JP5575720B2 - Liquid processing equipment - Google Patents

Liquid processing equipment Download PDF

Info

Publication number
JP5575720B2
JP5575720B2 JP2011203930A JP2011203930A JP5575720B2 JP 5575720 B2 JP5575720 B2 JP 5575720B2 JP 2011203930 A JP2011203930 A JP 2011203930A JP 2011203930 A JP2011203930 A JP 2011203930A JP 5575720 B2 JP5575720 B2 JP 5575720B2
Authority
JP
Japan
Prior art keywords
ozone
gas
tank
water
contact tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011203930A
Other languages
Japanese (ja)
Other versions
JP2013063396A (en
Inventor
剛 武本
義弘 信友
民夫 五十嵐
勇司 前田
政隆 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011203930A priority Critical patent/JP5575720B2/en
Priority to CN201210261465.3A priority patent/CN102992471B/en
Publication of JP2013063396A publication Critical patent/JP2013063396A/en
Application granted granted Critical
Publication of JP5575720B2 publication Critical patent/JP5575720B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Description

本発明は液体処理装置に係り、特に、上水や下水処理等にオゾンの微細気泡(マイクロバブル)を用いたものに好適な液体処理装置に関する。   The present invention relates to a liquid processing apparatus, and more particularly to a liquid processing apparatus suitable for an apparatus using fine bubbles of ozone (microbubbles) for water treatment or sewage treatment.

オゾンは酸化力を有し水に可溶であるため、上水や下水処理において、色度除去、臭気除去、殺菌などに活用されている。オゾンを生成させる際には電力を消費するため、ランニングコストが増加する。このため、オゾンを水処理に活用する場合には、オゾンの溶解効率向上が課題となる。   Since ozone has an oxidizing power and is soluble in water, it is used for chromaticity removal, odor removal, sterilization and the like in water and sewage treatment. When ozone is generated, electric power is consumed, which increases running costs. For this reason, when ozone is utilized for water treatment, improvement of ozone dissolution efficiency becomes a problem.

未溶解のオゾンを、気水分離手段で回収して再溶解させるシステムとして特許文献1が挙げられる。また、オゾンをマイクロバブル化し、かつ、未溶解オゾンを回収しマイクロバブルを生成させるための加圧ポンプの入口に再注入するシステムが特許文献2に記載されている。   Patent document 1 is mentioned as a system which collect | recovers undissolved ozone with an air-water separation means, and re-dissolves it. Further, Patent Document 2 discloses a system in which ozone is microbubbled and re-injected into an inlet of a pressure pump for collecting undissolved ozone and generating microbubbles.

特開2004−188246号公報JP 2004-188246 A 特許4201042号公報Japanese Patent No. 4201042

上述した特許文献1では、オゾン溶解手段(上流)と、オゾン溶解手段の未溶解ガスを回収して溶解させる回収ガス溶解手段(下流)を直列に配置している。回収ガス溶解手段の流入水は、既にオゾン溶解手段でオゾンが溶解しており、かつ、注入するオゾンガス濃度は、上流のオゾン溶解手段に比べ低い。   In patent document 1 mentioned above, the ozone melt | dissolution means (upstream) and the collection | recovery gas melt | dissolution means (downstream) which collect | recovers and melt | dissolves the undissolved gas of an ozone melt | dissolution means are arrange | positioned in series. The inflow water of the recovered gas dissolving means has already dissolved ozone by the ozone dissolving means, and the concentration of injected ozone gas is lower than that of the upstream ozone dissolving means.

このため、回収ガス溶解手段では、高濃度のオゾン水に低濃度のオゾンガスを溶解させる条件となり、オゾンの溶解速度が低下する恐れがあつた。また、回収されたガスには被処理水が混入する場合もあり、被処理水中の固形物質などが散気管などを通過させると目詰まりする恐れがある。   For this reason, the recovered gas dissolving means has a condition for dissolving the low concentration ozone gas in the high concentration ozone water, and the ozone dissolution rate may be lowered. In addition, the water to be treated may be mixed into the collected gas, and there is a risk of clogging when solid substances or the like in the water to be treated pass through an air diffuser or the like.

一方、特許文献2では、回収した未溶解ガスを注入ガスと混合し、被処理水や循環水と一緒に加圧ポンプで昇圧している。注入するガスにオゾンを用いると、オゾン注入率を増加させるためには、オゾン濃度か、或いはオゾン流量を増加させる必要がある。流入するオゾン流量を増加させると、未溶解のガスも増加するため、加圧ポンプでは増加させたオゾン流量以上のガスが流入することになる。   On the other hand, in patent document 2, the collect | recovered undissolved gas is mixed with injection gas, and it pressurizes with a pressure pump with to-be-processed water and circulating water. When ozone is used as the gas to be injected, it is necessary to increase the ozone concentration or the ozone flow rate in order to increase the ozone injection rate. If the flow rate of ozone flowing in is increased, undissolved gas also increases, so that the gas exceeding the increased ozone flow rate flows in at the pressurizing pump.

このため、小量のガスの増加で、加圧ポンプが許容できる以上のガスが流入し、ポンプが空転し運転不可能になる恐れがある。   For this reason, if a small amount of gas increases, more gas than the pressurization pump can allow may flow in, causing the pump to run idle and make it impossible to operate.

本発明は上述の点に鑑みなされたもので、その目的とするところは、回収ガスの溶解効率を向上することで運転費を削減でき、かつ、加圧ポンプ空転や目詰まりを防止し、運転管理が容易な液体処理装置を提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is to reduce the operating cost by improving the recovery efficiency of the recovered gas, and to prevent idling of the pressurizing pump and clogging, and operation. An object of the present invention is to provide a liquid processing apparatus that can be easily managed.

本発明の液体処理装置は、上記目的を達成するために、オゾンと被処理水が接触した反応液を収納するオゾン接触槽と、該オゾン接触槽の反応液の一部を循環させる配管の途中に設置された加圧ポンプと、該加圧ポンプと前記オゾン接触槽の間の前記配管にオゾンガスを注入するオゾナイザと、前記加圧ポンプより下流側の前記配管の途中に設置され、前記オゾナイザからのオゾンガスが注入された前記反応液を減圧し、前記オゾンガスのマイクロバブルを生成させる減圧ノズルと、該減圧ノズルで生成された前記マイクロバブルを前記オゾン接触槽に注入するマイクロバブル注入口とを備えた液体処理装置において、前記マイクロバブル注入口より上部の前記オゾン接触槽に接続され、該オゾン接触槽の上部空間に放出される前記減圧ノズルでマイクロバブル化されない未溶解ガスを吸引する槽内ガス注入管と、前記被処理水の前記オゾン接触槽への流入配管に途中に設置され、前記槽内ガス注入管に吸引された前記未溶解ガスを、前記被処理水の流れに伴い吸引し該被処理水と混合して前記オゾン接触槽に戻す気液混合器とを備えていると共に、前記加圧ポンプの流下方向の配管の途中に、前記反応液からオゾンガスを溶解してオゾン水を生成する気水分離タンクを設置し、該気水分離タンクで生成された前記オゾン水を前記減圧ノズルで減圧してオゾンガスのマイクロバブルを生成させる経路と、前記気水分離タンクで生成された前記オゾン水中の少なくとも未溶解ガスを気体抜き弁で抜いて回収ガス注入管に回収し、該回収ガス注入管で回収した少なくとも前記未溶解ガスを前記オゾン接触槽に供給する経路とを備え、かつ、前記オゾン接触槽の上部空間に、前記回収ガス注入管と槽内ガス注入管が接続されていることを特徴とする。 In order to achieve the above object, the liquid treatment apparatus according to the present invention includes an ozone contact tank that contains a reaction liquid in which ozone and water to be treated are in contact, and a pipe that circulates a part of the reaction liquid in the ozone contact tank. A pressurizing pump installed in the pipe, an ozonizer for injecting ozone gas into the pipe between the pressurizing pump and the ozone contact tank, and installed in the middle of the pipe on the downstream side of the pressurizing pump, from the ozonizer A pressure reducing nozzle that decompresses the reaction liquid into which ozone gas is injected and generates microbubbles of the ozone gas; and a microbubble inlet that injects the microbubbles generated by the pressure reducing nozzle into the ozone contact tank. In the liquid processing apparatus, the decompression nozzle connected to the ozone contact tank above the microbubble inlet and discharged into the upper space of the ozone contact tank The in-tank gas injection pipe for sucking undissolved gas that is not microbubbled in the tank, and the undissolved gas that is installed in the middle of the inflow pipe to the ozone contact tank of the treated water and sucked into the in-tank gas injection pipe A gas-liquid mixer that sucks gas along with the flow of the water to be treated, mixes it with the water to be treated, and returns the gas to the ozone contact tank, and in the middle of the downstream pipe of the pressure pump And installing an air / water separation tank that dissolves ozone gas from the reaction solution to generate ozone water, and depressurizes the ozone water generated in the air / water separation tank with the decompression nozzle to generate microbubbles of ozone gas. And at least the undissolved gas recovered in the recovery gas injection pipe by extracting at least the undissolved gas in the ozone water generated in the path and the gas / water separation tank with a gas vent valve and collecting it in the recovery gas injection pipe And a path for supplying the ozone contact tank, and, in the upper space of the ozone contact tank, wherein the recovered gas inlet tube and intracisternal gas injection pipe is connected.

また、本発明の液体処理装置は、上記目的を達成するために、オゾンと被処理水が接触した反応液を収納するオゾン接触槽と、該オゾン接触槽の反応液の一部を循環させる配管の途中に設置された加圧ポンプと、該加圧ポンプと前記オゾン接触槽の間の前記配管にオゾンガスを注入するオゾナイザと、前記加圧ポンプより下流側の前記配管の途中に設置され、前記オゾナイザからのオゾンガスが注入された前記反応液を減圧し、前記オゾンガスのマイクロバブルを生成させる減圧ノズルと、該減圧ノズルで生成された前記マイクロバブルを前記オゾン接触槽に注入するマイクロバブル注入口とを備えた液体処理装置において、前記マイクロバブル注入口より上部の前記オゾン接触槽に接続され、該オゾン接触槽の上部空間に放出される前記減圧ノズルでマイクロバブル化されない未溶解ガスを吸引する槽内ガス注入管と、前記被処理水の前記オゾン接触槽への流入配管に途中に設置され、前記槽内ガス注入管に吸引された前記未溶解ガスを、前記被処理水の流れに伴い吸引し該被処理水と混合して前記オゾン接触槽に戻す気液混合器とを備えていると共に、前記加圧ポンプの流下方向の配管の途中に、前記反応液からオゾンガスを溶解してオゾン水を生成する気水分離タンクを設置し、該気水分離タンクで生成された前記オゾン水を前記減圧ノズルで減圧してオゾンガスのマイクロバブルを生成させる経路と、前記気水分離タンクで生成された前記オゾン水中の少なくとも未溶解ガスを気体抜き弁で抜いて回収ガス注入管に回収し、該回収ガス注入管で回収した少なくとも前記未溶解ガスを、前記オゾン接触槽の上部に設置され、該オゾン接触槽と連通すると共に、上部に前記槽内ガス注入管が接続された分離ガス注入室に供給する経路とを備えていることを特徴とする。 In order to achieve the above object , the liquid treatment apparatus of the present invention includes an ozone contact tank that stores a reaction liquid in which ozone and water to be treated are in contact, and a pipe that circulates a part of the reaction liquid in the ozone contact tank. A pressure pump installed in the middle of, a ozonizer for injecting ozone gas into the pipe between the pressure pump and the ozone contact tank, and installed in the middle of the pipe downstream from the pressure pump, Depressurizing the reaction liquid into which ozone gas from an ozonizer has been injected, generating a microbubble of the ozone gas, and a microbubble injection port for injecting the microbubble generated by the reduced pressure nozzle into the ozone contact tank; In the liquid processing apparatus comprising: the ozone contact tank above the microbubble inlet and connected to the ozone contact tank and discharged to the upper space of the ozone contact tank. An in-tank gas injection pipe that sucks undissolved gas that is not microbubbled by a nozzle, and an inflow pipe to the ozone contact tank of the water to be treated, and the non-dissolved gas sucked into the in-tank gas injection pipe A gas-liquid mixer that sucks the dissolved gas along with the flow of the water to be treated, mixes it with the water to be treated, and returns it to the ozone contact tank; In addition, an air / water separation tank that dissolves ozone gas from the reaction solution to generate ozone water is installed, and the ozone water generated in the air / water separation tank is decompressed by the decompression nozzle to generate ozone gas microbubbles. And at least the undissolved gas in the ozone water generated in the gas / water separation tank is extracted by a gas vent valve and collected in a recovery gas injection pipe, and at least the undissolved gas recovered in the recovery gas injection pipe A gas is installed in the upper part of the ozone contact tank, communicates with the ozone contact tank, and has a path for supplying gas to a separation gas injection chamber connected to the gas injection pipe in the tank at the upper part. And

また、本発明の液体処理装置は、上記目的を達成するために、オゾンと被処理水が接触した反応液を収納するオゾン接触槽と、該オゾン接触槽の反応液の一部を循環させる配管の途中に設置された加圧ポンプと、該加圧ポンプと前記オゾン接触槽の間の前記配管にオゾンガスを注入するオゾナイザと、前記加圧ポンプより下流側の前記配管の途中に設置され、前記オゾナイザからのオゾンガスが注入された前記反応液を減圧し、前記オゾンガスのマイクロバブルを生成させる減圧ノズルと、該減圧ノズルで生成された前記マイクロバブルを前記オゾン接触槽に注入するマイクロバブル注入口とを備えた液体処理装置において、前記マイクロバブル注入口より上部の前記オゾン接触槽に接続され、該オゾン接触槽の上部空間に放出される前記減圧ノズルでマイクロバブル化されない未溶解ガスを吸引する槽内ガス注入管と、前記被処理水の前記オゾン接触槽への流入配管に途中に設置され、前記槽内ガス注入管に吸引された前記未溶解ガスを、前記被処理水の流れに伴い吸引し該被処理水と混合して前記オゾン接触槽に戻す気液混合器とを備えていると共に、前記加圧ポンプの流下方向の配管の途中に、前記反応液からオゾンガスを溶解してオゾン水を生成する気水分離タンクを設置し、該気水分離タンクで生成された前記オゾン水を前記減圧ノズルで減圧してオゾンガスのマイクロバブルを生成させる経路と、前記気水分離タンクで生成された前記オゾン水中の少なくとも未溶解ガスを気体抜き弁で抜いて回収ガス注入管に回収し、該回収ガス注入管で回収した少なくとも前記未溶解ガスを、前記オゾン接触槽の上部に設置された回収ガス注入室に供給する経路と、前記回収ガス注入室と該オゾン接触槽の間に設置された電動弁と、前記回収ガス注入室の水位を計測する水位計と、該水位計の計測値を基に前記電動弁を開閉する弁排水制御装置とを備えていることを特徴とする。 In order to achieve the above object , the liquid treatment apparatus of the present invention includes an ozone contact tank that stores a reaction liquid in which ozone and water to be treated are in contact, and a pipe that circulates a part of the reaction liquid in the ozone contact tank. A pressure pump installed in the middle of, a ozonizer for injecting ozone gas into the pipe between the pressure pump and the ozone contact tank, and installed in the middle of the pipe downstream from the pressure pump, Depressurizing the reaction liquid into which ozone gas from an ozonizer has been injected, generating a microbubble of the ozone gas, and a microbubble injection port for injecting the microbubble generated by the reduced pressure nozzle into the ozone contact tank; In the liquid processing apparatus comprising: the ozone contact tank above the microbubble inlet and connected to the ozone contact tank and discharged to the upper space of the ozone contact tank. An in-tank gas injection pipe that sucks undissolved gas that is not microbubbled by a nozzle, and an inflow pipe to the ozone contact tank of the water to be treated, and the non-dissolved gas sucked into the in-tank gas injection pipe A gas-liquid mixer that sucks the dissolved gas along with the flow of the water to be treated, mixes it with the water to be treated, and returns it to the ozone contact tank; In addition, an air / water separation tank that dissolves ozone gas from the reaction solution to generate ozone water is installed, and the ozone water generated in the air / water separation tank is decompressed by the decompression nozzle to generate ozone gas microbubbles. And at least the undissolved gas in the ozone water generated in the gas / water separation tank is extracted by a gas vent valve and collected in a recovery gas injection pipe, and at least the undissolved gas recovered in the recovery gas injection pipe A path for supplying gas to a recovery gas injection chamber installed at the top of the ozone contact tank, an electric valve installed between the recovery gas injection chamber and the ozone contact tank, and a water level of the recovery gas injection chamber And a valve drainage control device that opens and closes the motor-operated valve based on the measured value of the water level meter.

また、本発明の液体処理装置は、上記に加え、前記回収ガス注入室に、前記オゾン接触槽に散気するための散気管が接続された接触槽注入管を設置し、かつ、前記槽内ガス注入管を前記散気管の上部に設けたことを特徴とする。   In addition to the above, the liquid processing apparatus of the present invention further includes a contact tank injection pipe connected to an air diffusion pipe for aeration in the ozone contact tank in the recovery gas injection chamber, and the inside of the tank A gas injection pipe is provided above the diffuser pipe.

また、本発明の液体処理装置は、上記に加え、前記被処理水の流入配管の流量を計測する流量計と、前記オゾン接触槽の排ガスを分解するためのオゾン分解塔と、前記オゾン接触槽の上部のガスを前記オゾン分解塔に流入させるブロワと、前記流量計の計測信号が入力されて前記ブロワの動作を制御する制御装置とを備え、前記制御装置は、前記流量計の計測値が予め設定された設定値以上の場合に前記ブロワを停止させ、設定値以下の場合に前記ブロワを起動させるよう制御することを特徴とする。   In addition to the above, the liquid treatment apparatus of the present invention includes a flow meter for measuring the flow rate of the inflow pipe of the water to be treated, an ozone decomposition tower for decomposing exhaust gas from the ozone contact tank, and the ozone contact tank And a control device that controls the operation of the blower by inputting a measurement signal of the flow meter, and the control device has a measured value of the flow meter. Control is performed such that the blower is stopped when the value is equal to or higher than a preset value, and the blower is activated when the value is equal to or lower than the set value.

本発明によれば、回収ガスの溶解効率を向上することで運転費を削減でき、かつ、加圧ポンプ空転や目詰まりを防止し、運転管理が容易な液体処理装置を得ることができる。   According to the present invention, it is possible to reduce the operating cost by improving the dissolution efficiency of the recovered gas, and it is possible to obtain a liquid processing apparatus that can prevent idling and clogging of the pressurizing pump and that can be easily managed.

本発明の液体処理装置の参考例を示す図である。It is a figure which shows the reference example of the liquid processing apparatus of this invention. 本発明の液体処理装置の実施例を示す図である。It is a figure which shows Example 1 of the liquid processing apparatus of this invention. 本発明の液体処理装置の実施例を示す図である。It is a figure which shows Example 2 of the liquid processing apparatus of this invention. 本発明の液体処理装置の実施例を示す図である。It is a figure which shows Example 3 of the liquid processing apparatus of this invention. 本発明の液体処理装置の実施例を示す図である。It is a figure which shows Example 4 of the liquid processing apparatus of this invention.

以下、図示した実施例に基づいて本発明の液体処理装置について説明する。尚、同一構成物については同符号を使用し、重複して説明はしない。
参考例
図1に本発明の液体処理装置の参考例を示す。該図に示す如く、本参考例の液体処理装置は、オゾンと被処理水が接触した反応液を収納するオゾン接触槽1と、このオゾン接触槽1の反応液の一部を循環させる配管22の途中に設置された加圧ポンプ2と、この加圧ポンプ2とオゾン接触槽1の間の配管22にオゾンガスを注入するオゾナイザ3と、加圧ポンプ2の流下方向の配管22の途中に、オゾン接触槽1からの反応液からオゾンガスを溶解してオゾン水を生成する溶解タンク4と、この溶解タンク4を経たオゾン溶解水を減圧し、オゾンガスのマイクロバブルを生成させる減圧ノズル5と、この減圧ノズル5で生成されたマイクロバブルをオゾン接触槽1に注入するマイクロバブル注入口6と、このマイクロバブル注入口6より上部のオゾン接触槽1に接続され、オゾン接触槽1の上部空間に放出される減圧ノズル5でマイクロバブル化されない未溶解ガスを吸引する槽内ガス注入管8と、被処理水のオゾン接触槽1への流入配管23の途中に設置され、槽内ガス注入管8に吸引された未溶解ガスを、被処理水の流れに伴い吸引し、この被処理水と混合してオゾン接触槽1に戻す気液混合器7とから概略構成されている。尚、24は、オゾン接触槽1にガスを導入するガス入口である。
Hereinafter, the liquid processing apparatus of the present invention will be described based on the illustrated embodiments. In addition, about the same structure, the same code | symbol is used and it does not repeat description.
[ Reference example ]
FIG. 1 shows a reference example of the liquid processing apparatus of the present invention. As shown in the figure, the liquid treatment apparatus of this reference example includes an ozone contact tank 1 that stores a reaction liquid in which ozone and water to be treated are in contact, and a pipe 22 that circulates a part of the reaction liquid in the ozone contact tank 1. In the middle of the pressure pump 2, the ozonizer 3 for injecting ozone gas into the pipe 22 between the pressure pump 2 and the ozone contact tank 1, and the pipe 22 in the downstream direction of the pressure pump 2, A dissolution tank 4 that dissolves ozone gas from the reaction solution from the ozone contact tank 1 to generate ozone water; a pressure reduction nozzle 5 that generates ozone bubbles by depressurizing ozone-dissolved water that has passed through the dissolution tank 4; A microbubble inlet 6 for injecting microbubbles generated by the decompression nozzle 5 into the ozone contact tank 1 and an ozone contact tank 1 above the microbubble inlet 6 are connected to the ozone contact tank 1. Installed in the middle of a tank gas injection pipe 8 that sucks undissolved gas that is not microbubbled by the decompression nozzle 5 discharged into the upper space, and an inflow pipe 23 to the ozone contact tank 1 of the water to be treated. An undissolved gas sucked into the injection pipe 8 is sucked along with the flow of the water to be treated, and is roughly constituted by a gas-liquid mixer 7 mixed with the water to be treated and returned to the ozone contact tank 1. Reference numeral 24 denotes a gas inlet for introducing gas into the ozone contact tank 1.

このように構成される本参考例の液体処理装置の動作について説明する。 The operation of the liquid processing apparatus of this reference example configured as described above will be described.

参考例のオゾン接触槽1では、被処理水と注入ガス(オゾンガス)が反応している。このオゾン接触槽1の反応液の一部は、加圧ポンプ2により循環している。加圧ポンプ2には、反応液とオゾナイザ3から供給されたオゾンガスとの気液混合流体が流入する。加圧ポンプ2により加圧された気液混合流体は、溶解タンク4でオゾンガスが溶解し高圧オゾン水が生成される。溶解タンク4を経た高圧オゾン水は、減圧ノズル5で減圧され、溶解していたオゾンの微細気泡(マイクロバブル)が生成される。この微細気泡は、マイクロバブル注入口6を経てオゾン接触槽1に供給される。 In the ozone contact tank 1 of this reference example, the water to be treated and the injection gas (ozone gas) react. A part of the reaction solution in the ozone contact tank 1 is circulated by the pressure pump 2. A gas-liquid mixed fluid of the reaction liquid and ozone gas supplied from the ozonizer 3 flows into the pressurizing pump 2. The gas-liquid mixed fluid pressurized by the pressure pump 2 dissolves ozone gas in the dissolution tank 4 to generate high-pressure ozone water. The high-pressure ozone water that has passed through the dissolution tank 4 is decompressed by the decompression nozzle 5, and fine ozone bubbles (microbubbles) that have been dissolved are generated. The fine bubbles are supplied to the ozone contact tank 1 through the microbubble inlet 6.

一方、被処理水は、気液混合器7を経てオゾン接触槽1に供給される。気液混合器7は、被処理水が通過することでガスを吸引し被処理水とガスを混合できる。気液混合器7が吸引するガスは、槽内ガス注入管8から供給される。槽内ガス注入管8は、オゾン接触槽1の上部空間のガスを吸引でき、マイクロバブル注入口6の上部に設置することが望ましい。   On the other hand, the water to be treated is supplied to the ozone contact tank 1 through the gas-liquid mixer 7. The gas / liquid mixer 7 can mix the water to be treated and the gas by sucking the gas when the water to be treated passes. The gas sucked by the gas-liquid mixer 7 is supplied from the tank gas injection pipe 8. The tank gas injection pipe 8 can suck the gas in the upper space of the ozone contact tank 1 and is preferably installed on the upper part of the microbubble inlet 6.

また、オゾン接触槽1の内部は、複数に分割されていることが望ましい。即ち、図1のように、オゾン接触槽1の内部を、反応液が上下繰り返して流れるように仕切板25で仕切りることで、微細気泡が処理水側に流下しながら反応するため、被処理水が原水に短絡することがなく処理水の水質を向上できる。   Moreover, it is desirable that the inside of the ozone contact tank 1 is divided into a plurality of parts. That is, as shown in FIG. 1, the inside of the ozone contact tank 1 is partitioned by the partition plate 25 so that the reaction liquid flows up and down repeatedly, so that the fine bubbles react while flowing down to the treated water side. The quality of treated water can be improved without the water being short-circuited with the raw water.

また、気液混合器7は、ベンチュリー作用を有するエゼクターなどでよいし、被処理水を一部分岐した配管に設置してもよい。   Further, the gas-liquid mixer 7 may be an ejector having a venturi action, or may be installed in a pipe partially branched from the water to be treated.

また、本参考例のように、オゾン接触槽1が複数に分割されている場合には、マイクロバブル注入口6を有する区画の上部に、槽内ガス注入管8を設置するとよい。尚、オゾン接触槽1の上部空間は、被処理水側から処理水側まで連通させるとよい。 Moreover, when the ozone contact tank 1 is divided | segmented into multiple like this reference example , it is good to install the gas injection pipe 8 in a tank in the upper part of the division which has the microbubble injection port 6. FIG. The upper space of the ozone contact tank 1 is preferably communicated from the treated water side to the treated water side.

次に、本参考例における効果について説明する。上述した如く、オゾナイザ3から注入されたオゾンガスは加圧ポンプ2、溶解タンク4で溶解し、減圧ノズル5でマイクロバブル化するが、一部は未溶解ガスとなる。この未溶解ガスは、減圧ノズル5を通過し、マイクロバブルでない粗大気泡状態で、マイクロバブル注入口6からオゾン接触槽1に注入される。注入された粗大気泡は、オゾン接触槽1内を上昇し、水面からオゾン接触槽1内空間部に放出される。 Next, the effect in this reference example will be described. As described above, the ozone gas injected from the ozonizer 3 is dissolved by the pressure pump 2 and the dissolution tank 4 and is converted into microbubbles by the decompression nozzle 5, but a part of the ozone gas becomes undissolved gas. This undissolved gas passes through the decompression nozzle 5 and is injected into the ozone contact tank 1 from the microbubble inlet 6 in the form of coarse bubbles that are not microbubbles. The injected coarse bubbles rise in the ozone contact tank 1 and are discharged from the water surface into the space in the ozone contact tank 1.

参考例のオゾン接触槽1は、マイクロバブルでオゾンを溶解させるため、通常の散気管などでオゾンを溶解させる反応槽よりも水深が低く設計されている。 Since the ozone contact tank 1 of this reference example dissolves ozone with microbubbles, the depth of water is designed to be lower than that of a reaction tank in which ozone is dissolved with a normal air diffuser or the like.

このため、粗大気泡中のオゾンは、オゾン接触槽1を上昇中に一部が槽内の反応液に溶解するが、オゾンを槽内の空間部に放出することになる。槽内の空間部のガスは、槽内ガス注入管に吸引され被処理水と混合される。被処理水は、オゾンが含まれていなため濃度差が大きくオゾンが溶解しやすい。 For this reason, the ozone in the coarse bubbles partially dissolves in the reaction liquid in the tank while rising in the ozone contact tank 1, but releases ozone into the space in the tank. The gas in the space in the tank is sucked into the tank gas injection pipe 8 and mixed with the water to be treated. Since the water to be treated does not contain ozone, the concentration difference is large and ozone is easily dissolved.

また、槽内ガス注入管8がマイクロバブル注入口6の上部にあるため、粗大気泡から放出されたオゾンを効率よく吸引できる。槽内ガス注入管8の設置位置は、マイクロバブル注入口6の上部でなくてもよいが、粗大気泡が達する水面の上部が望ましい。更に、オゾン接触槽1の上部空間を連通させることで、下流側の空間に放出されたオゾンも吸引でき、排ガス中のオゾンを削減でき、オゾンの利用率を向上できる。 Moreover, since the top of the tank in the gas injection pipe 8 toad Ikurobaburu inlet 6, it can be sucked efficiently ozone released from coarse bubbles. Installation position of the tank in the gas injection pipe 8 may not be the top of Ma Ikurobaburu inlet 6, but the water surface of the upper coarse bubbles reach desirable. Furthermore, by communicating the upper space of the ozone contact tank 1, ozone released into the downstream space can also be sucked in, ozone in exhaust gas can be reduced, and the utilization rate of ozone can be improved.

尚、本参考例では、排ガス処理設備、排ガス吸引時に必要な外部の空気を吸い込むための通気弁は省略している。 In this reference example , an exhaust gas treatment facility and a vent valve for sucking in external air necessary for exhaust gas suction are omitted.

このような本参考例によれば、回収した未溶解ガスを効率良く再溶解できるので、回収ガスの溶解効率を向上させることができ、これにより運転費を削減でき、かつ、加圧ポンプ空転や目詰まりを防止し、長期の安定運転を実現できるので、運転管理が容易となる効果が得られる。
[実施例
図2に本発明の液体処理装置の実施例を示す。図2に示す実施例と図1の参考例との違いは、溶解タンク4の換わりに気水分離タンク9を設置し、この気水分離タンク9にエアベントなどの気体抜き弁10と、気体抜き弁10で回収されたガスをオゾン接触槽1に供給する回収ガス注入管11を設けたことにある。
According to such a reference example , the recovered undissolved gas can be efficiently redissolved, so that the recovery efficiency of the recovered gas can be improved, thereby reducing the operating cost, Since clogging can be prevented and long-term stable operation can be realized, the effect of facilitating operation management can be obtained.
[Example 1 ]
FIG. 2 shows a first embodiment of the liquid processing apparatus of the present invention. The difference between Reference Example Example 1 and Figure 1 shown in FIG. 2, established the steam separator tank 9 instead of dissolution tank 4, a gas release valve 10, such as an air vent in the steam-water separator tank 9, a gas The recovery gas injection pipe 11 for supplying the gas recovered by the vent valve 10 to the ozone contact tank 1 is provided.

即ち、加圧ポンプ2の流下方向の配管22の途中に、反応液からオゾンガスを溶解してオゾン水を生成する気水分離タンク9を設置し、この気水分離タンク9で生成されたオゾン水を減圧ノズル5で減圧してオゾンガスのマイクロバブルを生成させる経路と、気水分離タンク9で生成されたオブン水中の少なくとも未溶解ガスを気体抜き弁10で抜いて回収ガス注入管11に回収し、この回収ガス注入管11で回収した少なくとも未溶解ガスをオゾン接触槽1に供給する経路とを備えているものである。   That is, an air / water separation tank 9 for generating ozone water by dissolving ozone gas from the reaction solution is installed in the middle of the downstream flow pipe 22 of the pressurizing pump 2, and the ozone water generated in the air / water separation tank 9. The pressure is reduced by the pressure reducing nozzle 5 to generate ozone gas microbubbles, and at least the undissolved gas in the ozone water generated in the steam separation tank 9 is extracted by the gas vent valve 10 and recovered in the recovery gas injection pipe 11. And a path for supplying at least undissolved gas recovered by the recovered gas injection pipe 11 to the ozone contact tank 1.

尚、回収ガス注入管11は、オゾン接触槽1の空間部、反応液部のどちらに接続しても良いが、槽内ガス注入管8は、回収ガス注入管11の上部でオゾン接触槽1に接続されることが望ましい。また、本実施例では、オゾン接触槽1の内部の区切りは1つだが、多くしても良い。   The recovered gas injection pipe 11 may be connected to either the space part or the reaction liquid part of the ozone contact tank 1, but the in-tank gas injection pipe 8 is located above the recovered gas injection pipe 11 in the ozone contact tank 1. It is desirable to be connected to. Further, in the present embodiment, the ozone contact tank 1 has one internal partition, but may be increased.

次に、本実施例における効果について説明する。上述した気水分離タンク9は、溶解タンク4と同様に、オゾンガスが溶解し高圧オゾン水を生成でき、更に、未溶解ガスを気体抜き弁10により排出できる。気体抜き弁10は、ガスのみを通過させる構造になっているが、小量の循環水、即ち反応液が回収ガス注入管11に流入する。   Next, the effect in a present Example is demonstrated. Like the dissolution tank 4, the gas / water separation tank 9 described above can dissolve the ozone gas and generate high-pressure ozone water, and can discharge the undissolved gas by the gas vent valve 10. The gas vent valve 10 has a structure that allows only gas to pass through, but a small amount of circulating water, that is, a reaction liquid flows into the recovered gas injection pipe 11.

本実施例では、回収ガス注入管11から排出される水分をオゾン接触槽1で処理できるため、気液混合器が水分中の固形物質による目詰まりを防止でき、かつ、水分の処理装置が不要である。また、回収ガス注入管11から放出された回収ガスは、槽内ガス注入管8で回収されて気混合器7で被処理水と混合され、オゾン接触槽1に再注入される。気液混合器7の吸引ガス量を回収ガス注入管11の放出ガス量よりも多くすることで、槽内の空間部のガスを、引き込み未溶解のオゾンを被処理水に溶解させることができる。 In the present embodiment, since the water discharged from the recovered gas injection pipe 11 can be processed in the ozone contact tank 1, the gas-liquid mixer 7 can prevent clogging due to solid substances in the water, and the water processing apparatus can be used. It is unnecessary. The recovered gas released from the recovered gas injection pipe 11 is recovered by the tank gas injection pipe 8, mixed with the water to be treated by the gas- liquid mixer 7, and reinjected into the ozone contact tank 1. By making the amount of suction gas in the gas-liquid mixer 7 larger than the amount of gas released from the recovered gas injection pipe 11, the gas in the space in the tank can be drawn and undissolved ozone can be dissolved in the water to be treated. .

なお、回収ガス注入管11と気液混合器7を直接接続すると、以下の課題が生じる恐れがある。1)気体抜き弁10より排出される未溶解ガス量が一定でないため、気液混合器7の溶解効率が低下する。2)気液混合器7でガスが吸引されるため、回収ガス注入管11が不圧になり気体抜き弁10が正常に動作できない。このため、本実施例のように、回収ガスは、オゾン接触槽1に供給する経路を備える必要がある。   If the recovered gas injection pipe 11 and the gas-liquid mixer 7 are directly connected, the following problems may occur. 1) Since the amount of undissolved gas discharged from the gas vent valve 10 is not constant, the dissolution efficiency of the gas-liquid mixer 7 decreases. 2) Since the gas is sucked by the gas-liquid mixer 7, the recovered gas injection pipe 11 becomes non-pressure and the gas vent valve 10 cannot operate normally. For this reason, as in this embodiment, the recovered gas needs to be provided with a path for supplying it to the ozone contact tank 1.

このような本実施例によれば、回収した未溶解ガスを効率良く再溶解できるので、回収ガスの溶解効率を向上させることができ、これにより運転費を削減でき、かつ、加圧ポンプ空転や目詰まりを防止し、長期の安定運転を実現できるので、運転管理が容易となる効果が得られる。
[実施例
図3に本発明の液体処理装置の実施例を示す。図3に示す実施例と図2の実施例との違いは、回収ガス注入管11の出口に、分離ガス注入室12を設けたことにある。
According to the present embodiment, the recovered undissolved gas can be efficiently redissolved, so that the recovery efficiency of the recovered gas can be improved. Since clogging can be prevented and long-term stable operation can be realized, the effect of facilitating operation management can be obtained.
[Example 2 ]
FIG. 3 shows a second embodiment of the liquid processing apparatus of the present invention. The difference between Example 1 Example 2 and 2 shown in FIG. 3, the outlet of the recovery gas inlet tube 11, in the provision of the separation gas injection chamber 12.

即ち、加圧ポンプ2の流下方向の配管22の途中に、反応液からオゾンガスを溶解してオゾン水を生成する気水分離タンク9を設置し、この気水分離タンク9で生成されたオゾン水を減圧ノズル5で減圧してオゾンガスのマイクロバブルを生成させる経路と、気水分離タンク9で生成されたオゾン水中の少なくとも未溶解ガスを気体抜き弁10で抜いて回収ガス注入管11に回収し、この回収ガス注入管11で回収した少なくとも未溶解ガスを、オゾン接触槽1の上部に設置され、オゾン接触槽1と連通すると共に、上部に槽内ガス注入管8が接続された分離ガス注入室12に供給する経路とを備えているものである。   That is, an air / water separation tank 9 for generating ozone water by dissolving ozone gas from the reaction solution is installed in the middle of the downstream flow pipe 22 of the pressurizing pump 2, and the ozone water generated in the air / water separation tank 9. The pressure is reduced by the pressure reducing nozzle 5 to generate ozone gas microbubbles, and at least undissolved gas in the ozone water generated in the air / water separation tank 9 is extracted by the gas vent valve 10 and recovered in the recovery gas injection pipe 11. At least the undissolved gas recovered by the recovered gas injection pipe 11 is installed in the upper part of the ozone contact tank 1 and communicates with the ozone contact tank 1, and the separated gas injection in which the upper tank gas injection pipe 8 is connected. And a path for supplying to the chamber 12.

尚、分離ガス注入室12は、オゾン接触槽1の上部に設置され、下部には穴が開いており、オゾン接触槽1と繋がっている。また、分離ガス注入室12の上部に槽内ガス注入管が接続されている。 The separation gas injection chamber 12 is installed in the upper part of the ozone contact tank 1 and has a hole in the lower part, and is connected to the ozone contact tank 1. A tank gas injection pipe 8 is connected to the upper part of the separation gas injection chamber 12.

次に、本実施例における効果について説明する。上述した回収ガス注入管11より放出された回収ガスは、分離ガス注入室12に留まるため、オゾン接触槽1の上部空間のガスに希釈されることなく気液混合器7で再注入できる。また、回収ガス注入管11のガス量以上に気液混合器7でガスを吸引させることで、オゾン接触槽1内のガスも再注入できる。回収ガスと一緒に運ばれた水分は、分離ガス注入室12の下部の穴よリオゾン接触槽1に落下し処理され、処理装置が不要である。更に、気液混合器7は水分を吸引しないため、水中の固形物質などによる目詰まりを防止できる。   Next, the effect in a present Example is demonstrated. Since the recovery gas released from the recovery gas injection pipe 11 described above remains in the separation gas injection chamber 12, it can be reinjected by the gas-liquid mixer 7 without being diluted with the gas in the upper space of the ozone contact tank 1. Moreover, the gas in the ozone contact tank 1 can be reinjected by sucking the gas with the gas-liquid mixer 7 to the amount of gas in the recovered gas injection pipe 11 or more. Moisture carried together with the recovered gas is dropped into the re-ozone contact tank 1 through the hole in the lower part of the separation gas injection chamber 12 and processed, so that no processing device is required. Furthermore, since the gas-liquid mixer 7 does not suck moisture, it is possible to prevent clogging due to solid substances in water.

このように、オゾン接触槽1の上部に分離ガス注入室12を設けることで、回収ガス中の水分除去と回収ガスの拡散による濃度低下を防止できる。   In this way, by providing the separation gas injection chamber 12 at the upper part of the ozone contact tank 1, it is possible to prevent a decrease in concentration due to moisture removal in the recovered gas and diffusion of the recovered gas.

本実施例によれば、回収した未溶解ガスを効率良く再溶解できるので、回収ガスの溶解効率を向上させることができ、これにより運転費を削減でき、かつ、加圧ポンプ空転や日詰まりを防止し、長期の安定運転を実現できるので、運転管理が容易となる効果が得られる。
[実施例
図4に本発明の液体処理装置の実施例を示す。図4に示す実施例と図2の実施例との違いは、回収ガス注入管11の出口に回収ガス注入室13を設けたことにある。
According to this embodiment, the recovered undissolved gas can be efficiently redissolved, so that the recovery efficiency of the recovered gas can be improved, thereby reducing the operating cost, and the idling of the pressure pump and clogging. And long-term stable operation can be realized, and the effect of facilitating operation management can be obtained.
[Example 3 ]
FIG. 4 shows a third embodiment of the liquid processing apparatus of the present invention. The difference between the third embodiment shown in FIG. 4 and the first embodiment shown in FIG. 2 is that a recovery gas injection chamber 13 is provided at the outlet of the recovery gas injection pipe 11.

即ち、加圧ポンプ2の流下方向の配管22の途中に、反応液からオゾンガスを溶解してオゾン水を生成する気水分離タンク9を設置し、この気水分離タンク9で生成されたオゾン水を減圧ノズル5で減圧してオゾンガスのマイクロバブルを生成させる経路と、気水分離タンク9で生成されたオゾン水中の少なくとも未溶解ガスを気体抜き弁10で抜いて回収ガス注入管11に回収し、この回収ガス注入管11で回収した少なくとも未溶解ガスを、オゾン接触槽1の上部に設置された回収ガス注入室13に供給する経路と、回収ガス注入室13とオゾン接触槽1の間に設置され、オゾン接触槽1とを仕切る電動弁15と、回収ガス注入室13の水位を計測する水位計16と、水位計16の計測値を基に電動弁15を開閉する弁排水制御装置17とを備えているものである。   That is, an air / water separation tank 9 for generating ozone water by dissolving ozone gas from the reaction solution is installed in the middle of the downstream flow pipe 22 of the pressurizing pump 2, and the ozone water generated in the air / water separation tank 9. The pressure is reduced by the pressure reducing nozzle 5 to generate ozone gas microbubbles, and at least undissolved gas in the ozone water generated in the air / water separation tank 9 is extracted by the gas vent valve 10 and recovered in the recovery gas injection pipe 11. A path for supplying at least undissolved gas recovered by the recovered gas injection pipe 11 to the recovered gas injection chamber 13 installed at the upper part of the ozone contact tank 1, and between the recovered gas injection chamber 13 and the ozone contact tank 1. A motorized valve 15 that is installed and partitions the ozone contact tank 1, a water level meter 16 that measures the water level in the recovery gas injection chamber 13, and a valve drainage control device 17 that opens and closes the motorized valve 15 based on the measured value of the water level meter 16. It is one that is equipped with a.

また、回収ガス注入室13には、散気管26等が設置された接触槽注入管14が接続され、回収ガスは、接触槽注入管14を経てオゾン接触槽1に再溶解できる。更に、水位計16の信号は、弁排水制御装置17に送られ、所定の水位になると電動弁15を開放し、蓄積した水分をオゾン接触槽1に注入するようになっている。槽内ガス注入管8は、接触槽注入管14から放出される気泡が達する水面の上部が望ましい。 Further, a contact tank injection pipe 14 provided with a diffuser pipe 26 and the like is connected to the recovery gas injection chamber 13, and the recovery gas can be redissolved in the ozone contact tank 1 via the contact tank injection pipe 14. Further, the signal of the water level meter 16 is sent to the valve drainage control device 17, and when the water level reaches a predetermined level, the motor-operated valve 15 is opened and the accumulated water is injected into the ozone contact tank 1. The tank gas injection pipe 8 is preferably the upper part of the water surface where the bubbles released from the contact tank injection pipe 14 reach.

次に、本実施例における効果について説明する。上述した回収ガス注入室13に供給されたガスには、気水分離タンク9の圧力が加わるため、電動弁15を開じることで回収ガスは、接触槽注入管14を通過してオゾン接触槽1内に散気管26で散気でき、散気された回収ガス中のオゾンを溶解できる。回収ガス中に含まれる水分は回収ガス注入室13で分離されるため、水分中に含まれる固形物質等による散気管26の目詰まりを防止できる。また,散気管26による再注入でも溶解しきれないガスは、槽内ガス注入管8を経て気液混合器7で被処理水に混合され、溶解される。 Next, the effect in a present Example is demonstrated. Since the gas supplied to the recovery gas injection chamber 13 is subjected to the pressure of the steam / water separation tank 9, the recovery gas passes through the contact tank injection pipe 14 and comes into ozone contact by opening the motor-operated valve 15. Air can be diffused into the tank 1 by the air diffuser pipe 26, and ozone in the collected gas diffused can be dissolved. Since the moisture contained in the collected gas is separated in the collected gas injection chamber 13, clogging of the diffuser pipe 26 due to solid substances contained in the moisture can be prevented. Further, the gas that cannot be dissolved even by reinjection through the air diffuser 26 is mixed and dissolved in the water to be treated by the gas-liquid mixer 7 through the gas injection tube 8 in the tank.

このような本実施例によれば、回収した未溶解ガスを効率良く再溶解できるので、回収ガスの溶解効率を向上させることができ、これにより運転費を削減でき、かつ、加圧ポンプ空転や目詰まりを防止し、長期の安定運転を実現できるので、運転管理が容易となる効果が得られる。
[実施例
図5に本発明の液体処理装置の実施例を示す。図5に示す実施例と図2の実施例との違いは、被処理水の流入配管23の流量を計測する流量計20と、オゾン接触槽1の排ガスを分解するためのオゾン分解塔18と、オゾン接触槽1の上部のガスをオゾン分解塔18に流入させるブロワ19と、流量計20の計測信号が入力されてブロワ19の動作を制御する制御装置21とを備え、制御装置21は、流量計20の計測値が予め設定された設定値以上の場合にブロワ19を停止させ、設定値以下の場合にブロワ19を起動させるよう制御する点である。
According to the present embodiment, the recovered undissolved gas can be efficiently redissolved, so that the recovery efficiency of the recovered gas can be improved. Since clogging can be prevented and long-term stable operation can be realized, the effect of facilitating operation management can be obtained.
[Example 4 ]
FIG. 5 shows a fourth embodiment of the liquid processing apparatus of the present invention. The difference between the embodiment 4 shown in FIG. 5 and the embodiment 1 shown in FIG. 2 is that a flow meter 20 for measuring the flow rate of the inflow pipe 23 of the water to be treated and an ozone decomposition tower for decomposing the exhaust gas in the ozone contact tank 1. 18, a blower 19 that causes the gas in the upper part of the ozone contact tank 1 to flow into the ozonolysis tower 18, and a control device 21 that receives the measurement signal of the flow meter 20 and controls the operation of the blower 19. Is that the blower 19 is stopped when the measured value of the flow meter 20 is equal to or greater than a preset value, and the blower 19 is activated when it is equal to or smaller than the preset value.

即ち、制御装置21は、オゾン分解塔18を気液混合器7で吸引できるガス量が気体抜き弁10で回収される流量以下になった場合に起動させる。気液混合器7のガス吸引量は、被処理水の流量に比例するため、制御装置21は、流量計20の計測値が予め設定された設定値以下になった場合に、ブロワ19を起動し、オゾン接触槽1内のガスをオゾン分解塔18で処理させる。 That is, the control device 21 starts the ozonolysis tower 18 when the amount of gas that can be sucked by the gas-liquid mixer 7 becomes less than the flow rate recovered by the gas vent valve 10 . Since the gas suction amount of the gas-liquid mixer 7 is proportional to the flow rate of the water to be treated, the control device 21 activates the blower 19 when the measured value of the flow meter 20 becomes equal to or lower than a preset value. Then, the gas in the ozone contact tank 1 is processed in the ozonolysis tower 18.

オゾナイザ3の供給流量の50%が気体抜き弁10から回収されると仮定し、気体抜き弁10を通過するガス量以上の流量を、気液混合器7が吸引できる流量に設定するとよい。流量が設定値以上では、気液混合器7の吸引量が気体抜き弁10の流量以上になるため、回収ガスを被処理水に溶解させオゾンを処理でき、オゾン分解塔18を停止しても、オゾンが漏洩することはない。   Assuming that 50% of the supply flow rate of the ozonizer 3 is recovered from the gas vent valve 10, a flow rate equal to or higher than the amount of gas passing through the gas vent valve 10 may be set to a flow rate that the gas-liquid mixer 7 can suck. When the flow rate is equal to or higher than the set value, the suction amount of the gas-liquid mixer 7 becomes equal to or higher than the flow rate of the gas vent valve 10, so that the recovered gas can be dissolved in the water to be treated and ozone can be treated. , Ozone will not leak.

尚、制御装置21は、流量計20の計測信号の代わりに被処理水の供給手段の起動、又は停止信号でブロワ19を起動させても良い。また、本実施例では、図2との組合せで説明したが、図3、又は図4の実施例と組合わせてもよい。 In addition, the control apparatus 21 may start the blower 19 by the starting of the to-be-processed water supply means or a stop signal instead of the measurement signal of the flowmeter 20. In the present embodiment, the combination with FIG. 2 is described, but the embodiment may be combined with the embodiment of FIG. 3 or FIG.

このような本実施例によれば、回収した未溶解ガスを効率良く再溶解できるので、回収ガスの溶解効率を向上させることができ、これにより運転費を削減でき、かつ、加圧ポンプ空転や目詰まりを防止し、長期の安定運転を実現できるので、運転管理が容易となる効果が得られる。   According to the present embodiment, the recovered undissolved gas can be efficiently redissolved, so that the recovery efficiency of the recovered gas can be improved. Since clogging can be prevented and long-term stable operation can be realized, the effect of facilitating operation management can be obtained.

1…オゾン接触槽、2…加圧ポンプ、3…オゾナイザ、4…溶解タンク、5…減圧ノズル、6…マイクロバブル注入口、7…気液混合器、8…槽内ガス注入管、9…気水分離タンク、10…気体抜き弁、11…回収ガス注入管、12…分離ガス注入室、13…回収ガス注入室、14…接触槽注入管、15…電動弁、16…水位計、17…弁排水制御装置、18…オゾン分解塔、19…ブロワ、20…流量計、21…制御装置、22…配管、23…流入配管、24…ガス入口、25…仕切板、26…散気管。 DESCRIPTION OF SYMBOLS 1 ... Ozone contact tank, 2 ... Pressure pump, 3 ... Ozonizer, 4 ... Dissolution tank, 5 ... Decompression nozzle, 6 ... Micro bubble inlet, 7 ... Gas-liquid mixer, 8 ... Gas injection pipe in tank, 9 ... Gas / water separation tank, 10 ... Gas vent valve, 11 ... Recovery gas injection pipe, 12 ... Separation gas injection chamber, 13 ... Recovery gas injection chamber, 14 ... Contact tank injection pipe, 15 ... Electric valve, 16 ... Water level gauge, 17 DESCRIPTION OF SYMBOLS ... Valve drainage control device, 18 ... Ozone decomposition tower, 19 ... Blower, 20 ... Flow meter, 21 ... Control device, 22 ... Pipe, 23 ... Inflow piping, 24 ... Gas inlet, 25 ... Partition plate, 26 ... Aeration pipe.

Claims (6)

オゾンと被処理水が接触した反応液を収納するオゾン接触槽と、該オゾン接触槽の反応液の一部を循環させる配管の途中に設置された加圧ポンプと、該加圧ポンプと前記オゾン接触槽の間の前記配管にオゾンガスを注入するオゾナイザと、前記加圧ポンプより下流側の前記配管の途中に設置され、前記オゾナイザからのオゾンガスが注入された前記反応液を減圧し、前記オゾンガスのマイクロバブルを生成させる減圧ノズルと、該減圧ノズルで生成された前記マイクロバブルを前記オゾン接触槽に注入するマイクロバブル注入口とを備えた液体処理装置において、
前記マイクロバブル注入口より上部の前記オゾン接触槽に接続され、該オゾン接触槽の上部空間に放出される前記減圧ノズルでマイクロバブル化されない未溶解ガスを吸引する槽内ガス注入管と、前記被処理水の前記オゾン接触槽への流入配管に途中に設置され、前記槽内ガス注入管に吸引された前記未溶解ガスを、前記被処理水の流れに伴い吸引し該被処理水と混合して前記オゾン接触槽に戻す気液混合器とを備えていると共に、前記加圧ポンプの流下方向の配管の途中に、前記反応液からオゾンガスを溶解してオゾン水を生成する気水分離タンクを設置し、該気水分離タンクで生成された前記オゾン水を前記減圧ノズルで減圧してオゾンガスのマイクロバブルを生成させる経路と、前記気水分離タンクで生成された前記オゾン水中の少なくとも未溶解ガスを気体抜き弁で抜いて回収ガス注入管に回収し、該回収ガス注入管で回収した少なくとも前記未溶解ガスを前記オゾン接触槽に供給する経路とを備え、かつ、前記オゾン接触槽の上部空間に、前記回収ガス注入管と槽内ガス注入管が接続されていることを特徴とする液体処理装置。
An ozone contact tank for storing a reaction liquid in which ozone and water to be treated are in contact; a pressure pump installed in the middle of a pipe for circulating a part of the reaction liquid in the ozone contact tank; the pressure pump and the ozone An ozonizer for injecting ozone gas into the piping between the contact tanks, and installed in the middle of the piping on the downstream side of the pressurizing pump, depressurizing the reaction liquid into which the ozone gas from the ozonizer has been injected, In a liquid processing apparatus comprising a decompression nozzle for producing microbubbles, and a microbubble inlet for injecting the microbubbles produced by the decompression nozzle into the ozone contact tank,
A gas injection pipe in the tank that is connected to the ozone contact tank above the microbubble inlet and sucks undissolved gas that is not microbubbled by the decompression nozzle that is discharged into the upper space of the ozone contact tank; The undissolved gas which is installed in the middle of the inflow pipe to the ozone contact tank of the treated water and sucked into the gas injection pipe in the tank is sucked with the flow of the treated water and mixed with the treated water. A gas-liquid mixing tank for returning ozone to the ozone contact tank, and a gas-water separation tank for generating ozone water by dissolving ozone gas from the reaction solution in the middle of the downstream pipe of the pressure pump. Installed, a path for generating ozone gas microbubbles by depressurizing the ozone water generated in the steam separation tank by the decompression nozzle, and a small amount of ozone water generated in the steam separation tank. The undissolved gas is extracted by a gas vent valve and recovered in a recovery gas injection pipe, and at least the undissolved gas recovered in the recovery gas injection pipe is supplied to the ozone contact tank, and the ozone contact A liquid processing apparatus , wherein the recovery gas injection pipe and the tank gas injection pipe are connected to an upper space of the tank .
請求項に記載の液体処理装置において、
前記槽内ガス注入管は、前記回収ガス注入管の上部に設置されていることを特徴とする
液体処理装置。
The liquid processing apparatus according to claim 1 .
The liquid processing apparatus according to claim 1, wherein the tank gas injection pipe is installed at an upper portion of the recovered gas injection pipe.
オゾンと被処理水が接触した反応液を収納するオゾン接触槽と、該オゾン接触槽の反応液の一部を循環させる配管の途中に設置された加圧ポンプと、該加圧ポンプと前記オゾン接触槽の間の前記配管にオゾンガスを注入するオゾナイザと、前記加圧ポンプより下流側の前記配管の途中に設置され、前記オゾナイザからのオゾンガスが注入された前記反応液を減圧し、前記オゾンガスのマイクロバブルを生成させる減圧ノズルと、該減圧ノズルで生成された前記マイクロバブルを前記オゾン接触槽に注入するマイクロバブル注入口とを備えた液体処理装置において、
前記マイクロバブル注入口より上部の前記オゾン接触槽に接続され、該オゾン接触槽の上部空間に放出される前記減圧ノズルでマイクロバブル化されない未溶解ガスを吸引する槽内ガス注入管と、前記被処理水の前記オゾン接触槽への流入配管に途中に設置され、前記槽内ガス注入管に吸引された前記未溶解ガスを、前記被処理水の流れに伴い吸引し該被処理水と混合して前記オゾン接触槽に戻す気液混合器とを備えていると共に、前記加圧ポンプの流下方向の配管の途中に、前記反応液からオゾンガスを溶解してオゾン水を生成する気水分離タンクを設置し、該気水分離タンクで生成された前記オゾン水を前記減圧ノズルで減圧してオゾンガスのマイクロバブルを生成させる経路と、前記気水分離タンクで生成された前記オゾン水中の少なくとも未溶解ガスを気体抜き弁で抜いて回収ガス注入管に回収し、該回収ガス注入管で回収した少なくとも前記未溶解ガスを、前記オゾン接触槽の上部に設置され、該オゾン接触槽と連通すると共に、上部に前記槽内ガス注入管が接続された分離ガス注入室に供給する経路とを備えていることを特徴とする液体処理装置。
An ozone contact tank for storing a reaction liquid in which ozone and water to be treated are in contact; a pressure pump installed in the middle of a pipe for circulating a part of the reaction liquid in the ozone contact tank; the pressure pump and the ozone An ozonizer for injecting ozone gas into the piping between the contact tanks, and installed in the middle of the piping on the downstream side of the pressurizing pump, depressurizing the reaction liquid into which the ozone gas from the ozonizer has been injected, In a liquid processing apparatus comprising a decompression nozzle for producing microbubbles, and a microbubble inlet for injecting the microbubbles produced by the decompression nozzle into the ozone contact tank,
A gas injection pipe in the tank that is connected to the ozone contact tank above the microbubble inlet and sucks undissolved gas that is not microbubbled by the decompression nozzle that is discharged into the upper space of the ozone contact tank; The undissolved gas which is installed in the middle of the inflow pipe to the ozone contact tank of the treated water and sucked into the gas injection pipe in the tank is sucked with the flow of the treated water and mixed with the treated water. A gas-liquid mixing tank for returning ozone to the ozone contact tank, and a gas-water separation tank for generating ozone water by dissolving ozone gas from the reaction solution in the middle of the downstream pipe of the pressure pump. Installed, a path for generating ozone gas microbubbles by depressurizing the ozone water generated in the steam separation tank by the decompression nozzle, and a small amount of ozone water generated in the steam separation tank. Both undissolved gas is extracted by a gas vent valve and collected in a recovery gas injection pipe. At least the undissolved gas recovered by the recovery gas injection pipe is installed in the upper part of the ozone contact tank and communicates with the ozone contact tank. And a path for supplying a separation gas injection chamber to which the tank gas injection pipe is connected at the top.
オゾンと被処理水が接触した反応液を収納するオゾン接触槽と、該オゾン接触槽の反応液の一部を循環させる配管の途中に設置された加圧ポンプと、該加圧ポンプと前記オゾン接触槽の間の前記配管にオゾンガスを注入するオゾナイザと、前記加圧ポンプより下流側の前記配管の途中に設置され、前記オゾナイザからのオゾンガスが注入された前記反応液を減圧し、前記オゾンガスのマイクロバブルを生成させる減圧ノズルと、該減圧ノズルで生成された前記マイクロバブルを前記オゾン接触槽に注入するマイクロバブル注入口とを備えた液体処理装置において、
前記マイクロバブル注入口より上部の前記オゾン接触槽に接続され、該オゾン接触槽の上部空間に放出される前記減圧ノズルでマイクロバブル化されない未溶解ガスを吸引する槽内ガス注入管と、前記被処理水の前記オゾン接触槽への流入配管に途中に設置され、前記槽内ガス注入管に吸引された前記未溶解ガスを、前記被処理水の流れに伴い吸引し該被処理水と混合して前記オゾン接触槽に戻す気液混合器とを備えていると共に、前記加圧ポンプの流下方向の配管の途中に、前記反応液からオゾンガスを溶解してオゾン水を生成する気水分離タンクを設置し、該気水分離タンクで生成された前記オゾン水を前記減圧ノズルで減圧してオゾンガスのマイクロバブルを生成させる経路と、前記気水分離タンクで生成された前記オゾン水中の少なくとも未溶解ガスを気体抜き弁で抜いて回収ガス注入管に回収し、該回収ガス注入管で回収した少なくとも前記未溶解ガスを、前記オゾン接触槽の上部に設置された回収ガス注入室に供給する経路と、前記回収ガス注入室と該オゾン接触槽の間に設置された電動弁と、前記回収ガス注入室の水位を計測する水位計と、該水位計の計測値を基に前記電動弁を開閉する弁排水制御装置とを備えていることを特徴とする液体処理装置。
An ozone contact tank for storing a reaction liquid in which ozone and water to be treated are in contact; a pressure pump installed in the middle of a pipe for circulating a part of the reaction liquid in the ozone contact tank; the pressure pump and the ozone An ozonizer for injecting ozone gas into the piping between the contact tanks, and installed in the middle of the piping on the downstream side of the pressurizing pump, depressurizing the reaction liquid into which the ozone gas from the ozonizer has been injected, In a liquid processing apparatus comprising a decompression nozzle for producing microbubbles, and a microbubble inlet for injecting the microbubbles produced by the decompression nozzle into the ozone contact tank,
A gas injection pipe in the tank that is connected to the ozone contact tank above the microbubble inlet and sucks undissolved gas that is not microbubbled by the decompression nozzle that is discharged into the upper space of the ozone contact tank; The undissolved gas which is installed in the middle of the inflow pipe to the ozone contact tank of the treated water and sucked into the gas injection pipe in the tank is sucked with the flow of the treated water and mixed with the treated water. A gas-liquid mixing tank for returning ozone to the ozone contact tank, and a gas-water separation tank for generating ozone water by dissolving ozone gas from the reaction solution in the middle of the downstream pipe of the pressure pump. Installed, a path for generating ozone gas microbubbles by depressurizing the ozone water generated in the steam separation tank by the decompression nozzle, and a small amount of ozone water generated in the steam separation tank. Both undissolved gas is extracted with a gas vent valve and collected in a recovery gas injection pipe, and at least the undissolved gas recovered by the recovery gas injection pipe is supplied to a recovery gas injection chamber installed in the upper part of the ozone contact tank. A motor valve installed between the recovery gas injection chamber and the ozone contact tank, a water level meter for measuring the water level of the recovery gas injection chamber, and the motor operated valve based on the measured value of the water level meter A liquid processing apparatus comprising: a valve drainage control device that opens and closes the valve.
請求項に記載の液体処理装置において、
前記回収ガス注入室に、前記オゾン接触槽に散気するための散気管が接続された接触槽注入管を設置し、かつ、前記槽内ガス注入管を前記散気管の上部に設けたことを特徴とする液体処理装置。
The liquid processing apparatus according to claim 4 .
In the recovered gas injection chamber, a contact tank injection pipe connected to a diffuser pipe for diffusing into the ozone contact tank is installed, and the gas injection pipe in the tank is provided above the diffusion pipe. A liquid processing apparatus.
請求項1乃至のいずれか1項に記載の液体処理装置において、
前記被処理水の流入配管の流量を計測する流量計と、前記オゾン接触槽の排ガスを分解するためのオゾン分解塔と、前記オゾン接触槽の上部のガスを前記オゾン分解塔に流入させるブロワと、前記流量計の計測信号が入力されて前記ブロワの動作を制御する制御装置とを備え、
前記制御装置は、前記流量計の計測値が予め設定された設定値以上の場合に前記ブロワを停止させ、設定値以下の場合に前記ブロフを起動させるよう制御することを特徴とする液体処理装置。
The liquid processing apparatus according to any one of claims 1 to 5 ,
A flow meter for measuring the flow rate of the inflow pipe of the water to be treated, an ozone decomposition tower for decomposing exhaust gas in the ozone contact tank, and a blower for allowing the gas in the upper part of the ozone contact tank to flow into the ozone decomposition tower; And a control device for controlling the operation of the blower when a measurement signal of the flow meter is input,
The control device controls the blower to stop when the measured value of the flowmeter is equal to or higher than a preset value, and to start the blower when the measured value is equal to or lower than the preset value. .
JP2011203930A 2011-09-19 2011-09-19 Liquid processing equipment Active JP5575720B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011203930A JP5575720B2 (en) 2011-09-19 2011-09-19 Liquid processing equipment
CN201210261465.3A CN102992471B (en) 2011-09-19 2012-07-26 Liquid treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011203930A JP5575720B2 (en) 2011-09-19 2011-09-19 Liquid processing equipment

Publications (2)

Publication Number Publication Date
JP2013063396A JP2013063396A (en) 2013-04-11
JP5575720B2 true JP5575720B2 (en) 2014-08-20

Family

ID=47921674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011203930A Active JP5575720B2 (en) 2011-09-19 2011-09-19 Liquid processing equipment

Country Status (2)

Country Link
JP (1) JP5575720B2 (en)
CN (1) CN102992471B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110330093A (en) * 2019-07-10 2019-10-15 扬州大学 A kind of pressure air-dissolving strengthens ozone pre-oxidation capability device and its processing method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6047699B2 (en) * 2012-06-28 2016-12-21 有限会社光輝 Production method, production apparatus and ozone-containing aqueous solution of ozone-containing aqueous solution
JP6022495B2 (en) * 2013-03-04 2016-11-09 株式会社Ihiシバウラ Ozone water generator
WO2015174618A1 (en) * 2014-05-12 2015-11-19 해성엔지니어링 주식회사 Reused water treatment apparatus for reusing rainwater and graywater
KR101671410B1 (en) * 2015-02-24 2016-11-01 해성엔지니어링 주식회사 Water treatement apparatus for reusing rainwater and waste water
CN105876287A (en) * 2014-12-17 2016-08-24 陈必义 Fresh-keeping cabinet treating food source pollution
KR101712995B1 (en) * 2016-01-26 2017-03-07 이면규 Ozonic water supply apparatus
KR101699039B1 (en) * 2016-02-11 2017-02-01 주식회사 네가트론 Apparatus for manufacturing sterilization water
KR101997918B1 (en) * 2017-02-17 2019-07-08 이면규 Ozonic water supply apparatus
CN107441969A (en) * 2017-08-25 2017-12-08 李明琦 A kind of small-sized high-concentrated ozone water generating device and method
CN109224891B (en) * 2018-11-01 2021-02-12 秦积舜 Industrial application grade method for quickly dissolving gas
JP2020130077A (en) * 2019-02-21 2020-08-31 三菱ケミカルエンジニアリング株式会社 Anaerobic bacterium culture device equipped with mechanism for containing fine bubbles and ultrafine bubbles of gas containing nitrogen gas as main component in culture solution, and anaerobic bacterium culture method using the anaerobic bacterium culture device
WO2020198698A1 (en) * 2019-03-28 2020-10-01 Nanopure, Llc Gas injection systems for optimizing nanobubble formation in a disinfecting solution
US11602719B2 (en) * 2020-02-12 2023-03-14 Canon Kabushiki Kaisha Ultrafine bubble generating apparatus and ultrafine bubble generating head
KR102465402B1 (en) * 2022-03-15 2022-11-11 (주)미시간기술 Dissolved Air or Ozone water treatment equipment
KR102661451B1 (en) * 2022-05-02 2024-04-26 박재근 Versatile Dissolver

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046564A (en) * 1973-07-30 1975-04-25
JPH09234477A (en) * 1996-02-29 1997-09-09 Chlorine Eng Corp Ltd Ejector type ozone catalytic reaction method and reaction device
JP2002210340A (en) * 2001-01-22 2002-07-30 Core Medical Kk Ozone water producer
JP2004188246A (en) * 2002-12-06 2004-07-08 Toshiba Plant Systems & Services Corp System for manufacturing ozonized water
JP4201042B2 (en) * 2006-12-26 2008-12-24 株式会社日立製作所 Liquid processing method and apparatus
JP2009248048A (en) * 2008-04-09 2009-10-29 Shori:Kk Gas/liquid-mixed water generating apparatus
JP2009254967A (en) * 2008-04-16 2009-11-05 Hitachi Ltd Water treatment system
JP4547445B2 (en) * 2008-07-03 2010-09-22 株式会社日立製作所 Liquid processing equipment
CN201362609Y (en) * 2009-03-17 2009-12-16 福州大学 Gas-liquid photocatalytic oxidation reaction device
JP2010246493A (en) * 2009-04-20 2010-11-04 Nakata Coating Co Ltd Water-supplying system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110330093A (en) * 2019-07-10 2019-10-15 扬州大学 A kind of pressure air-dissolving strengthens ozone pre-oxidation capability device and its processing method

Also Published As

Publication number Publication date
CN102992471A (en) 2013-03-27
CN102992471B (en) 2015-02-18
JP2013063396A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5575720B2 (en) Liquid processing equipment
JP4201042B2 (en) Liquid processing method and apparatus
JP4547445B2 (en) Liquid processing equipment
KR101024658B1 (en) Ozonized Water Generator
US8808550B2 (en) Apparatus and method for dissolution of ozone in water and catalytic oxidation
KR101209463B1 (en) Micro-bubble solution generating device using turbine pump
US10259731B2 (en) Sludge treatment system and sludge treatment method
CN103011378B (en) For improving the gas dispersion apparatus of gas-liquid mass transfer
KR20150003473U (en) Generation apparatus for dissolving gas in liquid and fluid nozzle
JP4003231B2 (en) Ozone water treatment equipment
CN202643437U (en) Jet-type gas stripping ultrafiltration membrane device
JP3478142B2 (en) Method for producing pressurized water and apparatus for producing pressurized water
KR20100009653U (en) Apparatus for Manufacturing Ozone Water and Ozone Air
JP4215548B2 (en) Oil / water separator
JP2005000882A (en) Apparatus for generating micro bubble
JP2005218955A (en) Gas/liquid contactor
WO2012108035A1 (en) Sewage treatment system in sewerage system
JP2013223824A (en) Fine bubble utilizing apparatus
CN117813266A (en) Device for dissolving gas in water
KR20210000257U (en) Bubble Generator for Water Treatment System
JP2011005445A (en) Water treatment apparatus
JP4587111B2 (en) Ozone dissolved water supply device
CN206184281U (en) Recovery gas liquid mixing arrangement is taken to strong inhaling certainly
KR100445301B1 (en) Ozone Sterilization Method and Device for Water Supply Drainage
KR102538468B1 (en) Ozone mixing device of water treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140702

R150 Certificate of patent or registration of utility model

Ref document number: 5575720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150