and focuses the charged particle beam, and a control device that controls the focusing lens,
The controller, together with the changes the focusing position of the charged particle beam by the focusing lens, based on the charged particles detected in the process of changing the focusing position, obtains a detection signal at a plurality of different focusing positions, the A waveform signal formed based on the detection signal, or an image shake amount or an image shift amount in the X direction or the X direction and the Y direction of the image is calculated, and an evaluation value of the image shake amount or the image shift amount A charged particle beam apparatus is characterized in that a focusing lens condition at a focusing position with a relatively small is selected.
請求項5において、
前記集束レンズによる荷電粒子ビームの集束位置の変化の範囲は、荷電粒子ビームの所定の分解能を維持する範囲に設定されることを特徴とする荷電粒子線装置。
In claim 5,
The charged particle beam apparatus is characterized in that the range of change of the focused position of the charged particle beam by the focusing lens is set to a range that maintains a predetermined resolution of the charged particle beam.
請求項5において、
前記制御装置は、所定の走査線単位で前記像揺れ量あるいは像ずれ量の評価値を求めることを特徴とする荷電粒子線装置。
In claim 5,
The charged particle beam apparatus characterized in that the control device obtains an evaluation value of the image shake amount or the image shift amount in a predetermined scanning line unit.
請求項7において、
前記制御装置は、前記所定の走査線単位で、前記集束レンズ条件を選択することを特徴とする荷電粒子線装置。
In claim 7,
The charged particle beam device, wherein the control device selects the focusing lens condition in units of the predetermined scanning line.
JP2010012733A 2010-01-25 2010-01-25 Charged particle beam device and method for adjusting charged particle beam device Expired - Fee Related JP5581068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010012733A JP5581068B2 (en) 2010-01-25 2010-01-25 Charged particle beam device and method for adjusting charged particle beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010012733A JP5581068B2 (en) 2010-01-25 2010-01-25 Charged particle beam device and method for adjusting charged particle beam device

Publications (2)

Publication Number Publication Date
JP2011150956A JP2011150956A (en) 2011-08-04
JP5581068B2 true JP5581068B2 (en) 2014-08-27

Family

ID=44537764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010012733A Expired - Fee Related JP5581068B2 (en) 2010-01-25 2010-01-25 Charged particle beam device and method for adjusting charged particle beam device

Country Status (1)

Country Link
JP (1) JP5581068B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264855A (en) * 1987-04-22 1988-11-01 Nikon Corp Scanning type electron microscope
JPH05290787A (en) * 1992-04-08 1993-11-05 Jeol Ltd Scanning electron microscope
JP4705057B2 (en) * 2007-02-19 2011-06-22 株式会社日立製作所 Electron beam equipment

Also Published As

Publication number Publication date
JP2011150956A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP4553889B2 (en) Determination method of aberration coefficient in aberration function of particle optical lens
US20180269026A1 (en) Charged Particle Beam Device
JP2006196281A (en) Scanning electron microscope and its photographing method
KR102155621B1 (en) Charged particle ray apparatus
US10134558B2 (en) Scanning electron microscope
US10566172B2 (en) Charged particle beam apparatus and method for adjusting imaging conditions for the same
JP4829584B2 (en) Method for automatically adjusting electron beam apparatus and electron beam apparatus
US8294118B2 (en) Method for adjusting optical axis of charged particle radiation and charged particle radiation device
JP2015032392A (en) Charged particle beam device and application thereof
JP6770482B2 (en) Charged particle beam device and scanning image distortion correction method
JP5581068B2 (en) Charged particle beam device and method for adjusting charged particle beam device
JP4328192B2 (en) Multipole field generating device and aberration correcting device in charged particle optical system
JP7200186B2 (en) Charged particle beam device
US11626266B2 (en) Charged particle beam device
JP6230831B2 (en) Charged particle beam apparatus and image acquisition method
WO2022186326A1 (en) Training method for learning apparatus, and image generation system
US11355304B2 (en) Electronic microscope device
JP7361213B2 (en) Charged particle beam device, control method for charged particle beam device
JP2007287561A (en) Charged particle beam device
US10446365B2 (en) Method of verifying operation parameter of scanning electron microscope
JP4231891B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
EP1387388A2 (en) Image compensation device for a scanning electron microscope
JP2012018758A (en) Scanning electron microscope
JP2018006338A (en) Image generating apparatus
JP2017199451A (en) Charged particle beam apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R150 Certificate of patent or registration of utility model

Ref document number: 5581068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees