JP5574408B2 - Fluid power device and fluid power generator - Google Patents

Fluid power device and fluid power generator Download PDF

Info

Publication number
JP5574408B2
JP5574408B2 JP2010035968A JP2010035968A JP5574408B2 JP 5574408 B2 JP5574408 B2 JP 5574408B2 JP 2010035968 A JP2010035968 A JP 2010035968A JP 2010035968 A JP2010035968 A JP 2010035968A JP 5574408 B2 JP5574408 B2 JP 5574408B2
Authority
JP
Japan
Prior art keywords
wing
attack
angle
fluid
movable member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010035968A
Other languages
Japanese (ja)
Other versions
JP2011169289A (en
Inventor
勝芳 中里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2010035968A priority Critical patent/JP5574408B2/en
Publication of JP2011169289A publication Critical patent/JP2011169289A/en
Application granted granted Critical
Publication of JP5574408B2 publication Critical patent/JP5574408B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

本発明は、流体式動力装置及び流体式発電装置に関する。   The present invention relates to a fluid power device and a fluid power generator.

従来より、用水路や河川の流水エネルギを回転エネルギに変換する動力装置や、変換した回転エネルギを用いて発電を行う発電装置に関する技術が種々提案され、実用化されている。例えば、用水路等の流水エネルギを利用する動力装置としては、下部に当たる流水のエネルギにより回転する下射式(下掛け)水車が古くから農村等で使用されている。   Conventionally, various technologies relating to a power device that converts flowing water energy of a water channel or a river into rotational energy and a power generation device that generates electric power using the converted rotational energy have been proposed and put into practical use. For example, as a power device that uses flowing water energy such as an irrigation channel, an underwater type (underhanging) water turbine that is rotated by the energy of flowing water hitting the lower part has been used in rural areas for a long time.

また、現在においては、比較的浅い河川に小型のプロペラ水車を設置し、このプロペラ水車を用いて、河川の流水のエネルギを電気エネルギに変換する技術が提案されている(特許文献1参照)。さらに近年においては、流水によって生じる揚力を利用して翼部材を上下に往復させ、この翼部材の往復運動を回転エネルギに変換する流体式動力装置(特許文献2参照)等が提案されている。   At present, a technique has been proposed in which a small propeller turbine is installed in a relatively shallow river, and the energy of running water in the river is converted into electric energy using the propeller turbine (see Patent Document 1). Furthermore, in recent years, a hydrodynamic power device (see Patent Document 2) that reciprocates a wing member up and down using lift generated by flowing water and converts the reciprocating motion of the wing member into rotational energy has been proposed.

特開2007−32338号公報JP 2007-32338 A 国際公開第2008/123154号パンフレットInternational Publication No. 2008/123154 Pamphlet

しかしながら、前記した従来の水車や発電装置においては、以下に述べるように、河川や用水路の水深方向の広い領域における流水エネルギを効率良く取り出すことについて、依然として改善の余地があった。   However, in the above-described conventional water turbine and power generation device, there is still room for improvement in efficiently extracting flowing water energy in a wide area in the depth direction of rivers and irrigation canals as described below.

下射式水車は、水車の下部のみで流水を受ける構造を有しているため、例えば水深2m程度の用水路の流水エネルギを発電に有効利用するためには、水車の直径を10m程度にする必要があり、装置の作製と設置に多大な労力及び費用を要するという問題がある。   Since the epi-type turbine has a structure that receives flowing water only at the lower part of the turbine, for example, in order to effectively use the flowing energy of the irrigation channel having a depth of about 2 m for power generation, the diameter of the turbine needs to be about 10 m. There is a problem that much labor and cost are required to manufacture and install the apparatus.

特許文献1に記載されたプロペラ水車は、プロペラの直径を大きくすれば水深の深い領域に適用可能であるが、装置の作製と設置に多大な労力や費用を要する。また、このようなプロペラ水車を採用すると、河川に存在する草やビニール袋等の種々の漂流物がプロペラに付着し易いため、付着したゴミを頻繁に除去する作業が必要となる。特許文献2に記載された流体式動力装置は、水面近くに配置した翼部材を上下に往復運動させるものであるため、水深の深い領域における流水エネルギを有効活用することについては依然として改善の余地があった。   The propeller turbine described in Patent Document 1 can be applied to a deep water region by increasing the diameter of the propeller, but requires a great deal of labor and cost for manufacturing and installing the device. In addition, when such a propeller turbine is employed, various drifting objects such as grass and plastic bags existing in the river are likely to adhere to the propeller, and thus work for frequently removing the attached dust is required. Since the hydrodynamic power device described in Patent Document 2 reciprocates up and down a wing member disposed near the water surface, there is still room for improvement in effectively utilizing flowing water energy in a deep water region. there were.

本発明は、かかる事情に鑑みてなされたものであり、作製や設置に要する労力や費用を抑制しながら、水深方向や水平方向の広い領域における流水エネルギを効率良く取り出すことができ、かつ、流水中に存在する物体の影響を受けることの少ない流体式動力装置及びこれを備えた流体式発電装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is possible to efficiently extract flowing water energy in a wide area in the depth direction and the horizontal direction while suppressing labor and cost required for production and installation, and flowing water. It is an object of the present invention to provide a fluid type power unit that is less affected by an object present therein and a fluid type power generation device including the fluid type power unit.

前記目的を達成するため、本発明に係る流体式動力装置は、流体の所定方向の流れに対して略直角な方向に延在する固定軸に沿って往復運動するように構成された可動部材と、前記流れ及び固定軸の延在方向に対して略直角な方向に延在する翼回動軸を介して可動部材に回動自在に取り付けられることにより前記流れに対する迎え角が変化するように構成された少なくとも一つの翼部材と、前記流れに対する翼部材の迎え角を正から負又は負から正に変化させることにより翼部材で発生する力を反転させて可動部材の往復運動を実現させる迎角反転手段と、所定方向に延在する回転軸を中心に回転する回転部材と、可動部材の往復運動を回転部材の回転運動に変換する動力変換手段と、を備えるものである。   In order to achieve the above object, a hydrodynamic power device according to the present invention comprises a movable member configured to reciprocate along a fixed shaft extending in a direction substantially perpendicular to a predetermined flow of fluid. The angle of attack with respect to the flow is changed by being rotatably attached to the movable member via a blade rotation shaft extending in a direction substantially perpendicular to the flow and the extending direction of the fixed shaft. And at least one wing member, and an angle of attack for reciprocating the movable member by reversing the force generated in the wing member by changing the angle of attack of the wing member with respect to the flow from positive to negative or from negative to positive The reversing means, a rotating member that rotates about a rotating shaft extending in a predetermined direction, and a power conversion means that converts the reciprocating motion of the movable member into the rotating motion of the rotating member.

かかる構成を採用すると、翼部材の迎え角を正から負(又は負から正)に変化させることにより、翼部材で発生する力(抗力及び揚力)の方向を反転させて、流体の所定方向の流れに対して略直角な方向における可動部材の往復運動を実現させることができる。そして、このような可動部材の往復運動を回転部材の回転運動に変換することができる。ここで、可動部材が往復運動の方向に延在する長尺部材であるような場合には、この可動部材の延在方向に沿って多数の翼部材を配置することができるので、可動部材を水深方向(又は水平方向)に延在させて往復運動させることにより、水深(水平)方向の広い領域における流体エネルギを効率良く取り出すことができる。また、大型の下射式水車やプロペラ水車が不要となるので、装置の作成や設置に要する労力や費用を抑制することができる。さらに、可動部材の往復運動の際に翼部材の迎え角が変化するので、河川に漂う種々の物体(草やビニール袋等)が翼部材に付着し難く、付着した場合においても除去され易いという利点を有する。   By adopting such a configuration, by changing the angle of attack of the wing member from positive to negative (or from negative to positive), the direction of the force (drag and lift) generated in the wing member is reversed, and the fluid in a predetermined direction A reciprocating motion of the movable member in a direction substantially perpendicular to the flow can be realized. Such reciprocating motion of the movable member can be converted into rotational motion of the rotating member. Here, when the movable member is a long member extending in the reciprocating direction, a large number of wing members can be arranged along the extending direction of the movable member. By extending in the water depth direction (or horizontal direction) and reciprocating, fluid energy in a wide region in the water depth (horizontal) direction can be efficiently extracted. In addition, since a large epi-type water turbine or propeller water turbine is not required, labor and cost required to create and install the device can be suppressed. Furthermore, since the angle of attack of the wing member changes during the reciprocating motion of the movable member, various objects (grass, plastic bags, etc.) drifting in the river are difficult to adhere to the wing member, and are easily removed even when attached. Have advantages.

前記流体式動力装置において、可動部材として、往復運動する方向に所定の長さを有する筒状部材を採用することができる。かかる場合において、筒状部材の長さ方向に沿って複数の翼部材を配置し、これら翼部材を連動させることが好ましい。   In the fluid power unit, a cylindrical member having a predetermined length in the reciprocating direction can be employed as the movable member. In such a case, it is preferable to arrange a plurality of wing members along the length direction of the cylindrical member and to interlock these wing members.

かかる構成を採用すると、流体の所定方向の流れに対して略直角な方向に沿って配置した複数の翼部材を連動させることができる。従って、例えば、比較的深い河川や海において、水深方向に多数の翼部材を配置して連動させることができ、水深の浅いところから深いところまでの広い領域における流水エネルギを回転エネルギに変換することができる。また、比較的幅の広い河川や広大な海において、水平方向(川の流れや海流に対して略直角な方向)に沿って多数の翼部材を配置して連動させることができ、広い水平領域における流水エネルギを取り出すこともできる。   When such a configuration is adopted, a plurality of wing members arranged along a direction substantially perpendicular to the flow of the fluid in a predetermined direction can be interlocked. Therefore, for example, in a relatively deep river or sea, a large number of wing members can be arranged and interlocked in the direction of the water depth, and the flowing water energy in a wide area from a shallow depth to a deep location can be converted into rotational energy. Can do. Moreover, in relatively wide rivers and vast oceans, a large number of wing members can be arranged and interlocked along the horizontal direction (a direction substantially perpendicular to the river flow and the ocean current). It is also possible to take out the flowing water energy.

また、前記流体式動力装置において、翼回動軸を翼部材の翼弦上ないし翼弦近傍に配置し、翼回動軸から翼部材の前縁までの距離を、翼回動軸から翼部材の後縁までの距離よりも長くすることができる。特に、翼回動軸から翼部材の前縁までの距離を、翼回動軸から翼部材の後縁までの距離の1.3倍程度(1.2〜1.5倍の範囲内)に設定することが好ましい。   Further, in the fluid power unit, the blade rotation shaft is disposed on or near the blade chord of the blade member, and the distance from the blade rotation shaft to the leading edge of the blade member is determined by the distance from the blade rotation shaft to the blade member. Can be longer than the distance to the trailing edge. In particular, the distance from the blade rotation shaft to the leading edge of the blade member is about 1.3 times the distance from the blade rotation shaft to the trailing edge of the blade member (within a range of 1.2 to 1.5 times). It is preferable to set.

かかる構成を採用すると、翼回動軸から翼部材前縁までの距離を、翼回動軸から翼部材後縁までの距離よりも長くしているため、翼部材の上流側部分で多くの流体を受けることができる。従って、可動部材の往復運動中に翼部材の迎え角を一定にすることが可能となる。また、可動部材が往復運動の両端に到達した時点で翼部材の迎え角を逸早く所定の値まで反転させることが可能になり、翼部材に迎角反転直後から大きな揚力及び抗力を発生させることが可能となる。   When this configuration is adopted, the distance from the blade rotation shaft to the blade member leading edge is longer than the distance from the blade rotation shaft to the blade member trailing edge, so that a large amount of fluid is generated in the upstream portion of the blade member. Can receive. Therefore, the angle of attack of the wing member can be made constant during the reciprocating motion of the movable member. In addition, when the movable member reaches both ends of the reciprocating motion, it becomes possible to quickly reverse the angle of attack of the wing member to a predetermined value, and it is possible to generate a large lift and drag on the wing member immediately after the angle of attack is reversed. It becomes possible.

また、前記流体式動力装置において、翼部材の翼根側から翼端側になるに従って、翼部材の前縁の位置を前記流れの下流側に漸次変化させる(後退翼を採用する)ことが好ましい。   In the fluid power unit, it is preferable to gradually change the position of the leading edge of the blade member toward the downstream side of the flow from the blade root side to the blade tip side of the blade member (adopting a swept blade). .

かかる構成を採用すると、翼部材の翼根側から翼端側になるに従って、翼部材前縁の位置が後退しているため、河川に漂う種々の物体が翼部材の前縁に溜まり難くなる。   When such a configuration is adopted, since the position of the leading edge of the wing member recedes from the blade root side to the blade tip side of the wing member, various objects drifting in the river are unlikely to collect on the leading edge of the wing member.

また、前記流体式動力装置において、前記流れに対して略直角な方向に延在するように固定配置された円柱部材を固定軸として採用するとともに、この円柱部材の外周にベアリングを介してスライド可能に配置された筒状部材を可動部材として採用することができる。かかる場合において、翼部材が筒状部材とともに円柱部材を中心に回動するのを阻止する翼回動阻止手段を採用することが好ましい。   Further, in the fluid type power unit, a cylindrical member fixedly arranged so as to extend in a direction substantially perpendicular to the flow is adopted as a fixed shaft, and the outer periphery of the cylindrical member can be slid through a bearing. The cylindrical member arrange | positioned in can be employ | adopted as a movable member. In such a case, it is preferable to employ blade rotation preventing means for preventing the blade member from rotating around the cylindrical member together with the cylindrical member.

かかる構成を採用すると、翼部材が流体の力によって筒状部材(可動部材)とともに円柱部材(固定軸)を中心に回動するのを阻止することができるので、流体に対する翼部材の姿勢を安定させることができる。   By adopting such a configuration, the blade member can be prevented from rotating around the cylindrical member (fixed shaft) together with the cylindrical member (movable member) by the force of the fluid, so that the posture of the blade member with respect to the fluid is stabilized. Can be made.

また、前記流体式動力装置において、翼部材の迎え角の上限を設定する迎角調整手段を採用することができる。このような迎角調整手段を用いて、翼部材の迎え角の上限を例えば45度に設定することができる。   In the fluid power unit, an angle-of-attack adjusting means for setting an upper limit of the angle of attack of the wing member can be employed. Using such an angle-of-attack adjusting means, the upper limit of the angle of attack of the wing member can be set to 45 degrees, for example.

かかる構成を採用すると、翼部材の迎え角の上限が調整可能となるため、例えば比較的遅い流れに適用する場合には、迎え角の上限を比較的大きく設定して大量の流体を翼部材で受け止めることにより、抗力優先の大きな力を発生させることができる。一方、比較的速い流れに適用する場合には、迎え角の上限を比較的小さく設定して、揚力優先の大きな力を発生させることができる。従って、流れの状況に応じて効率良く流体エネルギを取り出すことが可能となる。   When such a configuration is adopted, the upper limit of the angle of attack of the wing member can be adjusted.For example, when applied to a relatively slow flow, the upper limit of the angle of attack is set to a relatively large value so that a large amount of fluid can be supplied to the wing member. By receiving it, it is possible to generate a force with priority on drag. On the other hand, when applied to a relatively fast flow, the upper limit of the angle of attack can be set to be relatively small to generate a force with a higher lift priority. Therefore, it is possible to efficiently extract fluid energy according to the flow situation.

また、前記流体式動力装置において、可動部材が往復運動の中心から最も離隔した位置に到達する直前に、翼部材の前縁の移動を阻止し翼部材を強制的に回動させることにより迎え角を反転させる迎角反転手段を採用することができる。このような迎角反転手段として、例えば、可動部材の往復運動の中心から最も離隔した位置に到達する直前に、翼部材の前縁(又は前縁近傍部分)に当接するように配置された弾性部材を採用することができる。また、可動部材の往復運動の中心から最も離隔した位置に到達する直前に、翼部材の前縁に向けて局所的に流体を供給するように構成された流体供給手段を迎角反転手段として採用することもできる。   Further, in the fluid type power unit, immediately before the movable member reaches the position farthest from the center of the reciprocating motion, the angle of attack is obtained by preventing the movement of the leading edge of the wing member and forcibly rotating the wing member. An angle-of-attack reversing means for reversing can be adopted. As such an angle-of-attack reversing means, for example, an elasticity arranged so as to contact the leading edge (or the vicinity of the leading edge) of the wing member immediately before reaching the position farthest from the center of the reciprocating motion of the movable member. A member can be employed. In addition, a fluid supply means configured to supply fluid locally toward the leading edge of the wing member immediately before reaching the position farthest from the center of the reciprocating motion of the movable member is adopted as the angle of attack reversing means. You can also

また、前記流体式動力装置において、河川又は用水路の流水の水深方向における力を発生させるように翼部材を配置して、可動部材の水深方向における往復運動を実現させることができる。かかる場合においては、可動部材の往復運動の方向(水深方向)に対して垂直方向(水平方向)に延在する翼部材を、水深方向に複数枚並べて設けることができる。この際、翼部材のアスペクト比(翼長/平均翼弦長)を6以上に設定することが好ましい。   Further, in the fluid power device, the wing member can be arranged so as to generate a force in the depth direction of the flowing water of the river or the irrigation channel, and the reciprocating motion of the movable member in the depth direction can be realized. In such a case, a plurality of wing members extending in the vertical direction (horizontal direction) with respect to the reciprocating direction (water depth direction) of the movable member can be provided side by side in the water depth direction. At this time, the aspect ratio (blade length / average chord length) of the wing member is preferably set to 6 or more.

また、前記流体式動力装置において、翼部材のみを所定の河川、用水路、潮流、海流の水面下に配置し、可動部材の水平方向における往復運動を実現させることもできる。   Further, in the fluid power device, only the wing member can be disposed below the surface of a predetermined river, irrigation channel, tidal current, or ocean current, and the reciprocating motion of the movable member in the horizontal direction can be realized.

かかる構成を採用すると、可動部材及び固定軸は水面上に配置されるので、流水の圧力を受けないだけでなく、漂流物の影響を受け難くなり、可動部材の安定した移動が可能となる。   When such a configuration is adopted, the movable member and the fixed shaft are arranged on the water surface, so that the movable member and the fixed shaft not only receive the pressure of flowing water, but also are hardly affected by drifting objects, and the movable member can be stably moved.

また、本発明に係る流体式発電装置は、前記した流体式動力装置と、この流体式動力装置の回転部材の回転運動により電力を発生させる発電機と、を備えるものである。   Moreover, the fluid type power generator according to the present invention includes the above-described fluid type power unit and a generator that generates electric power by the rotational motion of the rotating member of the fluid type power unit.

かかる構成を採用すると、鉛直方向(水深方向)や水平方向(河川や用水路の幅方向)の広い領域における流水エネルギを効率良く取り出して電気エネルギに変換することができる。   By adopting such a configuration, it is possible to efficiently extract the flowing water energy in a wide region in the vertical direction (water depth direction) and the horizontal direction (width direction of the river or the canal) and convert it into electric energy.

前記流体式発電装置において、流体式動力装置の翼部材の少なくとも一部を所定の河川又は用水路の流水の内部に配置し、流体式動力装置の可動部材、回転部材及び動力変換手段を河川又は用水路の水面上に配置することができる。   In the fluid power generation device, at least a part of the wing member of the fluid power device is disposed inside the flowing water of a predetermined river or irrigation channel, and the movable member, the rotating member, and the power conversion means of the fluid power device are arranged in the river or irrigation channel. Can be placed on the surface of the water.

かかる構成を採用すると、本発明に係る流体式発電装置を水力発電装置として使用することができる。この際、流体式動力装置を構成する部材の大半を河川又は用水路の水面よりも上方に配置して水との接触を回避することができるので、装置の故障機会を低減させて耐用年数を延ばすことが可能となる。   When such a configuration is adopted, the fluid power generation device according to the present invention can be used as a hydroelectric power generation device. At this time, most of the members constituting the hydrodynamic power device can be arranged above the water surface of the river or the canal to avoid contact with water, thereby reducing the chance of failure of the device and extending the service life. It becomes possible.

本発明によれば、作製や設置に要する労力や費用を抑制しながら、水深方向や水平方向の広い領域における流水エネルギを効率良く取り出すことができ、かつ、流水中に存在する物体の影響を受けることの少ない流体式動力装置及びこれを備えた流体式発電装置を提供することが可能となる。   According to the present invention, it is possible to efficiently extract flowing water energy in a wide area in the depth direction and the horizontal direction while suppressing labor and cost required for production and installation, and it is affected by an object existing in the flowing water. It is possible to provide a fluid type power unit that is less likely to occur and a fluid type power generator including the same.

本発明の実施形態に係る流体式動力装置を備えた水力発電装置(流体式発電装置)の上面図である。It is a top view of a hydroelectric generator (fluid power generator) provided with a fluid power unit concerning an embodiment of the present invention. 図1に示す水力発電装置の正面図である。It is a front view of the hydroelectric generator shown in FIG. 図1に示す水力発電装置の翼部材の拡大正面図である。It is an enlarged front view of the wing | blade member of the hydroelectric generator shown in FIG. 図3に示す翼部材をIV方向から見た図である。It is the figure which looked at the wing | blade member shown in FIG. 3 from IV direction. (A)〜(E)何れも図1に示す水力発電装置の動作を説明するための説明図である。(A)-(E) are explanatory drawings for demonstrating operation | movement of the hydroelectric power generator shown in FIG.

以下、図面を参照して、本発明の実施形態について説明する。本実施形態においては、本発明に係る流体式発電装置を、用水路に設置される水力発電装置に適用した例について説明することとする。   Embodiments of the present invention will be described below with reference to the drawings. In this embodiment, an example in which the fluid power generation device according to the present invention is applied to a hydroelectric power generation device installed in a water channel will be described.

まず、図1〜図4を用いて、本実施形態に係る水力発電装置1の構成について説明する。   First, the configuration of the hydroelectric generator 1 according to the present embodiment will be described with reference to FIGS.

水力発電装置1は、図1及び図2に示すように、所定深さの用水路Fに設置され、用水路F内を流れる水のエネルギ(図1の矢印方向に流れる流水Wのエネルギ)を回転エネルギに変換して電力を発生させるものである。水力発電装置1は、流水Wのエネルギを所定の回転部材30の回転エネルギに変換する流体式動力装置2と、流体式動力装置2の回転部材30の回転エネルギにより電力を発生させる発電機3と、を備えている。   As shown in FIGS. 1 and 2, the hydroelectric generator 1 is installed in the irrigation channel F having a predetermined depth, and the energy of the water flowing in the irrigation channel F (the energy of the flowing water W flowing in the direction of the arrow in FIG. 1) is converted into rotational energy. To generate electric power. The hydroelectric generator 1 includes a hydrodynamic power device 2 that converts the energy of the flowing water W into rotational energy of a predetermined rotating member 30, and a generator 3 that generates electric power by the rotational energy of the rotating member 30 of the hydrodynamic power device 2. It is equipped with.

流体式動力装置2は、流水Wに対して略直角な方向(図1〜図3における左右方向:用水路Fの幅方向)に延在するように配置された円柱部材11に沿って往復運動するように構成された所定長の可動部材10と、可動部材10の長さ方向に沿って複数配置されて可動部材10に取り付けられた翼部材20と、図2〜図4における上下方向(用水路Fの流水Wの水深方向)に延在する回転軸31を中心に回転する回転部材30と、を備えている。流体式動力装置2は、流水Wに対する翼部材20の迎え角を変化させることにより可動部材10の往復運動を実現させ、この往復運動を回転部材30の回転運動に変換するものである。   The fluid type power unit 2 reciprocates along the columnar member 11 disposed so as to extend in a direction substantially perpendicular to the flowing water W (left-right direction in FIGS. 1 to 3: the width direction of the water channel F). The movable member 10 having a predetermined length configured as described above, a plurality of wing members 20 arranged along the length direction of the movable member 10 and attached to the movable member 10, and the vertical direction in FIGS. And a rotating member 30 that rotates about a rotating shaft 31 that extends in the direction of the depth of the running water W). The fluid power device 2 realizes the reciprocating motion of the movable member 10 by changing the angle of attack of the blade member 20 with respect to the flowing water W, and converts this reciprocating motion into the rotational motion of the rotating member 30.

円柱部材11は、図示していない固定手段を用いて、図2〜図4に示すように用水路Fの流水Wの水面SFよりも上方に固定配置されており、本発明における固定軸として機能する。可動部材10は、往復運動する方向(図1〜図3における左右方向)に所定の長さを有し、円柱部材11の外周にベアリング12を介してスライド可能に配置された円筒状部材である。 Cylindrical member 11, using fixing means (not shown), which is fixedly arranged above the water surface S F running water W of canal F 2 to 4, functions as a fixed shaft in the present invention To do. The movable member 10 is a cylindrical member having a predetermined length in a reciprocating direction (left and right direction in FIGS. 1 to 3) and slidably disposed on the outer periphery of the columnar member 11 via a bearing 12. .

各翼部材20は、用水路Fの流水Wに対して略直角な方向における力(揚力及び抗力)を発生させることが可能な翼型断面形状を有している。本実施形態における各翼部材20は、図2〜図4に示すように、翼根側の約4割程度の部分が用水路Fの流水Wの水面SFよりも上方に配置され、翼端側の約6割程度の部分が流水Wの内部(水面SFよりも下方)に配置されている。なお、本発明においては、所定の基準姿勢から翼部材が一方に回動した場合の迎え角を「正」、反対に回動した場合の迎え角を「負」と称することとする。本実施形態においては、翼部材20が図1のR1方向に回動した場合の迎え角を「正」、図1のR2方向に回動した場合の迎え角を「負」と称する。 Each wing member 20 has an airfoil cross-sectional shape capable of generating a force (lift force and drag force) in a direction substantially perpendicular to the flowing water W of the water channel F. Each wing member 20 in the present embodiment, as shown in FIGS. 2-4, are disposed above the water surface S F running water W portions canal F to about 40% about of the blade root side, the wing tip about about 60% of the portion is located inside (below the water surface S F) of the flowing water W of. In the present invention, the angle of attack when the wing member is rotated to one side from a predetermined reference posture is referred to as “positive”, and the angle of attack when the wing member is rotated in the opposite direction is referred to as “negative”. In the present embodiment, the angle of attack when the wing member 20 is rotated in the R 1 direction of FIG. 1 is referred to as “positive”, and the angle of attack when the wing member 20 is rotated in the R 2 direction of FIG.

各翼部材20には、図4に示すように、一方の面から他方の面に貫通する貫通孔22が設けられている。そして、各翼部材20の貫通孔22に可動部材10が挿通された状態で、流水Wの流れ方向及び円柱部材11の延在方向に対して略直角な方向(図2〜図4における上下方向:流水Wの水深方向)に延在する翼回動軸21を介して、各翼部材20が可動部材10に回動自在に取り付けられている。これにより、流水Wに対する各翼部材20の迎え角が変化するようになっている。このような翼部材20の迎え角の変化により、図1〜図3における左右方向(用水路Fの幅方向)における力が発生するため、翼部材20が取り付けられた可動部材10が左右方向の往復運動を行う。   As shown in FIG. 4, each wing member 20 is provided with a through hole 22 penetrating from one surface to the other surface. Then, in a state in which the movable member 10 is inserted into the through hole 22 of each wing member 20, a direction substantially perpendicular to the flowing direction of the flowing water W and the extending direction of the cylindrical member 11 (the vertical direction in FIGS. Each blade member 20 is rotatably attached to the movable member 10 via a blade rotation shaft 21 extending in the direction of water depth of the flowing water W). Thereby, the angle of attack of each wing member 20 with respect to flowing water W changes. Such a change in the angle of attack of the wing member 20 generates a force in the left-right direction in FIG. 1 to FIG. 3 (the width direction of the water channel F). Do exercise.

三つの翼部材20は、図1に示すように連結部材23によって連結されている。この際、各翼部材20の前縁20aがヒンジ部材24を介して回動可能に連結部材23に取り付けられており、一つの翼部材20が翼回動軸21を中心に回動すると、残り二つの翼部材20も連動するようになっている。このため、全ての翼部材20の迎え角が同時に変化することとなる。なお、本実施形態においては、連結部材23の両端にキャスタ25が取り付けられている。これらキャスタ25は、可動部材10が往復運動の中心から最も離隔した位置に到達する直前に、後述する弾性部材15に当接するように配置されている。   The three wing members 20 are connected by a connecting member 23 as shown in FIG. At this time, the front edge 20a of each wing member 20 is pivotally attached to the connecting member 23 via the hinge member 24, and when one wing member 20 rotates about the wing rotation shaft 21, the remaining The two wing members 20 are also interlocked. For this reason, the angle of attack of all the wing members 20 changes simultaneously. In the present embodiment, casters 25 are attached to both ends of the connecting member 23. These casters 25 are arranged so as to come into contact with an elastic member 15 described later immediately before the movable member 10 reaches a position farthest from the center of the reciprocating motion.

可動部材10の前方(上流)側の面及び後方(下流)側の面には、図1に示すように、翼部材20の迎え角の上限を設定するためのストッパ13が複数個設けられている。ストッパ13は、本発明における迎角調整手段として機能するものである。本実施形態においては、可動部材10の長さ方向に沿って配置された三つの翼部材20のうち中央の翼部材20の正負の迎え角の上限を約45度に設定するストッパ13を採用している。三つの翼部材20は連結部材23を介して連結され、全ての翼部材20の迎え角が同時に変化するように構成されているため、中央の翼部材20の迎え角が制限されると残り二つの翼部材20の迎え角も制限されることとなる。   As shown in FIG. 1, a plurality of stoppers 13 for setting the upper limit of the angle of attack of the wing member 20 are provided on the front (upstream) side surface and the rear (downstream) side surface of the movable member 10. Yes. The stopper 13 functions as an angle-of-attack adjusting means in the present invention. In the present embodiment, the stopper 13 that sets the upper limit of the positive and negative angle of attack of the central wing member 20 to about 45 degrees among the three wing members 20 arranged along the length direction of the movable member 10 is employed. ing. Since the three wing members 20 are connected via the connecting member 23 and the angle of attack of all the wing members 20 is changed at the same time, if the angle of attack of the central wing member 20 is limited, the remaining two The angle of attack of the two wing members 20 is also limited.

各翼部材20の迎え角の上限は、ストッパ13の形状や構造を変更することにより、容易に調整することができる。例えば、流水Wが比較的遅い場合には、各翼部材20の迎え角の上限を比較的大きく設定して抗力優先の大きな力を発生させるようにストッパ13の形状や構造を決定する。一方、流水Wが比較的速い場合には、各翼部材20の迎え角の上限を比較的小さく設定して揚力優先の大きな力を発生させるようにストッパ13の形状や構造を決定する。なお、ストッパ13は翼部材20の表面に当接するものであるため、ゴム等の弾性材料で構成されることが好ましい。   The upper limit of the angle of attack of each wing member 20 can be easily adjusted by changing the shape and structure of the stopper 13. For example, when the running water W is relatively slow, the upper limit of the angle of attack of each wing member 20 is set to be relatively large, and the shape and structure of the stopper 13 are determined so as to generate a force with priority on the drag. On the other hand, when the flowing water W is relatively fast, the upper limit of the angle of attack of each wing member 20 is set to be relatively small, and the shape and structure of the stopper 13 are determined so as to generate a force with a higher priority to lift. Since the stopper 13 is in contact with the surface of the wing member 20, it is preferable that the stopper 13 is made of an elastic material such as rubber.

本実施形態においては、図1に示すように、翼回動軸21を翼部材20の翼弦上(ないし翼弦近傍)に配置しており、翼回動軸21から翼部材20の前縁20aまでの距離Aを、翼回動軸21から翼部材20の後縁20bまでの距離Bよりも長く設定している。このようにすると、翼部材20の上流側部分で多くの流水Wを受けることができ、翼部材20の迎え角を反転させた直後においても翼部材20で十分な力が発生するため、可動部材10の往復運動を安定させることが可能となる。距離Aは、距離Bの1.3倍程度(1.2〜1.5倍の範囲内)に設定されることが好ましい。   In the present embodiment, as shown in FIG. 1, the blade rotation shaft 21 is disposed on the chord of the wing member 20 (or near the chord), and the leading edge of the wing member 20 from the blade rotation shaft 21. The distance A to 20a is set longer than the distance B from the blade rotation shaft 21 to the rear edge 20b of the blade member 20. In this way, a large amount of running water W can be received at the upstream side portion of the wing member 20, and a sufficient force is generated in the wing member 20 immediately after the angle of attack of the wing member 20 is reversed. 10 reciprocating motions can be stabilized. The distance A is preferably set to about 1.3 times the distance B (within a range of 1.2 to 1.5 times).

また、本実施形態においては、図4に示すように、翼部材20の翼根側から翼端側になるに従って、翼部材20の前縁20aの位置を流水Wの下流側に漸次変化させて(後退翼として)いる。このように翼部材20の前縁20aの延在方向が流水Wに対して直角にならないようにしているため、用水路F内に漂う草やビニール袋等が翼部材20の前縁20aに溜まり難くなる。なお、本実施形態においては、水中における翼部材20の動きを容易にするため、翼部材20の比重を略1に設定している。翼部材20の材料としては、外皮部にステンレス等の金属材料を採用し、内部に発泡スチロール等の軽量の樹脂材料を採用することができる。   In the present embodiment, as shown in FIG. 4, the position of the leading edge 20a of the wing member 20 is gradually changed to the downstream side of the flowing water W from the blade root side to the blade tip side. (As a swept wing). Since the extending direction of the leading edge 20a of the wing member 20 is not perpendicular to the flowing water W in this way, grass, plastic bags, etc. drifting in the irrigation channel F are unlikely to collect on the leading edge 20a of the wing member 20. Become. In the present embodiment, the specific gravity of the wing member 20 is set to approximately 1 in order to facilitate the movement of the wing member 20 in water. As a material of the wing member 20, a metal material such as stainless steel can be used for the outer skin portion, and a lightweight resin material such as foamed polystyrene can be used for the inside.

各翼部材20の翼型(断面形状)は、図1に示すように左右対称とされることが好ましい。また、各翼部材20の翼長(図2〜図4の上下方向における長さ)、翼弦長及び翼厚は、用水路Fの幅、用水路Fの流水Wの深さ及び速度、水力発電装置1の規模等を勘案して適宜設定することができる。この際、用水路Fの流水Wの水深方向の70%程度にわたって各翼部材20が配置されるように、各翼部材20の翼長が設定されることが好ましい。また、各翼部材20のアスペクト比(翼長/平均翼弦長)は、6以上に設定されることが好ましい。   It is preferable that the airfoil (cross-sectional shape) of each wing member 20 is symmetrical as shown in FIG. Further, the blade length (length in the vertical direction in FIGS. 2 to 4), chord length, and blade thickness of each blade member 20 are the width of the irrigation channel F, the depth and speed of the flowing water W in the irrigation channel F, and the hydroelectric generator. It can be set as appropriate in consideration of the scale of 1. At this time, it is preferable that the blade length of each blade member 20 is set so that each blade member 20 is arranged over about 70% of the flowing water W of the irrigation channel F in the depth direction. The aspect ratio (blade length / average chord length) of each wing member 20 is preferably set to 6 or more.

各翼部材20の翼根近傍部分には、図4に示すように、翼回動軸21を中心に回転するキャスタ26が取り付けられている。キャスタ26の外周面は、図2〜図4に示すように、円柱部材11の上方に円柱部材11と略平行な方向(図2及び図3における左右方向:用水路Fの幅方向)に延在するように固定配置された角柱部材14の一側面に当接するようになっている。このように設けられたキャスタ26及び角柱部材14により、流水Wの力によって各翼部材20が可動部材10とともに円柱部材11を中心に回動するのを阻止することができる。キャスタ26及び角柱部材14は、本発明における翼回動阻止手段を構成する。   As shown in FIG. 4, a caster 26 that rotates about the blade rotation shaft 21 is attached to a portion near the blade root of each blade member 20. As shown in FIGS. 2 to 4, the outer peripheral surface of the caster 26 extends above the column member 11 in a direction substantially parallel to the column member 11 (the horizontal direction in FIGS. 2 and 3: the width direction of the water channel F). The prism member 14 is fixedly arranged so as to abut one side surface of the prism member 14. The casters 26 and the prismatic members 14 thus provided can prevent the wing members 20 from rotating around the cylindrical member 11 together with the movable member 10 by the force of the flowing water W. The caster 26 and the prism member 14 constitute the blade rotation preventing means in the present invention.

用水路Fには、図1に示すように、往復運動を行う可動部材10及び各翼部材20を左右から挟むように相互に平行に配置された一組の板状の弾性部材15が設けられている。弾性部材15は、可動部材10が往復運動の中心から最も離隔した位置に到達する直前に、翼部材20の前縁20a近傍に配置されたキャスタ25に当接するように配置されている。このように配置された弾性部材15により、可動部材10が往復運動の中心から最も離隔した位置に到達する直前に、翼部材20の前縁20aの移動が阻止されて各翼部材20が強制的に回動させられ、流水Wに対する各翼部材20の迎え角が反転(正から負又は負から正に変化)して、各翼部材20で発生する力が反転する。この結果、可動部材10の往復運動が実現することとなる。弾性部材15は、本発明における迎角反転手段として機能する。   As shown in FIG. 1, the irrigation channel F is provided with a pair of plate-like elastic members 15 arranged in parallel to each other so as to sandwich the movable member 10 that reciprocates and the wing members 20 from the left and right. Yes. The elastic member 15 is disposed so as to abut on a caster 25 disposed in the vicinity of the front edge 20a of the wing member 20 immediately before the movable member 10 reaches the position farthest from the center of the reciprocating motion. Immediately before the movable member 10 reaches the position farthest from the center of the reciprocating motion, the movement of the leading edge 20a of the wing member 20 is prevented by the elastic member 15 arranged in this way, and each wing member 20 is forced. The angle of attack of each wing member 20 with respect to the flowing water W is reversed (changes from positive to negative or from negative to positive), and the force generated in each wing member 20 is reversed. As a result, the reciprocating motion of the movable member 10 is realized. The elastic member 15 functions as an angle-of-attack inverting means in the present invention.

回転部材30は、図2に示すように、図示されていない支持部材を介して用水路Fの側方に配置されており、図2〜図4における上下方向(用水路Fの流水Wの水深方向)に延在する回転軸31を中心に回転することができるようになっている。回転部材30のさらに側方には発電機3が配置されており、回転部材30の回転エネルギが動力伝達部材4を介して発電機3に伝達されることにより、電力が発生するようになっている。本実施形態においては、図2に示すように、流体式動力装置2を構成する可動部材10及び回転部材30と、発電機3と、動力伝達部材4と、を用水路Fの流水Wの水面SFよりも上方に配置することとしている。 As shown in FIG. 2, the rotating member 30 is disposed on the side of the irrigation channel F via a support member (not shown), and the vertical direction in FIGS. 2 to 4 (the depth direction of the flowing water W in the irrigation channel F). It can be rotated around a rotating shaft 31 extending to the center. The generator 3 is arranged further to the side of the rotating member 30, and the rotational energy of the rotating member 30 is transmitted to the generator 3 through the power transmission member 4, thereby generating electric power. Yes. In the present embodiment, as shown in FIG. 2, the movable member 10 and the rotating member 30, the generator 3, and the power transmission member 4 that constitute the fluid power device 2 are connected to the water surface S of the flowing water W in the water channel F. It is supposed to be placed above F.

回転部材30は、一端が回転軸31に固定され回転軸31を中心に回転して他端が円軌道を描く所定長さの回転アーム32と、回転アーム32と一体的に回転軸31を中心に回転する円板状部材33と、を有している。回転アーム32は、図2に示すように、上下に2本平行に配置された状態で回転軸31の両端部に固定され、回転軸31を中心に同時に回転する。回転部材30の回転力は、円板状部材33に取り付けられた動力伝達部材4を介して発電機3に伝達される。また、回転部材30は、連結柱状部材40を介して可動部材10に連結されている。なお、本実施形態における回転部材30はフライホイール(はずみ車)であり、翼部材20の迎え角がゼロ(翼部材20の翼弦方向が水流方向と平行)になるとき、すなわち翼部材20に左右方向の力(可動部材10を往復運動させる力)が働かないときに、その回転慣性力により回転アーム32の回転をスムーズに行わせる役割を担うものである。   The rotary member 30 has one end fixed to the rotary shaft 31 and rotating around the rotary shaft 31, and the other end rotating around the rotary shaft 32. And a disk-shaped member 33 that rotates in the same manner. As shown in FIG. 2, the rotating arms 32 are fixed to both ends of the rotating shaft 31 in a state where two rotating arms are arranged in parallel vertically, and rotate simultaneously around the rotating shaft 31. The rotational force of the rotating member 30 is transmitted to the generator 3 via the power transmission member 4 attached to the disk-shaped member 33. The rotating member 30 is connected to the movable member 10 via a connecting columnar member 40. The rotating member 30 in the present embodiment is a flywheel (flywheel), and when the angle of attack of the wing member 20 becomes zero (the chord direction of the wing member 20 is parallel to the water flow direction), that is, left and right of the wing member 20. When a direction force (a force for reciprocating the movable member 10) does not work, the rotating inertia force is used to smoothly rotate the rotary arm 32.

連結柱状部材40は、可動部材10の往復運動を回転部材30の回転運動に変換する所定長さの柱状部材である。連結柱状部材40の一端は、図1及び図2に示すように、可動部材10の一端近傍に配置された翼部材20の翼回動軸21を介して回動自在に可動部材10に取り付けられている。連結柱状部材40の他端は、回動軸41を介して回動自在に回転アーム32の他端に取り付けられている。連結柱状部材40は、図2に示すように、上下に2本平行に配置された状態で回動軸41を介して回転アーム32に取り付けられている。可動部材10の往復運動は、連結柱状部材40を介して回転部材30の回転運動に変換される。すなわち、連結柱状部材40は、本発明における動力変換手段として機能する。   The connecting columnar member 40 is a columnar member having a predetermined length that converts the reciprocating motion of the movable member 10 into the rotational motion of the rotating member 30. As shown in FIGS. 1 and 2, one end of the connecting columnar member 40 is rotatably attached to the movable member 10 via a blade rotation shaft 21 of the blade member 20 disposed near one end of the movable member 10. ing. The other end of the connecting columnar member 40 is attached to the other end of the rotating arm 32 via a rotating shaft 41 so as to be rotatable. As shown in FIG. 2, the connecting columnar member 40 is attached to the rotating arm 32 via a rotating shaft 41 in a state where two connecting columns 40 are arranged in parallel in the vertical direction. The reciprocating motion of the movable member 10 is converted into the rotational motion of the rotating member 30 via the connecting columnar member 40. That is, the connecting columnar member 40 functions as power conversion means in the present invention.

次に、図5(A)〜(E)を用いて、本実施形態に係る水力発電装置1の動作について説明する。なお、図5(A)〜(E)においては、各部材の動きが明確になるように、一部の部材(ストッパ13、回転アーム32、連結柱状部材40等)の構成を簡略化して図示している。   Next, operation | movement of the hydroelectric generator 1 which concerns on this embodiment is demonstrated using FIG. 5 (A)-(E). 5A to 5E, the configuration of some members (stopper 13, rotating arm 32, connecting columnar member 40, etc.) is simplified so that the movement of each member becomes clear. Show.

以下の説明においては、図5(A)に示した状態を初期状態として水力発電装置1を稼働させるものとする。初期状態においては、回転部材30の回転アーム32は、流水Wに対してほぼ直角に配置された状態で図5(A)の左側に位置しており、連結柱状部材40もまた流水Wに対してほぼ直角に配置された状態で回転アーム32に重ねられている。また、初期状態において、可動部材10は往復運動の中心から最も離隔するように図5(A)の左側に移動させられており、可動部材10に取り付けられた各翼部材20の迎え角はわずかに負となっている。   In the following description, it is assumed that the hydroelectric generator 1 is operated with the state shown in FIG. In the initial state, the rotary arm 32 of the rotary member 30 is located on the left side of FIG. 5A in a state of being arranged substantially perpendicular to the running water W, and the connecting columnar member 40 is also located with respect to the running water W. Are placed on the rotary arm 32 in a state of being arranged substantially at right angles. In the initial state, the movable member 10 is moved to the left side of FIG. 5A so as to be farthest from the center of the reciprocating motion, and the angle of attack of each wing member 20 attached to the movable member 10 is a little. Is negative.

各翼部材20は翼回動軸21を中心に回動自在に構成されているため、初期状態において各翼部材20に流水Wが当たることにより、各翼部材20の負の迎え角は増大し、図5(B)に示すようにストッパ13により約45度に設定される。このように迎え角が増大した各翼部材20に右向きの力(揚力及び抗力)が作用することとなるため、可動部材10は、図5(B)に示すように右方向に移動し始める。そして、このような可動部材10の右方向への動きが連結柱状部材40を介して回転アーム32に伝達されることにより、回転部材30が回転軸31を中心に回転し始める。   Since each wing member 20 is configured to be rotatable about the wing rotation shaft 21, the negative angle of attack of each wing member 20 is increased by running water W against each wing member 20 in the initial state. As shown in FIG. 5B, the angle is set to about 45 degrees by the stopper 13. Since a rightward force (lift force and drag force) acts on each wing member 20 having an increased angle of attack in this way, the movable member 10 starts to move in the right direction as shown in FIG. Then, the movement of the movable member 10 in the right direction is transmitted to the rotary arm 32 via the connecting columnar member 40, whereby the rotary member 30 starts to rotate around the rotary shaft 31.

この後、図5(C)に示すように、可動部材10が往復運動の中心から最も離隔する右側の位置の近傍まで移動すると、可動部材10の右側端部近傍に取り付けられた翼部材20の前縁20a近傍に配置されたキャスタ25が弾性部材15に当接し、翼部材20の前縁20aの右側への移動が阻止される。一方、可動部材10自体は、図5(D)に示すように連結柱状部材40と回転アーム32とが一直線になる位置(図5(C)に示す角度θが零になるように往復運動の中心から最も離隔する右側の位置)まで、その慣性力により引き続き右側へ移動する。この結果、各翼部材20は翼回動軸21を中心に強制的に回動させられることとなり、図5(D)に示すように流水Wに対する各翼部材20の迎え角が負から正に変化し、各翼部材20で発生する力が反転して、可動部材10は左方向に移動し始める。可動部材10の移動方向が反転する際には、回転部材30はその慣性力により回転を続行する。反転した可動部材10の左方向への動きは、連結柱状部材40を介して回転アーム32に伝達され、回転部材30の回転駆動が続行される。   Thereafter, as shown in FIG. 5C, when the movable member 10 moves to the vicinity of the right side position that is farthest from the center of the reciprocating motion, the wing member 20 attached near the right end of the movable member 10 is moved. The casters 25 arranged in the vicinity of the front edge 20a abut against the elastic member 15, and the movement of the wing member 20 to the right side of the front edge 20a is prevented. On the other hand, as shown in FIG. 5D, the movable member 10 itself reciprocates so that the connecting columnar member 40 and the rotary arm 32 are in a straight line (the angle θ shown in FIG. 5C is zero). It continues to move to the right side due to its inertial force (right side position farthest from the center). As a result, each wing member 20 is forcibly rotated about the wing rotation shaft 21, and the angle of attack of each wing member 20 with respect to the flowing water W is changed from negative to positive as shown in FIG. The force generated in each wing member 20 changes and the movable member 10 starts to move in the left direction. When the moving direction of the movable member 10 is reversed, the rotating member 30 continues to rotate due to its inertial force. The reversed leftward movement of the movable member 10 is transmitted to the rotary arm 32 via the connecting columnar member 40, and the rotary drive of the rotary member 30 is continued.

このように左方向へと移動した可動部材10が、図5(E)に示すように往復運動の中心から最も離隔する左側の位置の近傍まで移動すると、可動部材10の左側端部近傍に取り付けられた翼部材20の前縁20a近傍に配置されたキャスタ25が弾性部材15に当接し、翼部材20の前縁20aの左側への移動が阻止される。一方、可動部材10自体は、図5(A)に示すように連結柱状部材40と回転アーム32とが重なる位置(往復運動の中心から最も離隔する左側の位置)まで、その慣性力により引き続き左側へ移動する。この結果、各翼部材20は翼回動軸21を中心に強制的に回動させられ、流水Wに対する各翼部材20の迎え角が正から負に変化し、図5(A)に示す初期状態に戻ることとなる。   When the movable member 10 that has moved to the left as described above moves to the vicinity of the leftmost position that is farthest from the center of the reciprocating motion as shown in FIG. 5E, the movable member 10 is attached to the vicinity of the left end of the movable member 10. The caster 25 disposed in the vicinity of the front edge 20a of the wing member 20 is in contact with the elastic member 15, and movement of the wing member 20 to the left side of the front edge 20a is prevented. On the other hand, as shown in FIG. 5A, the movable member 10 itself continues to the left side due to its inertial force until the connecting columnar member 40 and the rotary arm 32 overlap (the leftmost position farthest from the center of the reciprocating motion). Move to. As a result, each wing member 20 is forcibly rotated about the wing rotation shaft 21, and the angle of attack of each wing member 20 with respect to the flowing water W changes from positive to negative, and the initial state shown in FIG. It will return to the state.

水力発電装置1は、以上の動作を順次繰り返すことにより、可動部材10の連続的な左右方向における往復運動を実現させ、可動部材10の往復運動のエネルギを回転部材30の回転エネルギに変換し、発電機3で電力を発生させる。   The hydroelectric generator 1 realizes the continuous reciprocating motion of the movable member 10 in the left-right direction by sequentially repeating the above operations, and converts the energy of the reciprocating motion of the movable member 10 into the rotational energy of the rotating member 30, Electric power is generated by the generator 3.

以上説明した実施形態に係る流体式動力装置2においては、各翼部材20の迎え角を正から負(又は負から正)に変化させることにより、各翼部材20で発生する力(抗力及び揚力)を反転させて、流水Wに対して略直角な方向における可動部材10の往復運動を実現させることができる。そして、このような可動部材10の往復運動を回転部材30の回転運動に変換することができる。この際、可動部材10の往復運動の際に各翼部材20の迎え角が変化するので、水中に漂う種々の物体(草やビニール袋等)が各翼部材20に付着し難く、付着した場合においても除去され易いという利点を有する。   In the fluid power unit 2 according to the embodiment described above, the force (drag and lift) generated in each wing member 20 by changing the angle of attack of each wing member 20 from positive to negative (or from negative to positive). ) Is reversed, and the reciprocating motion of the movable member 10 in the direction substantially perpendicular to the flowing water W can be realized. Such reciprocating motion of the movable member 10 can be converted into rotational motion of the rotating member 30. At this time, since the angle of attack of each wing member 20 changes when the movable member 10 reciprocates, various objects (grass, plastic bags, etc.) drifting in the water are difficult to adhere to each wing member 20 and are attached. It has the advantage of being easily removed.

また、以上説明した実施形態に係る流体式動力装置2においては、翼回動軸21から翼部材20の前縁20aまでの距離を、翼回動軸21から翼部材20の後縁20bまでの距離よりも長くしているため、翼部材20の上流側部分で多くの流水を受けることができる。従って、可動部材10の往復運動中に翼部材20の迎え角を一定にすることが可能となる。また、可動部材10が往復運動の両端に到達した時点で翼部材20の迎え角を逸早く所定の値まで反転させることが可能になり、翼部材20に迎角反転直後から大きな揚力及び抗力を発生させることが可能となる。   Further, in the fluid power device 2 according to the embodiment described above, the distance from the blade rotation shaft 21 to the front edge 20a of the blade member 20 is the distance from the blade rotation shaft 21 to the rear edge 20b of the blade member 20. Since it is longer than the distance, a large amount of running water can be received in the upstream portion of the wing member 20. Therefore, the angle of attack of the wing member 20 can be made constant during the reciprocating motion of the movable member 10. Further, when the movable member 10 reaches both ends of the reciprocating motion, it becomes possible to quickly reverse the angle of attack of the wing member 20 to a predetermined value, and a large lift and drag force are generated on the wing member 20 immediately after the angle of attack is reversed. It becomes possible to make it.

また、以上説明した実施形態に係る流体式動力装置2においては、翼部材20の翼根側から翼端側になるに従って、翼部材20の前縁20aの位置が流水Wの下流側に漸次変化する(翼部材20の前縁20aの延在方向が流水Wに対して直角にならない後退翼を採用している)ため、水中に漂う種々の物体が翼部材20の前縁20aに溜まり難くなる。   Further, in the fluid power unit 2 according to the embodiment described above, the position of the leading edge 20a of the blade member 20 gradually changes to the downstream side of the flowing water W as the blade root moves from the blade root side to the blade tip side. Therefore, various objects drifting in water are difficult to collect on the front edge 20a of the wing member 20 because the extending direction of the front edge 20a of the wing member 20 is not perpendicular to the flowing water W. .

また、以上説明した実施形態に係る流体式動力装置2においては、翼回動阻止手段(角柱部材14及びキャスタ26)により、各翼部材20が流水Wの力によって可動部材10とともに円柱部材11を中心に回動するのを阻止することができる。従って、流水Wに対する各翼部材10の姿勢を安定させることができる。   Further, in the fluid type power unit 2 according to the embodiment described above, each blade member 20 is moved together with the movable member 10 together with the movable member 10 by the force of the flowing water W by the blade rotation preventing means (the prismatic member 14 and the caster 26). Rotation to the center can be prevented. Accordingly, the posture of each wing member 10 with respect to the flowing water W can be stabilized.

また、以上説明した実施形態に係る流体式動力装置2においては、ストッパ13により各翼部材20の迎え角の上限が調整可能であるため、例えば比較的遅い流水Wに適用する場合には、迎え角の上限を比較的大きく設定して大量の流水Wを各翼部材20で受け止めることにより、抗力優先の大きな力を発生させることができる。一方、比較的速い流水Wに適用する場合には、迎え角の上限を比較的小さく設定して、揚力優先の大きな力を発生させることができる。従って、流れの状況に応じて効率良く流水エネルギを取り出すことが可能となる。   In the fluid power unit 2 according to the embodiment described above, the upper limit of the angle of attack of each blade member 20 can be adjusted by the stopper 13. By setting the upper limit of the angle to be relatively large and receiving a large amount of flowing water W by each wing member 20, it is possible to generate a force with a high priority to the drag. On the other hand, when applied to the relatively fast flowing water W, the upper limit of the angle of attack can be set relatively small to generate a force with a high lift priority. Therefore, it is possible to efficiently extract running water energy according to the flow situation.

また、以上説明した実施形態に係る水力発電装置1においては、用水路Fの流水Wの水深方向の広い領域における流水エネルギを効率良く取り出して電気エネルギに変換することができる。また、本実施形態に係る水力発電装置1においては、流体式動力装置2を構成する部材の大半(可動部材10や回転部材30)を用水路Fの流水Wの水面SFよりも上方に配置して水との接触を回避することができるので、装置の故障機会を低減させて耐用年数を延ばすことが可能となる。 Moreover, in the hydroelectric generator 1 which concerns on embodiment described above, the flowing water energy in the wide area | region of the depth direction of the flowing water W of the water channel F can be taken out efficiently, and can be converted into electrical energy. In the hydraulic power unit 1 according to this embodiment, is disposed above the water surface S F running water W of canal F most of the members constituting the fluid type power unit 2 (the movable member 10 and the rotary member 30) Therefore, it is possible to avoid contact with water, thereby reducing the chance of failure of the apparatus and extending the useful life.

なお、以上の実施形態においては、用水路Fの幅方向(図1〜図3における左右方向)における力を発生させるように各翼部材20を配置して、可動部材10の左右方向(水平方向)における往復運動を実現させた例を示したが、各翼部材20の配置や可動部材10の往復運動の方向はこれに限られるものではない。例えば、用水路Fの流水Wの水深方向(図2〜図4における上下方向)における力を発生させるように各翼部材20を配置して、可動部材10の水深方向における往復運動を実現させることもできる。また、以上の実施形態においては、水力発電装置1を用水路Fに設置した例を示したが、水力発電装置1を河川や海に設置することもできる。   In the above embodiment, each wing member 20 is arranged so as to generate a force in the width direction of the irrigation channel F (left and right direction in FIGS. 1 to 3), and the left and right direction (horizontal direction) of the movable member 10. Although the example which implement | achieved the reciprocating motion in was shown, the arrangement | positioning of each wing member 20 and the direction of the reciprocating motion of the movable member 10 are not restricted to this. For example, each wing member 20 may be arranged so as to generate a force in the depth direction (vertical direction in FIGS. 2 to 4) of the flowing water W of the irrigation channel F, and the reciprocating motion in the depth direction of the movable member 10 may be realized. it can. Moreover, although the example which installed the hydroelectric generator 1 in the water channel F was shown in the above embodiment, the hydroelectric generator 1 can also be installed in a river or the sea.

また、以上の実施形態においては、各翼部材20を連結する連結部材23の端部(両端に位置する翼部材20の前縁20a近傍)にキャスタ25を配置し、これらキャスタ25に弾性部材15を当接させて各翼部材20の迎え角を反転させた例を示したが、キャスタ25を採用することなく、両端に位置する翼部材20の前縁20aに弾性部材15を直接当接させて各翼部材20の迎え角を反転させることもできる。   Moreover, in the above embodiment, the casters 25 are arranged at the end portions of the connecting members 23 that connect the wing members 20 (near the front edge 20a of the wing members 20 located at both ends), and the elastic members 15 are attached to the casters 25. In the above example, the angle of attack of each wing member 20 is reversed, but the elastic member 15 is directly brought into contact with the front edge 20a of the wing member 20 located at both ends without using the casters 25. Thus, the angle of attack of each wing member 20 can be reversed.

また、以上の実施形態においては、迎角反転手段として、相互に平行に配置された一組の板状の弾性部材15を採用した例を示したが、弾性部材15の構成や形状はこれに限られるものではない。また、以上の実施形態においては、迎角反転手段として弾性部材を採用した例を示したが、同様の機能(流水Wに対する各翼部材20の迎え角を反転させることにより各翼部材20で発生する力を反転させて可動部材10の往復運動を実現させる機能)を果たす構成であれば、いかなる構成を採用してもよい。例えば、可動部材10の往復運動の中心から最も離隔した位置に到達する直前に、各翼部材20の前縁20aに向けて局所的に流水を供給するように構成された流体供給手段(例えば図1に破線で示した平面視ハ字状の湾曲板16)を迎角反転手段として採用することもできる。   Moreover, in the above embodiment, although the example which employ | adopted a pair of plate-shaped elastic member 15 arrange | positioned mutually parallel as an angle-of-attack reversing means was shown, the structure and shape of the elastic member 15 are this. It is not limited. Moreover, although the example which employ | adopted the elastic member as an angle-of-attack reversing means was shown in the above embodiment, the same function (It generate | occur | produces in each blade member 20 by reversing the angle of attack of each blade member 20 with respect to the flowing water W. Any configuration may be adopted as long as the configuration achieves the function of reversing the force to achieve the reciprocating motion of the movable member 10). For example, immediately before reaching the position farthest from the center of the reciprocating motion of the movable member 10, fluid supply means configured to supply flowing water locally toward the front edge 20a of each wing member 20 (for example, FIG. A curved plate 16) having a C-shape in a plan view indicated by a broken line in FIG.

また、以上の実施形態においては、水力発電装置1に本発明を適用した例を示したが、本発明に係る流体式動力装置を風力発電装置に適用することもできる。   Moreover, although the example which applied this invention to the hydroelectric generator 1 was shown in the above embodiment, the fluid type power unit which concerns on this invention can also be applied to a wind power generator.

1…水力発電装置(流体式発電装置)
2…流体式動力装置
3…発電機
10…可動部材
11…円柱部材(固定軸)
12…ベアリング
13…ストッパ(迎角調整手段)
14…角柱部材(翼回動阻止手段)
15…弾性部材(迎角反転手段)
16…湾曲板(流体供給手段、迎角反転手段)
20…翼部材
20a…前縁
20b…後縁
21…翼回動軸
26…キャスタ(翼回動阻止手段)
30…回転部材
31…回転軸
40…連結柱状部材(動力変換手段)
A…翼回動軸から翼部材前縁までの距離
B…翼回動軸から翼部材後縁までの距離
F…用水路
F…用水路の流水の水面
W…流水(流体)
1 ... Hydroelectric power generator (fluid power generator)
2 ... Fluid power unit 3 ... Generator 10 ... Movable member 11 ... Cylindrical member (fixed shaft)
12 ... Bearing 13 ... Stopper (attack angle adjusting means)
14 ... prismatic member (wing rotation prevention means)
15. Elastic member (attack angle reversing means)
16 ... curved plate (fluid supply means, angle of attack reversing means)
DESCRIPTION OF SYMBOLS 20 ... Wing member 20a ... Front edge 20b ... Rear edge 21 ... Blade rotation axis 26 ... Caster (blade rotation prevention means)
30 ... Rotating member 31 ... Rotating shaft 40 ... Connecting columnar member (power conversion means)
A: Distance from blade rotation shaft to blade member leading edge B ... Distance from blade rotation shaft to blade member trailing edge F : Water channel SF: Water surface of running water W: Water flow (fluid)

Claims (12)

流体の所定方向の流れに対して略直角な方向に延在する固定軸に沿って往復運動するように構成された可動部材と、
前記流れ及び前記固定軸の延在方向に対して略直角な方向に延在する翼回動軸を介して前記可動部材に回動自在に取り付けられることにより前記流れに対する迎え角が変化するように構成された少なくとも一つの翼部材と、
前記流れに対する前記翼部材の迎え角を正から負又は負から正に変化させることにより前記翼部材で発生する力を反転させて前記可動部材の往復運動を実現させる迎角反転手段と、
所定方向に延在する回転軸を中心に回転する回転部材と、
前記可動部材の往復運動を前記回転部材の回転運動に変換する動力変換手段と、を備え
前記翼回動軸は、前記翼部材の翼弦上ないし翼弦近傍に配置され、
前記翼回動軸から前記翼部材の前縁までの距離が、前記翼回動軸から前記翼部材の後縁までの距離よりも長くなるように設定されてなる、
流体式動力装置。
A movable member configured to reciprocate along a fixed axis extending in a direction substantially perpendicular to a predetermined flow of fluid;
An angle of attack with respect to the flow is changed by being rotatably attached to the movable member via a blade rotation shaft extending in a direction substantially perpendicular to the flow and the extending direction of the fixed shaft. At least one wing member configured;
Angle-of-attack reversing means for reversing the force generated by the wing member by changing the angle of attack of the wing member with respect to the flow from positive to negative or from negative to positive;
A rotating member that rotates about a rotating shaft extending in a predetermined direction;
Power conversion means for converting the reciprocating motion of the movable member into the rotational motion of the rotating member ,
The blade rotation shaft is disposed on or near the chord of the wing member,
Distance from the blade pivot axis to the front edge of the wing member, ing is set to be longer than the distance from the blade pivot axis to the trailing edge of the wing member,
Fluid power unit.
前記可動部材は、往復運動する方向に所定の長さを有する筒状部材であり、
前記筒状部材の長さ方向に沿って複数の前記翼部材が配置され、前記翼部材が連動するように構成される、請求項1に記載の流体式動力装置。
The movable member is a cylindrical member having a predetermined length in a reciprocating direction,
The fluid power unit according to claim 1, wherein a plurality of the wing members are arranged along a length direction of the cylindrical member, and the wing members are interlocked.
前記翼回動軸から前記翼部材の前縁までの距離が、前記翼回動軸から前記翼部材の後縁までの距離の1.2〜1.5倍の範囲内になるように設定されてなる、請求項1又は2に記載の流体式動力装置。 The distance from the blade rotation axis to the leading edge of the wing member is set to be within a range of 1.2 to 1.5 times the distance from the blade rotation axis to the trailing edge of the wing member. The fluid type power unit according to claim 1 or 2 . 前記翼部材の翼根側から翼端側になるに従って、前記翼部材の前縁の位置が前記流れの方向に漸次変化するように構成されてなる、請求項1からの何れか一項に記載の流体式動力装置。 With increasing the wing tip from the blade root side of the blade member, the position of the leading edge of the wing member is configured to change gradually in the direction of the flow, in any one of claims 1 3 The fluid power unit as described. 前記固定軸は、前記流れに対して略直角な方向に延在するように固定配置された円柱部材であり、
前記可動部材は、前記円柱部材の外周にベアリングを介してスライド可能に配置された筒状部材であり、
前記翼部材が前記筒状部材とともに前記円柱部材を中心に回動するのを阻止する翼回動阻止手段が設けられてなる、請求項1からの何れか一項に記載の流体式動力装置。
The fixed shaft is a cylindrical member fixedly arranged so as to extend in a direction substantially perpendicular to the flow,
The movable member is a cylindrical member that is slidably disposed on the outer periphery of the columnar member via a bearing,
The blade member is formed by wings rotation inhibiting means for inhibiting provided from being rotated around the said cylindrical member with said tubular member, fluid type power device according to any one of claims 1 to 4 .
前記翼部材の迎え角の上限を設定する迎角調整手段を備える、請求項1からの何れか一項に記載の流体式動力装置。 The fluid power unit according to any one of claims 1 to 5 , further comprising an angle-of-attack adjusting unit that sets an upper limit of an angle of attack of the wing member. 前記迎角調整手段は、前記翼部材の迎え角の上限を45度に設定するものである、請求項に記載の流体式動力装置。 The fluid power unit according to claim 6 , wherein the angle-of-attack adjusting means sets the upper limit of the angle of attack of the wing member to 45 degrees. 流体の所定方向の流れに対して略直角な方向に延在する固定軸に沿って往復運動するように構成された可動部材と、
前記流れ及び前記固定軸の延在方向に対して略直角な方向に延在する翼回動軸を介して前記可動部材に回動自在に取り付けられることにより前記流れに対する迎え角が変化するように構成された少なくとも一つの翼部材と、
前記流れに対する前記翼部材の迎え角を正から負又は負から正に変化させることにより前記翼部材で発生する力を反転させて前記可動部材の往復運動を実現させる迎角反転手段と、
所定方向に延在する回転軸を中心に回転する回転部材と、
前記可動部材の往復運動を前記回転部材の回転運動に変換する動力変換手段と、
を備え、
前記迎角反転手段は、前記可動部材が往復運動の中心から最も離隔した位置に到達する直前に、前記翼部材の前縁の移動を阻止し前記翼部材を強制的に回動させることにより前記迎え角を反転させるものであり、
前記迎角反転手段は、前記可動部材の往復運動の中心から最も離隔した位置に到達する直前に、前記翼部材の前縁に向けて局所的に流体を供給するように構成された流体供給手段である、
体式動力装置。
A movable member configured to reciprocate along a fixed axis extending in a direction substantially perpendicular to a predetermined flow of fluid;
An angle of attack with respect to the flow is changed by being rotatably attached to the movable member via a blade rotation shaft extending in a direction substantially perpendicular to the flow and the extending direction of the fixed shaft. At least one wing member configured;
Angle-of-attack reversing means for reversing the force generated by the wing member by changing the angle of attack of the wing member with respect to the flow from positive to negative or from negative to positive;
A rotating member that rotates about a rotating shaft extending in a predetermined direction;
Power conversion means for converting the reciprocating motion of the movable member into the rotational motion of the rotating member;
With
The angle-of-attack reversing means prevents the movement of the leading edge of the wing member and forcibly rotates the wing member immediately before the movable member reaches a position farthest from the center of reciprocation. Which reverses the angle of attack,
The angle-of-attack reversing means is configured to supply fluid locally to the leading edge of the wing member immediately before reaching the position farthest from the center of the reciprocating motion of the movable member. Is,
Flow body type power device.
前記流体は、所定の河川又は用水路の流水であり、
前記翼部材は、前記流水の水深方向における力を発生させるように配置されて前記可動部材の前記水深方向における往復運動を実現させるものである、請求項1からの何れか一項に記載の流体式動力装置。
The fluid is flowing water of a predetermined river or irrigation channel,
The said wing member is arrange | positioned so that the force in the depth direction of the said flowing water may be generate | occur | produced, The reciprocating motion in the said depth direction of the said movable member is implement | achieved as described in any one of Claim 1 to 8 Fluid power unit.
前記流体は、所定の河川又は用水路の流水であり、
前記翼部材は、前記河川又は用水路の幅方向における力を発生させるように配置されて前記可動部材の前記幅方向における往復運動を実現させるものである、請求項1からの何れか一項に記載の流体式動力装置。
The fluid is flowing water of a predetermined river or irrigation channel,
The blade member is used for realizing the reciprocating movement in the width direction of the movable member is arranged to generate a force in the width direction of the river or canal, to any one of claims 1 to 8 The fluid power unit as described.
請求項1から10の何れか一項に記載の流体式動力装置と、
前記流体式動力装置の前記回転部材の回転運動により電力を発生させる発電機と、
を備える、流体式発電装置。
A fluid power unit according to any one of claims 1 to 10 ,
A generator for generating electric power by rotational movement of the rotating member of the fluid power unit;
A fluid type power generator.
前記流体式動力装置の前記翼部材の少なくとも一部は、所定の河川又は用水路の流水の内部に配置され、
前記流体式動力装置の前記可動部材、前記回転部材及び前記動力変換手段は、前記流水の水面よりも上方に配置されるものである、請求項11に記載の流体式発電装置。
At least a part of the wing member of the fluid power unit is disposed inside running water of a predetermined river or irrigation channel,
The fluid power generation device according to claim 11 , wherein the movable member, the rotating member, and the power conversion unit of the fluid power device are disposed above a water surface of the flowing water.
JP2010035968A 2010-02-22 2010-02-22 Fluid power device and fluid power generator Expired - Fee Related JP5574408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010035968A JP5574408B2 (en) 2010-02-22 2010-02-22 Fluid power device and fluid power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010035968A JP5574408B2 (en) 2010-02-22 2010-02-22 Fluid power device and fluid power generator

Publications (2)

Publication Number Publication Date
JP2011169289A JP2011169289A (en) 2011-09-01
JP5574408B2 true JP5574408B2 (en) 2014-08-20

Family

ID=44683648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010035968A Expired - Fee Related JP5574408B2 (en) 2010-02-22 2010-02-22 Fluid power device and fluid power generator

Country Status (1)

Country Link
JP (1) JP5574408B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5875081B2 (en) * 2012-11-08 2016-03-02 学校法人福岡工業大学 Flutter hydroelectric generator
TWI744633B (en) * 2019-05-10 2021-11-01 崑山科技大學 Reciprocating hydroelectric mechanism with lifting function
JP7112766B2 (en) * 2020-11-11 2022-08-04 崑山科技大學 Swing-type hydraulic power generation mechanism that can lift the blade

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995972A (en) * 1975-07-07 1976-12-07 Nassar Esam M Wind machine with reciprocating blade means
JP4589892B2 (en) * 2006-04-28 2010-12-01 株式会社国益 Power generator
JP2008128144A (en) * 2006-11-22 2008-06-05 Honda Motor Co Ltd Wind turbine generator
WO2008123154A1 (en) * 2007-03-23 2008-10-16 Nihon University Fluid type power device and fluid type power generator

Also Published As

Publication number Publication date
JP2011169289A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP4837736B2 (en) Device that captures energy from a fluid stream
JP4705086B2 (en) Hydroelectric generator
AU2009100211A4 (en) System for generating power by river flow
EP2195524B1 (en) Device for converting kinetic energy of a flowing water into kinetic energy of a rotatable rotor shaft
JP5574408B2 (en) Fluid power device and fluid power generator
WO2014194831A1 (en) Vertical shaft hydraulic power generation device
US10294916B2 (en) Fluid flow induced oscillating energy harvester maximizing power output through off-center mounted toggling bluff body and/or suspension stiffening mechanism
EP3011166B1 (en) Wave/tidal&wind energy converters
KR101074325B1 (en) Savonius rot0r for wind power generation of vertical axis with variable biblade structure
CN205714570U (en) Tidal current energy generating equipment and kuppe thereof
CN103758679B (en) A kind of vane telescopic tidal current energy power generation
CN204283728U (en) Oval orbit controls formula vertical shaft turbine
JPWO2008123154A1 (en) Fluid power device and fluid power generator
TWI697615B (en) Reciprocating hydroelectric mechanism
JP2014101874A (en) Blade function device
CN108425785B (en) Method for generating electricity by using water flow
US9284941B2 (en) Natural energy extraction apparatus
CN107850036B (en) Propeller rotor
KR101819620B1 (en) automatic feeding Apparatus
KR101542877B1 (en) Automatic flexural reciprocating device of oscillating tidal stream generators
CN105545569A (en) Power generation device rotating blade capable of automatically adjusting angle
JP2010242666A (en) Turbine for power generation and power generator
KR20120106451A (en) Wave power generation system using active breakwater
CN107304745B (en) Tidal current energy power generation device and guide sleeve thereof
CN205532990U (en) Automatic angle of adjustment's power generating equipment rotating vane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140626

R150 Certificate of patent or registration of utility model

Ref document number: 5574408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees