JP5578097B2 - Semiconductor device cooling structure - Google Patents

Semiconductor device cooling structure Download PDF

Info

Publication number
JP5578097B2
JP5578097B2 JP2011020257A JP2011020257A JP5578097B2 JP 5578097 B2 JP5578097 B2 JP 5578097B2 JP 2011020257 A JP2011020257 A JP 2011020257A JP 2011020257 A JP2011020257 A JP 2011020257A JP 5578097 B2 JP5578097 B2 JP 5578097B2
Authority
JP
Japan
Prior art keywords
frame member
heat sink
heat
heat radiating
radiating plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011020257A
Other languages
Japanese (ja)
Other versions
JP2012160623A (en
Inventor
悟 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011020257A priority Critical patent/JP5578097B2/en
Publication of JP2012160623A publication Critical patent/JP2012160623A/en
Application granted granted Critical
Publication of JP5578097B2 publication Critical patent/JP5578097B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、大型のモータ、発電機などの電機の大電流を制御するための半導体装置に係り、より詳細には、かかる半導体装置の冷却構造に係る。   The present invention relates to a semiconductor device for controlling a large current of an electric machine such as a large motor or a generator, and more particularly to a cooling structure for such a semiconductor device.

ハイブリッドカー、電気自動車、その他の大型の機械などの大型の電機のためのパワーモジュール或いは電力制御装置として利用される半導体装置に於いては、大電流が流通する半導体素子(例えば、サイリスタ、パワーMOSFET、IGBTなどのパワートランジスタ、パワーダイオード、パワー半導体など)を冷却するための構造が必要となる。特に、近年急速に需要が増大している車載用のパワーモジュール或いは電力制御装置は、高出力で、且つ、より小型なものが求められているところ、かかる高出力化と小型化は、半導体素子の電力損失上昇と熱抵抗増大に繋がるので、それらの設計に於いて、その高性能の冷却構造に対する要求は、ますます高まっている。   In semiconductor devices used as power modules or power control devices for large electric machines such as hybrid cars, electric vehicles, and other large machines, semiconductor elements (for example, thyristors, power MOSFETs) through which a large current flows , A structure for cooling a power transistor such as an IGBT, a power diode, a power semiconductor, or the like is required. In particular, in-vehicle power modules or power control devices, for which demand has been increasing rapidly in recent years, are demanded to have higher output and smaller size. The demand for high-performance cooling structures in these designs is increasing because they lead to increased power loss and increased thermal resistance.

上記の如き半導体装置の典型的な構造の一つに於いては、例えば、図7(A)に模式的に描かれている如く、平板状の半導体素子12がその上面及び下面に電極を兼ねた放熱板14へはんだ層16を介して接合され、更に、放熱板14の外面が露出される状態にてエポキシ樹脂等の電気絶縁性樹脂Mによって封止された組立体が、冷媒の流通する冷却器ケース26内に配置される(例えば、特許文献1)。かかる構成に於いては、半導体素子12が樹脂Mによって外部の水分等から保護されると共に、電極板を兼ねた放熱板14が冷媒に曝されることにより、半導体素子12の発生する熱が、放熱板14が樹脂Mのモールド内に完全に内包されている場合に比して効率的に放出されることとなる。   In one of the typical structures of the semiconductor device as described above, for example, as schematically illustrated in FIG. 7A, a flat semiconductor element 12 serves as electrodes on the upper and lower surfaces. The assembly is joined to the heat sink 14 via the solder layer 16 and sealed with an electrical insulating resin M such as an epoxy resin in a state where the outer surface of the heat sink 14 is exposed. It arrange | positions in the cooler case 26 (for example, patent document 1). In such a configuration, the semiconductor element 12 is protected from external moisture and the like by the resin M, and the heat radiating plate 14 that also serves as the electrode plate is exposed to the refrigerant, so that the heat generated by the semiconductor element 12 is As compared with the case where the heat radiating plate 14 is completely contained in the mold of the resin M, the heat radiating plate 14 is discharged more efficiently.

また、別の例では、図7(B)に模式的に描かれている如く、放熱板14上に絶縁板15を挟んで載置された電極板17とその上にはんだ層16を介して接合された半導体素子12とが、リードフレーム18の一部と、リードフレーム18を半導体素子12又は電極板17へ電気的に接続するワイヤボンディング20と共に、電気絶縁性樹脂Mにて放熱板14の外面が露出した状態で封止され、放熱板14の外面に対して冷媒の流通する冷却器ケース26が取り付けられる(例えば、特許文献2、3)。この場合も、電気絶縁性樹脂Mのモールドから露出して冷媒に接触することにより、半導体素子12の発生する熱が効率的に放出されることとなる。更に、また別の構造に於いては、図7(C)に模式的に描かれている如く、電極を兼ねた放熱板14上にはんだ層16を介して接合された半導体素子12が電気絶縁性樹脂Mにて放熱板14の外面が露出した状態で封止され、放熱板14の外面に対して絶縁板15を介して冷媒の流通する冷却器26がボルト21及びスペーサ21a等を用いて固定される(例えば、特許文献4など)。なお、図7(B)〜(C)の如く放熱板14の外面に対して冷却器ケース26が取り付けられる場合には、一般的には、冷却器26内の冷媒流路からの冷媒の漏出を防止すべく、放熱板14又は絶縁板15の外面と冷却器ケース26との間には、Oリング、接着剤又はゴム材などの弾性体等のシール部材24が介装される。(特許文献2、3、5など)。   In another example, as schematically illustrated in FIG. 7B, an electrode plate 17 placed on the heat sink 14 with an insulating plate 15 sandwiched therebetween, and a solder layer 16 interposed therebetween. The bonded semiconductor element 12 is part of the lead frame 18 and the wire bonding 20 that electrically connects the lead frame 18 to the semiconductor element 12 or the electrode plate 17, and the heat insulating plate 14 is made of the electrically insulating resin M. A cooler case 26 that is sealed with the outer surface exposed and in which refrigerant flows is attached to the outer surface of the heat radiating plate 14 (for example, Patent Documents 2 and 3). Also in this case, the heat generated by the semiconductor element 12 is efficiently released by being exposed from the mold of the electrically insulating resin M and coming into contact with the coolant. Furthermore, in another structure, as schematically shown in FIG. 7C, the semiconductor element 12 joined via the solder layer 16 on the heat sink 14 also serving as an electrode is electrically insulated. The cooler 26 is sealed with the conductive resin M in a state where the outer surface of the heat radiating plate 14 is exposed, and the refrigerant flows through the insulating plate 15 to the outer surface of the heat radiating plate 14 using bolts 21, spacers 21 a, and the like. It is fixed (for example, patent document 4 etc.). When the cooler case 26 is attached to the outer surface of the heat radiating plate 14 as shown in FIGS. 7B to 7C, generally, the refrigerant leaks from the refrigerant flow path in the cooler 26. In order to prevent this, a sealing member 24 such as an elastic body such as an O-ring, an adhesive, or a rubber material is interposed between the outer surface of the heat radiating plate 14 or the insulating plate 15 and the cooler case 26. (Patent Documents 2, 3, 5, etc.).

特開2006−165534JP 2006-165534 A 特開2006−166604JP 2006-166604 A 特開2007−201225JP2007-201225A 特開2002−223092JP2002-223092 特開平6−224577号公報JP-A-6-224577

図7に例示の種々の構造の如く、半導体素子12をエポキシ樹脂等の電気絶縁性樹脂のモールド材M内に封止する場合に、半導体素子12に直接に又は間接的に接合された放熱板14の外面を樹脂のモールド材Mから露出させ、かかる露出面を冷媒に曝す態様によれば、良好な冷却効果が得られることとなる。しかしながら、一般に、エポキシ樹脂等の電気絶縁性樹脂と放熱板(典型的には銅、アルミニウム等の金属製の板状部材)との界面Fに於ける密閉性は然程に高くなく、例えば、図7(A)の如き構造に於いて、エポキシ樹脂Mと放熱板14との界面Fに液体冷媒が接触すると、冷媒が界面Fから半導体素子12の存在領域まで浸透してしまう可能性がある。この点に関し、図7(B)又は(C)に例示されている如き、冷却器ケースを放熱板又は絶縁板に取り付ける構造であれば、モールドの樹脂と放熱板14との界面Fが冷媒に接触することはなく、冷媒の浸透の心配はないが、放熱板14又は絶縁板15の外面に於ける冷却器ケース26との接触領域に於いて、冷媒の接触が阻止され、冷却性能が低下することとなる。また、放熱板14又は絶縁板15の寸法が冷媒の接触領域以上に大きく設計される必要があるところ、放熱板又は絶縁板は、典型的には比較的比重の大きい金属又はセラミックなどで形成されるので、重量及び/又はコストが増大することとなる。即ち、放熱板又は絶縁板へ冷却器ケースを直接に固定する場合、冷却器ケースとの接触領域の分だけ、冷却性能の低下、寸法の大型化、重量及び/又はコストの増大が生ずることとなる。   When the semiconductor element 12 is sealed in the molding material M of an electrically insulating resin such as an epoxy resin as in the various structures illustrated in FIG. 7, the heat radiating plate joined directly or indirectly to the semiconductor element 12. According to the aspect in which the outer surface of 14 is exposed from the resin molding material M and the exposed surface is exposed to the refrigerant, a good cooling effect can be obtained. However, in general, the hermeticity at the interface F between the electrically insulating resin such as epoxy resin and the heat radiating plate (typically a metal plate member such as copper or aluminum) is not so high. In the structure as shown in FIG. 7A, when the liquid refrigerant comes into contact with the interface F between the epoxy resin M and the heat dissipation plate 14, the refrigerant may permeate from the interface F to the region where the semiconductor element 12 exists. . In this regard, as illustrated in FIG. 7B or 7C, if the cooler case is attached to the heat sink or the insulating plate, the interface F between the mold resin and the heat sink 14 is used as the coolant. There is no contact, and there is no concern about the penetration of the refrigerant, but the contact of the refrigerant is prevented in the contact area with the cooler case 26 on the outer surface of the heat radiating plate 14 or the insulating plate 15, and the cooling performance is lowered. Will be. Further, where the size of the heat radiating plate 14 or the insulating plate 15 needs to be designed to be larger than the contact area of the refrigerant, the heat radiating plate or the insulating plate is typically made of metal or ceramic having a relatively large specific gravity. This increases the weight and / or cost. That is, when the cooler case is directly fixed to the heat sink or the insulating plate, the cooling performance is reduced, the size is increased, the weight and / or the cost is increased by the contact area with the cooler case. Become.

かくして、本発明の主な課題は、上記の如く放熱板に直接的又は間接的に固定された半導体素子が樹脂モールド内にて封止され、放熱板の外面が樹脂モールドから露出して冷媒にて直接に冷却される形式の半導体装置であって、冷媒が放熱板と樹脂モールドとの界面に接触せず、且つ、放熱板の寸法を不要に増大させない新規な構造を提供することである。   Thus, the main problem of the present invention is that the semiconductor element fixed directly or indirectly to the heat sink as described above is sealed in the resin mold, and the outer surface of the heat sink is exposed from the resin mold and becomes a refrigerant. It is a semiconductor device of a type that is directly cooled, and has a novel structure in which the refrigerant does not contact the interface between the heat sink and the resin mold and does not unnecessarily increase the size of the heat sink.

また、本発明のもう一つの課題は、上記の如き半導体装置に於いて、放熱板に於ける冷媒の接触領域ができるだけ広く取られ、冷却性能の向上、寸法の小型化並びに重量及び/又はコストの低減を図ることである。   Another object of the present invention is to provide a cooling device with a wide contact area as much as possible in the semiconductor device as described above, improving cooling performance, reducing size, weight and / or cost. It is intended to reduce this.

本発明によれば、上記の課題は、半導体素子と、該半導体素子に対向する内面、該内面と反対の側の外面及び前記の内面と外面とを接続する側面を有し半導体素子の熱を外部へ放出するよう半導体素子に対して固定された放熱板とが電気絶縁性樹脂から成るモールド材にて封止された半導体装置であって、放熱板をその側面にて囲繞する枠部材を有し、放熱板の外面と枠部材の一部とがモールド材の外部に露出し、枠部材に冷却器ケースが接合されて放熱板の外面の全面が冷媒流路の一部を成し、放熱板とモールド材との界面への液体冷媒の接触が阻止されるよう放熱板の側面と枠部材との間が密閉されていることを特徴とする装置によって達成される。なお、かかる構成に於いて、「モールド材」を構成する電気絶縁性樹脂は、この分野で半導体素子の樹脂封止のために使用される任意の樹脂であり、例えば、エポキシ樹脂であってよい。電気絶縁性樹脂から成るモールド材は、典型的には、流動状態にて、半導体素子及び該半導体素子に接合された電極、ワイヤ、絶縁板並びに放熱板から成る組立体を囲繞した後に硬化される。   According to the present invention, there is provided a semiconductor device having an inner surface facing the semiconductor device, an outer surface opposite to the inner surface, and a side surface connecting the inner surface and the outer surface. A semiconductor device in which a heat sink fixed to a semiconductor element to be released to the outside is sealed with a molding material made of an electrically insulating resin, and has a frame member that surrounds the heat sink on its side surface. Then, the outer surface of the heat radiating plate and a part of the frame member are exposed to the outside of the molding material, the cooler case is joined to the frame member, and the entire outer surface of the heat radiating plate forms part of the refrigerant flow path. This is achieved by an apparatus characterized in that the space between the side surface of the heat radiating plate and the frame member is sealed so that the contact of the liquid refrigerant to the interface between the plate and the mold material is prevented. In this configuration, the electrically insulating resin constituting the “mold material” is any resin used for resin sealing of semiconductor elements in this field, and may be, for example, an epoxy resin. . A molding material made of an electrically insulating resin is typically cured after surrounding an assembly of a semiconductor element and an electrode, a wire, an insulating plate, and a heat sink bonded to the semiconductor element in a fluidized state. .

上記の本発明の装置は、基本的な構成に於いて、図7に例示されている如き装置と同様に、放熱板に直接的又は間接的に固定された半導体素子が樹脂モールド内にて封止され、放熱板の外面が樹脂モールドから露出して冷媒にて直接に冷却される形式の半導体装置(しばしば、「樹脂封止型の半導体パッケージ」と称される。)である。しかしながら、本発明の装置の場合には、上記の如く、放熱板がその側面にて枠部材により密閉又はシールされた状態にて囲繞され、枠部材に対して、冷却器ケースが接合されて、冷却器ケースと枠部材と放熱板の外面とにより、冷媒流路が形成される。かかる構成によれば、放熱板の外面は、冷却器ケースにより冷媒との接触が阻止される領域がなく、その全面にて冷媒に曝されることとなるので、放熱板の冷却性能が充分に発揮されると共に、放熱板とモールド材との間の界面に冷媒が浸透する心配もなくなる。従って、従前の如く、放熱板や絶縁板の寸法を冷却器ケースとの接合のために大きくする必要がなくなり、寸法の小型化並びに重量及びコストの低減が達成されることとなる。   In the above-described apparatus of the present invention, in the basic configuration, like the apparatus illustrated in FIG. 7, the semiconductor element fixed directly or indirectly to the heat sink is sealed in a resin mold. This is a semiconductor device (often referred to as a “resin-encapsulated semiconductor package”) in which the outer surface of the heat sink is exposed from the resin mold and is directly cooled by a coolant. However, in the case of the apparatus of the present invention, as described above, the heat sink is surrounded or sealed by the frame member on its side surface, and the cooler case is joined to the frame member. A refrigerant flow path is formed by the cooler case, the frame member, and the outer surface of the heat sink. According to this configuration, the outer surface of the heat radiating plate has no region where contact with the refrigerant is blocked by the cooler case, and is exposed to the refrigerant on the entire surface thereof, so that the cooling performance of the heat radiating plate is sufficient. As well as being exerted, there is no concern that the refrigerant penetrates into the interface between the heat sink and the mold material. Therefore, as before, there is no need to increase the size of the heat radiating plate or the insulating plate for joining to the cooler case, and the size can be reduced and the weight and cost can be reduced.

上記の本発明の構成に於いて、枠部材と冷却器ケースとは、互いに溶着可能な材料にて形成され、枠部材と冷却器ケースとが溶着により接合されてよい。溶着は、例えば、熱溶着、超音波溶着により達成されてよい。かかる構成によれば、冷媒流路を形成するために冷却器ケースを半導体装置に接合するためにボルト及びボルト締結のためのボルト孔等は必要なくなり、半導体装置の更なる小型化並びに重量及びコストの更なる低減が達成される。枠部材と冷却器ケースの材質としては、典型的には、PPS(ポリフェニレンスルファイド)樹脂、ナイロン66、PP(ポリプロピレン)樹脂、POM(ポリアセタール)樹脂等の耐熱性及び耐水性又は耐薬品性のある熱可塑性樹脂であってよい。この点に関し、枠部材は、半導体装置の組立の際に、流動状態の電気絶縁性樹脂(典型的には、熱硬化性樹脂である。)に曝されることとなるので、枠部材は、好適には、軟化温度がモールド材の電気絶縁性樹脂の成型温度よりも高い材料にて形成される。なお、枠部材と冷却器ケースとは、熱可塑性樹脂に代えて、軽量且つ廉価な任意のその他の耐熱性及び耐水性又は耐薬品性のある材料であってもよい。   In the above-described configuration of the present invention, the frame member and the cooler case may be formed of materials that can be welded to each other, and the frame member and the cooler case may be joined by welding. The welding may be achieved by, for example, heat welding or ultrasonic welding. According to such a configuration, the bolt and the bolt hole for fastening the bolt are not necessary for joining the cooler case to the semiconductor device in order to form the refrigerant flow path, and the semiconductor device is further reduced in size, weight, and cost. A further reduction of is achieved. As the material of the frame member and the cooler case, typically, heat resistance and water resistance or chemical resistance such as PPS (polyphenylene sulfide) resin, nylon 66, PP (polypropylene) resin, POM (polyacetal) resin, etc. It may be a certain thermoplastic resin. In this regard, the frame member is exposed to a fluidized electrically insulating resin (typically a thermosetting resin) during assembly of the semiconductor device. Preferably, it is formed of a material whose softening temperature is higher than the molding temperature of the electrically insulating resin of the molding material. The frame member and the cooler case may be made of any other heat-resistant and water-resistant or chemical-resistant material that is lightweight and inexpensive, instead of the thermoplastic resin.

放熱板の側面と枠部材との間の密閉は、放熱板とモールド材との界面への液体冷媒の接触が阻止可能であれば、任意の手法により達成されてよいことは理解されるべきである。実施の形態に於いては、かかる密閉又はシーリングは、例えば、放熱板の側面と枠部材との間に任意の弾性材料等から構成されるOリングを介装することにより達成されてよい。また、放熱板の側面と枠部材との間は、NMT技術(金属とプラスチック樹脂を分子レベルで直接接合する「ナノ・モールディング・テクノロジー」と称される技術)を用いて密閉されてもよい。   It should be understood that the sealing between the side surface of the heat sink and the frame member may be achieved by any method as long as the liquid refrigerant can be prevented from contacting the interface between the heat sink and the mold material. is there. In the embodiment, such sealing or sealing may be achieved, for example, by interposing an O-ring made of an arbitrary elastic material or the like between the side surface of the heat radiating plate and the frame member. Further, the side surface of the heat radiating plate and the frame member may be sealed using NMT technology (a technology called “nano molding technology” in which metal and plastic resin are directly joined at a molecular level).

また、上記の構成に於いて、放熱板の外面及び側面が絶縁膜により被覆されていてもよい。既に述べた如く、本発明の構成に於いては、放熱板の外面の全面が冷媒流路の一部を構成し、放熱板の側面が、放熱板を囲繞する枠部材と密閉される。この場合、放熱板と半導体素子との間が電気的に絶縁性されていない構成に於いては、液体冷媒は、典型的には、水、エタノール、エンジン冷却液(車両に搭載の場合)又はそれらの混合液体であるので、放熱板を直接に液体冷媒に接触させることはできない。そこで、特に、放熱板と半導体素子との間が電気的に絶縁されていない構成、例えば、放熱板が半導体素子のための電極としても機能する構成に於いては、上記の如く、放熱板の外面及び側面が絶縁膜により被覆される。絶縁膜としては、耐熱性及び耐水性又は耐薬品性のある樹脂膜、酸化アルミニウム膜(アルマイト(登録商標)など)等であってよい。かかる構成によれば、図7(C)に例示されている如き放熱板が固定された絶縁板に更に冷却器ケースを接合するために、絶縁板の寸法を大きくするといった必要はなくなり、半導体装置の寸法の小型化が達成される。又、放熱板の側面までが絶縁膜により被覆され且つ放熱板の側面が枠部材に対してシーリングされるので、放熱板と冷媒とが電気的に導通することはなく、電気絶縁性は担保される。 Moreover, in said structure, the outer surface and side surface of a heat sink may be coat | covered with the insulating film. As already described, in the configuration of the present invention, the entire outer surface of the heat radiating plate constitutes a part of the refrigerant flow path, and the side surface of the heat radiating plate is sealed with the frame member surrounding the heat radiating plate. In this case, in a configuration in which the heat sink and the semiconductor element are not electrically insulated, the liquid refrigerant is typically water, ethanol, engine coolant (when mounted in a vehicle) or Since they are mixed liquids, the heat sink cannot be brought into direct contact with the liquid refrigerant. Therefore, in particular, the configuration between the heat radiating plate and the semiconductor element are not electrically insulated, for example, is at the arrangement radiating plate also functions as an electrode for a semiconductor device, as described above, heat radiation The outer surface and side surfaces of the plate are covered with an insulating film. The insulating film may be a heat-resistant, water-resistant or chemical-resistant resin film, an aluminum oxide film (such as alumite (registered trademark)), or the like. According to this configuration, it is not necessary to increase the size of the insulating plate in order to further join the cooler case to the insulating plate to which the heat radiating plate is fixed as illustrated in FIG. Miniaturization of the dimensions is achieved. Also, since the side of the heat sink is covered with an insulating film and the side of the heat sink is sealed to the frame member, the heat sink and the refrigerant are not electrically connected, and the electrical insulation is ensured. The

更に、上記の本発明の構成は、複数の半導体素子が、一体的にモールド材に封止される半導体装置に適用されてもよい。即ち、複数の半導体素子と放熱板との組を有する半導体装置に於いて、放熱板をその側面にて囲繞する枠部材を有し、放熱板の外面と枠部材の一部とがモールド材の外部に露出し、枠部材に冷却器ケースが接合されて放熱板の外面の全面が冷媒流路の一部を成し、放熱板とモールド材との界面への液体冷媒の接触が阻止されるよう放熱板の側面と枠部材との間が密閉されている構成が用いられてよい。その場合、枠部材は、複数の開口部を有し、かかる複数の開口部の各々が複数の放熱板の少なくとも一つを囲繞し、且つ、それぞれの開口部が、対応する放熱板の側面に対して密閉され、複数の放熱板の外面の全面が一つの冷媒流路の一部を成すこととなる。なお、放熱板と半導体素子との間が電気的に絶縁性されていない構成、例えば、放熱板が半導体素子のための電極としても機能する構成に於いては、各放熱板の外面と側面は、上記の如き絶縁膜で被覆されていてよい。かかる構成によれば、半導体素子の集積化及び半導体装置の更なる小型化が達成される。また、冷媒流路を放熱板毎に設ける必要はなく、冷却器ケースの構成が簡単化され、例えば、冷却器ケースと枠部材との溶着を枠部材の外縁に沿ってのみ実行すればよい構成であれば、溶着領域が低減され、組立操作が簡単化され、又、コストの低減も図られることとなる。   Furthermore, the above-described configuration of the present invention may be applied to a semiconductor device in which a plurality of semiconductor elements are integrally sealed with a molding material. That is, in a semiconductor device having a set of a plurality of semiconductor elements and a heat radiating plate, it has a frame member that surrounds the heat radiating plate on its side surface, and the outer surface of the heat radiating plate and a part of the frame member are made of the mold material. Exposed to the outside, the cooler case is joined to the frame member, and the entire outer surface of the heat sink forms part of the refrigerant flow path, preventing liquid refrigerant from contacting the interface between the heat sink and the mold material A configuration in which the space between the side surface of the heat radiating plate and the frame member is hermetically sealed may be used. In that case, the frame member has a plurality of openings, each of the plurality of openings surrounds at least one of the plurality of heat sinks, and each opening is on a side surface of the corresponding heat sink. On the other hand, the entire outer surfaces of the plurality of heat radiating plates are part of one refrigerant flow path. In the configuration where the heat sink and the semiconductor element are not electrically insulated, for example, in the configuration where the heat sink also functions as an electrode for the semiconductor element, the outer surface and the side surface of each heat sink are , And may be covered with an insulating film as described above. According to such a configuration, integration of semiconductor elements and further miniaturization of the semiconductor device are achieved. Further, it is not necessary to provide a refrigerant flow path for each radiator plate, and the configuration of the cooler case is simplified. For example, the welding of the cooler case and the frame member only needs to be performed along the outer edge of the frame member. If so, the welding area is reduced, the assembling operation is simplified, and the cost is reduced.

かくして、上記の本発明によれば、放熱板の外面が電気絶縁性樹脂から成るモールドから露出され、放熱板が冷媒に曝されて冷却される形式の樹脂封止型の半導体装置に於いて、放熱板の側面を枠部材にて密閉した状態で囲繞することにより、放熱板の外面の全面が冷媒に曝された状態で放熱板とモールド材との界面への冷媒の浸透が阻止されることとなる。かかる構成によれば、放熱板の冷却作用に寄与する領域が増大され、或いは、通常、銅、アルミニウム等の金属で形成される放熱板の寸法を不要に大きくする必要がなくなり、半導体装置の更なる小型化や重量及びコストの低減が期待される。上記の本発明の構成は、例えば、ハイブリッドカー、電気自動車等の電機のためのインバータを構成する半導体素子のための冷却構造に有利に適用可能である。   Thus, according to the present invention, in the resin-encapsulated semiconductor device of the type in which the outer surface of the heat sink is exposed from the mold made of an electrically insulating resin, and the heat sink is exposed to a coolant and cooled. By surrounding the side surface of the heat sink with the frame member sealed, the penetration of the refrigerant to the interface between the heat sink and the mold material is prevented while the entire outer surface of the heat sink is exposed to the refrigerant. It becomes. According to such a configuration, the area contributing to the cooling action of the heat sink is increased, or it is not necessary to unnecessarily increase the size of the heat sink normally formed of a metal such as copper or aluminum. Expected to be smaller and reduce weight and cost. The above-described configuration of the present invention can be advantageously applied to a cooling structure for a semiconductor element that constitutes an inverter for an electric machine such as a hybrid car or an electric vehicle.

本発明のその他の目的及び利点は、以下の本発明の好ましい実施形態の説明により明らかになるであろう。   Other objects and advantages of the present invention will become apparent from the following description of preferred embodiments of the present invention.

図1は、本発明による半導体装置の一つの実施形態の模式図である。(A)は、冷媒の流通方向から見た断面図であり、(B)は、(A)中の一点鎖線(B)から見た断面図である。FIG. 1 is a schematic view of one embodiment of a semiconductor device according to the present invention. (A) is sectional drawing seen from the distribution direction of a refrigerant | coolant, (B) is sectional drawing seen from the dashed-dotted line (B) in (A). 図2は、図1の本発明による半導体装置の変形例の模式的な断面図である。(A)は、放熱板側面と枠部材とのシールが溶着により為されている例を示している。(B)は、半導体素子の両面に対して放熱板が固定されている例を示している。(C)は、枠部材がリードフレームを保持し位置決めする構造を有している例を示している。FIG. 2 is a schematic cross-sectional view of a modification of the semiconductor device according to the present invention shown in FIG. (A) has shown the example by which the seal | sticker with the heat sink side surface and a frame member is made | formed by welding. (B) has shown the example by which the heat sink is being fixed with respect to both surfaces of a semiconductor element. (C) shows an example in which the frame member has a structure for holding and positioning the lead frame. 図3は、本発明による半導体装置の別の一つの実施形態の模式図である。(A)は、放熱板の外面及び側面が絶縁膜により被覆された構造の冷媒の流通方向から見た断面図であり、(B)は、(A)中の一点鎖線(B)から見た断面図である。FIG. 3 is a schematic view of another embodiment of the semiconductor device according to the present invention. (A) is sectional drawing seen from the distribution direction of the refrigerant | coolant of the structure where the outer surface and side surface of the heat sink were coat | covered with the insulating film, (B) was seen from the dashed-dotted line (B) in (A). It is sectional drawing. 図4は、図2の本発明による半導体装置の変形例の模式的な断面図である。(A)は、半導体素子の両面に対して放熱板が固定されている例を示している。(B)は、枠部材がリードフレームを保持し位置決めする構造を有している例を示している。FIG. 4 is a schematic cross-sectional view of a modification of the semiconductor device according to the present invention shown in FIG. (A) has shown the example by which the heat sink is being fixed with respect to both surfaces of a semiconductor element. (B) shows an example in which the frame member has a structure for holding and positioning the lead frame. 図5(A)は、図3の本発明による半導体装置の変形例の模式的な断面図であり、複数の半導体素子と放熱板とが、一つの冷媒流路により冷却される例を示している。図5(B)は、(A)に於いて使用されている枠部材の平明図である。図5(C)は、(A)の構造が適用されるインバータの三相ブリッジ結線回路の回路図を示している。FIG. 5A is a schematic cross-sectional view of a modification of the semiconductor device according to the present invention shown in FIG. 3, and shows an example in which a plurality of semiconductor elements and a heat sink are cooled by a single coolant channel. Yes. FIG. 5B is a plain view of the frame member used in FIG. FIG. 5C shows a circuit diagram of a three-phase bridge connection circuit of an inverter to which the structure of FIG. 図6は、図5(A)の本発明による半導体装置の変形例の模式的な断面図であり、半導体素子の両面に対して放熱板が固定されている例を示している。FIG. 6 is a schematic cross-sectional view of a modification of the semiconductor device according to the present invention shown in FIG. 5 (A), showing an example in which a heat sink is fixed to both sides of a semiconductor element. 図7(A)〜(C)は、従来の技術に於ける半導体装置のいくつかの例の断面図を示している。7A to 7C are cross-sectional views showing some examples of semiconductor devices in the prior art.

10、10a〜h…半導体装置
12…半導体素子
14…放熱板
15…絶縁板
15a…絶縁膜
16…はんだ層
17…電極
18…リードフレーム
20…ワイヤボンディング
22…枠部材
22a…溶着部
24…Oリング
24a…溶着部
26…冷却器ケース
M…樹脂モールド
F…放熱板とモールド材の界面
DESCRIPTION OF SYMBOLS 10, 10a-h ... Semiconductor device 12 ... Semiconductor element 14 ... Heat sink 15 ... Insulating plate 15a ... Insulating film 16 ... Solder layer 17 ... Electrode 18 ... Lead frame 20 ... Wire bonding 22 ... Frame member 22a ... Welding part 24 ... O Ring 24a ... welded portion 26 ... cooler case M ... resin mold F ... interface between heat sink and mold material

以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳細に説明する。図中、同一の符号は、同一の部位を示す。   The present invention will now be described in detail with reference to a few preferred embodiments with reference to the accompanying drawings. In the figure, the same reference numerals indicate the same parts.

本発明の半導体装置の構成
図1は、本発明による半導体装置の一つの実施形態の断面を模式的に表したものである。同図を参照して、本発明による半導体装置10は、基本的には、従来の樹脂封止型の半導体装置と同様に、半導体素子12が、銅又はアルミニウム等から成る板状部材である放熱板14上に於いて固定され、電気絶縁性の樹脂から成るモールド材M内に封止された構造を有している。なお、図示の例では、半導体素子12は、絶縁板15、電極板17、はんだ層16を介して、放熱板14の一方の面(内面)14cに接合され、かかる半導体素子12を含む積層体が、ワイヤボンディング20を介して半導体素子12又は電極板14に電気的に接続されたリードフレーム18(典型的には、金属製の板状部材)と共に、一体的にモールド材Mに覆われた構造となっている。半導体素子12は、既に触れた如く、ハイブリッドカー、電気自動車、その他の大型の機械などの電機に流通する大電流を制御するためのIGBT、サイリスタ、パワーMOSFETなどのパワートランジスタ、パワーダイオード、パワー半導体或いはシリコンカーバイド或いは窒化ガリウムなどのシリコン以外の材料を使用した素子などの、一辺が数mm〜数cmの平板状の素子である。また、モールド材Mを形成する封止用樹脂としては、典型的には、電気絶縁性を有するエポキシ樹脂等の熱硬化性樹脂であってよい(例えば、信越化学工業株式会社のKMC−180、KMC−520や京セラ株式会社のKE−870にて市販されているエポキシ樹脂が利用可能である。)。また、図示の如く、リードフレーム18は、外部と半導体素子12との電気的接続を達成するために、一部がモールド材Mの外部に突出して配置される。
Configuration of Semiconductor Device of the Present Invention FIG. 1 schematically shows a cross section of one embodiment of a semiconductor device according to the present invention. Referring to the figure, a semiconductor device 10 according to the present invention basically has a heat dissipation in which a semiconductor element 12 is a plate-like member made of copper, aluminum or the like, as in a conventional resin-encapsulated semiconductor device. The structure is fixed on the plate 14 and sealed in a molding material M made of an electrically insulating resin. In the illustrated example, the semiconductor element 12 is bonded to one surface (inner surface) 14 c of the heat radiating plate 14 via the insulating plate 15, the electrode plate 17, and the solder layer 16, and is a laminate including the semiconductor element 12. Is integrally covered with the molding material M together with the lead frame 18 (typically, a metal plate-like member) electrically connected to the semiconductor element 12 or the electrode plate 14 through the wire bonding 20. It has a structure. As already mentioned, the semiconductor element 12 is a power transistor such as an IGBT, a thyristor, or a power MOSFET for controlling a large current flowing in an electric machine such as a hybrid car, an electric vehicle, and other large machines, a power diode, and a power semiconductor. Alternatively, a flat element having a side of several mm to several cm, such as an element using a material other than silicon such as silicon carbide or gallium nitride. Moreover, as sealing resin which forms the molding material M, typically, it may be thermosetting resins, such as an epoxy resin which has electrical insulation (for example, KMC-180 of Shin-Etsu Chemical Co., Ltd.,). The epoxy resin marketed by KMC-520 or KE-870 of Kyocera Corporation can be used.) Further, as shown in the drawing, a part of the lead frame 18 is disposed so as to protrude to the outside of the molding material M in order to achieve electrical connection between the outside and the semiconductor element 12.

かかる半導体装置10に於いて、その動作中に、半導体素子12には比較的大きな電流が流通するので、半導体素子12は、相当量の熱を発する。そこで、従前より、半導体装置の構造に於いては、半導体素子12の熱を外部に放出して半導体素子12及び装置全体を冷却するための機構が設けられる。そのような冷却機構として、本発明の対象となる構造に於いては、特に、図示の如く、放熱板14の外面14a(半導体素子12に対向する内面14cと反対側の面)をモールド材Mから露出し、放熱板外面14aが冷媒流路の一部を構成して、かかる外面14aが冷媒に曝されるように、半導体素子12を含むモールド材Mにて封止された組立体の外部へ冷却器ケース26が取り付けられる。   In such a semiconductor device 10, a relatively large current flows through the semiconductor element 12 during its operation, so that the semiconductor element 12 generates a considerable amount of heat. Therefore, in the structure of a semiconductor device, a mechanism for discharging the heat of the semiconductor element 12 to the outside and cooling the semiconductor element 12 and the entire apparatus has been provided. As such a cooling mechanism, in the structure which is an object of the present invention, in particular, as shown in the drawing, the outer surface 14a of the heat radiating plate 14 (the surface opposite to the inner surface 14c facing the semiconductor element 12) is used as the molding material M. And the outside of the assembly sealed with the molding material M including the semiconductor element 12 so that the outer surface 14a of the radiator plate constitutes a part of the refrigerant flow path and the outer surface 14a is exposed to the refrigerant. A cooler case 26 is attached.

この点に関し、上記の如く、放熱板14がモールド材Mから露出され冷媒に曝される構成に於いて、既に述べた如く、図7(A)に例示されているように、放熱板14とモールド材Mとの界面が冷媒に接触すると、冷媒が界面に侵入して、電極17や半導体素子12まで浸透し、冷媒と回路素子との電気絶縁性が損なわれるおそれが生ずる。一方、図7(B)、(C)の如く、放熱板14又は絶縁板15に直接に冷却器ケース26を取り付ける場合には、放熱板14とモールド材Mとの界面は、冷媒から隔離されるが、比較的比重の大きい放熱板14又は絶縁板15の寸法が冷却器ケース26の取付のためだけに増大され、放熱板14又は絶縁板15の冷却器ケース26との接合領域は、冷媒に曝されないので、放熱板14の増大分に相当する冷却性能の向上は期待できない。   In this regard, as described above, in the configuration in which the heat radiating plate 14 is exposed from the molding material M and exposed to the refrigerant as described above, as illustrated in FIG. When the interface with the molding material M comes into contact with the coolant, the coolant enters the interface and penetrates to the electrode 17 and the semiconductor element 12, which may impair the electrical insulation between the coolant and the circuit element. On the other hand, when the cooler case 26 is directly attached to the heat radiating plate 14 or the insulating plate 15 as shown in FIGS. 7B and 7C, the interface between the heat radiating plate 14 and the molding material M is isolated from the refrigerant. However, the size of the heat sink 14 or the insulating plate 15 having a relatively large specific gravity is increased only for the attachment of the cooler case 26, and the joining region of the heat sink 14 or the insulating plate 15 with the cooler case 26 is a refrigerant. Therefore, the improvement of the cooling performance corresponding to the increase of the heat sink 14 cannot be expected.

そこで、本発明の構造に於いては、図1(A)に例示されている如く、放熱板14をその側面14bにて枠部材22により囲繞させ、放熱板側面14bに対して枠部材22を密閉した状態とし、枠部材22の一部を含めてモールド材Mにて覆うとともに、枠部材22の一部と放熱板外面14aとをモールド材Mの外に露出させる。そして、放熱板14を囲繞する枠部材22に対して、冷却器ケース26が取り付けられる。放熱板側面14bに対する枠部材22による密閉は、例えば、任意の弾性材料等から構成されるOリング24を放熱板側面14bと枠部材12の内縁に形成された溝との間に介装することにより、Oリングを枠部材22の放熱板側面14bへの対向面に一体的に成型することにより(図示せず)、或いは、図2(A)に例示されている如くNMT技術(例えば、大成プラス社により提供されるNMT技術)等を用いて放熱板側面14bと枠部材12の内縁24a(溶着部)とを溶着することにより達成されてよい。   Therefore, in the structure of the present invention, as illustrated in FIG. 1A, the heat radiating plate 14 is surrounded by the frame member 22 at the side surface 14b, and the frame member 22 is attached to the heat radiating plate side surface 14b. It is set in a sealed state, and a part of the frame member 22 is covered with the molding material M, and a part of the frame member 22 and the heat sink outer surface 14a are exposed to the outside of the molding material M. A cooler case 26 is attached to the frame member 22 that surrounds the heat sink 14. For sealing the heat sink side surface 14b with the frame member 22, for example, an O-ring 24 made of an arbitrary elastic material or the like is interposed between the heat sink side surface 14b and a groove formed on the inner edge of the frame member 12. Thus, by integrally molding the O-ring on the surface of the frame member 22 facing the heat radiating plate side surface 14b (not shown), or as illustrated in FIG. This may be achieved by welding the heat radiating plate side surface 14b and the inner edge 24a (welded portion) of the frame member 12 using NMT technology provided by Plus Corporation.

かかる構成によれば、放熱板外面14aは、図1(B)の断面図からも理解される如く、冷却器ケース26により冷媒との接触が阻止される領域がなく、その全面にて冷媒に曝され、これにより、放熱板の冷却性能が充分に発揮されることとなる。また、放熱板14とモールド材Mとの間の界面が冷媒に直接に接触することがないので、かかる界面から冷媒がモールド材Mの内部へ浸透することもない。即ち、本発明の上記の構成に於いては、放熱板の寸法は、モールド材Mとの界面を冷媒に曝される心配をせずに、冷却性能又は放熱性能のみを考慮して決定可能であり、放熱板の寸法を冷却性能に於いて必要な大きさに設定できることとなる。特に、放熱板は、典型的には、銅又はアルミニウム等の金属や熱伝導性の高いセラミック材料で製作され、重量やコストが比較的高いところ、本発明によれば、その大きさを低減できることから、半導体装置の軽量化及びコストの低減が期待される。   According to such a configuration, as is understood from the cross-sectional view of FIG. 1B, the heat radiating plate outer surface 14a does not have a region where contact with the refrigerant is blocked by the cooler case 26, and the entire surface is used as the refrigerant. As a result, the cooling performance of the heat radiating plate is sufficiently exhibited. Moreover, since the interface between the heat sink 14 and the mold material M does not directly contact the refrigerant, the refrigerant does not penetrate into the mold material M from the interface. That is, in the above configuration of the present invention, the size of the heat sink can be determined in consideration of only the cooling performance or the heat radiation performance without worrying about the interface with the molding material M being exposed to the refrigerant. Yes, the size of the heat sink can be set to a size necessary for cooling performance. In particular, the heat sink is typically made of a metal such as copper or aluminum or a ceramic material having high thermal conductivity, and the weight and cost are relatively high. According to the present invention, the size of the heat sink can be reduced. Therefore, weight reduction and cost reduction of the semiconductor device are expected.

上記の構成に於いて、枠部材22は、軽量且つ廉価な任意の耐熱性及び耐水性又は耐薬品性のある材料にて製作される。半導体装置の組立工程に於いては、半導体素子12〜放熱板14の積層体に枠部材22が取り付けられている組立体を、流動状態の電気絶縁性樹脂が高温にて(エポキシ樹脂であれば、成型温度は、180℃程度)覆い、しかる後に電気絶縁性樹脂が硬化される。従って、枠部材22は、かかる工程に於いて軟化しないように、電気絶縁性樹脂の成型温度よりも高い軟化温度を有するものが選択される。また、図1(A)から理解される如く、枠部材22も冷媒に曝されることとなるので、枠部材22は、冷媒(典型的には、水、エタノール、エンジン冷却液(車両に搭載の場合)又はそれらの混合液体)に対して耐性を有する材料にて製作される。かくして、枠部材22は、典型的には、PPS(ポリフェニレンスルファイド)樹脂、、ナイロン66、PP(ポリプロピレン)樹脂、POM(ポリアセタール)樹脂等の熱可塑性樹脂にて製作されてよい。なお、枠部材22の材質は、前記の如き熱可塑性樹脂に代えて、軽量且つ廉価な任意のその他の耐熱性及び耐水性又は耐薬品性のある材料であってもよい。   In the above-described configuration, the frame member 22 is manufactured from any heat-resistant and water-resistant or chemical-resistant material that is lightweight and inexpensive. In the assembly process of the semiconductor device, the assembly in which the frame member 22 is attached to the laminated body of the semiconductor elements 12 to the heat radiating plate 14 is processed at a high temperature (if epoxy resin is used as the electrically insulating resin). The molding temperature is about 180 ° C.), and then the electrically insulating resin is cured. Therefore, the frame member 22 is selected to have a softening temperature higher than the molding temperature of the electrically insulating resin so as not to soften in such a process. Further, as understood from FIG. 1A, the frame member 22 is also exposed to the refrigerant, so that the frame member 22 is made of refrigerant (typically water, ethanol, engine coolant (mounted on the vehicle). In the case of (a) or a mixed liquid thereof). Thus, the frame member 22 may typically be made of a thermoplastic resin such as PPS (polyphenylene sulfide) resin, nylon 66, PP (polypropylene) resin, or POM (polyacetal) resin. The material of the frame member 22 may be any other heat-resistant and water-resistant or chemical-resistant material that is lightweight and inexpensive, instead of the thermoplastic resin as described above.

また、上記の構成に於いて、冷媒流路を画定する冷却器ケース26は、上記の枠部材22へ取り付けられる。かかる取り付けは、好適には、接合面22a(溶着部)にて、例えば、熱溶着、超音波溶着等の任意の溶着技術により達成されてよい。この点に関し、枠部材22が前記の如き熱可塑性樹脂にて製作されている場合には、冷却器ケース26は、かかる樹脂と溶着可能な任意の材料で製作されてよいことは理解されるべきである。冷却器ケース26も、冷媒に曝されることになるので、枠部材22の材質と同様に耐熱性及び耐水性のある材料にて製作されることが好ましい。かくして、典型的には、冷却器ケース26も、枠部材22と同様に、PPS(ポリフェニレンスルファイド)樹脂、、ナイロン66、PP(ポリプロピレン)樹脂、POM(ポリアセタール)樹脂等の熱可塑性樹脂又はその他の耐熱性及び耐水性又は耐薬品性のある材料にて製作されてよい。上記の如く、冷却器ケース26と枠部材22との接合が溶着により達成される場合には、冷却器ケースを半導体装置に接合するためにボルト及びボルト締結のためのボルト孔等は必要なくなり、半導体装置の更なる小型化並びに重量及びコストの更なる低減が達成されることとなる。   In the above configuration, the cooler case 26 that defines the refrigerant flow path is attached to the frame member 22. Such attachment may suitably be achieved by any welding technique such as thermal welding or ultrasonic welding at the joining surface 22a (welding portion). In this regard, when the frame member 22 is made of a thermoplastic resin as described above, it should be understood that the cooler case 26 may be made of any material that can be welded to the resin. It is. Since the cooler case 26 is also exposed to the refrigerant, it is preferable that the cooler case 26 is made of a material having heat resistance and water resistance in the same manner as the material of the frame member 22. Thus, typically, similarly to the frame member 22, the cooler case 26 is also made of a thermoplastic resin such as PPS (polyphenylene sulfide) resin, nylon 66, PP (polypropylene) resin, POM (polyacetal) resin, or the like. It may be made of a heat resistant and water resistant or chemical resistant material. As described above, when the joining of the cooler case 26 and the frame member 22 is achieved by welding, bolts and bolt holes for fastening the bolts are not necessary to join the cooler case to the semiconductor device. Further downsizing of the semiconductor device and further reduction in weight and cost are achieved.

上記の本発明によるモールド材Mから露出される放熱板14をその側面にて枠部材22にて密閉した状態で囲繞し、枠部材22に対して冷却器ケース26を取り付ける構成は、図2(B)に模式的に描かれている如く、半導体素子12の両側に設けられてもよい。また、枠部材22は、単に放熱板14を保持するためだけでなく、図2(C)に模式的に描かれている如く、リードフレーム18の位置決めをするべくリードフレーム18と一体的に構成されていてもよく、或いは、モールド材の成型及び硬化の際に、リードフレーム18を支持して位置決めするよう構成されていてもよい。その場合、モールド材Mによる成型時のリードフレーム18の位置決めが容易となり、成型工程の簡単化が期待される。   The structure in which the heat sink 14 exposed from the molding material M according to the present invention is surrounded by the frame member 22 on its side surface and the cooler case 26 is attached to the frame member 22 is shown in FIG. It may be provided on both sides of the semiconductor element 12 as schematically depicted in B). Further, the frame member 22 is configured not only to hold the heat dissipation plate 14 but also to be integrated with the lead frame 18 so as to position the lead frame 18 as schematically illustrated in FIG. Alternatively, the lead frame 18 may be supported and positioned when the molding material is molded and cured. In that case, positioning of the lead frame 18 at the time of molding with the molding material M becomes easy, and simplification of the molding process is expected.

図3は、図1のモールド材Mから露出される放熱板14をその側面にてOリング24等を用いて密閉した状態で枠部材22によって囲繞し、枠部材22に対して冷却器ケース26を取り付ける構成を、放熱板14が半導体素子12の電極としても機能する構成に適用した例を模式的に描いた図である。同図を参照して、本実施形態に於いては、電極を兼ねる放熱板14と冷媒との電気的導通を遮断するために、放熱板14の外面14aと側面14bとが絶縁膜15aにて被覆される。絶縁膜15aとしては、耐熱性及び耐水性又は耐薬品性があり且つ熱伝導性の高い電気絶縁性樹脂膜、例えば、フッ素系樹脂膜、酸化アルミニウム膜(アルマイト(登録商標)など)等が採用されてよい。かかる構成に於いても、図3(B)からも理解される如く、放熱板外面15aの全面が冷媒に曝され、これにより、十分な冷却性能が発揮されるとともに、図7(C)に例示されている如き冷却器ケースを接合するために寸法が大きくなった絶縁板は不要となり、半導体装置の寸法の小型化が達成される。又、放熱板側面14bまでが絶縁膜15aにより被覆され且つ放熱板側面14bが枠部材22に対してシーリングされるので、放熱板14と冷媒とが電気的に導通することはなく電気絶縁性は担保される。   3, the heat sink 14 exposed from the molding material M in FIG. 1 is surrounded by the frame member 22 in a state of being sealed with an O-ring 24 or the like on its side surface, and the cooler case 26 is surrounded by the frame member 22. 6 is a diagram schematically illustrating an example in which the configuration in which the heat sink 14 is applied to the configuration in which the heat dissipation plate 14 also functions as an electrode of the semiconductor element 12. Referring to the figure, in the present embodiment, in order to cut off the electrical conduction between the heat sink 14 also serving as an electrode and the refrigerant, the outer surface 14a and the side surface 14b of the heat sink 14 are formed by an insulating film 15a. Covered. As the insulating film 15a, an electrically insulating resin film having heat resistance, water resistance or chemical resistance and high thermal conductivity, for example, a fluorine-based resin film, an aluminum oxide film (anodized (registered trademark), or the like) is employed. May be. Even in such a configuration, as can be understood from FIG. 3B, the entire surface of the heat sink outer surface 15a is exposed to the refrigerant, thereby exhibiting sufficient cooling performance, as shown in FIG. An insulating plate having a large size for joining the cooler case as illustrated is not necessary, and the size of the semiconductor device can be reduced. Further, since the heat sink side surface 14b is covered with the insulating film 15a and the heat sink side surface 14b is sealed with respect to the frame member 22, the heat sink 14 and the refrigerant are not electrically connected to each other. Secured.

上記の図3の如き、絶縁層15aを外面及び側面に被覆した放熱板14をその側面にて枠部材22で囲繞する構成も、半導体素子12の両側に設けられてもよい(図4(A))。また、この場合も、枠部材22は、単に放熱板14を保持するためだけでなく、図4(B)に模式的に描かれている如く、リードフレーム18の位置決めをするべくリードフレーム18と一体的に構成されていてもよく、或いは、モールド材の成型及び硬化の際に、リードフレーム18を支持して位置決めするよう構成されていてもよい。   As shown in FIG. 3 described above, a configuration in which the heat radiating plate 14 covered with the insulating layer 15a on the outer surface and the side surface is surrounded by the frame member 22 on the side surface may be provided on both sides of the semiconductor element 12 (FIG. 4A). )). Also in this case, the frame member 22 is not only for holding the heat radiating plate 14 but also for positioning the lead frame 18 as shown schematically in FIG. 4B. The lead frame 18 may be configured to be supported and positioned when the molding material is molded and cured.

更に、上記の如き、モールド材Mから露出される放熱板14をその側面にて枠部材22にて密閉した状態で囲繞し、枠部材22に対して冷却器ケース26を取り付ける本発明の構成は、図5(A)に例示されている如く、一体のモールド材Mに複数の半導体素子12〜放熱板14の組を封止した構成に適用されてもよい。図5(A)の例では、枠部材22は、図5(B)に模式的に描かれている如く、複数の開口部22bを有し、それぞれが、別々の放熱板14を、その側面をシールした状態で受容し支持する。図示の例は、図5(C)に例示されている如き三相ブリッジ結線回路から成るインバータに於けるスイッチング素子を担持する半導体装置10gに用いられる枠部材22であり、インバータのU相、V相及びW相の出力線のそれぞれに接続された三相ブリッジ結線回路の上アーム(Pバス側)のスイッチング素子のエミッタ端子が接続される(電極を兼ねる)放熱板14のための開口部22bと、Nバスに接続される三相ブリッジ結線回路の下アームのスイッチング素子のエミッタ端子が接続される(電極を兼ねる)放熱板14のための開口部22bとが形成されている。なお、図5(A)の例では、放熱板14が電極を兼ねる構成であるため、放熱板14の外面14a及び側面14bには、絶縁膜15aが被覆されているが、図1の如く、放熱板14と半導体素子12とが電気的に絶縁されている場合には、放熱板14に絶縁膜15aの被覆が施されていなくてもよいことは理解されるべきである。   Further, as described above, the heat dissipation plate 14 exposed from the molding material M is surrounded by the frame member 22 on its side surface and the cooler case 26 is attached to the frame member 22. As illustrated in FIG. 5A, the present invention may be applied to a configuration in which a set of a plurality of semiconductor elements 12 to heat sink 14 is sealed in an integral molding material M. In the example of FIG. 5 (A), the frame member 22 has a plurality of openings 22b, as schematically depicted in FIG. 5 (B), each of which has a separate heat sink 14 on its side surface. Is received and supported in a sealed state. The illustrated example is a frame member 22 used in a semiconductor device 10g carrying a switching element in an inverter composed of a three-phase bridge connection circuit as illustrated in FIG. 5C. An opening 22b for the heat sink 14 to which the emitter terminal of the switching element of the upper arm (P bus side) of the three-phase bridge connection circuit connected to each of the phase and W phase output lines is connected (also serves as an electrode) And an opening 22b for the heat sink 14 to which the emitter terminal of the switching element of the lower arm of the three-phase bridge connection circuit connected to the N bus is connected (also serves as an electrode). In the example of FIG. 5A, since the heat sink 14 also serves as an electrode, the outer surface 14a and the side surface 14b of the heat sink 14 are covered with an insulating film 15a, but as shown in FIG. It should be understood that when the heat sink 14 and the semiconductor element 12 are electrically insulated, the heat sink 14 may not be covered with the insulating film 15a.

また、上記の複数の半導体素子12〜放熱板14の組を包含する半導体装置10gの場合、冷媒流路は、全ての放熱板14に共通であってよく、放熱板14を囲繞する枠部材22に於いては、その外周に、冷媒流路を画定する冷却器ケース26との接合を容易にすべく、接合面22aが突出して形成されていてよい。かかる冷媒通路が共通となっている構成に於いては、枠部材22と冷却器ケース26との接合又は溶着領域は、冷却器ケース26の外周だけとなり、放熱板14毎に冷媒流路を設ける場合に比して、接合又は溶着領域が少なくなるので、装置の組立の手間、労力及びコストの低減が期待される。   Further, in the case of the semiconductor device 10 g including the set of the plurality of semiconductor elements 12 to the heat sink 14, the coolant channel may be common to all the heat sinks 14, and the frame member 22 surrounding the heat sink 14. In this case, a joining surface 22a may be formed on the outer periphery so as to protrude from the outer periphery so as to facilitate joining with the cooler case 26 that defines the refrigerant flow path. In such a configuration in which the refrigerant passage is common, the joining or welding region between the frame member 22 and the cooler case 26 is only the outer periphery of the cooler case 26, and a refrigerant flow path is provided for each radiator plate 14. Compared to the case, since the bonding or welding area is reduced, it is expected to reduce the labor, cost and labor of assembling the apparatus.

更に、図5の如く、複数の半導体素子12〜放熱板14の組を包含する半導体装置に於いても、放熱板14をその側面にて枠部材22で囲繞する構成が、半導体素子12の両側に設けられてもよい(図6)。また、この場合も、枠部材22は、単に放熱板14を保持するためだけでなく、リードフレーム18の位置決めをするべくリードフレーム18と一体的に構成されていてもよく、或いは、モールド材の成型及び硬化の際に、リードフレーム18を支持して位置決めするよう構成されていてもよい(図示せず。)。   Further, as shown in FIG. 5, even in a semiconductor device including a set of a plurality of semiconductor elements 12 to 14, the structure in which the heat radiating plate 14 is surrounded by the frame member 22 on its side surface is provided on both sides of the semiconductor element 12. (Fig. 6). Also in this case, the frame member 22 may be configured integrally with the lead frame 18 to position the lead frame 18 in addition to simply holding the heat dissipation plate 14, or may be made of a molding material. The lead frame 18 may be supported and positioned during molding and curing (not shown).

かくして、上記の本発明では、放熱板が樹脂モールドから露出され冷媒に曝される形式の樹脂封止型の半導体装置に於いて、放熱板の側面にて密閉した状態にて枠部材によって囲繞し、枠部材に冷媒流路を画定する冷却器ケースを取り付けることにより、放熱板とモールド材との界面が冷媒に接触しないように放熱板外面の全面を冷媒に曝した状態が達成される。かかる構成によれば、冷媒が放熱板とモールド材との界面に浸透するおそれがなく、また、放熱板の寸法を冷却器ケースの取り付けのために大きくする必要がなくなり、放熱板の冷却性能を考慮して放熱板の寸法の設計が為され、結果として、放熱板の寸法の小型化が達成され、比較的高額な放熱板の使用量を低減することが可能となる。また、上記の本発明の構成によれば、放熱性能及び冷却性能の改善により、半導体装置の更なる小型化が達成可能となるとともに、その構造が比較的簡単であることから、製造のための労力や費用の低減が可能となる。   Thus, in the present invention described above, in the resin-encapsulated semiconductor device in which the heat sink is exposed from the resin mold and exposed to the coolant, the heat sink is surrounded by the frame member in a sealed state on the side surface of the heat sink. By attaching a cooler case that defines the refrigerant flow path to the frame member, a state where the entire outer surface of the heat radiating plate is exposed to the refrigerant is achieved so that the interface between the heat radiating plate and the mold material does not contact the refrigerant. According to such a configuration, there is no possibility that the refrigerant permeates the interface between the heat sink and the mold material, and it is not necessary to increase the size of the heat sink for mounting the cooler case. In consideration of the design of the size of the heat sink, as a result, the size of the heat sink can be reduced, and the amount of heat sink used can be reduced. Further, according to the configuration of the present invention described above, the semiconductor device can be further miniaturized by improving the heat dissipation performance and the cooling performance, and the structure thereof is relatively simple. Labor and cost can be reduced.

以上の説明は、本発明の実施の形態に関連してなされているが、当業者にとつて多くの修正及び変更が容易に可能であり、本発明は、上記に例示された実施形態のみに限定されるものではなく、本発明の概念から逸脱することなく種々の装置に適用されることは明らかであろう。   Although the above description has been made in relation to the embodiment of the present invention, many modifications and changes can be easily made by those skilled in the art, and the present invention is limited to the embodiment exemplified above. It will be apparent that the invention is not limited and applies to various devices without departing from the inventive concept.

Claims (7)

半導体素子と、該半導体素子に対向する内面、該内面と反対の側の外面及び前記内面と外面とを接続する側面を有し前記半導体素子の熱を外部へ放出するよう前記半導体素子に対して固定された放熱板とが電気絶縁性樹脂から成るモールド材にて封止された半導体装置であって、前記放熱板を前記側面にて囲繞する枠部材を有し、前記モールド材が前記放熱板の前記内面側に於いて前記半導体素子と前記放熱板の前記内面とを封止し、前記放熱板の前記外面と前記枠部材の一部とが前記モールド材の外部に露出し、前記枠部材に冷却器ケースが接合されて前記放熱板の前記外面の全面が冷媒流路の一部を成し、前記放熱板の前記側面と前記枠部材との間が密閉され、前記放熱板と前記モールド材との界面への液体冷媒の接触が阻止されることを特徴とする装置。 A semiconductor element, an inner surface facing the semiconductor element, an outer surface opposite to the inner surface, and a side surface connecting the inner surface and the outer surface, so that the heat of the semiconductor element is released to the outside A fixed heat sink is a semiconductor device sealed with a molding material made of an electrically insulating resin, and has a frame member that surrounds the side surface of the heat sink, and the mold material is the heat sink. Sealing the semiconductor element and the inner surface of the heat sink on the inner surface side, and exposing the outer surface of the heat sink and a part of the frame member to the outside of the mold member, A cooler case is joined to the entire outer surface of the heat radiating plate to form a part of the refrigerant flow path, and the side surface of the heat radiating plate and the frame member are hermetically sealed. the contact of the liquid coolant to the interface between the wood are blocked Device according to claim. 請求項1の装置であって、前記枠部材と前記冷却器ケースとが互いに溶着可能な材料にて形成され、前記枠部材と前記冷却器ケースとが溶着により接合されていることを特徴とする装置。   It is an apparatus of Claim 1, Comprising: The said frame member and the said cooler case are formed with the material which can be welded together, The said frame member and the said cooler case are joined by welding. apparatus. 請求項1又は2の装置であって、軟化温度が前記モールド材の前記電気絶縁性樹脂の成型温度よりも高い材料にて前記枠部材が形成されていることを特徴とする装置。   3. The apparatus according to claim 1, wherein the frame member is formed of a material having a softening temperature higher than a molding temperature of the electrically insulating resin of the molding material. 請求項1乃至3のいずれかの装置であって、前記放熱板の前記側面と前記枠部材との間にOリングが介装されて前記放熱板の前記側面と前記枠部材との間が密閉されていることを特徴とする装置。   4. The apparatus according to claim 1, wherein an O-ring is interposed between the side surface of the heat radiating plate and the frame member, and the side surface of the heat radiating plate and the frame member are sealed. The apparatus characterized by being made. 請求項1乃至4のいずれかの装置であって、前記放熱板の前記外面及び側面が絶縁膜により被覆されていることを特徴とする装置。   The apparatus according to claim 1, wherein the outer surface and the side surface of the heat radiating plate are covered with an insulating film. 請求項5の装置であって、前記放熱板が前記半導体素子のための電極であることを特徴とする装置。   6. The apparatus of claim 5, wherein the heat sink is an electrode for the semiconductor element. 請求項1乃至6のいずれかの装置であって、複数の前記半導体素子と前記放熱板との組を有し、前記枠部材が複数の開口部を有し、該複数の開口部の各々が前記複数の放熱板の少なくとも一つを囲繞し、前記複数の放熱板の前記外面の全面が前記冷媒流路の一部を成していることを特徴とする装置。   7. The apparatus according to claim 1, comprising a set of a plurality of the semiconductor elements and the heat sink, the frame member having a plurality of openings, and each of the plurality of openings. An apparatus that surrounds at least one of the plurality of heat radiating plates, and the entire outer surface of the plurality of heat radiating plates forms part of the refrigerant flow path.
JP2011020257A 2011-02-01 2011-02-01 Semiconductor device cooling structure Expired - Fee Related JP5578097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011020257A JP5578097B2 (en) 2011-02-01 2011-02-01 Semiconductor device cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011020257A JP5578097B2 (en) 2011-02-01 2011-02-01 Semiconductor device cooling structure

Publications (2)

Publication Number Publication Date
JP2012160623A JP2012160623A (en) 2012-08-23
JP5578097B2 true JP5578097B2 (en) 2014-08-27

Family

ID=46840904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011020257A Expired - Fee Related JP5578097B2 (en) 2011-02-01 2011-02-01 Semiconductor device cooling structure

Country Status (1)

Country Link
JP (1) JP5578097B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7178098B2 (en) * 2019-08-01 2022-11-25 国立研究開発法人産業技術総合研究所 Transient heat measurement method and device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206191A (en) * 2008-02-26 2009-09-10 Sumitomo Electric Ind Ltd Power module
JP2009260016A (en) * 2008-04-16 2009-11-05 Toyota Motor Corp Method of manufacturing power module

Also Published As

Publication number Publication date
JP2012160623A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
US10778113B2 (en) Intelligent power module, electric vehicle, and hybrid car
JP5257817B2 (en) Semiconductor device
US9059334B2 (en) Power semiconductor module and method of manufacturing the same
JP5206822B2 (en) Semiconductor device
US8587105B2 (en) Semiconductor device
CN108735692B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP6093455B2 (en) Semiconductor module
JP6813259B2 (en) Semiconductor device
CN110998777B (en) Power conversion device
JP2020072106A (en) Semiconductor device
WO2014097798A1 (en) Semiconductor device
US20190051636A1 (en) Semiconductor device
WO2010090326A1 (en) Semiconductor device cooling structure and power converter provided with the cooling structure
JP6945418B2 (en) Semiconductor devices and manufacturing methods for semiconductor devices
JP6575739B1 (en) Semiconductor device, semiconductor device manufacturing method, and power conversion device
US20140367842A1 (en) Power semiconductor device and method of manufacturing the same
JP4096741B2 (en) Semiconductor device
JP5845835B2 (en) Semiconductor module
US9209099B1 (en) Power semiconductor module
WO2016203743A1 (en) Semiconductor device
WO2013065462A1 (en) Semiconductor device and manufacturing method therefor
JP2012209470A (en) Semiconductor device, semiconductor device module, and manufacturing method of the semiconductor device
JP5578097B2 (en) Semiconductor device cooling structure
JP5772179B2 (en) Semiconductor device
JP2007288044A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R151 Written notification of patent or utility model registration

Ref document number: 5578097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees