JP5575118B2 - Organosilicon compound, and rubber composition and tire using the same - Google Patents

Organosilicon compound, and rubber composition and tire using the same Download PDF

Info

Publication number
JP5575118B2
JP5575118B2 JP2011514338A JP2011514338A JP5575118B2 JP 5575118 B2 JP5575118 B2 JP 5575118B2 JP 2011514338 A JP2011514338 A JP 2011514338A JP 2011514338 A JP2011514338 A JP 2011514338A JP 5575118 B2 JP5575118 B2 JP 5575118B2
Authority
JP
Japan
Prior art keywords
mercaptopropyl
group
dioxa
silacyclooctane
organosilicon compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011514338A
Other languages
Japanese (ja)
Other versions
JPWO2010134341A1 (en
Inventor
誠一 加藤
暁 堀江
憲明 幸村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2011514338A priority Critical patent/JP5575118B2/en
Publication of JPWO2010134341A1 publication Critical patent/JPWO2010134341A1/en
Application granted granted Critical
Publication of JP5575118B2 publication Critical patent/JP5575118B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/549Silicon-containing compounds containing silicon in a ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、有機ケイ素化合物、該有機ケイ素化合物を含むゴム組成物並びに、該ゴム組成物を用いたタイヤに関し、特には、ゴム組成物のヒステリシスロスを低下させると共に、耐摩耗性を向上させることが可能な有機ケイ素化合物に関するものである。 The present invention is a rubber composition containing an organic silicon compound, an organic silicon compound, and relates to a tire using the rubber composition, in particular, with reducing the hysteresis loss of the rubber composition, to improve the wear resistance It relates to an organosilicon compound that can be used.

昨今、車両の安全性の観点から、タイヤの湿潤路面における安全性を向上させることが求められている。また、環境問題への関心の高まりに伴う二酸化炭素の排出量の削減の観点から、車両を更に低燃費化することも求められている。   Recently, from the viewpoint of vehicle safety, it is required to improve the safety of tires on wet road surfaces. In addition, from the viewpoint of reducing carbon dioxide emissions associated with increased interest in environmental issues, it is also required to further reduce fuel consumption of vehicles.

これらの要求に対し、従来、タイヤの湿潤路面における性能の向上と転がり抵抗の低減とを両立する技術として、タイヤのトレッドに用いるゴム組成物の充填剤としてシリカ等の無機充填剤を用いる手法が有効であることが知られている。しかしながら、シリカ等の無機充填剤を配合したゴム組成物は、タイヤの転がり抵抗を低減し、湿潤路面における制動性を向上させ、操縦安定性を向上させるものの、未加硫粘度が高く、多段練り等を要するため、作業性に問題がある。そのため、シリカ等の無機充填剤を配合したゴム組成物においては、破壊強力及び耐摩耗性が大幅に低下し、加硫遅延や充填剤の分散不良等の問題を生じる。   In response to these demands, conventionally, as a technique for achieving both improvement in performance on a wet road surface of a tire and reduction in rolling resistance, a technique of using an inorganic filler such as silica as a filler of a rubber composition used for a tire tread is known. It is known to be effective. However, rubber compositions containing inorganic fillers such as silica reduce tire rolling resistance, improve braking performance on wet road surfaces, and improve steering stability, but have high unvulcanized viscosity and multi-stage kneading. Therefore, there is a problem in workability. Therefore, in a rubber composition containing an inorganic filler such as silica, the breaking strength and wear resistance are greatly reduced, and problems such as vulcanization delay and poor filler dispersion occur.

そこで、トレッド用ゴム組成物にシリカ等の無機充填剤を配合した場合、ゴム組成物の未加硫粘度を低下させ、モジュラスや耐摩耗性を確保し、また、ヒステリシスロスを更に低下させるためには、シランカップリング剤を添加することが必須となっている。また、該シランカップリング剤は、プライマー組成物、塗料組成物及び接着剤等のゴム組成物以外の用途にも広く用いられている。   Therefore, when an inorganic filler such as silica is blended with the rubber composition for tread, the unvulcanized viscosity of the rubber composition is reduced, the modulus and wear resistance are ensured, and the hysteresis loss is further reduced. It is essential to add a silane coupling agent. The silane coupling agent is also widely used for applications other than rubber compositions such as a primer composition, a coating composition, and an adhesive.

米国特許第3,842,111号US Pat. No. 3,842,111 米国特許第3,873,489号US Pat. No. 3,873,489

しかしながら、シランカップリング剤は高価であるため、シランカップリング剤の配合によって、配合コストが上昇してしまう。また、分散改良剤の添加によっても、ゴム組成物の未加硫粘度が低下し、作業性が向上するが、耐摩耗性が低下してしまう。更に、分散改良剤がイオン性の高い化合物の場合には、ロール密着等の加工性の低下も見られる。また更に、本発明者らが検討したところ、充填剤としてシリカ等の無機充填剤を配合しつつ、従来のシランカップリング剤を添加しても、ゴム組成物のヒステリシスロスの低減と耐摩耗性の向上とを十分満足できるレベルにすることができず、依然として改良の余地が有ることが分かった However, since the silane coupling agent is expensive, the blending cost increases due to the blending of the silane coupling agent. Also, the addition of a dispersion improver decreases the unvulcanized viscosity of the rubber composition and improves workability, but also reduces the wear resistance. Furthermore, when the dispersion improver is a highly ionic compound, a decrease in workability such as roll adhesion is also observed. Furthermore, as a result of investigation by the present inventors, even when an inorganic filler such as silica is blended as a filler, even when a conventional silane coupling agent is added, the hysteresis loss of the rubber composition is reduced and the wear resistance is reduced. However, it was found that there was still room for improvement .

そこで、本発明の目的は、上記従来技術の問題を解決し、ゴム組成物のヒステリシスロスを大幅に低下させると共に、耐摩耗性を大幅に向上させることが可能な新規化合物を提供することにある。また、本発明の他の目的は、かかる化合物を含むゴム組成物並びに、該ゴム組成物を用いたタイヤを提供することにある。 Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a novel compound capable of greatly reducing the hysteresis loss of the rubber composition and greatly improving the wear resistance. . Another object of the present invention, rubber compositions containing such compounds, and to provide a tire using the rubber composition.

本発明者らは、上記目的を達成するために鋭意検討した結果、特定の構造式で表わされる有機ケイ素化合物は、シリカ等の無機充填剤との反応速度が高いため、該有機ケイ素化合物を無機充填剤と共にゴム成分に配合することで、カップリング反応の効率が向上して、ゴム組成物のヒステリシスロスを大幅に低下させつつ、耐摩耗性を大幅に向上させられることを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above-mentioned object, the present inventors have found that the organosilicon compound represented by a specific structural formula has a high reaction rate with an inorganic filler such as silica. by blending the rubber component with the filler, and improving the efficiency of the coupling reaction, while greatly reducing the hysteresis loss of the rubber composition, it found that are greatly improved wear resistance, the present invention It came to complete.

即ち、本発明の第一の有機ケイ素化合物は、下記一般式(I):

Figure 0005575118
[式中、R1、R2及びR3は、少なくとも一つが下記一般式(III)
−M−Cl2l−R6 ・・・ (III)
(式中、Mは−O−又は−CH2−で6は−NR78、−NR7−NR78、又は−N=NR7で、但し、R7は−Cn2n+1であり、R8は−Cq2q+1であり、ln及びqはそれぞれ独立して0〜20である)で表わされ、その他が−M−Cl2l+1(ここで、M及びlは上記と同義であるで表わされ、但し、R1、R2及びR3の一つ以上はMが−O−であり、
4 −M−Cl2l−(ここで、M及びlは上記と同義である)で表される]で表わされることを特徴とする。 That is, the first organosilicon compound of the present invention has the following general formula (I):
Figure 0005575118
[In the formula, at least one of R 1 , R 2 and R 3 is represented by the following general formula (III) :
-M-C l H 2l -R 6 (III)
(In the formula, M is —O— or —CH 2, R 6 is —NR 7 R 8 , —NR 7 —NR 7 R 8 , or —N═NR 7 , where R 7 is —C n. H 2n + 1 , R 8 is —C q H 2q + 1 , l 1 , n and q are each independently 0 to 20), and the others are —M—C 1 H 2l +1 (wherein M and l are as defined above ) , provided that at least one of R 1 , R 2 and R 3 is M is —O—,
R 4 is represented by —M—C 1 H 2 1 — (wherein M and l are as defined above).

また、本発明の第二の有機ケイ素化合物は、下記一般式(VI):

Figure 0005575118
[式中、Wは−NR7ここで7は−Cn2n+10〜20である)で表わされ、
10及びR11はそれぞれ独立して−M−Cl2l−(ここで、Mは−O−又は−CH2−で、lは0〜20である)で表わされ、
12は−M−Cl2l+1 ここで、M及びlは上記と同義である)或いは−(M−Cl2lys2s+1(ここで、M及びlは上記と同義であり、y及びsはそれぞれ独立して1〜20である)で表わされ、但し、R10、R11及びR12の一つ以上はMが−O−であり、
4 −M−Cl2l−(ここで、M及びlは上記と同義である)で表される]表わされることを特徴とする。 The second organosilicon compound of the present invention has the following general formula (VI):
Figure 0005575118
Wherein, W is -NR 7 - (wherein, R 7 is -C n H 2n + 1, n is a is 0 to 20) is represented by,
R 10 and R 11 are each independently represented by —M—C 1 H 2 1 — (wherein M is —O— or —CH 2 —, and 1 is 0 to 20),
R 12 is -M-C l H 2l + 1 ( wherein, M and l have the same meanings as mentioned above), or - (M-C l H 2l ) y C s H 2s + 1 ( where, M and l Is as defined above, and y and s are each independently 1-20, provided that at least one of R 10 , R 11 and R 12 is M is —O—,
R 4 is -M-C l H 2l - (wherein, M and l have the same meanings as mentioned above) characterized by being represented by] represented by.

本発明の有機ケイ素化合物において、前記Mは−O−であることが好ましい。   In the organosilicon compound of the present invention, the M is preferably —O—.

上記式(I)で表わされる有機ケイ素化合物においては、前記R1、R2及びR3は、少なくとも一つが−O−Cl2l−R6(ここで、R6及びlは上記と同義である)で表わされ、その他が−O−Cl2l+1(ここで、lは上記と同義である)で表わされ、
前記R4が−Cl2l−(ここで、lは上記と同義である)で表わされることが好ましい。
In the organosilicon compound represented by the above formula (I), at least one of R 1 , R 2 and R 3 is —O—C 1 H 2 1 —R 6 (where R 6 and 1 are as defined above). And the others are represented by —O—C 1 H 2l + 1 (where l is as defined above),
The R 4 is preferably represented by —C 1 H 2l — (wherein l is as defined above).

上記式(I)で表わされる有機ケイ素化合物においては、前記R1、R2及びR3は、少なくとも一つが−O−Cl2l−NR78(ここで、R7、R8及びlは上記と同義である)で表わされることが更に好ましい。In the organosilicon compound represented by the above formula (I), at least one of R 1 , R 2 and R 3 is —O—C 1 H 2 1 —NR 7 R 8 (where R 7 , R 8 and More preferably, l is as defined above.

また、本発明のゴム組成物は、天然ゴム及び/又はジエン系合成ゴムからなるゴム成分(A)に対して、無機充填剤(B)と上記の有機ケイ素化合物(C)とを配合してなることを特徴とする。   Moreover, the rubber composition of the present invention comprises an inorganic filler (B) and the above organosilicon compound (C) in a rubber component (A) made of natural rubber and / or a diene synthetic rubber. It is characterized by becoming.

本発明のゴム組成物は、前記天然ゴム及び/又はジエン系合成ゴムからなるゴム成分(A)100質量部に対して、前記無機充填剤(B)5〜140質量部を配合してなり、
更に、前記有機ケイ素化合物(C)を、前記無機充填剤(B)の配合量の1〜20質量%含むことが好ましい。
The rubber composition of the present invention is obtained by blending 5 to 140 parts by mass of the inorganic filler (B) with respect to 100 parts by mass of the rubber component (A) composed of the natural rubber and / or the diene synthetic rubber.
Furthermore, it is preferable that 1-20 mass% of the compounding quantity of the said inorganic filler (B) is included for the said organosilicon compound (C).

本発明のゴム組成物の好適例においては、前記無機充填剤(B)がシリカ又は水酸化アルミニウムである。ここで、該シリカは、BET表面積が40〜350 m2/gであることが好ましい。In a preferred example of the rubber composition of the present invention, the inorganic filler (B) is silica or aluminum hydroxide. Here, the silica preferably has a BET surface area of 40 to 350 m 2 / g.

また、本発明のタイヤは、上記のゴム組成物を用いたことを特徴とする。   The tire of the present invention is characterized by using the above rubber composition.

本発明によれば、窒素原子(N)及び硫黄原子(S)を含有し、ケイ素−酸素結合(Si−O)を有する特定の分子構造を有し、ゴム組成物のヒステリシスロスを大幅に低下させると共に、耐摩耗性を大幅に向上させることが可能な有機ケイ素化合物を提供することができる。また、かかる有機ケイ素化合物を含むゴム組成物及び該ゴム組成物を用いたタイヤ提供することができる。 According to the present invention, it has a specific molecular structure containing a nitrogen atom (N) and a sulfur atom (S) and having a silicon-oxygen bond (Si-O), and greatly reduces the hysteresis loss of the rubber composition. In addition, it is possible to provide an organosilicon compound capable of greatly improving wear resistance. Further, it is possible to provide a tire using the rubber composition and the rubber composition containing such an organic silicon compound.

<有機ケイ素化合物>
以下に、本発明を詳細に説明する。本発明の第一の有機ケイ素化合物は、上記一般式(I)で表わされ、また、本発明の第二の有機ケイ素化合物は、上記一般式(VI)で表わされることを特徴とする。これら本発明の有機ケイ素化合物は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。本発明の有機ケイ素化合物は、シリカ等の無機充填剤の表面との親和性が高いアミノ基、イミノ基、置換アミノ基、置換イミノ基等の含窒素官能基を含むため、窒素原子の非共有電子対が、有機ケイ素化合物と無機充填剤の反応に関与でき、カップリング反応の速度が速い。そのため、従来のシランカップリング剤に代えて、本発明の有機ケイ素化合物を無機充填剤配合ゴム組成物に添加することで、カップリング効率が向上し、その結果として、ゴム組成物のヒステリシスロスを大幅に低下させつつ、耐摩耗性を大幅に向上させることが可能となる。また、本発明の有機ケイ素化合物は、添加効率が高いため、少量でも高い効果が得られ、配合コストの低減にも寄与する。
<Organic silicon compound>
The present invention is described in detail below. The first organosilicon compound of the present invention is represented by the above general formula (I), and the second organosilicon compound of the present invention is represented by the above general formula (VI). These organosilicon compounds of the present invention may be used singly or in combination of two or more. The organosilicon compound of the present invention contains a nitrogen-containing functional group such as an amino group, an imino group, a substituted amino group, or a substituted imino group that has a high affinity with the surface of an inorganic filler such as silica, so that the nitrogen atom is not shared. The electron pair can participate in the reaction between the organosilicon compound and the inorganic filler, and the coupling reaction rate is high. Therefore, by adding the organosilicon compound of the present invention to the inorganic filler-containing rubber composition instead of the conventional silane coupling agent, the coupling efficiency is improved, and as a result, the hysteresis loss of the rubber composition is reduced. It is possible to greatly improve the wear resistance while greatly reducing. In addition, since the organosilicon compound of the present invention has high addition efficiency, a high effect can be obtained even in a small amount, and it contributes to reduction of the blending cost.

本発明の有機ケイ素化合物は、ケイ素−酸素結合(Si−O)を1〜6個有することが好ましい。有機ケイ素化合物がケイ素−酸素結合(Si−O)を1〜6個有する場合、シリカ等の無機充填剤との反応性が高く、カップリング効率が更に向上する。   The organosilicon compound of the present invention preferably has 1 to 6 silicon-oxygen bonds (Si—O). When the organosilicon compound has 1 to 6 silicon-oxygen bonds (Si—O), the reactivity with an inorganic filler such as silica is high, and the coupling efficiency is further improved.

<<式(I)の化合物>>
上記一般式(I)において、R1、R2及びR3は、少なくとも一つが上記一般式(III)で表わされ、その他が−M−Cl2l+1(ここで、Mは−O−又は−CH2−であり、lは0〜20である)表わされる。但し、R1、R2及びR3の一つ以上は、Mが−O−である。なお、−Cl2l+1は、lが0〜20であるため、水素又は炭素数1〜20のアルキル基である。ここで、炭素数1〜20のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられ、該アルキル基は、直鎖状でも、分岐状でもよい。また、−Cl2l−は、lが0〜20であるため、単結合又は炭素数1〜20のアルキレン基である。ここで、炭素数1〜20のアルキレン基としては、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基、ドデカメチレン基、テトラデカメチレン基、ヘキサデカメチレン基、オクタデカメチレン基等が挙げられ、該アルキレン基は、直鎖状でも分岐状でもよい
<< Compound of Formula (I) >>
In the general formula (I), at least one of R 1 , R 2 and R 3 is represented by the general formula (III), and the others are -M-C 1 H 2l + 1 (where M is- O- or -CH 2 -, l is represented by a is) 0-20. Provided that M is —O— in one or more of R 1 , R 2 and R 3 . In addition, since l is 0 to 20, -C l H 2l + 1 is hydrogen or an alkyl group having 1 to 20 carbon atoms. Here, as the alkyl group having 1 to 20 carbon atoms, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group, Examples include a pentadecyl group, a hexadecyl group, a heptadecyl group, a stearyl group, and the like. The alkyl group may be linear or branched. In addition, since l is 0 to 20, —C 1 H 2l — is a single bond or an alkylene group having 1 to 20 carbon atoms. Here, as a C1-C20 alkylene group, a methylene group, ethylene group, trimethylene group, propylene group, tetramethylene group, hexamethylene group, octamethylene group, decamethylene group, dodecamethylene group, tetradecamethylene group, A hexadecamethylene group, an octadecamethylene group and the like can be mentioned, and the alkylene group may be linear or branched .

上記(III)において、Mは−O−又は−CH2−であり、lは0〜20である In the above formula (III), M is —O— or —CH 2 —, and 1 is 0-20 .

上記式(III)において、R6は、−NR78、−NR7−NR78、又は−N=NR7である。ここで、R7は−Cn2n+1であり、R8は−Cq2q+1であり、n及びqはそれぞれ独立して0〜20である。なお、−Cn2n+1 は、nが0〜20であるため、水素又は炭素数1〜20のアルキル基である。ここで、炭素数1〜20のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられ、該アルキル基は、直鎖状でも、分岐状でもよい。また、−Cq2q+1 は、qが0〜20であるため、水素又は炭素数1〜20のアルキル基である。ここで、炭素数1〜20のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられ、該アルキル基は、直鎖状でも、分岐状でもよい。 In the above formula (III), R 6 is —NR 7 R 8 , —NR 7 —NR 7 R 8 , or —N═NR 7 . Wherein, R 7 is -C n H 2n + 1, R 8 is -C q H 2q + 1, n and q are 0 to 20 independently. Note that -C n H 2n + 1 is hydrogen or an alkyl group having 1 to 20 carbon atoms because n is 0 to 20. Here, as the alkyl group having 1 to 20 carbon atoms, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group, Examples include a pentadecyl group, a hexadecyl group, a heptadecyl group, a stearyl group, and the like. The alkyl group may be linear or branched. Further, -C q H 2q + 1, since q is 0 to 20, hydrogen or an alkyl group having 1 to 20 carbon atoms. Here, as the alkyl group having 1 to 20 carbon atoms, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group, Examples include a pentadecyl group, a hexadecyl group, a heptadecyl group, a stearyl group, and the like. The alkyl group may be linear or branched.

また、上記一般式(I)において、R4 −M−Cl2l−で表わされ、特には−Cl2l−で表わされることが好ましく、ここで、Mは−O−又は−CH2−であり、lは0〜20である。なお、−Cl2l−は、lが0〜20であるため、単結合又は炭素数1〜20のアルキレン基である。ここで、炭素数1〜20のアルキレン基としては、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基、ドデカメチレン基、テトラデカメチレン基、ヘキサデカメチレン基、オクタデカメチレン基等が挙げられ、該アルキレン基は、直鎖状でも分岐状でもよい。 In the general formula (I), R 4 is represented by —M—C 1 H 2 1 —, and particularly preferably —C 1 H 2 1 —, where M is —O— or -CH 2 - and is, l is 0 to 20. In addition, since l is 0 to 20, —C 1 H 2l — is a single bond or an alkylene group having 1 to 20 carbon atoms. Here, as a C1-C20 alkylene group, a methylene group, ethylene group, trimethylene group, propylene group, tetramethylene group, hexamethylene group, octamethylene group, decamethylene group, dodecamethylene group, tetradecamethylene group, A hexadecamethylene group, an octadecamethylene group and the like can be mentioned, and the alkylene group may be linear or branched.

上記式(I)の化合物において、Mは−O−(酸素)であることが好ましい。この場合、Mが−CH2−である化合物と比べてシリカ等の無機充填剤との反応性が高い。In the compound of the above formula (I), M is preferably —O— (oxygen). In this case, M is -CH 2 - are highly reactive with an inorganic filler such as silica as compared to compounds wherein.

また、上記式(I)の化合物において、上記R1、R2及びR3は、少なくとも一つが−O−Cl2l−R6で表わされ、その他が−O−Cl2l+1で表わされることが好ましく、上記R4は−Cl2l−で表わされることが好ましい。In the compound of the above formula (I), at least one of R 1 , R 2 and R 3 is represented by —O—C 1 H 2l —R 6 , and the other is —O—C 1 H 2l +. 1 is preferred, and R 4 is preferably represented by —C 1 H 2l —.

更に、上記式(I)の化合物において、上記R1、R2及びR3は、少なくとも一つが−O−Cl2l−NR78で表わされることが更に好ましく、上記R4は−Cl2l−で表わされることが好ましい。Further, in the compound of the above formula (I), it is more preferable that at least one of R 1 , R 2 and R 3 is represented by —O—C 1 H 2 1 —NR 7 R 8 , and R 4 is — C l H 2l - is preferably represented by the.

<<式(VI)の化合物>>
上記一般式(VI)において、Wは、−NR7表わされ、ここで7は−Cn2n+10〜20である。なお−Cn2n+1 、n0〜20であるため、水素又は炭素数1〜20のアルキル基である。ここで、炭素数1〜20のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられ、該アルキル基は、直鎖状でも、分岐状でもよい。
<< Compound of Formula (VI) >>
In the general formula (VI), W is, -NR 7 - represented by wherein, R 7 is -C n H 2n + 1, n is 0 to 20. Note that -C n H 2n + 1 is hydrogen or an alkyl group having 1 to 20 carbon atoms because n is 0 to 20. Here, as the alkyl group having 1 to 20 carbon atoms, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group, Examples include a pentadecyl group, a hexadecyl group, a heptadecyl group, a stearyl group, and the like. The alkyl group may be linear or branched.

上記一般式(VI)において、R10及びR11はそれぞれ独立して−M−Cl2l−で表わされ、R12は−M−Cl2l+1 或いは−(M−Cl2lys2s+1で表わされ、ここで、Mは−O−又は−CH2−であり0〜20であり、y及びsはそれぞれ独立して1〜20である。但し、R10、R11及びR12の一つ以上は、Mが−O−である。なお、−Cl2l−は、lが0〜20であるため、単結合又は炭素数1〜20のアルキレン基であり、ここで、炭素数1〜20のアルキレン基としては、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基、ドデカメチレン基、テトラデカメチレン基、ヘキサデカメチレン基、オクタデカメチレン基等が挙げられ、該アルキレン基は、直鎖状でも分岐状でもよい。また、−Cl2l+1は、lが0〜20であるため、水素又は炭素数1〜20のアルキル基であり、ここで、炭素数1〜20のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられ、該アルキル基は、直鎖状でも、分岐状でもよいまた、−Cs2s+1は、sが1〜20であるため、炭素数1〜20のアルキル基であり、ここで、炭素数1〜20のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられ、該アルキル基は、直鎖状でも、分岐状でもよい。また、yは、(M−Cl2l)単位の繰り返し数であり、1〜20である。なお、(M−Cl2l)単位中のMは、−O−(酸素)であることが好ましい。 In the general formula (VI), R 10 and R 11 are each independently -M-C l H 2l - is represented by, R 12 is -M-C l H 2l + 1 or - (M-C l H 2l ) y C s H 2s + 1 , wherein M is —O— or —CH 2, l is 0 to 20, y and s are each independently 1 to 20 It is. However, in one or more of R 10 , R 11 and R 12 , M is —O—. Note that -C l H 2l -is a single bond or an alkylene group having 1 to 20 carbon atoms because l is 0 to 20, where the alkylene group having 1 to 20 carbon atoms includes a methylene group, Ethylene group, trimethylene group, propylene group, tetramethylene group, hexamethylene group, octamethylene group, decamethylene group, dodecamethylene group, tetradecamethylene group, hexadecamethylene group, octadecamethylene group, etc., and the alkylene group May be linear or branched. -C l H 2l + 1 is hydrogen or an alkyl group having 1 to 20 carbon atoms because l is 0 to 20, where the alkyl group having 1 to 20 carbon atoms is a methyl group, Ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group, etc. The alkyl group may be linear or branched . Further, -C s H 2s + 1, since s is 1 to 20, an alkyl group having 1 to 20 carbon atoms, wherein the alkyl group having 1 to 20 carbon atoms, a methyl group, an ethyl group Propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, stearyl group, etc., the alkyl group May be linear or branched. Further, y is a number of repetitions of the (M-C l H 2l) units is 1-20. In addition, it is preferable that M in the (M-C 1 H 2l ) unit is —O— (oxygen).

また、上記一般式(VI)において、R4 −M−Cl2l−で表わされ、特には−Cl2l−で表わされることが好ましく、ここで、Mは−O−又は−CH2−であり、lは0〜20である。なお、−Cl2l−については、上述の通りである。 In the general formula (VI), R 4 is represented by —M—C 1 H 2 1 —, and particularly preferably —C 1 H 2 1 —, where M is —O— or -CH 2 - and is, l is 0 to 20. In addition, -C l H 2l- is as described above.

上記式(VI)の化合物において、Mは−O−(酸素)であることが好ましい。この場合、Mが−CH2−である化合物と比べてシリカ等の無機充填剤との反応性が高い。In the compound of the above formula (VI), M is preferably —O— (oxygen). In this case, M is -CH 2 - are highly reactive with an inorganic filler such as silica as compared to compounds wherein.

<<有機ケイ素化合物の合成方法>>
本発明の有機ケイ素化合物は、例えば、上記一般式(I)で表わされ、R1、R2及びR3が−M−Cl2l+1で表わされ、R1、R2及びR3中のMの一つ以上が−O−である化合物に対し、2−(ジメチルアミノ)エタノール、2−(ジエチルアミノ)エタノール、2−(ジメチルアミノ)プロパノール、2−(ジエチルアミノ)プロパノール、N−メチルジエタノールアミン、N−ブチルジエタノールアミン、N−ラウリルジエタノールアミン等のアミン化合物を加え、更に触媒としてp−トルエンスルホン酸、塩酸等の酸や、チタンテトラn−ブトキシド等チタンアルコキシドを添加し、加熱して、R1、R2及びR3の一つ以上を式(II)又は式(III)で表わされる一価の窒素含有基で置換、或いはR1及びR2を−R10−W−R11−で表わされる二価の窒素含有基で置換することで合成できる。更に、任意に、2-(2-ブトキシエトキシ)エタノール等のアルコール化合物を添加し、加熱して、R1、R2及びR3の一つ以上を−(M−Cl2lys2s+1で表される一価の基で置換してもよい。
<< Synthesis Method of Organosilicon Compound >>
The organosilicon compound of the present invention is represented, for example, by the above general formula (I), R 1 , R 2 and R 3 are represented by -M-C 1 H 2 1 + 1 , and R 1 , R 2 and For compounds in which one or more of M in R 3 is —O—, 2- (dimethylamino) ethanol, 2- (diethylamino) ethanol, 2- (dimethylamino) propanol, 2- (diethylamino) propanol, N -Add amine compounds such as methyldiethanolamine, N-butyldiethanolamine, N-lauryldiethanolamine, and further add acid such as p-toluenesulfonic acid and hydrochloric acid as a catalyst, and titanium alkoxide such as titanium tetra-n-butoxide, and heat. , R 1 , R 2 and R 3 are substituted with a monovalent nitrogen-containing group represented by formula (II) or formula (III), or R 1 and R 2 are —R 10 —W—R 11 - It can be synthesized by substituting a bivalent nitrogen-containing group. Further, optionally, an alcohol compound such as 2- (2-butoxyethoxy) ethanol is added and heated to convert one or more of R 1 , R 2 and R 3 to- (M-C 1 H 2 l ) y C A monovalent group represented by s H 2s + 1 may be substituted.

<<有機ケイ素化合物の具体例>>
本発明の有機ケイ素化合物として具体的には、(3−メルカプトプロピル)(エトキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(メチル)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(エチル)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(ブチル)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(オクチル)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(デシル)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(ドデシル)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(オクチルオキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(2−エチルヘキシルオキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(デシルオキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(ドデシルオキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(オクタデシルオキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(2−(ブトキシエトキシ)エトキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトペンチル)(エトキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトペンチル)(メチル)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトペンチル)(エチル)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトペンチル)(ブチル)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトペンチル)(オクチル)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトペンチル)(デシル)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトペンチル)(ドデシル)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトペンチル)(オクチルオキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトペンチル)(2−エチルヘキシルオキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトペンチル)(デシルオキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトペンチル)(ドデシルオキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトペンチル)(オクタデシルオキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトペンチル)(2−(ブトキシエトキシ)エトキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトデシル)(エトキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトデシル)(メチル)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトデシル)(エチル)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトデシル)(ブチル)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトデシル)(オクチル)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトデシル)(デシル)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、
(3−メルカプトデシル)(ドデシル)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトデシル)(オクチルオキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトデシル)(2−エチルヘキシルオキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトデシル)(デシルオキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトデシル)(ドデシルオキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトデシル)(オクタデシルオキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトデシル)(2−(ブトキシエトキシ)エトキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(エトキシ)1,3−ジオキサ−6−エチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(メチル)1,3−ジオキサ−6−エチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(エチル)1,3−ジオキサ−6−エチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(ブチル)1,3−ジオキサ−6−エチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(オクチル)1,3−ジオキサ−6−エチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(デシル)1,3−ジオキサ−6−エチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(ドデシル)1,3−ジオキサ−6−エチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(オクチルオキシ)1,3−ジオキサ−6−エチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(2−エチルヘキシルオキシ)1,3−ジオキサ−6−エチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(デシルオキシ)1,3−ジオキサ−6−エチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(ドデシルオキシ)1,3−ジオキサ−6−エチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(オクタデシルオキシ)1,3−ジオキサ−6−エチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(2−(ブトキシエトキシ)エトキシ)1,3−ジオキサ−6−エチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(エトキシ)1,3−ジオキサ−6−ブチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(メチル)1,3−ジオキサ−6−ブチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(エチル)1,3−ジオキサ−6−ブチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(ブチル)1,3−ジオキサ−6−ブチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(オクチル)1,3−ジオキサ−6−ブチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(デシル)1,3−ジオキサ−6−ブチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(ドデシル)1,3−ジオキサ−6−ブチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(オクチルオキシ)1,3−ジオキサ−6−ブチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(2−エチルヘキシルオキシ)1,3−ジオキサ−6−ブチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(デシルオキシ)1,3−ジオキサ−6−ブチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(ドデシルオキシ)1,3−ジオキサ−6−ブチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(オクタデシルオキシ)1,3−ジオキサ−6−ブチルアザ−2−シラシクロオクタン、
(3−メルカプトプロピル)(2−(ブトキシエトキシ)エトキシ)1,3−ジオキサ−6−ブチルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(エトキシ)1,3−ジオキサ−6−デシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(メチル)1,3−ジオキサ−6−デシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(エチル)1,3−ジオキサ−6−デシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(ブチル)1,3−ジオキサ−6−デシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(オクチル)1,3−ジオキサ−6−デシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(デシル)1,3−ジオキサ−6−デシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(ドデシル)1,3−ジオキサ−6−デシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(オクチルオキシ)1,3−ジオキサ−6−デシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(2−エチルヘキシルオキシ)1,3−ジオキサ−6−デシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(デシルオキシ)1,3−ジオキサ−6−デシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(ドデシルオキシ)1,3−ジオキサ−6−デシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(オクタデシルオキシ)1,3−ジオキサ−6−デシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(2−(ブトキシエトキシ)エトキシ)1,3−ジオキサ−6−デシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(エトキシ)1,3−ジオキサ−6−ドデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(メチル)1,3−ジオキサ−6−ドデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(エチル)1,3−ジオキサ−6−ドデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(ブチル)1,3−ジオキサ−6−ドデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(オクチル)1,3−ジオキサ−6−ドデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(デシル)1,3−ジオキサ−6−ドデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(ドデシル)1,3−ジオキサ−6−ドデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(オクチルオキシ)1,3−ジオキサ−6−ドデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(2−エチルヘキシルオキシ)1,3−ジオキサ−6−ドデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(デシルオキシ)1,3−ジオキサ−6−ドデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(ドデシルオキシ)1,3−ジオキサ−6−ドデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(オクタデシルオキシ)1,3−ジオキサ−6−ドデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(2−(ブトキシエトキシ)エトキシ)1,3−ジオキサ−6−ドデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(エトキシ)1,3−ジオキサ−6−オクタデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(メチル)1,3−ジオキサ−6−オクタデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(エチル)1,3−ジオキサ−6−オクタデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(ブチル)1,3−ジオキサ−6−オクタデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(オクチル)1,3−ジオキサ−6−オクタデシルアザ−2−シラシクロオクタン、
(3−メルカプトプロピル)(デシル)1,3−ジオキサ−6−オクタデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(ドデシル)1,3−ジオキサ−6−オクタデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(オクチルオキシ)1,3−ジオキサ−6−オクタデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(2−エチルヘキシルオキシ)1,3−ジオキサ−6−オクタデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(デシルオキシ)1,3−ジオキサ−6−オクタデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(ドデシルオキシ)1,3−ジオキサ−6−オクタデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(オクタデシルオキシ)1,3−ジオキサ−6−オクタデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)(2−(ブトキシエトキシ)エトキシ)1,3−ジオキサ−6−オクタデシルアザ−2−シラシクロオクタン、(3−メルカプトプロピル)ジ(ジメチルアミノエトキシ)エトキシシラン、(3−メルカプトプロピル)ジ(ジメチルアミノエトキシ)メチルシラン、(3−メルカプトプロピル)ジ(ジメチルアミノエトキシ)エチルシラン、(3−メルカプトプロピル)ジ(ジメチルアミノエトキシ)ブチルシラン、(3−メルカプトプロピル)ジ(ジメチルアミノエトキシ)オクチルシラン、(3−メルカプトプロピル)ジ(ジメチルアミノエトキシ)デシルシラン、(3−メルカプトプロピル)ジ(ジメチルアミノエトキシ)ドデシルシラン、(3−メルカプトプロピル)ジ(ジメチルアミノエトキシ)オクチルオキシシラン、(3−メルカプトプロピル)ジ(ジメチルアミノエトキシ)2−エチルヘキシルオキシシラン、(3−メルカプトプロピル)ジ(ジメチルアミノエトキシ)デシルオキシシラン、(3−メルカプトプロピル)ジ(ジメチルアミノエトキシ)ドデシルオキシシラン、(3−メルカプトプロピル)ジ(ジメチルアミノエトキシ)オクタデシルオキシシラン
(3−メルカプトプロピル)(ジメチルアミノエトキシ)ジエトキシシラン、(3−メルカプトプロピル)(ジメチルアミノエトキシ)ジメチルシラン、(3−メルカプトプロピル)ジ(ジメチルアミノエトキシ)エチルシラン、(3−メルカプトプロピル)(ジメチルアミノエトキシ)ジブチルシラン、(3−メルカプトプロピル)(ジメチルアミノエトキシ)ジオクチルシラン、(3−メルカプトプロピル)(ジメチルアミノエトキシ)ジデシルシラン、(3−メルカプトプロピル)(ジメチルアミノエトキシ)ジドデシルシラン、(3−メルカプトプロピル)(ジメチルアミノエトキシ)ジオクチルオキシシラン、(3−メルカプトプロピル)(ジメチルアミノエトキシ)ジ(2−エチルヘキシルオキシ)シラン、(3−メルカプトプロピル)(ジメチルアミノエトキシ)ジデシルオキシシラン、(3−メルカプトプロピル)(ジメチルアミノエトキシ)ジドデシルオキシシラン、(3−メルカプトプロピル)(ジメチルアミノエトキシ)ジオクタデシルオキシシラン
(3−メルカプトペンチル)ジ(ジメチルアミノエトキシ)エトキシシラン、(3−メルカプトペンチル)ジ(ジメチルアミノエトキシ)メチルシラン、(3−メルカプトペンチル)ジ(ジメチルアミノエトキシ)エチルシラン、(3−メルカプトペンチル)ジ(ジメチルアミノエトキシ)ブチルシラン、(3−メルカプトペンチル)ジ(ジメチルアミノエトキシ)オクチルシラン、(3−メルカプトペンチル)ジ(ジメチルアミノエトキシ)デシルシラン、
(3−メルカプトペンチル)ジ(ジメチルアミノエトキシ)ドデシルシラン、(3−メルカプトペンチル)ジ(ジメチルアミノエトキシ)オクチルオキシシラン、(3−メルカプトペンチル)ジ(ジメチルアミノエトキシ)2−エチルヘキシルオキシシラン、(3−メルカプトペンチル)ジ(ジメチルアミノエトキシ)デシルオキシシラン、(3−メルカプトペンチル)ジ(ジメチルアミノエトキシ)ドデシルオキシシラン、(3−メルカプトペンチル)ジ(ジメチルアミノエトキシ)オクタデシルオキシシラン
(3−メルカプトデシル)ジ(ジメチルアミノエトキシ)エトキシシラン、(3−メルカプトデシル)ジ(ジメチルアミノエトキシ)メチルシラン、(3−メルカプトデシル)ジ(ジメチルアミノエトキシ)エチルシラン、(3−メルカプトデシル)ジ(ジメチルアミノエトキシ)ブチルシラン、(3−メルカプトデシル)ジ(ジメチルアミノエトキシ)オクチルシラン、(3−メルカプトデシル)ジ(ジメチルアミノエトキシ)デシルシラン、(3−メルカプトデシル)ジ(ジメチルアミノエトキシ)ドデシルシラン、(3−メルカプトデシル)ジ(ジメチルアミノエトキシ)オクチルオキシシラン、(3−メルカプトデシル)ジ(ジメチルアミノエトキシ)2−エチルヘキシルオキシシラン、(3−メルカプトデシル)ジ(ジメチルアミノエトキシ)デシルオキシシラン、(3−メルカプトデシル)ジ(ジメチルアミノエトキシ)ドデシルオキシシラン、(3−メルカプトデシル)ジ(ジメチルアミノエトキシ)オクタデシルオキシシラン
(3−メルカプトプロピル)ジ(ジブチルアミノエトキシ)エトキシシラン、(3−メルカプトプロピル)ジ(ジブチルアミノエトキシ)メチルシラン、(3−メルカプトプロピル)ジ(ジブチルアミノエトキシ)エチルシラン、(3−メルカプトプロピル)ジ(ジブチルアミノエトキシ)ブチルシラン、(3−メルカプトプロピル)ジ(ジブチルアミノエトキシ)オクチルシラン、(3−メルカプトプロピル)ジ(ジブチルアミノエトキシ)デシルシラン、(3−メルカプトプロピル)ジ(ジブチルアミノエトキシ)ドデシルシラン、(3−メルカプトプロピル)ジ(ジブチルアミノエトキシ)オクチルオキシシラン、(3−メルカプトプロピル)ジ(ジブチルアミノエトキシ)2−エチルヘキシルオキシシラン、(3−メルカプトプロピル)ジ(ジブチルアミノエトキシ)デシルオキシシラン、(3−メルカプトプロピル)ジ(ジブチルアミノエトキシ)ドデシルオキシシラン、(3−メルカプトプロピル)ジ(ジブチルアミノエトキシ)オクタデシルオキシシラン
(3−メルカプトプロピル)(ジブチルアミノエトキシ)ジエトキシシラン、(3−メルカプトプロピル)(ジブチルアミノエトキシ)ジメチルシラン、(3−メルカプトプロピル)(ジブチルアミノエトキシ)ジエチルシラン、(3−メルカプトプロピル)(ジブチルアミノエトキシ)ジブチルシラン、(3−メルカプトプロピル)(ジブチルアミノエトキシ)ジオクチルシラン、(3−メルカプトプロピル)(ジブチルアミノエトキシ)ジデシルシラン、(3−メルカプトプロピル)(ジブチルアミノエトキシ)ジドデシルシラン、(3−メルカプトプロピル)(ジブチルアミノエトキシ)ジオクチルオキシシラン、(3−メルカプトプロピル)(ジブチルアミノエトキシ)ジ(2−エチルヘキシルオキシ)シラン、(3−メルカプトプロピル)(ジブチルアミノエトキシ)ジデシルオキシシラン、(3−メルカプトプロピル)(ジブチルアミノエトキシ)ジドデシルオキシシラン、(3−メルカプトプロピル)(ジブチルアミノエトキシ)ジオクタデシルオキシシラン
(3−メルカプトプロピル)ジ(ジデシルアミノエトキシ)エトキシシラン、(3−メルカプトプロピル)ジ(ジデシルアミノエトキシ)メチルシラン、(3−メルカプトプロピル)ジ(ジデシルアミノエトキシ)エチルシラン、(3−メルカプトプロピル)ジ(ジデシルアミノエトキシ)ブチルシラン、
(3−メルカプトプロピル)ジ(ジデシルアミノエトキシ)オクチルシラン、(3−メルカプトプロピル)ジ(ジデシルアミノエトキシ)デシルシラン、(3−メルカプトプロピル)ジ(ジデシルアミノエトキシ)ドデシルシラン、(3−メルカプトプロピル)ジ(ジデシルアミノエトキシ)オクチルオキシシラン、(3−メルカプトプロピル)ジ(ジデシルアミノエトキシ)2−エチルヘキシルオキシシラン、(3−メルカプトプロピル)ジ(ジデシルアミノエトキシ)デシルオキシシラン、(3−メルカプトプロピル)ジ(ジデシルアミノエトキシ)ドデシルオキシシラン、(3−メルカプトプロピル)ジ(ジデシルアミノエトキシ)オクタデシルオキシシラン
(3−メルカプトプロピル)(ジデシルアミノエトキシ)ジエトキシシラン、(3−メルカプトプロピル)(ジデシルアミノエトキシ)ジメチルシラン、(3−メルカプトプロピル)(ジデシルアミノエトキシ)ジエチルシラン、(3−メルカプトプロピル)(ジデシルアミノエトキシ)ジブチルシラン、(3−メルカプトプロピル)(ジデシルアミノエトキシ)ジオクチルシラン、(3−メルカプトプロピル)(ジデシルアミノエトキシ)ジデシルシラン、(3−メルカプトプロピル)(ジデシルアミノエトキシ)ジドデシルシラン、(3−メルカプトプロピル)(ジデシルアミノエトキシ)ジオクチルオキシシラン、(3−メルカプトプロピル)(ジデシルアミノエトキシ)ジ(2−エチルヘキシルオキシ)シラン、(3−メルカプトプロピル)(ジデシルアミノエトキシ)ジデシルオキシシラン、(3−メルカプトプロピル)(ジデシルアミノエトキシ)ジドデシルオキシシラン、(3−メルカプトプロピル)(ジデシルアミノエトキシ)ジオクタデシルオキシシラン
(3−メルカプトプロピル)ジ(ジドデシルアミノエトキシ)エトキシシラン、(3−メルカプトプロピル)ジ(ジドデシルアミノエトキシ)メチルシラン、(3−メルカプトプロピル)ジ(ジドデシルアミノエトキシ)エチルシラン、(3−メルカプトプロピル)ジ(ジドデシルアミノエトキシ)ブチルシラン、(3−メルカプトプロピル)ジ(ジドデシルアミノエトキシ)オクチルシラン、(3−メルカプトプロピル)ジ(ジドデシルアミノエトキシ)デシルシラン、(3−メルカプトプロピル)ジ(ジドデシルアミノエトキシ)ドデシルシラン、(3−メルカプトプロピル)ジ(ジドデシルアミノエトキシ)オクチルオキシシラン、(3−メルカプトプロピル)ジ(ジドデシルアミノエトキシ)2−エチルヘキシルオキシシラン、(3−メルカプトプロピル)ジ(ジドデシルアミノエトキシ)デシルオキシシラン、(3−メルカプトプロピル)ジ(ジドデシルアミノエトキシ)ドデシルオキシシラン、(3−メルカプトプロピル)ジ(ジドデシルアミノエトキシ)オクタデシルオキシシラン
(3−メルカプトプロピル)(ジドデシルアミノエトキシ)ジエトキシシラン、(3−メルカプトプロピル)(ジドデシルアミノエトキシ)ジメチルシラン、(3−メルカプトプロピル)(ジドデシルアミノエトキシ)ジエチルシラン、(3−メルカプトプロピル)(ジドデシルアミノエトキシ)ジブチルシラン、(3−メルカプトプロピル)(ジドデシルアミノエトキシ)ジオクチルシラン、(3−メルカプトプロピル)(ジドデシルアミノエトキシ)ジデシルシラン、(3−メルカプトプロピル)(ジドデシルアミノエトキシ)ジドデシルシラン、(3−メルカプトプロピル)(ジドデシルアミノエトキシ)ジオクチルオキシシラン、(3−メルカプトプロピル)(ジドデシルアミノエトキシ)ジ(2−エチルヘキシルオキシ)シラン、(3−メルカプトプロピル)(ジドデシルアミノエトキシ)ジデシルオキシシラン、(3−メルカプトプロピル)(ジドデシルアミノエトキシ)ジドデシルオキシシラン、(3−メルカプトプロピル)(ジドデシルアミノエトキシ)ジオクタデシルオキシシラン挙げられる。
<< Specific Examples of Organosilicon Compounds >>
Specific examples of the organosilicon compound of the present invention include (3-mercaptopropyl) (ethoxy) 1,3-dioxa-6-methylaza-2-silacyclooctane, (3-mercaptopropyl) (methyl) 1,3- Dioxa-6-methylaza-2-silacyclooctane, (3-mercaptopropyl) (ethyl) 1,3-dioxa-6-methylaza-2-silacyclooctane, (3-mercaptopropyl) (butyl) 1,3- Dioxa-6-methylaza-2-silacyclooctane, (3-mercaptopropyl) (octyl) 1,3-dioxa-6-methylaza-2-silacyclooctane, (3-mercaptopropyl) (decyl) 1,3- Dioxa-6-methylaza-2-silacyclooctane, (3-mercaptopropyl) (dodecyl) 1,3-dioxa- -Methylaza-2-silacyclooctane, (3-mercaptopropyl) (octyloxy) 1,3-dioxa-6-methylaza-2-silacyclooctane, (3-mercaptopropyl) (2-ethylhexyloxy) 1,3 -Dioxa-6-methylaza-2-silacyclooctane, (3-mercaptopropyl) (decyloxy) 1,3-dioxa-6-methylaza-2-silacyclooctane, (3-mercaptopropyl) (dodecyloxy) 1, 3-dioxa-6-methylaza-2-silacyclooctane, (3-mercaptopropyl) (octadecyloxy) 1,3-dioxa-6-methylaza-2-silacyclooctane, (3-mercaptopropyl) (2- ( Butoxyethoxy) ethoxy) 1,3-dioxa-6-methylaza-2-sila Crooctane, (3-mercaptopentyl) (ethoxy) 1,3-dioxa-6-methylaza-2-silacyclooctane, (3-mercaptopentyl) (methyl) 1,3-dioxa-6-methylaza-2-silacyclo Octane, (3-mercaptopentyl) (ethyl) 1,3-dioxa-6-methylaza-2-silacyclooctane, (3-mercaptopentyl) (butyl) 1,3-dioxa-6-methylaza-2-silacyclo Octane, (3-mercaptopentyl) (octyl) 1,3-dioxa-6-methylaza-2-silacyclooctane, (3-mercaptopentyl) (decyl) 1,3-dioxa-6-methylaza-2-silacyclo Octane, (3-mercaptopentyl) (dodecyl) 1,3-dioxa-6-methylaza-2-silashic Looctane, (3-mercaptopentyl) (octyloxy) 1,3-dioxa-6-methylaza-2-silacyclooctane, (3-mercaptopentyl) (2-ethylhexyloxy) 1,3-dioxa-6-methylaza- 2-silacyclooctane, (3-mercaptopentyl) (decyloxy) 1,3-dioxa-6-methylaza-2-silacyclooctane, (3-mercaptopentyl) (dodecyloxy) 1,3-dioxa-6-methylaza 2-silacyclooctane, (3-mercaptopentyl) (octadecyloxy) 1,3-dioxa-6-methylaza-2-silacyclooctane, (3-mercaptopentyl) (2- (butoxyethoxy) ethoxy) 1, 3-dioxa-6-methylaza-2-silacyclooctane, (3-merca Todecyl) (ethoxy) 1,3-dioxa-6-methylaza-2-silacyclooctane, (3-mercaptodecyl) (methyl) 1,3-dioxa-6-methylaza-2-silacyclooctane, (3-mercapto Decyl) (ethyl) 1,3-dioxa-6-methylaza-2-silacyclooctane, (3-mercaptodecyl) (butyl) 1,3-dioxa-6-methylaza-2-silacyclooctane, (3-mercapto (Decyl) (octyl) 1,3-dioxa-6-methylaza-2-silacyclooctane, (3-mercaptodecyl) (decyl) 1,3-dioxa-6-methylaza-2-silacyclooctane,
(3-mercaptodecyl) (dodecyl) 1,3-dioxa-6-methylaza-2-silacyclooctane, (3-mercaptodecyl) (octyloxy) 1,3-dioxa-6-methylaza-2-silacyclooctane , (3-mercaptodecyl) (2-ethylhexyloxy) 1,3-dioxa-6-methylaza-2-silacyclooctane, (3-mercaptodecyl) (decyloxy) 1,3-dioxa-6-methylaza-2- Silacyclooctane, (3-mercaptodecyl) (dodecyloxy) 1,3-dioxa-6-methylaza-2-silacyclooctane, (3-mercaptodecyl) (octadecyloxy) 1,3-dioxa-6-methylaza- 2-Silacyclooctane, (3-mercaptodecyl) (2- (butoxyethoxy) ethoxy) , 3-Dioxa-6-methylaza-2-silacyclooctane, (3-mercaptopropyl) (ethoxy) 1,3-dioxa-6-ethylaza-2-silacyclooctane, (3-mercaptopropyl) (methyl) 1 , 3-Dioxa-6-ethylaza-2-silacyclooctane, (3-mercaptopropyl) (ethyl) 1,3-dioxa-6-ethylaza-2-silacyclooctane, (3-mercaptopropyl) (butyl) 1 , 3-Dioxa-6-ethylaza-2-silacyclooctane, (3-mercaptopropyl) (octyl) 1,3-dioxa-6-ethylaza-2-silacyclooctane, (3-mercaptopropyl) (decyl) 1 , 3-Dioxa-6-ethylaza-2-silacyclooctane, (3-mercaptopropyl) (dodecyl) 1 3-dioxa-6-ethylaza-2-silacyclooctane, (3-mercaptopropyl) (octyloxy) 1,3-dioxa-6-ethylaza-2-silacyclooctane, (3-mercaptopropyl) (2-ethylhexyl) Oxy) 1,3-dioxa-6-ethylaza-2-silacyclooctane, (3-mercaptopropyl) (decyloxy) 1,3-dioxa-6-ethylaza-2-silacyclooctane, (3-mercaptopropyl) ( Dodecyloxy) 1,3-dioxa-6-ethylaza-2-silacyclooctane, (3-mercaptopropyl) (octadecyloxy) 1,3-dioxa-6-ethylaza-2-silacyclooctane, (3-mercaptopropyl) ) (2- (Butoxyethoxy) ethoxy) 1,3-dioxa-6-ethyl Aza-2-silacyclooctane, (3-mercaptopropyl) (ethoxy) 1,3-dioxa-6-butylaza-2-silacyclooctane, (3-mercaptopropyl) (methyl) 1,3-dioxa-6 Butylaza-2-silacyclooctane, (3-mercaptopropyl) (ethyl) 1,3-dioxa-6-butylaza-2-silacyclooctane, (3-mercaptopropyl) (butyl) 1,3-dioxa-6 Butylaza-2-silacyclooctane, (3-mercaptopropyl) (octyl) 1,3-dioxa-6-butylaza-2-silacyclooctane, (3-mercaptopropyl) (decyl) 1,3-dioxa-6 Butylaza-2-silacyclooctane, (3-mercaptopropyl) (dodecyl) 1,3-dioxa-6-butyla 2-silacyclooctane, (3-mercaptopropyl) (octyloxy) 1,3-dioxa-6-butylaza-2-silacyclooctane, (3-mercaptopropyl) (2-ethylhexyloxy) 1,3-dioxa -6-butylaza-2-silacyclooctane, (3-mercaptopropyl) (decyloxy) 1,3-dioxa-6-butylaza-2-silacyclooctane, (3-mercaptopropyl) (dodecyloxy) 1,3- Dioxa-6-butylaza-2-silacyclooctane, (3-mercaptopropyl) (octadecyloxy) 1,3-dioxa-6-butylaza-2-silacyclooctane,
(3-mercaptopropyl) (2- (butoxyethoxy) ethoxy) 1,3-dioxa-6-butylaza-2-silacyclooctane, (3-mercaptopropyl) (ethoxy) 1,3-dioxa-6-decylaza- 2-silacyclooctane, (3-mercaptopropyl) (methyl) 1,3-dioxa-6-decylaza-2-silacyclooctane, (3-mercaptopropyl) (ethyl) 1,3-dioxa-6-decylaza- 2-silacyclooctane, (3-mercaptopropyl) (butyl) 1,3-dioxa-6-decylaza-2-silacyclooctane, (3-mercaptopropyl) (octyl) 1,3-dioxa-6-decylaza- 2-Silacyclooctane, (3-mercaptopropyl) (decyl) 1,3-dioxa-6-decylaza-2 Silacyclooctane, (3-mercaptopropyl) (dodecyl) 1,3-dioxa-6-decylaza-2-silacyclooctane, (3-mercaptopropyl) (octyloxy) 1,3-dioxa-6-decylaza-2 -Silacyclooctane, (3-mercaptopropyl) (2-ethylhexyloxy) 1,3-dioxa-6-decylaza-2-silacyclooctane, (3-mercaptopropyl) (decyloxy) 1,3-dioxa-6 Decylaza-2-silacyclooctane, (3-mercaptopropyl) (dodecyloxy) 1,3-dioxa-6-decylaza-2-silacyclooctane, (3-mercaptopropyl) (octadecyloxy) 1,3-dioxa- 6-decylaza-2-silacyclooctane, (3-mercaptopropyl) 2- (butoxyethoxy) ethoxy) 1,3-dioxa-6-decylaza-2-silacyclooctane, (3-mercaptopropyl) (ethoxy) 1,3-dioxa-6-dodecylaza-2-silacyclooctane, ( 3-mercaptopropyl) (methyl) 1,3-dioxa-6-dodecylaza-2-silacyclooctane, (3-mercaptopropyl) (ethyl) 1,3-dioxa-6-dodecylaza-2-silacyclooctane, ( 3-mercaptopropyl) (butyl) 1,3-dioxa-6-dodecylaza-2-silacyclooctane, (3-mercaptopropyl) (octyl) 1,3-dioxa-6-dodecylaza-2-silacyclooctane, 3-mercaptopropyl) (decyl) 1,3-dioxa-6-dodecylaza-2-silacyclooct Tan, (3-mercaptopropyl) (dodecyl) 1,3-dioxa-6-dodecylaza-2-silacyclooctane, (3-mercaptopropyl) (octyloxy) 1,3-dioxa-6-dodecylaza-2-sila Cyclooctane, (3-mercaptopropyl) (2-ethylhexyloxy) 1,3-dioxa-6-dodecylaza-2-silacyclooctane, (3-mercaptopropyl) (decyloxy) 1,3-dioxa-6-dodecylaza- 2-silacyclooctane, (3-mercaptopropyl) (dodecyloxy) 1,3-dioxa-6-dodecylaza-2-silacyclooctane, (3-mercaptopropyl) (octadecyloxy) 1,3-dioxa-6 Dodecylaza-2-silacyclooctane, (3-mercaptopropyl) (2 (Butoxyethoxy) ethoxy) 1,3-dioxa-6-dodecylaza-2-silacyclooctane, (3-mercaptopropyl) (ethoxy) 1,3-dioxa-6-octadecylaza-2-silacyclooctane, (3 -Mercaptopropyl) (methyl) 1,3-dioxa-6-octadecylaza-2-silacyclooctane, (3-mercaptopropyl) (ethyl) 1,3-dioxa-6-octadecylaza-2-silacyclooctane, (3-mercaptopropyl) (butyl) 1,3-dioxa-6-octadecylaza-2-silacyclooctane, (3-mercaptopropyl) (octyl) 1,3-dioxa-6-octadecylaza-2-silacyclo Octane,
(3-mercaptopropyl) (decyl) 1,3-dioxa-6-octadecylaza-2-silacyclooctane, (3-mercaptopropyl) (dodecyl) 1,3-dioxa-6-octadecylaza-2-silacyclo Octane, (3-mercaptopropyl) (octyloxy) 1,3-dioxa-6-octadecylaza-2-silacyclooctane, (3-mercaptopropyl) (2-ethylhexyloxy) 1,3-dioxa-6-octadecyl Aza-2-silacyclooctane, (3-mercaptopropyl) (decyloxy) 1,3-dioxa-6-octadecylaza-2-silacyclooctane, (3-mercaptopropyl) (dodecyloxy) 1,3-dioxa- 6-octadecylaza-2-silacyclooctane, (3-mercaptopropyl (Octadecyloxy) 1,3-dioxa-6-octadecylaza-2-silacyclooctane, (3-mercaptopropyl) (2- (butoxyethoxy) ethoxy) 1,3-dioxa-6-octadecylaza-2-sila Cyclooctane, (3-mercaptopropyl) di (dimethylaminoethoxy) ethoxysilane, (3-mercaptopropyl) di (dimethylaminoethoxy) methylsilane, (3-mercaptopropyl) di (dimethylaminoethoxy) ethylsilane, (3-mercapto (Propyl) di (dimethylaminoethoxy) butylsilane, (3-mercaptopropyl) di (dimethylaminoethoxy) octylsilane, (3-mercaptopropyl) di (dimethylaminoethoxy) decylsilane, (3-mercaptopropyl) di (dimethyla) Noethoxy) dodecylsilane, (3-mercaptopropyl) di (dimethylaminoethoxy) octyloxysilane, (3-mercaptopropyl) di (dimethylaminoethoxy) 2-ethylhexyloxysilane, (3-mercaptopropyl) di (dimethylaminoethoxy) ) Decyloxysilane, (3-mercaptopropyl) di (dimethylaminoethoxy) dodecyloxysilane, (3-mercaptopropyl) di (dimethylaminoethoxy) octadecyloxysilane ,
(3-mercaptopropyl) (dimethylaminoethoxy) diethoxysilane, (3-mercaptopropyl) (dimethylaminoethoxy) dimethylsilane, (3-mercaptopropyl) di (dimethylaminoethoxy) ethylsilane, (3-mercaptopropyl) ( (Dimethylaminoethoxy) dibutylsilane, (3-mercaptopropyl) (dimethylaminoethoxy) dioctylsilane, (3-mercaptopropyl) (dimethylaminoethoxy) didecylsilane, (3-mercaptopropyl) (dimethylaminoethoxy) didodecylsilane, ( 3-mercaptopropyl) (dimethylaminoethoxy) dioctyloxysilane, (3-mercaptopropyl) (dimethylaminoethoxy) di (2-ethylhexyloxy) silane, (3-mercaptopropyl Pill) (dimethylaminoethoxy) didecyl silane, (3-mercaptopropyl) (dimethylaminoethoxy) didodecyl silane, (3-mercaptopropyl) (dimethylaminoethoxy) dioctadecyl silane,
(3-mercaptopentyl) di (dimethylaminoethoxy) ethoxysilane, (3-mercaptopentyl) di (dimethylaminoethoxy) methylsilane, (3-mercaptopentyl) di (dimethylaminoethoxy) ethylsilane, (3-mercaptopentyl) di (Dimethylaminoethoxy) butylsilane, (3-mercaptopentyl) di (dimethylaminoethoxy) octylsilane, (3-mercaptopentyl) di (dimethylaminoethoxy) decylsilane,
(3-mercaptopentyl) di (dimethylaminoethoxy) dodecylsilane, (3-mercaptopentyl) di (dimethylaminoethoxy) octyloxysilane, (3-mercaptopentyl) di (dimethylaminoethoxy) 2-ethylhexyloxysilane, 3-mercaptopentyl) di (dimethylaminoethoxy) decyloxysilane, (3-mercaptopentyl) di (dimethylaminoethoxy) dodecyloxysilane, (3-mercaptopentyl) di (dimethylaminoethoxy) octadecyloxysilane ,
(3-mercaptodecyl) di (dimethylaminoethoxy) ethoxysilane, (3-mercaptodecyl) di (dimethylaminoethoxy) methylsilane, (3-mercaptodecyl) di (dimethylaminoethoxy) ethylsilane, (3-mercaptodecyl) di (Dimethylaminoethoxy) butylsilane, (3-mercaptodecyl) di (dimethylaminoethoxy) octylsilane, (3-mercaptodecyl) di (dimethylaminoethoxy) decylsilane, (3-mercaptodecyl) di (dimethylaminoethoxy) dodecylsilane , (3-mercaptodecyl) di (dimethylaminoethoxy) octyloxysilane, (3-mercaptodecyl) di (dimethylaminoethoxy) 2-ethylhexyloxysilane, (3-mercaptodecyl) di (dimethylamino) Ethoxy) decyl silane, (3-mercaptopropyl-decyl) di (dimethylaminoethoxy) dodecyloxy silane, (3-mercaptopropyl-decyl) di (dimethylaminoethoxy) octadecyl silane,
(3-mercaptopropyl) di (dibutylaminoethoxy) ethoxysilane, (3-mercaptopropyl) di (dibutylaminoethoxy) methylsilane, (3-mercaptopropyl) di (dibutylaminoethoxy) ethylsilane, (3-mercaptopropyl) di (Dibutylaminoethoxy) butylsilane, (3-mercaptopropyl) di (dibutylaminoethoxy) octylsilane, (3-mercaptopropyl) di (dibutylaminoethoxy) decylsilane, (3-mercaptopropyl) di (dibutylaminoethoxy) dodecylsilane (3-mercaptopropyl) di (dibutylaminoethoxy) octyloxysilane, (3-mercaptopropyl) di (dibutylaminoethoxy) 2-ethylhexyloxysilane, (3-mercaptopropi ) Di (dibutyl aminoethoxy) decyl silane, (3-mercaptopropyl) di (dibutyl aminoethoxy) dodecyloxy silane, (3-mercaptopropyl) di (dibutyl aminoethoxy) octadecyl silane,
(3-mercaptopropyl) (dibutylaminoethoxy) diethoxysilane, (3-mercaptopropyl) (dibutylaminoethoxy) dimethylsilane, (3-mercaptopropyl) (dibutylaminoethoxy) diethylsilane, (3-mercaptopropyl) ( Dibutylaminoethoxy) dibutylsilane, (3-mercaptopropyl) (dibutylaminoethoxy) dioctylsilane, (3-mercaptopropyl) (dibutylaminoethoxy) didecylsilane, (3-mercaptopropyl) (dibutylaminoethoxy) didodecylsilane, ( 3-mercaptopropyl) (dibutylaminoethoxy) dioctyloxysilane, (3-mercaptopropyl) (dibutylaminoethoxy) di (2-ethylhexyloxy) silane, (3-mercaptotop Pill) (dibutyl-amino ethoxy) didecyl silane, (3-mercaptopropyl) (dibutyl-amino ethoxy) didodecyl silane, (3-mercaptopropyl) (dibutyl-amino ethoxy) dioctadecyl silane,
(3-mercaptopropyl) di (didecylaminoethoxy) ethoxysilane, (3-mercaptopropyl) di (didecylaminoethoxy) methylsilane, (3-mercaptopropyl) di (didecylaminoethoxy) ethylsilane, (3-mercapto Propyl) di (didecylaminoethoxy) butylsilane,
(3-mercaptopropyl) di (didecylaminoethoxy) octylsilane, (3-mercaptopropyl) di (didecylaminoethoxy) decylsilane, (3-mercaptopropyl) di (didecylaminoethoxy) dodecylsilane, (3- Mercaptopropyl) di (didecylaminoethoxy) octyloxysilane, (3-mercaptopropyl) di (didecylaminoethoxy) 2-ethylhexyloxysilane, (3-mercaptopropyl) di (didecylaminoethoxy) decyloxysilane, (3-mercaptopropyl) di (didecylaminoethoxy) dodecyloxysilane, (3-mercaptopropyl) di (didecylaminoethoxy) octadecyloxysilane ,
(3-mercaptopropyl) (didecylaminoethoxy) diethoxysilane, (3-mercaptopropyl) (didecylaminoethoxy) dimethylsilane, (3-mercaptopropyl) (didecylaminoethoxy) diethylsilane, (3-mercapto Propyl) (didecylaminoethoxy) dibutylsilane, (3-mercaptopropyl) (didecylaminoethoxy) dioctylsilane, (3-mercaptopropyl) (didecylaminoethoxy) didecylsilane, (3-mercaptopropyl) (didecylamino) Ethoxy) didodecylsilane, (3-mercaptopropyl) (didecylaminoethoxy) dioctyloxysilane, (3-mercaptopropyl) (didecylaminoethoxy) di (2-ethylhexyloxy) silane, (3-mercaptop) Pill) (didecyl aminoethoxy) didecyl silane, (3-mercaptopropyl) (didecyl aminoethoxy) didodecyl silane, (3-mercaptopropyl) (didecyl aminoethoxy) dioctadecyl silane,
(3-mercaptopropyl) di (didodecylaminoethoxy) ethoxysilane, (3-mercaptopropyl) di (didodecylaminoethoxy) methylsilane, (3-mercaptopropyl) di (didodecylaminoethoxy) ethylsilane, (3-mercapto Propyl) di (didodecylaminoethoxy) butylsilane, (3-mercaptopropyl) di (didodecylaminoethoxy) octylsilane, (3-mercaptopropyl) di (didodecylaminoethoxy) decylsilane, (3-mercaptopropyl) di ( Didodecylaminoethoxy) dodecylsilane, (3-mercaptopropyl) di (didodecylaminoethoxy) octyloxysilane, (3-mercaptopropyl) di (didodecylaminoethoxy) 2-ethylhexyloxysilane, (3 Mercaptopropyl) di (dodecyl-amino ethoxy) decyl silane, (3-mercaptopropyl) di (dodecyl-amino ethoxy) dodecyloxy silane, (3-mercaptopropyl) di (dodecyl-amino ethoxy) octadecyl silane,
(3-mercaptopropyl) (didodecylaminoethoxy) diethoxysilane, (3-mercaptopropyl) (didodecylaminoethoxy) dimethylsilane, (3-mercaptopropyl) (didodecylaminoethoxy) diethylsilane, (3-mercapto Propyl) (didodecylaminoethoxy) dibutylsilane, (3-mercaptopropyl) (didodecylaminoethoxy) dioctylsilane, (3-mercaptopropyl) (didodecylaminoethoxy) didecylsilane, (3-mercaptopropyl) (didodecylamino) Ethoxy) didodecylsilane, (3-mercaptopropyl) (didodecylaminoethoxy) dioctyloxysilane, (3-mercaptopropyl) (didodecylaminoethoxy) di (2-ethylhexyloxy) silane, 3-mercaptopropyl) (didodecyl aminoethoxy) didecyl silane, (3-mercaptopropyl) (didodecyl aminoethoxy) didodecyl silane, (3-mercaptopropyl) is (didodecyl aminoethoxy) dioctadecyl silane Can be mentioned.

<ゴム組成物>
本発明のゴム組成物は、天然ゴム及び/又はジエン系合成ゴムからなるゴム成分(A)に対して、無機充填剤(B)と上述の有機ケイ素化合物(C)とを配合してなることを特徴とし、好ましくは、天然ゴム及び/又はジエン系合成ゴムからなるゴム成分(A)100質量部に対して、無機充填剤(B)5〜140質量部を配合し、更に、上述の有機ケイ素化合物(C)を、前記無機充填剤(B)の配合量の1〜20質量%配合してなる。
<Rubber composition>
The rubber composition of the present invention is obtained by blending an inorganic filler (B) and the above-mentioned organosilicon compound (C) with a rubber component (A) made of natural rubber and / or a diene synthetic rubber. Preferably, the rubber component (A) composed of natural rubber and / or diene synthetic rubber is blended with 5 to 140 parts by weight of the inorganic filler (B), and the above organic The silicon compound (C) is blended in an amount of 1 to 20% by mass based on the blending amount of the inorganic filler (B).

ここで、有機ケイ素化合物(C)の含有量が無機充填剤(B)の配合量の1質量%未満では、ゴム組成物のヒステリシスロスを低下させる効果、並びに耐摩耗性を向上させる効果が不十分であり、一方、20質量%を超えると、効果が飽和してしまう。   Here, when the content of the organosilicon compound (C) is less than 1% by mass of the blending amount of the inorganic filler (B), the effect of reducing the hysteresis loss of the rubber composition and the effect of improving the wear resistance are ineffective. On the other hand, if it exceeds 20% by mass, the effect is saturated.

本発明のゴム組成物のゴム成分(A)は、天然ゴム及び/又はジエン系合成ゴムからなる。ここで、ジエン系合成ゴムとしては、スチレン-ブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、ポリイソプレンゴム(IR)、ブチルゴム(IIR)、エチレン-プロピレン共重合体等が挙げられる。これらゴム成分(A)は、一種単独で用いても、二種以上をブレンドして用いてもよい。   The rubber component (A) of the rubber composition of the present invention comprises natural rubber and / or a diene synthetic rubber. Here, examples of the diene synthetic rubber include styrene-butadiene copolymer rubber (SBR), polybutadiene rubber (BR), polyisoprene rubber (IR), butyl rubber (IIR), ethylene-propylene copolymer, and the like. These rubber components (A) may be used alone or in a blend of two or more.

本発明のゴム組成物に用いる無機充填剤(B)としては、シリカ、水酸化アルミニウム、アルミナ、クレー、炭酸カルシウム等が挙げられ、これらの中でも、補強性の観点から、シリカ及び水酸化アルミニウムが好ましく、シリカが特に好ましい。無機充填剤(B)がシリカの場合は、有機ケイ素化合物(C)は、シリカ表面のシラノール基との親和力の高い官能基及び/又はケイ素原子(Si)との親和性が高い官能基を有するため、カップリング効率が大幅に向上して、ゴム組成物のヒステリシスロスを低下させ、耐摩耗性を向上させる効果が一層顕著になる。なお、シリカとしては、特に制限はなく、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)等を使用することができ、一方、水酸化アルミニウムとしては、ハイジライト(登録商標、昭和電工製)を用いることが好ましい。   Examples of the inorganic filler (B) used in the rubber composition of the present invention include silica, aluminum hydroxide, alumina, clay, calcium carbonate, etc. Among these, silica and aluminum hydroxide are preferable from the viewpoint of reinforcement. Silica is preferred and particularly preferred. When the inorganic filler (B) is silica, the organosilicon compound (C) has a functional group having a high affinity for the silanol group on the silica surface and / or a functional group having a high affinity for the silicon atom (Si). For this reason, the coupling efficiency is greatly improved, the hysteresis loss of the rubber composition is reduced, and the effect of improving the wear resistance becomes more remarkable. In addition, there is no restriction | limiting in particular as silica, Wet silica (hydrous silicic acid), dry-type silica (anhydrous silicic acid), etc. can be used, On the other hand, as aluminum hydroxide, Heidilite (registered trademark, Showa Denko) Are preferably used.

上記シリカは、BET表面積が40〜350 m2/gであることが好ましい。シリカのBET表面積が40 m2/g以下の場合、該シリカの粒子径が大きすぎるために耐摩耗性が大きく低下してしまい、また、シリカのBET表面積が350 m2/g以上の場合、該シリカの粒子径が小さすぎるためにヒステリシスロスが大きく増加してしまう。The silica preferably has a BET surface area of 40 to 350 m 2 / g. When the BET surface area of silica is 40 m 2 / g or less, the particle size of the silica is too large and wear resistance is greatly reduced. When the BET surface area of silica is 350 m 2 / g or more, Since the particle diameter of the silica is too small, hysteresis loss is greatly increased.

上記無機充填剤(B)の配合量は、上記ゴム成分(A)100質量部に対して5〜140質量部の範囲が好ましい。無機充填剤(B)の配合量が上記ゴム成分(A)100質量部に対して5質量部未満では、ヒステリシスを低下させる効果が不十分であり、一方、140質量部を超えると、作業性が著しく悪化するためである。   The blending amount of the inorganic filler (B) is preferably in the range of 5 to 140 parts by mass with respect to 100 parts by mass of the rubber component (A). If the blending amount of the inorganic filler (B) is less than 5 parts by mass with respect to 100 parts by mass of the rubber component (A), the effect of reducing the hysteresis is insufficient, while if it exceeds 140 parts by mass, the workability is increased. This is because of the remarkable deterioration.

本発明のゴム組成物には、上記ゴム成分(A)、無機充填剤(B)、有機ケイ素化合物(C)の他に、ゴム業界で通常使用される配合剤、例えば、カーボンブラック、軟化剤、加硫剤、加硫促進剤、老化防止剤、亜鉛華、ステアリン酸等を目的に応じて適宜配合することができる。これら配合剤としては、市販品を好適に使用することができる。なお、本発明のゴム組成物は、ゴム成分(A)に、無機充填剤(B)及び有機ケイ素化合物(C)と共に、必要に応じて適宜選択した各種配合剤を配合して、混練り、熱入れ、押出等することにより製造することができる。   In addition to the rubber component (A), inorganic filler (B), and organosilicon compound (C), the rubber composition of the present invention contains compounding agents commonly used in the rubber industry, such as carbon black, softeners. Vulcanizing agents, vulcanization accelerators, anti-aging agents, zinc white, stearic acid and the like can be appropriately blended depending on the purpose. As these compounding agents, commercially available products can be suitably used. In addition, the rubber composition of the present invention is blended with the rubber component (A), together with the inorganic filler (B) and the organosilicon compound (C), and various compounding agents appropriately selected as necessary. It can be produced by hot-pressing, extruding or the like.

<タイヤ>
また、本発明のタイヤは、上述のゴム組成物を用いたことを特徴とし、上述のゴム組成物がトレッドに用いられていることが好ましい。本発明のタイヤは、転がり抵抗が大幅に低減されていることに加え、耐摩耗性も大幅に向上している。なお、本発明のタイヤは、従来公知の構造で、特に限定はなく、通常の方法で製造できる。また、本発明のタイヤが空気入りタイヤの場合、タイヤ内に充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。
<Tire>
The tire of the present invention is characterized by using the above rubber composition, and the above rubber composition is preferably used for the tread. In the tire of the present invention, the rolling resistance is greatly reduced, and the wear resistance is also greatly improved. The tire of the present invention has a conventionally known structure and is not particularly limited, and can be produced by a normal method. In addition, when the tire of the present invention is a pneumatic tire, the gas filled in the tire may be normal or air with adjusted oxygen partial pressure, or an inert gas such as nitrogen, argon, or helium. .

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

<有機ケイ素化合物の製造例1>
500mLの四つ口ナスフラスコに、窒素雰囲気下3-メルカプトプロピルトリエトキシシラン23.8g、N-メチルジエタノールアミン11.9g、チタンテトラn-ブトキシド 0.05gをキシレン200mL中に溶解した。150℃まで昇温し、6時間攪拌した。その後、20 hPa/40℃にてロータリーエバポレーターにより溶媒を除去し、続いて、ロータリーポンプ(10 Pa)とコールドトラップ(ドライアイス+エタノール)にて残存する揮発分を除去し、下記化学式:

Figure 0005575118
で表わされる3−メルカプトプロピル(エトキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン[有機ケイ素化合物(C−1)]24.0gを得た。生成物の1H−NMRでの分析結果を以下に示す。
1H−NMR(CDCl3, 700MHz, δ;ppm)= 3.7(m;6H), 2.6(t;4H), 2.5(m;2H), 2.4(s;3H), 1.6(m;2H), 0.8(t;3H), 0.6(t;2H) <Production Example 1 of Organosilicon Compound>
In a 500 mL four-necked eggplant flask, 23.8 g of 3-mercaptopropyltriethoxysilane, 11.9 g of N-methyldiethanolamine and 0.05 g of titanium tetra-n-butoxide were dissolved in 200 mL of xylene under a nitrogen atmosphere. The temperature was raised to 150 ° C. and stirred for 6 hours. Thereafter, the solvent was removed by a rotary evaporator at 20 hPa / 40 ° C., and then the remaining volatile components were removed by a rotary pump (10 Pa) and a cold trap (dry ice + ethanol).
Figure 0005575118
24.0 g of 3-mercaptopropyl (ethoxy) 1,3-dioxa-6-methylaza-2-silacyclooctane [organosilicon compound (C-1)] represented by The results of 1 H-NMR analysis of the product are shown below.
1 H-NMR (CDCl 3 , 700 MHz, δ; ppm) = 3.7 (m; 6H), 2.6 (t; 4H), 2.5 (m; 2H), 2.4 (s; 3H), 1.6 (m; 2H), 0.8 (t; 3H), 0.6 (t; 2H)

<有機ケイ素化合物の製造例2>
500mLの四つ口ナスフラスコに、窒素雰囲気下3-メルカプトプロピルジメトキシメチルシラン18.0g、N-メチルジエタノールアミン11.9g、チタンテトラn-ブトキシド 0.05gをキシレン200mL中に溶解した。150℃まで昇温し、6時間攪拌した。その後、20 hPa/40℃にてロータリーエバポレーターにより溶媒を除去し、続いて、ロータリーポンプ(10 Pa)とコールドトラップ(ドライアイス+エタノール)にて残存する揮発分を除去し、下記化学式:

Figure 0005575118
で表わされる3−メルカプトプロピル(メチル)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン[有機ケイ素化合物(C−2)]21.5gを得た。生成物の1H−NMRでの分析結果を以下に示す。
1H−NMR(CDCl3, 700MHz, δ;ppm)= 3.7(m;4H), 2.6(t;4H), 2.5(m;2H), 2.4(s;3H), 1.6(m;2H), 0.6(t;2H), 0.1(s;3H) <Production Example 2 of organosilicon compound>
In a 500 mL four-necked eggplant flask, 18.0 g of 3-mercaptopropyldimethoxymethylsilane, 11.9 g of N-methyldiethanolamine, and 0.05 g of titanium tetra-n-butoxide were dissolved in 200 mL of xylene under a nitrogen atmosphere. The temperature was raised to 150 ° C. and stirred for 6 hours. Thereafter, the solvent was removed by a rotary evaporator at 20 hPa / 40 ° C., and then the remaining volatile components were removed by a rotary pump (10 Pa) and a cold trap (dry ice + ethanol).
Figure 0005575118
21.5 g of 3-mercaptopropyl (methyl) 1,3-dioxa-6-methylaza-2-silacyclooctane [organosilicon compound (C-2)] represented by the formula: The results of 1 H-NMR analysis of the product are shown below.
1 H-NMR (CDCl 3 , 700 MHz, δ; ppm) = 3.7 (m; 4H), 2.6 (t; 4H), 2.5 (m; 2H), 2.4 (s; 3H), 1.6 (m; 2H), 0.6 (t; 2H), 0.1 (s; 3H)

<有機ケイ素化合物の製造例3>
500mLの四つ口ナスフラスコに、窒素雰囲気下3-メルカプトプロピルトリエトキシシラン23.8g、N-ブチルジエタノールアミン16.1g、チタンテトラn-ブトキシド 0.05gをキシレン200mL中に溶解した。150℃まで昇温し、6時間攪拌した。その後、20 hPa/40℃にてロータリーエバポレーターにより溶媒を除去し、続いて、ロータリーポンプ(10 Pa)とコールドトラップ(ドライアイス+エタノール)にて残存する揮発分を除去し、下記化学式:

Figure 0005575118
で表わされる3−メルカプトプロピル(エトキシ)1,3−ジオキサ−6−ブチルアザ−2−シラシクロオクタン[有機ケイ素化合物(C−3)]28.7gを得た。生成物の1H−NMRでの分析結果を以下に示す。
1H−NMR(CDCl3, 700MHz, δ;ppm)= 3.7(m;6H), 2.6(t;4H), 2.5(m;2H), 2.4(m;2H), 1.6(m;2H), 1.4(m;2H), 1.3(m;2H), 0.9(t;3H), 0.8(t;3H), 0.6(t;2H) <Production Example 3 of organosilicon compound>
In a 500 mL four-necked eggplant flask, 23.8 g of 3-mercaptopropyltriethoxysilane, 16.1 g of N-butyldiethanolamine and 0.05 g of titanium tetra-n-butoxide were dissolved in 200 mL of xylene under a nitrogen atmosphere. The temperature was raised to 150 ° C. and stirred for 6 hours. Thereafter, the solvent was removed by a rotary evaporator at 20 hPa / 40 ° C., and then the remaining volatile components were removed by a rotary pump (10 Pa) and a cold trap (dry ice + ethanol).
Figure 0005575118
28.7 g of 3-mercaptopropyl (ethoxy) 1,3-dioxa-6-butylaza-2-silacyclooctane [organosilicon compound (C-3)] represented by The results of 1 H-NMR analysis of the product are shown below.
1 H-NMR (CDCl 3 , 700 MHz, δ; ppm) = 3.7 (m; 6H), 2.6 (t; 4H), 2.5 (m; 2H), 2.4 (m; 2H), 1.6 (m; 2H), 1.4 (m; 2H), 1.3 (m; 2H), 0.9 (t; 3H), 0.8 (t; 3H), 0.6 (t; 2H)

<有機ケイ素化合物の製造例4>
500mLの四つ口ナスフラスコに、窒素雰囲気下3-メルカプトプロピルトリエトキシシラン23.8g、N-ラウリルジエタノールアミン27.3g、チタンテトラn-ブトキシド 0.05gをキシレン200mL中に溶解した。150℃まで昇温し、6時間攪拌した。その後、20 hPa/40℃にてロータリーエバポレーターにより溶媒を除去し、続いて、ロータリーポンプ(10 Pa)とコールドトラップ(ドライアイス+エタノール)にて残存する揮発分を除去し、下記化学式:

Figure 0005575118
で表わされる3−メルカプトプロピル(エトキシ)1,3−ジオキサ−6−ドデシルアザ−2−シラシクロオクタン[有機ケイ素化合物(C−4)]40.0gを得た。生成物の1H−NMRでの分析結果を以下に示す。
1H−NMR(CDCl3, 700MHz, δ;ppm)= 3.7(m;6H), 2.6(t;4H), 2.5(m;2H), 2.4(m;2H), 1.6(m;2H), 1.4(m;2H), 1.3(m;18H), 0.9(t;3H), 0.8(t;3H), 0.6(t;2H) <Production Example 4 of organosilicon compound>
Under a nitrogen atmosphere, 23.8 g of 3-mercaptopropyltriethoxysilane, 27.3 g of N-lauryldiethanolamine, and 0.05 g of titanium tetra-n-butoxide were dissolved in 200 mL of xylene in a 500 mL four-necked eggplant flask. The temperature was raised to 150 ° C. and stirred for 6 hours. Thereafter, the solvent was removed by a rotary evaporator at 20 hPa / 40 ° C., and then the remaining volatile components were removed by a rotary pump (10 Pa) and a cold trap (dry ice + ethanol).
Figure 0005575118
40.0 g of 3-mercaptopropyl (ethoxy) 1,3-dioxa-6-dodecylaza-2-silacyclooctane [organosilicon compound (C-4)] represented by The results of 1 H-NMR analysis of the product are shown below.
1 H-NMR (CDCl 3 , 700 MHz, δ; ppm) = 3.7 (m; 6H), 2.6 (t; 4H), 2.5 (m; 2H), 2.4 (m; 2H), 1.6 (m; 2H), 1.4 (m; 2H), 1.3 (m; 18H), 0.9 (t; 3H), 0.8 (t; 3H), 0.6 (t; 2H)

<有機ケイ素化合物の製造例5>
500mLの四つ口ナスフラスコに、窒素雰囲気下3−メルカプトプロピルトリメトキシシラン23.8g、N-メチルジエタノールアミン11.9g、チタンテトラn-ブトキシド 0.05gをキシレン200mL中に溶解した。150℃まで昇温し、6時間攪拌した。続いてデシルアルコール15.8gを滴下し、2時間攪拌した。その後、20 hPa/40℃にてロータリーエバポレーターにより溶媒を除去し、続いて、ロータリーポンプ(10 Pa)とコールドトラップ(ドライアイス+エタノール)にて残存する揮発分を除去し、下記化学式:

Figure 0005575118
で表わされる3−メルカプトプロピル(デシルオキシ)1,3−ジオキサ−6−メチルアザ−2−シラシクロオクタン[有機ケイ素化合物(C−5)]35.0gを得た。生成物の1H−NMRでの分析結果を以下に示す。
1H−NMR(CDCl3, 700MHz, δ;ppm)= 3.7(m;6H), 2.6(t;4H), 2.5(m;2H), 2.4(s;3H), 1.6(m;2H), 1.5(m;2H), 1.3(m;14H), 0.8(t;3H), 0.6(t;2H) <Production Example 5 of organosilicon compound>
In a 500 mL four-necked eggplant flask, 23.8 g of 3-mercaptopropyltrimethoxysilane, 11.9 g of N-methyldiethanolamine, and 0.05 g of titanium tetra-n-butoxide were dissolved in 200 mL of xylene in a nitrogen atmosphere. The temperature was raised to 150 ° C. and stirred for 6 hours. Subsequently, 15.8 g of decyl alcohol was added dropwise and stirred for 2 hours. Thereafter, the solvent was removed by a rotary evaporator at 20 hPa / 40 ° C., and then the remaining volatile components were removed by a rotary pump (10 Pa) and a cold trap (dry ice + ethanol).
Figure 0005575118
35.0 g of 3-mercaptopropyl (decyloxy) 1,3-dioxa-6-methylaza-2-silacyclooctane [organosilicon compound (C-5)] represented by The results of 1 H-NMR analysis of the product are shown below.
1 H-NMR (CDCl 3 , 700 MHz, δ; ppm) = 3.7 (m; 6H), 2.6 (t; 4H), 2.5 (m; 2H), 2.4 (s; 3H), 1.6 (m; 2H), 1.5 (m; 2H), 1.3 (m; 14H), 0.8 (t; 3H), 0.6 (t; 2H)

<有機ケイ素化合物の製造例6>
500mLの四つ口ナスフラスコに、窒素雰囲気下3-メルカプト-プロピルトリエトキシシラン23.8g、N-メチルジエタノールアミン11.9g、チタンテトラn-ブトキシド 0.05gをキシレン200mL中に溶解した。150℃まで昇温し、6時間攪拌した。続いて2-(2-ブトキシエトキシ)エタノール16.2gを滴下し、2時間攪拌した。その後、20 hPa/40℃にてロータリーエバポレーターにより溶媒を除去し、続いて、ロータリーポンプ(10 Pa)とコールドトラップ(ドライアイス+エタノール)にて残存する揮発分を除去し、下記化学式:

Figure 0005575118
で表わされる3−メルカプトプロピル(2−(2−ブトキシエトキシ)エトキシ)1,3-ジオキサ−6−メチルアザ−2−シラシクロオクタン[有機ケイ素化合物(C−6)]35.5gを得た。生成物の1H−NMRでの分析結果を以下に示す。
1H−NMR(CDCl3, 700MHz, δ;ppm)= 3.7(m;6H), 3.5(m;8H), 2.6(t;4H), 2.5(m;2H), 2.4(s;3H), 1.6(m;2H), 1.5(m;2H), 1.3(m;2H), 0.8(t;3H), 0.6(t;2H) <Production Example 6 of organosilicon compound>
In a 500 mL four-necked eggplant flask, 23.8 g of 3-mercapto-propyltriethoxysilane, 11.9 g of N-methyldiethanolamine, and 0.05 g of titanium tetra-n-butoxide were dissolved in 200 mL of xylene under a nitrogen atmosphere. The temperature was raised to 150 ° C. and stirred for 6 hours. Subsequently, 16.2 g of 2- (2-butoxyethoxy) ethanol was added dropwise and stirred for 2 hours. Thereafter, the solvent was removed by a rotary evaporator at 20 hPa / 40 ° C., and then the remaining volatile components were removed by a rotary pump (10 Pa) and a cold trap (dry ice + ethanol).
Figure 0005575118
35.5 g of 3-mercaptopropyl (2- (2-butoxyethoxy) ethoxy) 1,3-dioxa-6-methylaza-2-silacyclooctane [organosilicon compound (C-6)] represented by the formula: The results of 1 H-NMR analysis of the product are shown below.
1 H-NMR (CDCl 3 , 700 MHz, δ; ppm) = 3.7 (m; 6H), 3.5 (m; 8H), 2.6 (t; 4H), 2.5 (m; 2H), 2.4 (s; 3H), 1.6 (m; 2H), 1.5 (m; 2H), 1.3 (m; 2H), 0.8 (t; 3H), 0.6 (t; 2H)

<有機ケイ素化合物の製造例7>
500mLの四つ口ナスフラスコに、窒素雰囲気下3-メルカプトプロピルトリエトキシシラン23.8g、ジメチルエタノールアミン17.8g、チタンテトラn-ブトキシド 0.05gをキシレン200mL中に溶解した。130℃まで昇温し、6時間攪拌した。その後、20 hPa/40℃にてロータリーエバポレーターにより溶媒を除去し、続いて、ロータリーポンプ(10 Pa)とコールドトラップ(ドライアイス+エタノール)にて残存する揮発分を除去し、下記化学式:

Figure 0005575118
で表わされる3−メルカプトプロピル ジ(ジメチルアミノエトキシ)エトキシシラン[有機ケイ素化合物(C−7)]30.0gを得た。生成物の1H−NMRでの分析結果を以下に示す。
1H−NMR(CDCl3, 700MHz, δ;ppm)= 3.7(m;6H), 2.6(t;4H), 2.5(m;2H), 2.4(s;12H), 1.6(m;2H), 0.8(t;3H), 0.6(t;2H) <Production Example 7 of Organosilicon Compound>
In a 500 mL four-necked eggplant flask, 23.8 g of 3-mercaptopropyltriethoxysilane, 17.8 g of dimethylethanolamine, and 0.05 g of titanium tetra-n-butoxide were dissolved in 200 mL of xylene under a nitrogen atmosphere. The temperature was raised to 130 ° C. and stirred for 6 hours. Thereafter, the solvent was removed by a rotary evaporator at 20 hPa / 40 ° C., and then the remaining volatile components were removed by a rotary pump (10 Pa) and a cold trap (dry ice + ethanol).
Figure 0005575118
30.0 g of 3-mercaptopropyl di (dimethylaminoethoxy) ethoxysilane [organosilicon compound (C-7)] represented by the formula: The results of 1 H-NMR analysis of the product are shown below.
1 H-NMR (CDCl 3 , 700 MHz, δ; ppm) = 3.7 (m; 6H), 2.6 (t; 4H), 2.5 (m; 2H), 2.4 (s; 12H), 1.6 (m; 2H), 0.8 (t; 3H), 0.6 (t; 2H)

<有機ケイ素化合物の製造例8>
500mLの四つ口ナスフラスコに、窒素雰囲気下3−メルカプトプロピルトリメトキシシラン23.8g、ジメチルエタノールアミン17.8g、チタンテトラn-ブトキシド 0.05gをキシレン200mL中に溶解した。130℃まで昇温し、6時間攪拌した。続いてデシルアルコール15.8gを滴下し、2時間攪拌した。その後、20 hPa/40℃にてロータリーエバポレーターにより溶媒を除去し、続いて、ロータリーポンプ(10 Pa)とコールドトラップ(ドライアイス+エタノール)にて残存する揮発分を除去し、下記化学式:

Figure 0005575118
で表わされる3−メルカプトプロピル ジ(ジメチルアミノエトキシ)デシルオキシシラン[有機ケイ素化合物(C−8)]39.2gを得た。生成物の1H−NMRでの分析結果を以下に示す。
1H−NMR(CDCl3, 700MHz, δ;ppm)= 3.7(m;6H), 2.6(t;4H), 2.5(m;2H), 2.4(s;12H), 1.6(m;2H), 1.5(m;2H), 1.3(m;14H), 0.8(t;3H), 0.6(t;2H) <Production Example 8 of organosilicon compound>
In a 500 mL four-necked eggplant flask, 23.8 g of 3-mercaptopropyltrimethoxysilane, 17.8 g of dimethylethanolamine, and 0.05 g of titanium tetra-n-butoxide were dissolved in 200 mL of xylene in a nitrogen atmosphere. The temperature was raised to 130 ° C. and stirred for 6 hours. Subsequently, 15.8 g of decyl alcohol was added dropwise and stirred for 2 hours. Thereafter, the solvent was removed by a rotary evaporator at 20 hPa / 40 ° C., and then the remaining volatile components were removed by a rotary pump (10 Pa) and a cold trap (dry ice + ethanol).
Figure 0005575118
39.2 g of 3-mercaptopropyl di (dimethylaminoethoxy) decyloxysilane [organosilicon compound (C-8)] represented by the formula: The results of 1 H-NMR analysis of the product are shown below.
1 H-NMR (CDCl 3 , 700 MHz, δ; ppm) = 3.7 (m; 6H), 2.6 (t; 4H), 2.5 (m; 2H), 2.4 (s; 12H), 1.6 (m; 2H), 1.5 (m; 2H), 1.3 (m; 14H), 0.8 (t; 3H), 0.6 (t; 2H)

<ゴム組成物の調製及び評価>
表1〜6に従う配合処方のゴム組成物を、バンバリーミキサーにて混練して調製した。次に、得られたゴム組成物の加硫物性を下記の方法で測定した。結果を表1〜6に示す。
<Preparation and evaluation of rubber composition>
The rubber composition of the mixing | blending prescription according to Tables 1-6 was knead | mixed and prepared with the Banbury mixer. Next, the vulcanization physical property of the obtained rubber composition was measured by the following method. The results are shown in Tables 1-6.

(1)動的粘弾性
上島製作所製スペクトロメーター(動的粘弾性測定試験機)を用い、周波数52 Hz、初期歪10%、測定温度60℃、動歪1%で、加硫ゴムのtanδを測定し、表1〜3においては比較例1のtanδの値を100として指数表示し、表4においては比較例9のtanδの値を100として指数表示し、表5においては比較例13のtanδの値を100として指数表示し、表6においては比較例17のtanδの値を100として指数表示した。指数値が小さい程、tanδが低く、ゴム組成物が低発熱性であることを示す。
(1) Dynamic viscoelasticity Using a spectrometer (dynamic viscoelasticity measuring machine) manufactured by Ueshima Seisakusho, tan δ of vulcanized rubber at a frequency of 52 Hz, initial strain of 10%, measurement temperature of 60 ° C, and dynamic strain of 1%. In Tables 1 to 3, the value of tan δ of Comparative Example 1 is shown as an index as 100, in Table 4, the value of tan δ of Comparative Example 9 is shown as an index, and in Table 5, the tan δ of Comparative Example 13 is shown. In Table 6, the value of tan δ of Comparative Example 17 was set as 100 and displayed as an index. The smaller the index value, the lower the tan δ, indicating that the rubber composition is less exothermic.

(2)耐摩耗性試験
JIS K 6264−2:2005に準拠し、ランボーン型摩耗試験機を用いて、室温、スリップ率25%の条件で試験を行い、表1〜3においては比較例1の摩耗量の逆数を100として指数表示し、表4においては比較例9の摩耗量の逆数を100として指数表示し、表5においては比較例13の摩耗量の逆数を100として指数表示し、表6においては比較例17の摩耗量の逆数を100として指数表示した。指数値が大きい程、摩耗量が少なく、耐摩耗性に優れることを示す。
(2) Abrasion resistance test In accordance with JIS K 6264-2: 2005, a test was performed using a Lambone-type abrasion tester under conditions of room temperature and a slip rate of 25%. The reciprocal of the wear amount is displayed as an index as 100. In Table 4, the reciprocal of the wear amount of Comparative Example 9 is displayed as an index, and in Table 5, the reciprocal of the wear amount of Comparative Example 13 is displayed as an index. In FIG. 6, the reciprocal of the amount of wear in Comparative Example 17 was taken as 100 and displayed as an index. The larger the index value, the smaller the wear amount and the better the wear resistance.

Figure 0005575118
Figure 0005575118

Figure 0005575118
Figure 0005575118

Figure 0005575118
Figure 0005575118

Figure 0005575118
Figure 0005575118

Figure 0005575118
Figure 0005575118

Figure 0005575118
Figure 0005575118

*1 JSR製, 乳化重合SBR, #1500
*2 旭カーボン製, #80
*3 東ソーシリカ工業(株)製, ニップシールAQ, BET表面積=220 m2/g
*4 ビス(3-トリエトキシシリルプロピル)ジスルフィド
*5 3-オクタノイルチオ-プロピルトリエトキシシラン
*6 東京化成(株)製, (3-メルカプトプロピル)トリエトキシシラン
*7 大内新興化学工業製, ノクラック6C
*8 大内新興化学工業製, ノクラック224
*9 三新化学工業製, サンセラーD
*10 三新化学工業製, サンセラーDM
*11 三新化学工業製, サンセラーNS
*12 JSR製, 乳化重合SBR, #1712, ゴム成分100質量部に対して37.5質量部のアロマティックオイルで油展
*13 RSS#3
*14 旭カーボン製, #78
*15 N-シクロヘキシルベンゾチアゾール-2-スルフェンアミド
*16 大内新興化学工業製, ノクセラーTOT−N
* 1 JSR, emulsion polymerization SBR, # 1500
* 2 Asahi Carbon, # 80
* 3 Tosoh Silica Industry Co., Ltd., nip seal AQ, BET surface area = 220 m 2 / g
* 4 Bis (3-triethoxysilylpropyl) disulfide
* 5 3-Octanoylthio-propyltriethoxysilane
* 6 Tokyo Chemical Industry Co., Ltd. (3-mercaptopropyl) triethoxysilane
* 7 Ouchi Shinsei Chemical Industry, Nocrack 6C
* 8 Ouchi Shinsei Chemical Industry, Nocrack 224
* 9 Sunseller D, manufactured by Sanshin Chemical Industry
* 10 Sanshin Chemical Industries, Sunseller DM
* 11 Sanshin Chemical Industry, Sunseller NS
* 12 JSR, Emulsion SBR, # 1712, 37.5 parts by weight of aromatic oil for 100 parts by weight of rubber component
* 13 RSS # 3
* 14 Asahi Carbon, # 78
* 15 N-cyclohexylbenzothiazole-2-sulfenamide
* 16 Ouchi Shinsei Chemical Industries, Noxeller TOT-N

表1〜6から、従来のシランカップリング剤(*4、*5及び*6)に代えて、本発明の有機ケイ素化合物(C)を配合することで、ゴム組成物のtanδを大幅に低減、即ち、ヒステリシスロスを大幅に低減して、低発熱性にしつつ、耐摩耗性を大幅に改善できることが分かる。   From Tables 1-6, tan δ of the rubber composition is greatly reduced by blending the organosilicon compound (C) of the present invention in place of the conventional silane coupling agents (* 4, * 5 and * 6). That is, it can be seen that the wear resistance can be significantly improved while the hysteresis loss is greatly reduced to reduce heat generation.

Claims (10)

下記一般式(I):
Figure 0005575118
[式中、R1、R2及びR3は、少なくとも一つが下記一般式(III)
−M−Cl2l−R6 ・・・ (III)
(式中、Mは−O−又は−CH2−で6は−NR78、−NR7−NR78、又は−N=NR7で、但し、R7は−Cn2n+1であり、R8は−Cq2q+1であり、ln及びqはそれぞれ独立して0〜20である)で表わされ、その他が−M−Cl2l+1(ここで、M及びlは上記と同義であるで表わされ、但し、R1、R2及びR3の一つ以上はMが−O−であり、
4 −M−Cl2l−(ここで、M及びlは上記と同義である)で表される]で表わされることを特徴とする有機ケイ素化合物。
The following general formula (I):
Figure 0005575118
[In the formula, at least one of R 1 , R 2 and R 3 is represented by the following general formula (III) :
-M-C l H 2l -R 6 (III)
(In the formula, M is —O— or —CH 2, R 6 is —NR 7 R 8 , —NR 7 —NR 7 R 8 , or —N═NR 7 , where R 7 is —C n. H 2n + 1 , R 8 is —C q H 2q + 1 , l 1 , n and q are each independently 0 to 20), and the others are —M—C 1 H 2l +1 (wherein M and l are as defined above ) , provided that at least one of R 1 , R 2 and R 3 is M is —O—,
R 4 is represented by —M—C 1 H 2 1 — (wherein M and l are as defined above), and an organosilicon compound.
下記一般式(VI):
Figure 0005575118
[式中、Wは−NR7ここで7は−Cn2n+10〜20である)で表わされ、
10及びR11はそれぞれ独立して−M−Cl2l−(ここで、Mは−O−又は−CH2−で、lは0〜20である)で表わされ、
12は−M−Cl2l+1 ここで、M及びlは上記と同義である)或いは−(M−Cl2lys2s+1(ここで、M及びlは上記と同義であり、y及びsはそれぞれ独立して1〜20である)で表わされ、但し、R10、R11及びR12の一つ以上はMが−O−であり、
4 −M−Cl2l−(ここで、M及びlは上記と同義である)で表される]表わされることを特徴とする有機ケイ素化合物。
The following general formula (VI):
Figure 0005575118
Wherein, W is -NR 7 - (wherein, R 7 is -C n H 2n + 1, n is a is 0 to 20) is represented by,
R 10 and R 11 are each independently represented by —M—C 1 H 2 1 — (wherein M is —O— or —CH 2 —, and 1 is 0 to 20),
R 12 is -M-C l H 2l + 1 ( wherein, M and l have the same meanings as mentioned above), or - (M-C l H 2l ) y C s H 2s + 1 ( where, M and l Is as defined above, and y and s are each independently 1-20, provided that at least one of R 10 , R 11 and R 12 is M is —O—,
R 4 is -M-C l H 2l - (wherein, M and l have the same meanings as mentioned above) the organic silicon compound, characterized by being represented by] represented by.
前記Mが−O−であることを特徴とする請求項1又は2に記載の有機ケイ素化合物。   The organosilicon compound according to claim 1, wherein M is —O—. 前記R1、R2及びR3は、少なくとも一つが−O−Cl2l−R6(ここで、R6及びlは上記と同義である)で表わされ、その他が−O−Cl2l+1(ここで、lは上記と同義である)で表わされ、
前記R4が−Cl2l−(ここで、lは上記と同義である)で表わされることを特徴とする請求項1又は3に記載の有機ケイ素化合物。
At least one of R 1 , R 2, and R 3 is represented by —O—C 1 H 2 l —R 6 (where R 6 and l are as defined above), and the others are —O—C. l H 2l + 1 (where l is as defined above),
4. The organosilicon compound according to claim 1, wherein R 4 is represented by —C 1 H 2l — (wherein l is as defined above).
前記R1、R2及びR3は、少なくとも一つが−O−Cl2l−NR78(ここで、R7、R8及びlは上記と同義である)で表わされることを特徴とする請求項1、3又は4に記載の有機ケイ素化合物。 At least one of R 1 , R 2 and R 3 is represented by —O—C 1 H 2 1 —NR 7 R 8 (wherein R 7 , R 8 and 1 are as defined above). The organosilicon compound according to claim 1, 3 or 4. 天然ゴム及び/又はジエン系合成ゴムからなるゴム成分(A)に対して、無機充填剤(B)と請求項1〜のいずれかに記載の有機ケイ素化合物(C)とを配合してなるゴム組成物。 An inorganic filler (B) and the organosilicon compound (C) according to any one of claims 1 to 5 are blended with a rubber component (A) made of natural rubber and / or a diene synthetic rubber. Rubber composition. 前記天然ゴム及び/又はジエン系合成ゴムからなるゴム成分(A)100質量部に対して、前記無機充填剤(B)5〜140質量部を配合してなり、
更に、前記有機ケイ素化合物(C)を、前記無機充填剤(B)の配合量の1〜20質量%含むことを特徴とする請求項に記載のゴム組成物。
To 100 parts by mass of the rubber component (A) composed of the natural rubber and / or the diene synthetic rubber, 5 to 140 parts by mass of the inorganic filler (B) are blended,
Furthermore, 1-20 mass% of the compounding quantity of the said inorganic filler (B) is included for the said organosilicon compound (C), The rubber composition of Claim 6 characterized by the above-mentioned.
前記無機充填剤(B)がシリカ又は水酸化アルミニウムであることを特徴とする請求項に記載のゴム組成物。 The rubber composition according to claim 6 , wherein the inorganic filler (B) is silica or aluminum hydroxide. 前記シリカのBET表面積が40〜350 m2/gであることを特徴とする請求項に記載のゴム組成物。 The rubber composition according to claim 8 , wherein the silica has a BET surface area of 40 to 350 m 2 / g. 請求項のいずれかに記載のゴム組成物を用いたタイヤ。 A tire using the rubber composition according to any one of claims 6 to 9 .
JP2011514338A 2009-05-20 2010-05-19 Organosilicon compound, and rubber composition and tire using the same Expired - Fee Related JP5575118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011514338A JP5575118B2 (en) 2009-05-20 2010-05-19 Organosilicon compound, and rubber composition and tire using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009122589 2009-05-20
JP2009122589 2009-05-20
PCT/JP2010/003381 WO2010134341A1 (en) 2009-05-20 2010-05-19 Organosilicon compound, and rubber composition, tire, primer composition, coating composition and adhesive agent each comprising same
JP2011514338A JP5575118B2 (en) 2009-05-20 2010-05-19 Organosilicon compound, and rubber composition and tire using the same

Publications (2)

Publication Number Publication Date
JPWO2010134341A1 JPWO2010134341A1 (en) 2012-11-08
JP5575118B2 true JP5575118B2 (en) 2014-08-20

Family

ID=43126033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011514338A Expired - Fee Related JP5575118B2 (en) 2009-05-20 2010-05-19 Organosilicon compound, and rubber composition and tire using the same

Country Status (2)

Country Link
JP (1) JP5575118B2 (en)
WO (1) WO2010134341A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019963A1 (en) * 2004-08-13 2006-02-23 General Electric Company Diol-derived organofunctional silane and compositions containing same
WO2007098080A2 (en) * 2006-02-21 2007-08-30 Momentive Performance Materials Inc. Free flowing filler composition based on organofunctional silane
WO2008021356A2 (en) * 2006-08-14 2008-02-21 Momentive Performance Materials Inc. Free flowing filler composition comprising mercapto-functional silane
WO2008021299A2 (en) * 2006-08-14 2008-02-21 Momentive Performance Materials Inc. Rubber composition and articles therefrom both comprising mercapto-functional silane
WO2008045262A2 (en) * 2006-10-06 2008-04-17 Momentive Performance Materials Inc. Elastomer composition containing mercaptofunctional silane and process for making same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311078A (en) * 1995-05-17 1996-11-26 Yokohama Rubber Co Ltd:The Production of oxazolidinesilyl ether compound
DE102005038791A1 (en) * 2005-08-17 2007-02-22 Degussa Ag New organosilicon compounds based on triethanolamine, useful as components of rubber mixtures for making e.g. tires, tubes and cable coatings
JP5193470B2 (en) * 2007-01-12 2013-05-08 東レ・ダウコーニング株式会社 Method for producing bis (silatranylalkyl) polysulfide and the like, and mixture of bis (silatranylalkyl) polysulfide and the like
WO2009104766A1 (en) * 2008-02-22 2009-08-27 株式会社ブリヂストン Organic silicon compound, and rubber compositions, tires, primer compositions, paint compositions, and adhesives using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019963A1 (en) * 2004-08-13 2006-02-23 General Electric Company Diol-derived organofunctional silane and compositions containing same
WO2007098080A2 (en) * 2006-02-21 2007-08-30 Momentive Performance Materials Inc. Free flowing filler composition based on organofunctional silane
WO2008021356A2 (en) * 2006-08-14 2008-02-21 Momentive Performance Materials Inc. Free flowing filler composition comprising mercapto-functional silane
WO2008021299A2 (en) * 2006-08-14 2008-02-21 Momentive Performance Materials Inc. Rubber composition and articles therefrom both comprising mercapto-functional silane
WO2008045262A2 (en) * 2006-10-06 2008-04-17 Momentive Performance Materials Inc. Elastomer composition containing mercaptofunctional silane and process for making same

Also Published As

Publication number Publication date
WO2010134341A1 (en) 2010-11-25
JPWO2010134341A1 (en) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5503298B2 (en) Organosilicon compound, and rubber composition, tire, primer composition, coating composition and adhesive using the same
JP5503137B2 (en) Organosilicon compound, and rubber composition and tire using the same
JP5513009B2 (en) Organosilicon compound, and rubber composition, tire, primer composition, coating composition and adhesive using the same
JP2012149189A (en) Rubber composition for tire and pneumatic tire
JP2010270053A (en) Organosilicon compound, and rubber composition, tire, primer composition, coating composition and adhesive, comprising the same
JP5513010B2 (en) Organosilicon compound, and rubber composition, tire, primer composition, coating composition and adhesive using the same
JP5512997B2 (en) Organosilicon compound, and rubber composition and tire using the same
JP2014080504A (en) Surface-treated silica, rubber composition using the same, and pneumatic tire
JP5575118B2 (en) Organosilicon compound, and rubber composition and tire using the same
JP5513013B2 (en) Organosilicon compound, and rubber composition, tire, primer composition, coating composition and adhesive using the same
JP5044352B2 (en) Rubber additive and rubber composition
JP2010270055A (en) Organosilicon compound, and rubber composition, tire, primer composition, coating composition and adhesive, comprising the same
JP2011190329A (en) Additive for rubber and rubber composition
JP2011057840A (en) Modifier, method for producing modified conjugated diene-based polymer, modified conjugated diene-based polymer, rubber composition and pneumatic tire
JP5513012B2 (en) Organosilicon compound and rubber composition using the same, and tire, primer composition, coating composition and adhesive composition
JP2010270051A (en) Organosilicon compound, and rubber composition, tire, primer composition, coating composition and adhesive, each using the same
JP5653162B2 (en) Organosilicon compound, and rubber composition, tire, primer composition, coating composition and adhesive using the same
JP2010248155A (en) Organosilicon compound, rubber composition using the same and tire
JP5513011B2 (en) Organosilicon compound and rubber composition using the same, and tire, primer composition, coating composition and adhesive composition
JP2013112622A (en) Organosilicon compound, and rubber composition using the same, tire, primer composition, coating material composition, and adhesive
WO2010116713A1 (en) Organosilicon compound, and rubber composition, tire, primer composition, coating composition and adhesive each using the organosilicon compound
JP2010270049A (en) Organosilicon compound, and rubber composition, tire, primer composition, coating composition and adhesive, each using the same
JP5628498B2 (en) Organosilicon compound, organosilicon compound composition containing the same, rubber composition, primer composition, coating composition, adhesive, and tire
JP2010270052A (en) Organosilicon compound, and rubber composition, tire, primer composition, coating composition and adhesive, each using the same
JP2018002867A (en) Rubber composition and pneumatic tire using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140701

R150 Certificate of patent or registration of utility model

Ref document number: 5575118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees