JP5577514B2 - Fluorescence cube, illumination switching device and fluorescence measuring device - Google Patents

Fluorescence cube, illumination switching device and fluorescence measuring device Download PDF

Info

Publication number
JP5577514B2
JP5577514B2 JP2010027903A JP2010027903A JP5577514B2 JP 5577514 B2 JP5577514 B2 JP 5577514B2 JP 2010027903 A JP2010027903 A JP 2010027903A JP 2010027903 A JP2010027903 A JP 2010027903A JP 5577514 B2 JP5577514 B2 JP 5577514B2
Authority
JP
Japan
Prior art keywords
light
fluorescent
fluorescence
cube
fluorescent cube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010027903A
Other languages
Japanese (ja)
Other versions
JP2011164409A (en
Inventor
明 阪口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PHC Corp
Original Assignee
Panasonic Healthcare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Healthcare Co Ltd filed Critical Panasonic Healthcare Co Ltd
Priority to JP2010027903A priority Critical patent/JP5577514B2/en
Publication of JP2011164409A publication Critical patent/JP2011164409A/en
Application granted granted Critical
Publication of JP5577514B2 publication Critical patent/JP5577514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)

Description

本発明は蛍光キューブ,照明切替装置及び蛍光測定装置に関するものであり、例えば、蛍光顕微鏡,蛍光撮影装置,蛍光光度測定装置等の蛍光測定装置、それに搭載される照明切替装置及び蛍光キューブに関するものである。   The present invention relates to a fluorescent cube, an illumination switching device, and a fluorescence measuring device. For example, the present invention relates to a fluorescence measuring device such as a fluorescence microscope, a fluorescence imaging device, and a fluorescence photometric measuring device, and an illumination switching device and a fluorescence cube mounted thereon. is there.

励起光による細胞自体からの蛍光発光や蛍光試薬で染色された細胞を観察する蛍光顕微鏡、培養容器全体を撮影する蛍光撮影装置、蛍光強度を測定する蛍光光度測定装置等の蛍光測定装置には、試料を励起光で照明する蛍光照明装置が搭載される。そのなかでも、落射照明(同軸照明)で励起光を照射するタイプの落射蛍光照明装置として、励起フィルタ,ダイクロイックミラー及び吸収フィルタを1つにユニット化した蛍光キューブを備えたものが知られている(例えば、特許文献1参照。)。蛍光キューブは、フィルタカセット,蛍光ミラーユニット等とも呼ばれ、落射蛍光照明装置の重要な構成要素となっている。   Fluorescence microscopes such as fluorescence microscopes that observe fluorescence emission from cells themselves and cells stained with fluorescent reagents, fluorescence imaging devices that image the entire culture vessel, and fluorescence photometers that measure fluorescence intensity, A fluorescent illumination device that illuminates the sample with excitation light is mounted. Among them, as an epi-illumination apparatus that irradiates excitation light with epi-illumination (coaxial illumination), an epi-illumination apparatus that includes a fluorescence cube in which an excitation filter, a dichroic mirror, and an absorption filter are unitized is known. (For example, refer to Patent Document 1). The fluorescent cube is also called a filter cassette, a fluorescent mirror unit or the like, and is an important component of the epi-illumination apparatus.

落射蛍光照明装置には、複数の蛍光キューブを装備したものも提案されている(例えば、特許文献2参照。)。複数の蛍光キューブのうちの1つを選択して所定位置に配置するために交換機構が用いられ、異なる蛍光波長での観察及び測定を行うことができるように構成されている。   An epi-illumination apparatus equipped with a plurality of fluorescent cubes has also been proposed (for example, see Patent Document 2). An exchange mechanism is used to select and place one of the plurality of fluorescent cubes at a predetermined position, and is configured to allow observation and measurement at different fluorescent wavelengths.

また、試料の発する蛍光(観察光)は、励起光(照明光)に比べると遙かに微弱(数万分の1)である。特許文献3では、蛍光像の画質を良くするために、外乱光を除去する方法が提案されている。   Further, the fluorescence (observation light) emitted by the sample is much weaker (a few ten thousandths) than the excitation light (illumination light). Patent Document 3 proposes a method for removing disturbance light in order to improve the image quality of a fluorescent image.

特公昭56−19605号公報Japanese Patent Publication No. 56-19605 特開平8−94940号公報Japanese Patent Application Laid-Open No. 8-94940 特開2002−207177号公報JP 2002-207177 A

しかしながら、従来の蛍光照明装置はいずれも蛍光キューブの交換機構における遮光に問題がある。蛍光キューブには光源側(照明側)開口、試料側開口及び観察側(撮影側)開口が設けられているが、各開口間での遮光が十分でないため、光源(ハロゲンランプや水銀ランプ等)からの白色光が、蛍光キューブへ入射する際、励起フィルタを経由しないで装置の隙間から漏れて発散し、迷光となってしまう。その迷光が試料側開口や観察側開口に回り込んで励起光や蛍光に混入すると、測定結果や蛍光像の画質に悪影響を及ぼすことになる。   However, all of the conventional fluorescent lighting devices have a problem in light shielding in the fluorescent cube replacement mechanism. The fluorescent cube has a light source side (illumination side) opening, a sample side opening, and an observation side (imaging side) opening, but the light source (halogen lamp, mercury lamp, etc.) is not sufficiently shielded between the openings. When the white light from the light enters the fluorescent cube, it leaks from the gap between the devices without passing through the excitation filter, and becomes stray light. If the stray light enters the opening on the sample side or the opening on the observation side and enters the excitation light or fluorescence, the measurement result and the image quality of the fluorescent image are adversely affected.

特に微弱蛍光試料の場合(例えば、長時間露光でも弱い蛍光しか得られないような蛍光試薬を用いた場合)には、開口部分での遮光が十分でないと、その影響は大きなものとなって、単色励起・単色撮像が困難になる。例えば励起光が青色光の場合、試料側開口に白色光が漏れると、青色光以外の不要波長成分(赤色光,黄色光等)で試薬及び容器等が照明されてしまい、正しい測定結果が得られなくなる。また、観察側開口に白色光が漏れると、白色光が蛍光像に重なってしまい、蛍光像の画質が低下することになる。   In particular, in the case of a weakly fluorescent sample (for example, when a fluorescent reagent that can obtain only weak fluorescence even after long exposure) is used, if the light shielding at the opening is not sufficient, the effect becomes significant. Monochromatic excitation and monochromatic imaging become difficult. For example, when the excitation light is blue light, if white light leaks into the sample-side opening, reagents and containers are illuminated with unnecessary wavelength components (red light, yellow light, etc.) other than blue light, and correct measurement results are obtained. It becomes impossible. Further, when white light leaks into the observation side opening, the white light overlaps the fluorescent image, and the image quality of the fluorescent image is deteriorated.

本発明はこのような状況に鑑みてなされたものであって、その目的は、開口間での遮光性が高い蛍光キューブ及び照明切替装置と、その照明切替装置を備えることにより高画質の蛍光像や正確な測定結果が得られる蛍光測定装置を提供することにある。   The present invention has been made in view of such a situation, and an object of the present invention is to provide a fluorescent cube and an illumination switching device that have high light shielding properties between openings, and a high-quality fluorescent image by including the illumination switching device. Another object of the present invention is to provide a fluorescence measuring apparatus that can obtain accurate measurement results.

上記目的を達成するために、本発明の蛍光キューブは、試料を励起光で照明して蛍光を発生させる蛍光照明装置において交換機構により所定位置に交換配置される蛍光キューブであって、励起光と蛍光との光路分離を内部で行う筐体を有し、光を通過させる複数の開口と、前記開口のうちの少なくとも1つを挟んで位置するとともに前記交換配置の移動方向に平行な切り込み部と、が形成された面を前記筐体に有し、前記切り込み部の形状の凹凸は、前記交換機構に設けられた遮光ブロックの凹凸部に嵌り合う形状であることを特徴とする。 In order to achieve the above object, the fluorescent cube of the present invention is a fluorescent cube that is exchanged and arranged at a predetermined position by an exchange mechanism in a fluorescent illumination device that generates fluorescence by illuminating a sample with excitation light. A housing that internally separates the optical path from the fluorescence; a plurality of openings that allow light to pass through; and a cut portion that is located across at least one of the openings and that is parallel to the moving direction of the replacement arrangement; The surface of the housing is provided with a surface on which the concave and convex portions are formed , and the unevenness of the shape of the cut portion is a shape that fits into the uneven portion of the light shielding block provided in the exchange mechanism .

この構成によると、開口を通過せずに蛍光キューブ外に漏れた光が迷光になっても、その迷光は切り込み部によって遮られる。したがって、迷光が励起光や蛍光に混入するのを防止することができる。   According to this configuration, even if light that has leaked out of the fluorescent cube without passing through the opening becomes stray light, the stray light is blocked by the cut portion. Therefore, it is possible to prevent stray light from being mixed into excitation light or fluorescence.

本発明の蛍光キューブは、複数の溝が前記開口の形成されている面に形成されており、前記溝が、前記交換配置の移動方向への前記溝の移動に併せて、前記交換機構に設けられた歯車が前記溝と噛み合って共に回転するような溝であってもよい。 In the fluorescent cube of the present invention, a plurality of grooves are formed on the surface where the opening is formed, and the grooves are provided in the replacement mechanism in conjunction with the movement of the grooves in the movement direction of the replacement arrangement. The groove may be such that the formed gear meshes with the groove and rotates together.

この構成によると、開口を通過せずに蛍光キューブ外に漏れた光が迷光になっても、その迷光は複数の溝及びそれと噛み合う歯車によって遮られる。したがって、迷光が励起光や蛍光に混入するのを防止することができる。   According to this configuration, even if light that has leaked out of the fluorescent cube without passing through the opening becomes stray light, the stray light is blocked by the plurality of grooves and the gears engaged therewith. Therefore, it is possible to prevent stray light from being mixed into excitation light or fluorescence.

本発明の蛍光キューブは、前記開口として、光源からの光を入射させる光源側開口と、励起光を射出する試料側開口と、蛍光を射出する観察側開口と、を有し、前記切り込み部が前記光源側開口を挟んで位置してもよい。   The fluorescent cube of the present invention includes, as the opening, a light source side opening for allowing light from a light source to enter, a sample side opening for emitting excitation light, and an observation side opening for emitting fluorescence, and the cut portion is It may be located across the light source side opening.

光源側開口には試料側開口や観察側開口よりも遙かに強い光が入射するため、光源側開口を通過せずに蛍光キューブ外に漏れた光が迷光になると、それが測定等の結果に及ぼす影響は大きい。この構成によると、光源側開口を挟んで位置する切り込み部で、上記影響の大きい迷光が遮られるため、励起光や蛍光への迷光の混入を効果的に防止することが可能となる。   Light that is much stronger than the sample-side opening and the observation-side opening is incident on the light source-side opening, so if light that leaks out of the fluorescent cube without passing through the light-source-side opening becomes stray light, this is the result of measurement, etc. The impact on is great. According to this configuration, since the stray light having a large influence is blocked by the cut portion located across the light source side opening, it is possible to effectively prevent the stray light from being mixed into the excitation light and the fluorescence.

本発明の照明切替装置は、本発明に係る蛍光キューブと、前記切り込み部の凹凸に対応した凹凸部を有する遮光ブロックと、前記複数の溝と噛み合う歯車と、複数の蛍光キューブのうちの1つを所定位置に交換配置する前記交換機構と、を備えたことを特徴とする。   An illumination switching device according to the present invention includes a fluorescent cube according to the present invention, a light-blocking block having a concavo-convex portion corresponding to the concavo-convex portion of the cut portion, a gear meshing with the plurality of grooves, and one of the plurality of fluorescent cubes. And an exchanging mechanism for exchanging and arranging at predetermined positions.

この構成によると、開口を通過せずに蛍光キューブ外に漏れた光が迷光になっても、その迷光は切り込み部及びそれと嵌り合う凹凸部、並びに複数の溝及びそれと噛み合う歯車によって遮られる。したがって、迷光が励起光や蛍光に混入するのを効果的に防止することができる。   According to this configuration, even if light that has leaked out of the fluorescent cube without passing through the opening becomes stray light, the stray light is blocked by the cut portion and the concave-convex portion that fits the cut portion, and the plurality of grooves and the gear that meshes with the cut portion. Therefore, it is possible to effectively prevent stray light from being mixed into excitation light and fluorescence.

本発明の蛍光測定装置は、本発明に係る照明切替装置と、前記蛍光キューブで光路分離される励起光を構成する白色光を発生させる光源と、前記蛍光キューブで光路分離された蛍光から成る蛍光像の撮影を行う撮像装置と、を備えたことを特徴とする。   The fluorescence measuring apparatus of the present invention is a fluorescence comprising the illumination switching apparatus according to the present invention, a light source that generates excitation light that is optically path-separated by the fluorescent cube, and fluorescence that is optically path-separated by the fluorescent cube. And an imaging device that captures an image.

この構成によると、照明切替装置における迷光カットにより、迷光が測定結果等に及ぼす影響を低減することができる。なお、蛍光測定装置としては、蛍光顕微鏡,蛍光撮影装置,蛍光光度測定装置等の光学装置が挙げられる。   According to this configuration, the stray light cut in the illumination switching device can reduce the influence of stray light on the measurement result and the like. Examples of the fluorescence measuring device include optical devices such as a fluorescence microscope, a fluorescence imaging device, and a fluorescence photometry device.

本発明によれば、切り込み部によって迷光が遮られる構成になっているため、光源側,試料側,観察側等に設けられている開口の間での遮光性が高い蛍光キューブ及び照明切替装置を実現することができる。そして、本発明に係る照明切替装置を備えることにより、高画質の蛍光像や正確な測定結果が得られる蛍光測定装置を実現することが可能となる。   According to the present invention, since the stray light is blocked by the cut portion, the fluorescent cube and the illumination switching device having a high light shielding property among the openings provided on the light source side, the sample side, the observation side, etc. Can be realized. By providing the illumination switching device according to the present invention, it is possible to realize a fluorescence measurement device that can obtain a high-quality fluorescence image and an accurate measurement result.

本発明に係る蛍光測定装置の概略構成例を模式的断面で示す図。The figure which shows the schematic structural example of the fluorescence measuring apparatus which concerns on this invention in a typical cross section. 図1の蛍光測定装置を光源側開口の側から示す図。The figure which shows the fluorescence measuring device of FIG. 1 from the light source side opening side. 第1の実施の形態に係る蛍光測定装置を模式的に示す水平断面図。The horizontal sectional view which shows typically the fluorescence measuring device which concerns on 1st Embodiment. 第1の実施の形態に係る蛍光測定装置を模式的に示す垂直断面図。1 is a vertical sectional view schematically showing a fluorescence measuring apparatus according to a first embodiment. 第1の実施の形態に係る蛍光キューブを示す斜視図。The perspective view which shows the fluorescence cube which concerns on 1st Embodiment. 第1の実施の形態に係る照明切替装置を示す分解斜視図。The disassembled perspective view which shows the illumination switching apparatus which concerns on 1st Embodiment. 第1の実施の形態に係る照明切替装置を示す水平断面図。The horizontal sectional view which shows the illumination switching apparatus which concerns on 1st Embodiment. 図7の要部を示す水平断面図。The horizontal sectional view which shows the principal part of FIG. 第1の実施の形態に係る照明切替装置を示す垂直断面図。1 is a vertical sectional view showing an illumination switching device according to a first embodiment. 図9の要部を示す垂直断面図。FIG. 10 is a vertical sectional view showing the main part of FIG. 9. 第2の実施の形態に係る蛍光キューブを示す斜視図。The perspective view which shows the fluorescent cube which concerns on 2nd Embodiment. 第2の実施の形態に係る照明切替装置の内部構造を示す斜視図。The perspective view which shows the internal structure of the illumination switching apparatus which concerns on 2nd Embodiment. 第2の実施の形態に係る照明切替装置を示す水平断面図。The horizontal sectional view which shows the illumination switching apparatus which concerns on 2nd Embodiment. 第2の実施の形態に係る照明切替装置を示す垂直断面図。The vertical sectional view showing the lighting switching device concerning a 2nd embodiment. ターレット機構の他の具体例を示す平面図。The top view which shows the other specific example of a turret mechanism.

以下、本発明に係る蛍光キューブ,照明切替装置及び蛍光測定装置の実施の形態等を、図面を参照しつつ説明する。なお、各実施の形態等の相互で同一の部分や相当する部分には同一の符号を付して重複説明を適宜省略する。   Embodiments of a fluorescent cube, an illumination switching device, and a fluorescence measuring device according to the present invention will be described below with reference to the drawings. In addition, the same code | symbol is mutually attached | subjected to the part which is the same in each embodiment etc., and the corresponding part, and duplication description is abbreviate | omitted suitably.

《蛍光キューブ等の概略構成例(図1,図2)》
図1,図2に、本発明に係る蛍光キューブ10、蛍光照明装置20及び蛍光測定装置30の概略構成例を模式的に示す。蛍光測定装置30は、マイクロプレート8上にセットされた試料Sを励起光L2(照明光)で落射照明して蛍光L3(観察光)を発生させるための蛍光照明装置20を備えている。蛍光照明装置20は、試料Sから発せられた蛍光L3を励起光L2から光路分離するための蛍光キューブ10を複数装備しており、駆動歯車12等から成る交換機構により、複数の蛍光キューブ10のうちの1つを選択して所定位置に交換配置することが可能になっている。
<< Example of schematic configuration of fluorescent cubes (Fig. 1, Fig. 2) >>
1 and 2 schematically show examples of schematic configurations of the fluorescent cube 10, the fluorescent lighting device 20, and the fluorescent measuring device 30 according to the present invention. The fluorescence measurement device 30 includes a fluorescence illumination device 20 for generating a fluorescence L3 (observation light) by epi-illuminating the sample S set on the microplate 8 with excitation light L2 (illumination light). The fluorescent lighting device 20 is equipped with a plurality of fluorescent cubes 10 for separating the optical paths of the fluorescence L3 emitted from the sample S from the excitation light L2, and the plurality of fluorescent cubes 10 are exchanged by an exchange mechanism including a drive gear 12 and the like. One of them can be selected and exchanged at a predetermined position.

蛍光キューブ10は、励起光L2と蛍光L3との光路分離を内部で行う筐体3を有しており、その筐体3の内部には、励起フィルタ4,ダイクロイックミラー5,吸収フィルタ6等が設けられている。蛍光照明装置20に装備される複数の蛍光キューブ10は、射出する励起光L2の波長が互いに異なるように、内蔵されている励起フィルタ4等がそれぞれ異なっている。したがって、前記交換機構で蛍光キューブ10を交換配置することにより、励起光L2及び蛍光L3の波長を切り替えることが可能である。   The fluorescent cube 10 has a housing 3 that internally performs optical path separation between the excitation light L2 and the fluorescence L3. Inside the housing 3, an excitation filter 4, a dichroic mirror 5, an absorption filter 6, and the like are provided. Is provided. The plurality of fluorescent cubes 10 provided in the fluorescent lighting device 20 have different built-in excitation filters 4 and the like so that the wavelengths of the emitted excitation light L2 are different from each other. Therefore, it is possible to switch the wavelengths of the excitation light L2 and the fluorescence L3 by exchanging the fluorescent cube 10 with the exchange mechanism.

また、筐体3には光を通過させる3つの開口A1〜A3が設けられている。第1の開口は光源ユニット1(ハロゲンランプや水銀ランプ等)からの白色光L1を入射させる光源側開口A1であり、第2の開口は励起光L2を射出する試料側開口A2であり、第3の開口は蛍光L3を射出する観察側開口A3である。なお図2は、矢印Mで示す移動により所定位置に交換配置された蛍光キューブ10を、光源側開口A1の側から見た状態で示している。   The housing 3 is provided with three openings A1 to A3 that allow light to pass through. The first opening is a light source side opening A1 for allowing white light L1 from the light source unit 1 (such as a halogen lamp or a mercury lamp) to enter, and the second opening is a sample side opening A2 for emitting excitation light L2. The aperture 3 is an observation-side aperture A3 that emits fluorescence L3. FIG. 2 shows the fluorescent cube 10 exchanged at a predetermined position by the movement indicated by the arrow M as viewed from the light source side opening A1.

光源ユニット1からの白色光L1が光源側開口A1から励起フィルタ4に照射されると、所定波長の励起光L2(例えば青色光)が励起フィルタ4を透過する。その励起光L2はダイクロイックミラー5で反射した後(光軸AXの折り曲げ角度:90°)、試料側開口A2から射出し、対物光学系7で試料Sに照射される。試料Sには、例えば、青色光の照明光で励起すると緑色光の蛍光が発生するように(短波長励起・長波長発光)、人工骨上に培養した骨芽細胞のカルシウムに結合する蛍光試薬が用いられている。試料Sから発生した蛍光L3(例えば緑色光)は、対物光学系7を再び通過した後、試料側開口A2を通過してダイクロイックミラー5を透過する。そして、S/N比を向上させるための吸収フィルタ6を透過して、観察側開口A3から射出する。蛍光キューブ10を射出した蛍光L3は、蛍光測定用のカメラユニット9に入射して、蛍光像の撮影,測定,観察等に用いられる。   When the white light L1 from the light source unit 1 is irradiated to the excitation filter 4 from the light source side opening A1, excitation light L2 (for example, blue light) having a predetermined wavelength passes through the excitation filter 4. The excitation light L2 is reflected by the dichroic mirror 5 (bending angle of the optical axis AX: 90 °), then exits from the sample-side opening A2, and is irradiated onto the sample S by the objective optical system 7. For the sample S, for example, a fluorescent reagent that binds to calcium of osteoblasts cultured on an artificial bone so that green light fluorescence is generated when excited with blue illumination light (short wavelength excitation / long wavelength light emission). Is used. The fluorescence L3 (for example, green light) generated from the sample S passes through the objective optical system 7 again, then passes through the sample side opening A2, and passes through the dichroic mirror 5. And it permeate | transmits the absorption filter 6 for improving S / N ratio, and inject | emits from observation side opening A3. The fluorescence L3 emitted from the fluorescence cube 10 enters the camera unit 9 for fluorescence measurement and is used for photographing, measuring, observing, etc. a fluorescence image.

筐体3の光源側面3aには、光源側開口A1を挟んで位置する切り込み部B1が、交換配置の移動方向Mに平行に形成されている。切り込み部B1は、階段状,櫛状,爪状,コの字状等の段差(1段以上)のある形状になっている。蛍光照明装置20において、前記交換配置により選択された蛍光キューブ10の光源側開口A1の側には、遮光ブロック2が位置することになる。遮光ブロック2には、切り込み部B1の凹凸に対応した凹凸部B3が形成されており、選択された蛍光キューブ10の切り込み部B1と遮光ブロック2の凹凸部B3とが前記所定位置で嵌り合うようになっている。この構成によると、光源側開口A1を通過せずに蛍光キューブ10外に漏れた光が迷光になっても、その迷光は切り込み部B1によって遮られる。したがって、迷光が励起光や蛍光に混入するのを防止することができる。   On the light source side surface 3 a of the housing 3, a cut portion B <b> 1 positioned with the light source side opening A <b> 1 interposed therebetween is formed in parallel with the moving direction M of the replacement arrangement. The cut portion B1 has a stepped shape (one or more steps) such as a step shape, a comb shape, a claw shape, and a U-shape. In the fluorescent lighting device 20, the light blocking block 2 is located on the light source side opening A1 side of the fluorescent cube 10 selected by the replacement arrangement. The shading block 2 is formed with a concavo-convex portion B3 corresponding to the concavo-convex portion of the cut portion B1, so that the selected cut portion B1 of the fluorescent cube 10 and the concavo-convex portion B3 of the light shield block 2 are fitted at the predetermined position. It has become. According to this configuration, even if the light leaked outside the fluorescent cube 10 without passing through the light source side opening A1 becomes stray light, the stray light is blocked by the cut portion B1. Therefore, it is possible to prevent stray light from being mixed into excitation light or fluorescence.

さらに、筐体3の光源側面3aには、図2に示すように、複数の遮光溝B2が互いに平行に形成されている。この遮光溝B2の両端部側には、前述の切り込み部B1が位置している。また、前記所定位置で光源側面3aに対して作用するように、2本の遮光歯車B4が遮光ブロック2に設けられている。2本の遮光歯車B4は、光源側開口A1を挟んで対向するように位置し、また、凹凸部B3が形成されている遮光ブロック2で支持されている。つまり、遮光溝B2は前記交換配置の際の蛍光キューブ10の移動方向Mと交差する方向(ここでは直交方向)に対して平行に形成されており、交換配置の際に遮光溝B2が対向する遮光歯車B4と噛み合うように形成されている。   Furthermore, as shown in FIG. 2, a plurality of light shielding grooves B2 are formed on the light source side surface 3a of the housing 3 in parallel to each other. The above-described notches B1 are located on both ends of the light shielding groove B2. Further, two light shielding gears B4 are provided in the light shielding block 2 so as to act on the light source side surface 3a at the predetermined position. The two light shielding gears B4 are positioned so as to face each other with the light source side opening A1 interposed therebetween, and are supported by the light shielding block 2 in which the uneven portion B3 is formed. That is, the light shielding groove B2 is formed in parallel to the direction (here, the orthogonal direction) intersecting the moving direction M of the fluorescent cube 10 in the replacement arrangement, and the light shielding groove B2 faces in the replacement arrangement. It is formed so as to mesh with the light shielding gear B4.

なお、図2では、遮光歯車B4が駆動歯車12とも噛み合う構成になっており、また、遮光溝B2,遮光歯車B4及び駆動歯車12が等ピッチの構成になっているが、交換機構の構成に応じたものであればこれらに限らない。例えば、遮光歯車B4が遮光溝B2のみと噛み合う構成になっていてもよく、遮光溝B2及び遮光歯車B4と、駆動歯車12との間では歯のピッチや歯の形状が全て一致してなくてもよい。   In FIG. 2, the light-shielding gear B4 meshes with the drive gear 12, and the light-shielding groove B2, the light-shielding gear B4, and the drive gear 12 are configured at an equal pitch. If it respond | corresponds, it will not restrict to these. For example, the light-shielding gear B4 may be configured to mesh only with the light-shielding groove B2, and the tooth pitch and tooth shape are not all the same between the light-shielding groove B2 and the light-shielding gear B4 and the drive gear 12. Also good.

蛍光キューブ10の交換機構を備えた落射蛍光照明装置20においては、光源側,試料側及び観察側の各開口間での遮光性を向上させるために、以下の2つの遮光構造を導入している。   In the epi-illumination fluorescent lighting device 20 provided with a replacement mechanism for the fluorescent cube 10, the following two light shielding structures are introduced in order to improve the light shielding properties among the openings on the light source side, the sample side, and the observation side. .

第1の遮光構造は、切り込み部B1と凹凸部B3とで構成されるラビリンス構造である。このラビリンス構造により、白色光L1のうち励起フィルタ4を経由しないで隙間から漏れて生じた迷光を遮光することができる。例えば、蛍光キューブ10の3つの開口A1〜A3の光軸AXを含む平面(図1の紙面)と直交する方向に伸びるラビリンス構造を用いれば、蛍光キューブ10の3つの開口A1〜A3の光軸AXを含む平面に対して平行な方向に進む迷光を遮光することができる。つまり、励起フィルタ4を透過しない迷光は、凹凸空間内部で反射を繰り返して試料側開口A2や観察側開口A3には到達不可能となる。したがって、試料側開口A2や観察側開口A3から筐体3内に迷光が入り込んで、励起光L2や蛍光L3に混入するのを防止することができる。   A 1st light-shielding structure is a labyrinth structure comprised by cut | notch part B1 and uneven | corrugated | grooved part B3. With this labyrinth structure, stray light generated by leaking from the gap without passing through the excitation filter 4 in the white light L1 can be shielded. For example, if a labyrinth structure extending in a direction orthogonal to the plane (the paper surface of FIG. 1) including the optical axis AX of the three openings A1 to A3 of the fluorescent cube 10 is used, the optical axes of the three openings A1 to A3 of the fluorescent cube 10 Stray light traveling in a direction parallel to the plane including AX can be shielded. That is, stray light that does not pass through the excitation filter 4 is repeatedly reflected inside the concavo-convex space and cannot reach the sample-side opening A2 or the observation-side opening A3. Therefore, it is possible to prevent stray light from entering the housing 3 from the sample side opening A2 and the observation side opening A3 and mixing into the excitation light L2 and the fluorescence L3.

第2の遮光構造は、遮光溝B2と遮光歯車B4とで構成される結合構造である。この結合構造により、白色光L1のうち励起フィルタ4を経由しないで隙間から漏れて生じた迷光を遮光することができる。例えば、蛍光キューブ10の交換時の移動方向Mと直交するように遮光溝B2を形成し、蛍光キューブ10の交換機構(ターレット機構,回転機構,直動機構等)の運動と同期して回転する遮光歯車B4で遮光溝B2の全幅と噛み合う結合構造にすれば、蛍光キューブ10の3つの開口A1〜A3の光軸AXを含む平面(図1の紙面)と直交する平面に対して平行な方向に進む迷光を遮光することができる。つまり、励起フィルタ4を透過しない迷光は、装置内部で反射を繰り返して試料側開口A2や観察側開口A3には到達不可能となる。したがって、試料側開口A2や観察側開口A3から筐体3内に迷光が入り込んで、励起光L2や蛍光L3に混入するのを防止することができる。   The second light shielding structure is a coupling structure including the light shielding groove B2 and the light shielding gear B4. With this coupling structure, stray light generated by leaking from the gap without passing through the excitation filter 4 in the white light L1 can be shielded. For example, the light shielding groove B2 is formed so as to be orthogonal to the moving direction M at the time of replacement of the fluorescent cube 10, and rotates in synchronization with the movement of the replacement mechanism (turret mechanism, rotation mechanism, linear motion mechanism, etc.) of the fluorescent cube 10. If the light-shielding gear B4 engages with the entire width of the light-shielding groove B2, the direction parallel to the plane perpendicular to the plane (the paper surface of FIG. 1) including the optical axis AX of the three openings A1 to A3 of the fluorescent cube 10 The stray light traveling to can be shielded. That is, stray light that does not pass through the excitation filter 4 is repeatedly reflected inside the apparatus and cannot reach the sample-side opening A2 or the observation-side opening A3. Therefore, it is possible to prevent stray light from entering the housing 3 from the sample side opening A2 and the observation side opening A3 and mixing into the excitation light L2 and the fluorescence L3.

上記のように、切り込み部B1及び凹凸部B3から成るラビリンス構造と、遮光溝B2及び遮光歯車B4から成る結合構造と、によって、光源側開口A1の周囲が遮光状態となるため、光源側,試料側及び観察側の各開口間での遮光性が向上して、高画質(高コントラスト等)の蛍光像や正確な測定結果を得ることが可能となる。例えば、蛍光強度の測定においてはS/N比が大きく向上し、測定精度の向上が可能となる。また、数十秒以上の長時間の撮影ができるようになるので、従来構造の落射蛍光照明装置では不可能だった微弱蛍光を発する試料の撮影及び蛍光強度測定が可能になる。   As described above, since the periphery of the light source side opening A1 is shielded by the labyrinth structure composed of the cut portion B1 and the uneven portion B3 and the coupling structure composed of the light shielding groove B2 and the light shielding gear B4, the light source side, the sample The light shielding property between the apertures on the side and the observation side is improved, and a high-quality (high contrast, etc.) fluorescent image and an accurate measurement result can be obtained. For example, in the measurement of fluorescence intensity, the S / N ratio is greatly improved, and the measurement accuracy can be improved. In addition, since it is possible to perform imaging for a long time of several tens of seconds or more, it is possible to image a sample that emits weak fluorescence and measure fluorescence intensity, which is impossible with an epi-illumination apparatus with a conventional structure.

切り込み部B1,凹凸部B3,遮光溝B2,遮光歯車B4のそれぞれを単独で用いた場合でも、上述した遮光効果を得ることは可能であるが、前述した各遮光構造をとることによって、得られる遮光効果は飛躍的に増大する。また、蛍光キューブ10での迷光の発生量は光源側開口A1付近において最も大きいが、上述した遮光構造を他の光が通過する開口(つまり試料側開口A2や観察側開口A3)についても設ければ、各開口間での遮光性を更に向上させることができる。   Even when each of the cut portion B1, the concavo-convex portion B3, the light shielding groove B2, and the light shielding gear B4 is used alone, it is possible to obtain the above-described light shielding effect, but it is obtained by taking the above-described light shielding structures. The light shielding effect increases dramatically. The amount of stray light generated in the fluorescent cube 10 is the largest in the vicinity of the light source side opening A1, but the openings through which other light passes through the light shielding structure described above (that is, the sample side opening A2 and the observation side opening A3) are also provided. For example, the light shielding property between the openings can be further improved.

《第1の実施の形態(図3〜図10)》
図3〜図10に、蛍光キューブ10A、照明切替装置18A及び蛍光測定装置30Aのの第1の実施の形態を示す。図3は、蛍光測定装置30Aの水平断面構造を模式的に示しており、図4は蛍光測定装置30Aの垂直断面構造を模式的に示している。図5(A),図5(B)は、蛍光キューブ10Aの外観を互いに異なった方向から示しており、図6(A),図6(B)は、照明切替装置18Aの外観を遮光ブロック2を外した状態で互いに異なった方向から示している。図7は、照明切替装置18Aの水平断面構造を示しており、図8は、図7の要部P1を示している。また図9は、照明切替装置18Aの垂直断面構造を示しており、図10は、図9の要部P2を示している。
<< First Embodiment (FIGS. 3 to 10) >>
3 to 10 show a first embodiment of the fluorescent cube 10A, the illumination switching device 18A, and the fluorescence measuring device 30A. FIG. 3 schematically shows a horizontal sectional structure of the fluorescence measuring apparatus 30A, and FIG. 4 schematically shows a vertical sectional structure of the fluorescence measuring apparatus 30A. 5A and 5B show the appearance of the fluorescent cube 10A from different directions, and FIGS. 6A and 6B show the appearance of the illumination switching device 18A as a light-blocking block. It is shown from different directions with 2 removed. FIG. 7 shows a horizontal sectional structure of the illumination switching device 18A, and FIG. 8 shows a main part P1 of FIG. FIG. 9 shows a vertical sectional structure of the illumination switching device 18A, and FIG. 10 shows a main part P2 of FIG.

第1の実施の形態(図3〜図10)は、前述した概略構成例(図1,図2)の構成を更に具体化したものであり、蛍光キューブ10A、蛍光照明装置20A及び蛍光測定装置30Aは、前記蛍光キューブ10、蛍光照明装置20及び蛍光測定装置30にそれぞれ相当している。蛍光測定装置30Aは、図3,図4に示すように、対物光学系7,カメラユニット9,蛍光照明装置20A等を備えている。蛍光照明装置20Aは、光源ユニット1,照明切替装置18A等を備えており、照明切替装置18Aは、蛍光キューブ10A,遮光ブロック2,遮光歯車B4,前記交換機構等を備えている。対物光学系7は、2つの部分から成る対物レンズ7aと、その間に配置された折り返しミラー7bと、で構成されている。   In the first embodiment (FIGS. 3 to 10), the configuration of the above-described schematic configuration example (FIGS. 1 and 2) is further embodied, and a fluorescence cube 10A, a fluorescence illumination device 20A, and a fluorescence measurement device are provided. 30A corresponds to the fluorescent cube 10, the fluorescent lighting device 20, and the fluorescent measuring device 30, respectively. As shown in FIGS. 3 and 4, the fluorescence measuring device 30A includes an objective optical system 7, a camera unit 9, a fluorescent illumination device 20A, and the like. The fluorescent illumination device 20A includes a light source unit 1, an illumination switching device 18A, and the like. The illumination switching device 18A includes a fluorescent cube 10A, a light shielding block 2, a light shielding gear B4, the exchange mechanism, and the like. The objective optical system 7 is composed of an objective lens 7a composed of two parts and a folding mirror 7b disposed between the objective lenses 7a.

蛍光照明装置20Aは、マイクロプレート8上にセットされた試料Sを励起光L2(図1等)で落射照明して蛍光L3(図1等)を発生させるためのものであり、前記交換機構として、ターレット駆動モータ13,駆動歯車12,筐体3を支持する部材等から成るターレット機構11(図6等)を備えている。なお、筐体3は含まれない。つまり、複数の蛍光キューブ10Aを取り付け溝14(アリ溝,図5等)で一体化し、ターレット軸Xを中心とする矢印M(図6,図9等)方向の回転により、選択した1つの蛍光キューブ10Aを、所定位置である遮光ブロック2の位置に交換配置するターレット式を採用している。したがって、ターレット機構11で蛍光キューブ10Aを交換配置することにより、励起光L2及び蛍光L3の波長を切り替えることが可能である。   The fluorescent illumination device 20A is for illuminating the sample S set on the microplate 8 with the excitation light L2 (FIG. 1 etc.) to generate the fluorescence L3 (FIG. 1 etc.). And a turret drive motor 13, a drive gear 12, a turret mechanism 11 (FIG. 6, etc.) including a member that supports the housing 3. The housing 3 is not included. That is, a plurality of fluorescent cubes 10A are integrated by the mounting groove 14 (ant groove, FIG. 5 etc.), and one selected fluorescence is obtained by rotation in the direction of the arrow M (FIG. 6, FIG. 9 etc.) around the turret axis X. A turret type in which the cube 10A is exchanged and arranged at the position of the light shielding block 2 which is a predetermined position is adopted. Therefore, by exchanging the fluorescent cube 10A with the turret mechanism 11, the wavelengths of the excitation light L2 and the fluorescence L3 can be switched.

筐体3の光源側面3aは一方向に凸のシリンドリカルな曲面になっており、所定位置で対向する遮光ブロック2の対向面も、光源側面3aの面形状に対応するように一方向に凹のシリンドリカルな曲面になっている。これにより、筐体3と遮光ブロック2との間隔が小さくなるため、隙間から漏れ出た迷光を容易に遮光することが可能となる。   The light source side surface 3a of the housing 3 has a cylindrical curved surface that is convex in one direction, and the opposing surface of the light shielding block 2 that faces in a predetermined position is also concave in one direction so as to correspond to the surface shape of the light source side surface 3a. It has a cylindrical curved surface. Thereby, since the space | interval of the housing | casing 3 and the light shielding block 2 becomes small, it becomes possible to light-shield the stray light which leaked from the clearance gap easily.

筐体3の光源側面3aに形成されている切り込み部B1は、図5等に示すように、1段の段差を有する階段状になっている。なお、この切り込み部B1は、櫛状,爪状,コの字状,2段以上の階段状であってもよい。また、遮光ブロック2には、図6(A)等に示すように、切り込み部B1の凹凸に対応した凹凸部B3が形成されている。そして図8に示すように、選択された蛍光キューブ10Aの切り込み部B1と遮光ブロック2の凹凸部B3とが嵌り合うようになっている。切り込み部B1と凹凸部B3とで構成されるラビリンス構造により、前述したように白色光L1のうち励起フィルタ4を経由しないで隙間から漏れて生じた迷光を遮光することが可能となる。   The cut portion B1 formed in the light source side surface 3a of the housing 3 has a stepped shape having one step as shown in FIG. The cut portion B1 may have a comb shape, a claw shape, a U shape, or a stepped shape having two or more steps. In addition, as shown in FIG. 6A and the like, the shading block 2 has a concavo-convex portion B3 corresponding to the concavo-convex portion of the cut portion B1. Then, as shown in FIG. 8, the cut portion B1 of the selected fluorescent cube 10A and the uneven portion B3 of the light blocking block 2 are fitted. As described above, the labyrinth structure including the cut portion B1 and the uneven portion B3 can block stray light generated by leaking from the gap without passing through the excitation filter 4 in the white light L1.

筐体3の光源側面3aに複数形成されている遮光溝B2は、図5(A)等に示すように、2つの切り込み部B1の間に位置している。また、遮光ブロック2には、図6(A)等に示すように、2本の遮光歯車B4が光源側開口A1を挟んで対向するように支持されている。そして図10に示すように、選択された蛍光キューブ10Aの遮光溝B2と遮光ブロック2側の遮光歯車B4とが噛み合うようになっている。遮光溝B2と遮光歯車B4とで構成される結合構造により、前述したように白色光L1のうち励起フィルタ4を経由しないで隙間から漏れて生じた迷光を遮光することが可能となる。遮光歯車B4が遮光溝B2に噛み合うとともに、駆動歯車12とも噛み合うようになっているため、次に所定位置に来る蛍光キューブ10Aとの噛み合わせも正しく行うことが可能となる。   A plurality of light shielding grooves B2 formed on the light source side surface 3a of the housing 3 are located between the two cut portions B1, as shown in FIG. Further, as shown in FIG. 6A and the like, two light shielding gears B4 are supported on the light shielding block 2 so as to face each other with the light source side opening A1 interposed therebetween. As shown in FIG. 10, the light shielding groove B2 of the selected fluorescent cube 10A and the light shielding gear B4 on the light shielding block 2 side are engaged with each other. As described above, it is possible to shield the stray light generated by leaking from the gap without passing through the excitation filter 4 in the white light L1 by the coupling structure constituted by the light shielding groove B2 and the light shielding gear B4. Since the light-shielding gear B4 meshes with the light-shielding groove B2 and also meshes with the drive gear 12, the meshing with the fluorescent cube 10A next coming to a predetermined position can be performed correctly.

上記のように、切り込み部B1及び凹凸部B3から成るラビリンス構造と、遮光溝B2及び遮光歯車B4から成る結合構造と、によって、光源側開口A1の周囲が遮光状態となるため、光源側,試料側及び観察側の各開口間での高い遮光性を得ることができる。また、照明切替装置18A外から光源側開口A1内に入り込もうとする光に対しても高い遮光性を得ることができる。   As described above, since the periphery of the light source side opening A1 is shielded by the labyrinth structure composed of the cut portion B1 and the uneven portion B3 and the coupling structure composed of the light shielding groove B2 and the light shielding gear B4, the light source side, the sample A high light-shielding property can be obtained between the openings on the side and the observation side. Further, it is possible to obtain a high light blocking property even for light that is about to enter the light source side opening A1 from the outside of the illumination switching device 18A.

《第2の実施の形態(図11〜図14)》
図11〜図14に、蛍光キューブ10A及び照明切替装置18Bの第2の実施の形態を示す。図11(A),図11(B)は、蛍光キューブ10Bの外観を互いに異なった方向から示しており、図12は、照明切替装置18Bの内部構造を示している。また図13は、照明切替装置18Bの水平断面構造を示しており、図14は、照明切替装置18Bの垂直断面構造を示している。
<< 2nd Embodiment (FIGS. 11-14) >>
11 to 14 show a second embodiment of the fluorescent cube 10A and the illumination switching device 18B. 11A and 11B show the appearance of the fluorescent cube 10B from different directions, and FIG. 12 shows the internal structure of the illumination switching device 18B. 13 shows a horizontal sectional structure of the illumination switching device 18B, and FIG. 14 shows a vertical sectional structure of the illumination switching device 18B.

第2の実施の形態(図11〜図14)は、第1の実施の形態(図3〜図10)と同様、前述した概略構成例(図1,図2)の構成を更に具体化したものである。ただし第2の実施の形態は、蛍光キューブ10Bの交換機構として直動機構15を有する点で、ターレット機構11を有する第1の実施の形態とは異なっている。つまり、図12等に示すように、複数の蛍光キューブ10Bを取り付け溝14(アリ溝)で一体化し、矢印M(図12)方向のスライド(直線移動)により、選択した1つの蛍光キューブ10Bを遮光ブロック2の所定位置に交換配置する直動式を採用している。したがって、直動機構15で蛍光キューブ10Bを交換配置することにより、励起光L2及び蛍光L3の波長を切り替えることが可能である。なお、交換機構に関連する部分や切り込み部B1の形状に関連する部分以外は、第1の実施の形態と第2の実施の形態はほぼ同様の構成及び機能を有している。   In the second embodiment (FIGS. 11 to 14), as in the first embodiment (FIGS. 3 to 10), the configuration of the above-described schematic configuration example (FIGS. 1 and 2) is further embodied. Is. However, the second embodiment is different from the first embodiment having the turret mechanism 11 in that the linear movement mechanism 15 is provided as an exchange mechanism for the fluorescent cube 10B. That is, as shown in FIG. 12 and the like, a plurality of fluorescent cubes 10B are integrated with the mounting groove 14 (ant groove), and one selected fluorescent cube 10B is slid in the direction of arrow M (FIG. 12) (linear movement). A direct-acting type in which the light-blocking block 2 is exchanged at a predetermined position is employed. Therefore, the wavelengths of the excitation light L2 and the fluorescence L3 can be switched by exchanging the fluorescent cube 10B with the linear motion mechanism 15. The first embodiment and the second embodiment have substantially the same configuration and function except for the portion related to the exchange mechanism and the portion related to the shape of the cut portion B1.

筐体3の光源側面3aは平面になっており、所定位置で対向する遮光ブロック2の対向面も、光源側面3aの面形状に対応するように平面になっている。これにより、筐体3と遮光ブロック2との間隔が小さくなるため、隙間から漏れ出た迷光を容易に遮光することが可能となる。   The light source side surface 3a of the housing 3 is a flat surface, and the opposing surface of the light shielding block 2 facing at a predetermined position is also a flat surface corresponding to the surface shape of the light source side surface 3a. Thereby, since the space | interval of the housing | casing 3 and the light shielding block 2 becomes small, it becomes possible to light-shield the stray light which leaked from the clearance gap easily.

筐体3の光源側面3aに形成されている切り込み部B1は、図11等に示すように、凹凸の段差を有する櫛状になっている。なお、この切り込み部B1は、階段状,爪状,コの字状であってもよい。また、遮光ブロック2には、図14等に示すように、切り込み部B1の凹凸に対応した凹凸部B3が形成されている。そして、選択された蛍光キューブ10Aの切り込み部B1と遮光ブロック2の凹凸部B3とが嵌り合うようになっている。切り込み部B1と凹凸部B3とで構成されるラビリンス構造により、前述したように白色光L1のうち励起フィルタ4を経由しないで隙間から漏れて生じた迷光を遮光することが可能となる。   The cut portion B1 formed on the light source side surface 3a of the housing 3 has a comb shape having uneven steps as shown in FIG. In addition, this cut | notch part B1 may be step shape, nail shape, or U-shape. Further, as shown in FIG. 14 and the like, the shading block 2 is provided with an uneven portion B3 corresponding to the unevenness of the cut portion B1. The cut portion B1 of the selected fluorescent cube 10A and the concavo-convex portion B3 of the light shielding block 2 are fitted together. As described above, the labyrinth structure including the cut portion B1 and the uneven portion B3 can block stray light generated by leaking from the gap without passing through the excitation filter 4 in the white light L1.

筐体3の光源側面3aに複数形成されている遮光溝B2は、図11(A)等に示すように、2つの切り込み部B1の間に位置している。また、遮光ブロック2には、図12等に示すように、2本の遮光歯車B4が光源側開口A1を挟んで対向するように支持されている。そして図13等に示すように、選択された蛍光キューブ10Aの遮光溝B2と遮光ブロック2側の遮光歯車B4とが噛み合うようになっている。遮光溝B2と遮光歯車B4とで構成される結合構造により、前述したように白色光L1のうち励起フィルタ4を経由しないで隙間から漏れて生じた迷光を遮光することが可能となる。遮光歯車B4が遮光溝B2に噛み合うとともに、駆動歯車12とも噛み合うようになっているため、次に所定位置に来る蛍光キューブ10Aとの噛み合わせも正しく行うことが可能となる。   A plurality of light shielding grooves B2 formed on the light source side surface 3a of the housing 3 are located between the two cut portions B1, as shown in FIG. Further, as shown in FIG. 12 and the like, two light shielding gears B4 are supported on the light shielding block 2 so as to face each other with the light source side opening A1 interposed therebetween. As shown in FIG. 13 and the like, the light shielding groove B2 of the selected fluorescent cube 10A and the light shielding gear B4 on the light shielding block 2 side mesh with each other. As described above, it is possible to shield the stray light generated by leaking from the gap without passing through the excitation filter 4 in the white light L1 by the coupling structure constituted by the light shielding groove B2 and the light shielding gear B4. Since the light-shielding gear B4 meshes with the light-shielding groove B2 and also meshes with the drive gear 12, the meshing with the fluorescent cube 10A next coming to a predetermined position can be performed correctly.

上記のように、切り込み部B1及び凹凸部B3から成るラビリンス構造と、遮光溝B2及び遮光歯車B4から成る結合構造と、によって、光源側開口A1の周囲が遮光状態となるため、光源側,試料側及び観察側の各開口間での高い遮光性を得ることができる。また、照明切替装置18B外から光源側開口A1内に入り込もうとする光に対しても高い遮光性を得ることができる。   As described above, since the periphery of the light source side opening A1 is shielded by the labyrinth structure composed of the cut portion B1 and the uneven portion B3 and the coupling structure composed of the light shielding groove B2 and the light shielding gear B4, the light source side, the sample A high light-shielding property can be obtained between the openings on the side and the observation side. Moreover, high light-shielding properties can be obtained even for light that enters the light source side opening A1 from the outside of the illumination switching device 18B.

なお、前述した遮光溝B2、遮光歯車B4(図2,図12等)は、歯車における歯が遮光歯車B4の回転軸に対して平行となるような形状となっているが、これに限られず、歯車における歯が回転軸に対して角度θだけ傾いたような形状となっていてもよい(0<θ<90°)。例えば、歯車の形状としては、はすば歯車、やまば歯車、かさ歯車等の形状であってよい。例えば、かさ歯車は、図15に示すように、観察側開口A3又は試料側開口A2の遮光に使うことができる。また、蛍光キューブ10は、同図のような形状でもよいし、立方体や直方体などの形状を取ることができる。   The light shielding groove B2 and the light shielding gear B4 (FIGS. 2, 12 and the like) described above are shaped so that the teeth in the gear are parallel to the rotation axis of the light shielding gear B4, but are not limited thereto. The teeth of the gear may be shaped so as to be inclined by an angle θ with respect to the rotation axis (0 <θ <90 °). For example, the shape of the gear may be a helical gear, a helical gear, a bevel gear, or the like. For example, the bevel gear can be used to shield the observation side opening A3 or the sample side opening A2 as shown in FIG. Further, the fluorescent cube 10 may have a shape as shown in the figure, or may take a shape such as a cube or a rectangular parallelepiped.

本発明の実施の形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。以上の実施の形態は、あくまでも、本発明の一つの実施形態であって、本発明ないし各構成要件の用語の意義は、以上の実施の形態に記載されたものに制限されるものではない。   The embodiments of the present invention can be appropriately modified in various ways within the scope of the technical idea shown in the claims. The above embodiment is merely an embodiment of the present invention, and the meaning of the term of the present invention or each constituent element is not limited to that described in the above embodiment.

1 光源ユニット(光源)
2 遮光ブロック
3 筐体
3a 光源側面(開口の形成されている面)
4 励起フィルタ
5 ダイクロイックミラー
6 吸収フィルタ
7 対物光学系
7a 対物レンズ
7b 折り返しミラー
8 マイクロプレート
9 カメラユニット(撮像装置)
10,10A,10B 蛍光キューブ
11 ターレット機構(交換機構)
12 駆動歯車(交換機構)
13 ターレット駆動モータ(交換機構)
14 取り付け溝
15 直動機構(交換機構)
18A,18B 照明切替装置
20,20A 蛍光照明装置
30,30A 蛍光測定装置
S 試料(測定対象物)
L1 白色光
L2 励起光
L3 蛍光
A1 光源側開口
A2 試料側開口
A3 観察側開口
B1 切り込み部
B2 遮光溝(溝)
B3 凹凸部
B4 遮光歯車(歯車)
X ターレット軸
AX 光軸
1 Light source unit (light source)
2 Shading block 3 Housing 3a Light source side surface (surface on which opening is formed)
4 Excitation Filter 5 Dichroic Mirror 6 Absorption Filter 7 Objective Optical System 7a Objective Lens 7b Folding Mirror 8 Microplate 9 Camera Unit (Imaging Device)
10, 10A, 10B Fluorescent cube 11 Turret mechanism (exchange mechanism)
12 Drive gear (exchange mechanism)
13 Turret drive motor (exchange mechanism)
14 Mounting groove 15 Linear motion mechanism (exchange mechanism)
18A, 18B Illumination switching device 20, 20A Fluorescent illumination device 30, 30A Fluorescence measuring device S Sample (measurement object)
L1 White light L2 Excitation light L3 Fluorescence A1 Light source side opening A2 Sample side opening A3 Observation side opening B1 Notch B2 Light shielding groove (groove)
B3 Concavity and convexity B4 Shading gear (gear)
X Turret axis AX Optical axis

Claims (5)

試料を励起光で照明して蛍光を発生させる蛍光照明装置において交換機構により所定位置に交換配置される蛍光キューブであって、励起光と蛍光との光路分離を内部で行う筐体を有し、光を通過させる複数の開口と、前記開口のうちの少なくとも1つを挟んで位置するとともに前記交換配置の移動方向に平行な切り込み部と、が形成された面を前記筐体に有し、前記切り込み部の形状の凹凸は、前記交換機構に設けられた遮光ブロックの凹凸部に嵌り合う形状であることを特徴とする蛍光キューブ。 A fluorescent cube that is exchanged and arranged at a predetermined position by an exchange mechanism in a fluorescent illumination device that illuminates a sample with excitation light to generate fluorescence, and has a casing that internally separates an optical path between excitation light and fluorescence, The housing has a surface formed with a plurality of openings through which light passes and at least one of the openings sandwiched in parallel with a moving direction of the replacement arrangement, The fluorescent cube, wherein the unevenness of the shape of the cut portion is a shape that fits into the unevenness portion of the light shielding block provided in the exchange mechanism . 複数の溝が前記開口の形成されている面に形成されており、前記溝が、前記交換配置の移動方向への前記溝の移動に併せて、前記交換機構に設けられた歯車が前記溝と噛み合って共に回転するような溝であることを特徴とする請求項1記載の蛍光キューブ。   A plurality of grooves are formed on the surface on which the opening is formed, and the groove is moved along the movement direction of the replacement arrangement, and a gear provided in the replacement mechanism is connected to the groove. The fluorescent cube according to claim 1, wherein the fluorescent cube is a groove that engages and rotates together. 前記開口として、光源からの光を入射させる光源側開口と、励起光を射出する試料側開口と、蛍光を射出する観察側開口と、を有し、前記切り込み部が前記光源側開口を挟んで位置することを特徴とする請求項1又は2記載の蛍光キューブ。   The opening includes a light source side opening for allowing light from a light source to enter, a sample side opening for emitting excitation light, and an observation side opening for emitting fluorescence, and the cut portion sandwiches the light source side opening. The fluorescent cube according to claim 1, wherein the fluorescent cube is located. 請求項2記載の蛍光キューブと、前記切り込み部の凹凸に対応した凹凸部を有する遮光ブロックと、前記複数の溝と噛み合う歯車と、複数の蛍光キューブのうちの1つを所定位置に交換配置する前記交換機構と、を備えたことを特徴とする照明切替装置。   The fluorescent cube according to claim 2, a light shielding block having a concavo-convex portion corresponding to the concavo-convex portion of the cut portion, a gear meshing with the plurality of grooves, and one of the plurality of fluorescent cubes are exchanged at predetermined positions. An illumination switching device comprising the exchange mechanism. 請求項4記載の照明切替装置と、前記蛍光キューブで光路分離される励起光を構成する白色光を発生させる光源と、前記蛍光キューブで光路分離された蛍光から成る蛍光像の撮影を行う撮像装置と、を備えたことを特徴とする蛍光測定装置。   5. An illumination switching device according to claim 4, a light source that generates white light constituting excitation light that is optically separated by the fluorescent cube, and an imaging device that captures a fluorescent image composed of fluorescent light that is optically separated by the fluorescent cube. And a fluorescence measuring device.
JP2010027903A 2010-02-10 2010-02-10 Fluorescence cube, illumination switching device and fluorescence measuring device Active JP5577514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010027903A JP5577514B2 (en) 2010-02-10 2010-02-10 Fluorescence cube, illumination switching device and fluorescence measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010027903A JP5577514B2 (en) 2010-02-10 2010-02-10 Fluorescence cube, illumination switching device and fluorescence measuring device

Publications (2)

Publication Number Publication Date
JP2011164409A JP2011164409A (en) 2011-08-25
JP5577514B2 true JP5577514B2 (en) 2014-08-27

Family

ID=44595143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010027903A Active JP5577514B2 (en) 2010-02-10 2010-02-10 Fluorescence cube, illumination switching device and fluorescence measuring device

Country Status (1)

Country Link
JP (1) JP5577514B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6457186B2 (en) * 2014-03-27 2019-01-23 オリンパス株式会社 Fluorescent cube and optical microscope
KR20230042345A (en) * 2020-09-25 2023-03-28 주식회사 씨젠 optical signal detection device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219180B1 (en) * 1999-04-13 2001-04-17 Olympus America, Inc. Optical unit switching apparatus
JP2002090637A (en) * 2000-09-19 2002-03-27 Olympus Optical Co Ltd Vertical lighting system

Also Published As

Publication number Publication date
JP2011164409A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
US8098279B2 (en) Imaging apparatus and microscope
JP4952784B2 (en) Fluorescence measurement apparatus for living body and excitation light irradiation apparatus for fluorescence measurement
US9091855B2 (en) Beam splitter and observation apparatus
US7852553B2 (en) Microscope illumination apparatus
CN109073875B (en) Lighting module for selectable angle lighting
JP5985883B2 (en) microscope
CN109791275B (en) Observation device
JP5884021B2 (en) Multispectral imaging apparatus and multispectral imaging method
JP2011118371A (en) Microscope
JP6688190B2 (en) microscope
JP5577514B2 (en) Fluorescence cube, illumination switching device and fluorescence measuring device
JP6108908B2 (en) Inverted microscope system
JPH06160725A (en) Lens barrel and adapter
JP2008102535A (en) Stereo microscope
JP7197134B2 (en) Fluorometer and observation method
JP2008051772A (en) Fluorescence image acquisition device and fluorescence image acquisition method
JP6242447B2 (en) Microscope system
JP7018006B2 (en) Sample shooting device
JP2002311332A (en) Microscope for examination and objective lens for this purpose
CN114730067A (en) Microscope device, beam splitter, and microscope system
JP2011058953A (en) Detector, optical apparatus with the same
JP2008139820A (en) Microscope illumination apparatus
WO2014184793A1 (en) Method and system for use in inspection of samples by detection of optically excited emission from the sample
JP2007225789A (en) Measuring microscope
CN101467089B (en) Imaging apparatus with a plurality of shutter elements

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120425

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140612

R150 Certificate of patent or registration of utility model

Ref document number: 5577514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250