JP5572884B2 - Body armor - Google Patents

Body armor Download PDF

Info

Publication number
JP5572884B2
JP5572884B2 JP2009038493A JP2009038493A JP5572884B2 JP 5572884 B2 JP5572884 B2 JP 5572884B2 JP 2009038493 A JP2009038493 A JP 2009038493A JP 2009038493 A JP2009038493 A JP 2009038493A JP 5572884 B2 JP5572884 B2 JP 5572884B2
Authority
JP
Japan
Prior art keywords
impact
shell member
shell
bent
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009038493A
Other languages
Japanese (ja)
Other versions
JP2010189820A (en
Inventor
健一 時枝
忠 島津
潔 奈良
Original Assignee
ゼット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ゼット株式会社 filed Critical ゼット株式会社
Priority to JP2009038493A priority Critical patent/JP5572884B2/en
Publication of JP2010189820A publication Critical patent/JP2010189820A/en
Application granted granted Critical
Publication of JP5572884B2 publication Critical patent/JP5572884B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Helmets And Other Head Coverings (AREA)

Description

本発明は、身体(例えば、頭部、胸部、脚脛部、肘部など)を被覆する状態で身体に装着される身体防護具に関する。   The present invention relates to a body armor worn on a body while covering the body (for example, head, chest, leg shin, elbow).

従来、この種の身体防護具の一例である野球用ヘルメットとしては、図5(a)に示すように、ABS樹脂素材(樹脂素材の一例)からなる外側のシェル部材1と、EPS素材(発泡スチロール、軟質材の一例)からなる内側のライナー2(衝撃緩衝材の一例)とを積層接着したものが知られている。   Conventionally, as a baseball helmet which is an example of this type of body armor, as shown in FIG. 5A, an outer shell member 1 made of an ABS resin material (an example of a resin material) and an EPS material (an expanded polystyrene) And an inner liner 2 (an example of an impact buffer) made of a soft material are known.

つまり、この従来の野球用ヘルメットは、図5(b)に示すように、前記シェル部材1の外面1bにボールBが衝突することに対し、その衝撃力をシェル部材1で面積的に分散し、且つ、その衝撃力のエネルギーをシェル部材1の湾曲変形又は屈曲変形、及び、シェル部材1の変形を受け止める形態での衝撃緩衝材の圧縮変形で吸収する。   That is, in this conventional baseball helmet, as shown in FIG. 5 (b), the ball B collides with the outer surface 1 b of the shell member 1, and the impact force is distributed in area by the shell member 1. And the energy of the impact force is absorbed by the bending deformation or bending deformation of the shell member 1 and the compression deformation of the shock absorbing material in the form of receiving the deformation of the shell member 1.

ところが、上記従来のヘルメットでは、衝撃エネルギーの吸収効果の面では未だ不十分との指摘があり、また、衝撃力を受けたときにシェル部材1における衝撃力作用点(湾曲変形及び屈曲変形の頂点)の変位量が極端に大きくなることから、衝撃緩衝材2の前記作用点に対向する部分が底付き状態(それ以上の圧縮変形が不能な状態)になって、所期の身体防護機能が発揮できない場合もあった。   However, it has been pointed out that the conventional helmet is still insufficient in terms of the effect of absorbing impact energy, and the point of impact force acting on the shell member 1 (the apex of bending deformation and bending deformation) when subjected to impact force. ) Is extremely large, the portion of the shock absorbing material 2 facing the action point is in a bottomed state (a state in which further compression deformation is impossible), and the desired body protection function is achieved. In some cases, it could not be demonstrated.

しかしながら、衝撃緩衝材2を厚くするのは、全体寸法の大きな変更が必要になるために無理に等しく、また、シェル部材1の厚み寸法や素材種を変更することも、材料費の高騰や既存の金型等が無駄になるなどの費用面や規格等の面で難しい問題があった。そのため、シェル部材の基本構成を余り変更しない状態でのシェル部材側での構造的な改良でもって衝撃エネルギーの吸収効果を高めることが望まれていた。   However, thickening the shock-absorbing material 2 is forcibly equivalent because a large change in the overall dimensions is required, and changing the thickness dimension and material type of the shell member 1 also increases the material cost and There is a problem that is difficult in terms of cost and standards, such as wasted molds. For this reason, it has been desired to enhance the impact energy absorption effect by structural improvements on the shell member side in a state where the basic configuration of the shell member is not changed much.

この実情に鑑み、本発明の主たる課題は、合理的な構造の採用により、衝撃エネルギーの吸収効果を効果的且つ効率的に高める点にある。   In view of this situation, the main object of the present invention is to effectively and efficiently enhance the impact energy absorption effect by adopting a rational structure.

本発明の第1特徴構成は、身体防護具に係り、その特徴は、
身体を被覆する状態で身体に装着される身体防護具であって、
樹脂製のシェル部材における身体側となる平面状の内面部分に平面状の対衝撃用部材を積層接着し、外方からの所定の衝撃力で前記シェル部材が湾曲又は屈曲変形するのに連れて前記対衝撃用部材の端縁部の側から前記対衝撃用部材が前記シェル部材から徐々にそれらの積層方向に剥離する構造にしてあり、
前記シェル部材の平面状の内面部分には、軟質材からなる平面状の衝撃緩衝材が配設されており、
前記対衝撃用部材が、前記シェル部材と前記衝撃緩衝材との間に配設されているとともに、
前記シェル部材と同等又はそれよりも大なる撓み剛性に構成されており、
前記シェル部材における前記対衝撃用部材の周縁部を除く中間部に対応位置する部位には、外方からの衝撃力で前記シェル部材が湾曲又は屈曲変形するときに前記シェル部材の屈折破壊を誘発する破壊誘発部が形成されている点にある。
A first characteristic configuration of the present invention relates to a body armor,
A body armor worn on the body while covering the body,
A planar impact-resistant member is laminated and bonded to the planar inner surface portion serving as the body side of the resin of the shell member, to take a predetermined impact force from the outside to the shell member is curved or bent and deformed The anti-impact member is gradually peeled off from the shell member in the stacking direction from the end edge side of the anti-impact member,
A planar impact cushioning material made of a soft material is disposed on the planar inner surface portion of the shell member,
The impact-resistant member is disposed between the shell member and the shock-absorbing material,
It is configured to have a flexural rigidity equal to or greater than that of the shell member,
In a portion of the shell member that corresponds to an intermediate portion excluding the peripheral edge portion of the anti-impact member, refractive failure of the shell member is induced when the shell member is bent or bent by an impact force from the outside. It is in the point where the destruction induction part to be formed is formed.

上記構成によれば、外方から所定の衝撃力を受けた時、シェル部材が湾曲又は屈曲変形するのに連れて対衝撃用部材がシェル部材から剥離するから、そのシェル部材の剥離によって衝撃力のエネルギーを消費することができ、これにより、衝撃エネルギーの吸収効果を効果的且つ効率的に高めることができる。   According to the above configuration, when the impact member receives a predetermined impact force from the outside, the impact member is peeled off from the shell member as the shell member is bent or bent. Energy can be consumed, whereby the impact energy absorption effect can be effectively and efficiently enhanced.

また、第1特徴構成では、前記シェル部材の平面状の内面部分には、軟質材からなる平面状の衝撃緩衝材が配設されているとともに、前記対衝撃用部材が、前記シェル部材と前記衝撃緩衝材との間に配設されているから、次の作用効果も奏する。 Further, in the first characteristic configuration, a planar impact cushioning material made of a soft material is disposed on the planar inner surface portion of the shell member, and the impact-resistant member includes the shell member and the shell member. Since it is disposed between the shock-absorbing material, the following effects are also achieved.

つまり、前記衝撃緩衝材の前記シェル部材の変形を受け止める形態での衝撃緩衝材の圧縮変形で衝撃エネルギーを吸収する構造を採ることに対し、シェル部材と衝撃緩衝材との間に配設され且つシェル部材からの剥離でシェル部材よりも平面に近い形態となる対衝撃用部材によって衝撃緩衝材の被圧縮領域に対する押圧力を面積的に分散させることができ、これにより、衝撃エネルギーの吸収効果を一層高めることができるとともに、衝撃緩衝材に底付き現象が発生することも抑止することができる。   That is, it is disposed between the shell member and the shock-absorbing material, whereas the shock-absorbing material absorbs shock energy by compressing and deforming the shock-absorbing material in a form that receives deformation of the shell member. The pressing force against the compressed region of the shock absorbing material can be dispersed in an area by the anti-impact member which is formed in a form closer to the plane than the shell member by peeling from the shell member, thereby improving the impact energy absorption effect. It can be further increased, and the occurrence of a bottoming phenomenon in the shock absorbing material can be suppressed.

さらに、第1特徴構成では、前記対衝撃用部材が、前記シェル部材と同等又はそれよりも大なる撓み剛性に構成されているから、次の作用効果も奏する。   Furthermore, in the first characteristic configuration, since the impact-resistant member is configured to have a flexural rigidity that is equal to or greater than that of the shell member, the following effects are also achieved.

つまり、対衝撃用部材の剥離状態での形態を一層平面に近い形態とすることができるから、衝撃緩衝材の被圧縮領域に加わる押圧力の面積的な分散効果を一層高めることができる。   That is, since the form of the anti-impact member in the peeled state can be made a form closer to a plane, the area dispersion effect of the pressing force applied to the compressed region of the shock absorbing material can be further enhanced.

またさらに、第1特徴構成では、前記シェル部材における前記対衝撃用部材の周縁部を除く中間部に対応位置する部位には、外方からの衝撃力でシェル部材が湾曲又は屈曲変形するときにシェル部材の屈折破壊を誘発する破壊誘発部が形成されているから、次の作用効果も奏する。   Still further, in the first characteristic configuration, when the shell member is bent or bent by an impact force from the outside, the shell member is located at a position corresponding to the intermediate portion excluding the peripheral portion of the impact-resistant member. Since the fracture inducing portion for inducing the refractive fracture of the shell member is formed, the following effects are also achieved.

つまり、外方からの衝撃力でシェル部材が湾曲又は屈曲変形するときにシェル部材の屈折破壊が生じるから、そのシェル部材の屈折破壊によって衝撃力のエネルギーを消費することができるとともに、屈折破壊による変形量の増大によって対衝撃用部材の剥離も生じ易くすることができる。
本発明の第2特徴構成は、身体防護具に係り、その特徴は、
身体を被覆する状態で身体に装着される身体防護具であって、
樹脂製のシェル部材における身体側となる平面状の内面部分に平面状の対衝撃用部材を積層接着し、外方からの所定の衝撃力で前記シェル部材が湾曲又は屈曲変形するのに連れて前記対衝撃用部材の端縁部の側から前記対衝撃用部材が前記シェル部材から徐々にそれらの積層方向に剥離する構造にしてある点にある。
上記構成によれば、外方から所定の衝撃力を受けた時、シェル部材が湾曲又は屈曲変形するのに連れて対衝撃用部材がシェル部材から剥離するから、そのシェル部材の剥離によって衝撃力のエネルギーを消費することができ、これにより、衝撃エネルギーの吸収効果を効果的且つ効率的に高めることができる。
本発明の第3特徴構成は、第2特徴構成の実施に好適な構成であり、その特徴は、
前記シェル部材の平面状の内面部分には、軟質材からなる平面状の衝撃緩衝材が配設されているとともに、
前記対衝撃用部材が、前記シェル部材と前記衝撃緩衝材との間に配設されている点にある。
上記構成によれば、前記衝撃緩衝材の前記シェル部材の変形を受け止める形態での衝撃緩衝材の圧縮変形で衝撃エネルギーを吸収する構造を採ることに対し、シェル部材と衝撃緩衝材との間に配設され且つシェル部材からの剥離でシェル部材よりも平面に近い形態となる対衝撃用部材によって衝撃緩衝材の被圧縮領域に対する押圧力を面積的に分散させることができ、これにより、衝撃エネルギーの吸収効果を一層高めることができるとともに、衝撃緩衝材に底付き現象が発生することも抑止することができる。
本発明の第4特徴構成は、第3特徴構成の実施に好適な構成であり、その特徴は、
前記対衝撃用部材が、前記シェル部材と同等又はそれよりも大なる撓み剛性に構成されている点にある。
上記構成によれば、対衝撃用部材の剥離状態での形態を一層平面に近い形態とすることができるから、衝撃緩衝材の被圧縮領域に加わる押圧力の面積的な分散効果を一層高めることができる。
That is, when the shell member bends or bends due to an impact force from the outside, the refractive breakdown of the shell member occurs, so that the energy of the impact force can be consumed by the refractive fracture of the shell member, and also due to the refractive fracture. As the amount of deformation increases, the impact-resistant member can be easily peeled off.
The second characteristic configuration of the present invention relates to a body armor,
A body armor worn on the body while covering the body,
A planar impact-resistant member is laminated and bonded to the planar inner surface portion serving as the body side of the resin of the shell member, to take a predetermined impact force from the outside to the shell member is curved or bent and deformed The structure is such that the impact-impacting member is gradually peeled from the shell member in the stacking direction from the end edge portion side of the impact-impacting member.
According to the above configuration, when the impact member receives a predetermined impact force from the outside, the impact member is peeled off from the shell member as the shell member is bent or bent. Energy can be consumed, whereby the impact energy absorption effect can be effectively and efficiently enhanced.
The third characteristic configuration of the present invention is a configuration suitable for the implementation of the second characteristic configuration.
A planar impact cushioning material made of a soft material is disposed on the planar inner surface portion of the shell member,
The impact-resistant members are, Ru near the point which is disposed between the shock absorbing member and the shell member.
According to the above configuration, in contrast to adopting a structure in which impact energy is absorbed by compressive deformation of the shock absorbing material in a form of receiving deformation of the shell member of the shock absorbing material, between the shell member and the shock absorbing material. The pressing force against the compressed region of the shock absorbing material can be dispersed in an area by the impact-resistant member that is disposed and peeled off from the shell member and has a shape closer to the plane than the shell member. The absorption effect can be further enhanced, and the occurrence of a bottoming phenomenon in the shock absorbing material can be suppressed.
The fourth characteristic configuration of the present invention is a configuration suitable for the implementation of the third characteristic configuration.
The anti-impact member is configured to have a bending rigidity equal to or greater than that of the shell member.
According to the above configuration, since the form of the anti-impact member in the peeled state can be made a form closer to a plane, the area dispersion effect of the pressing force applied to the compressed region of the shock absorbing material can be further enhanced. Can do.

第1実施形態のヘルメットの側面図Side view of the helmet according to the first embodiment (a)第1実施形態のヘルメットの側面部を模式的に示す縦断面図,(b)第1実施形態のヘルメットの側面部の変形状態を模式的に示す縦断面図(A) The longitudinal cross-sectional view which shows typically the side part of the helmet of 1st Embodiment, (b) The longitudinal cross-sectional view which shows typically the deformation | transformation state of the side part of the helmet of 1st Embodiment. (a)実験対象の各種構成を示す表,(b)実験結果(損失エネルギーEと衝突速度の関係)を示すグラフ(A) Table showing various configurations of the test object, (b) Graph showing experimental results (relation between loss energy E and collision speed) (a)第2実施形態のヘルメットの側面部を模式的に示す縦断面図,(b)第2実施形態のヘルメットの側面部の変形状態を模式的に示す縦断面図(A) Longitudinal sectional view schematically showing a side surface portion of the helmet according to the second embodiment, (b) Longitudinal sectional view schematically showing a deformation state of the side surface portion of the helmet according to the second embodiment. (a)従来例のヘルメットの側面部を模式的に示す縦断面図,(b)従来例のヘルメットの側面部の変形状態を模式的に示す縦断面図(A) Longitudinal sectional view schematically showing a side surface portion of a conventional helmet, (b) Longitudinal sectional view schematically showing a deformation state of the side surface portion of the conventional helmet.

[第1実施形態]
図1は、身体防護具の一例である右打者用の野球用ヘルメット(ヘルメットの一例)を示し、1は、頭の上部と左耳(身体Pの一例)を覆う変形略半球状のシェル部材、2はシェル部材1の内面1aに積層接着された半球状のライナー(衝撃緩衝材の一例)である。
[First Embodiment]
FIG. 1 shows a baseball helmet (an example of a helmet) for a right batter, which is an example of a body protector, and 1 is a deformed substantially hemispherical shell member that covers the upper part of the head and the left ear (an example of a body P). Reference numeral 2 denotes a hemispherical liner (an example of an impact cushioning material) laminated and bonded to the inner surface 1a of the shell member 1.

そして、当該ヘルメットは、図2に示すように、前記シェル部材1の内面1aにおける左側頭部に対応する部位(つまり、右打者が打席で投球に正対する部位、シェル部材1の内面1aの一部の一例)に対衝撃用部材3を積層接着し、当該部位に対する外方からの所定の衝撃力(つまり、シェル部材1の外面1bに加わる衝撃力)でシェル部材1が湾曲又は屈曲変形するのに連れて対衝撃用部材3がシェル部材1から剥離する構造にしてある。   As shown in FIG. 2, the helmet has a portion corresponding to the left head on the inner surface 1 a of the shell member 1 (that is, a portion where the right batter faces the pitch at the batting, one of the inner surfaces 1 a of the shell member 1. The impact member 3 is laminated and bonded to an example of the portion, and the shell member 1 is bent or bent by a predetermined impact force from the outside (that is, an impact force applied to the outer surface 1b of the shell member 1). Accordingly, the anti-impact member 3 is separated from the shell member 1.

つまり、このヘルメットは、対衝撃用部材3が配設されている部位については3層構造で構成し、その他の部位は2層構造で構成されている。なお、前記対衝撃用部材3は、シェル部材1の内面1a及びライナー2の外面の各々に接着された状態でシェル部材1とライナー2との間に配設されている。   In other words, this helmet is configured with a three-layer structure for the part where the impact-resistant member 3 is disposed, and the other part is configured with a two-layer structure. The impact-resistant member 3 is disposed between the shell member 1 and the liner 2 in a state of being bonded to each of the inner surface 1a of the shell member 1 and the outer surface of the liner 2.

なお、図2(及び、図4、図5)は、変形の原理の理解が容易なように模式的に表したものであるが、実際には、身体の形状に沿う曲面状である。また、場合によっては、図の如く平面状となることもある。   Note that FIG. 2 (and FIGS. 4 and 5) are schematically shown so that the principle of deformation is easy to understand, but in actuality, it is a curved shape that conforms to the shape of the body. In some cases, it may be planar as shown in the figure.

所定の衝撃力でシェル部材1から対衝撃用部材3を剥離させる具体的手法としては、対衝撃用部材3の撓み剛性と、対衝撃用部材3とシェル部材1との間の接着力とを相対的に
設定する手法を用いている。
As a specific method for separating the impact-resistant member 3 from the shell member 1 with a predetermined impact force, the bending rigidity of the impact-resistant member 3 and the adhesive force between the impact-resistant member 3 and the shell member 1 are determined. A relative setting method is used.

すなわち、所定の衝撃力に対しては、シェル部材1に追従する形態での対衝撃用部材3の撓みの進行速度よりもシェル部材1からの対衝撃用部材3の剥離の進行速度が早くなる力で接着することにより、所定の衝撃力でシェル部材1が湾曲又は屈曲変形するのに連れて対衝撃用部材3がシェル部材1から剥離する現象を起こさせる。本例では、野球用という用途に鑑み、所定の衝撃力として、投球を受けたときの衝撃力(具体的には、球速108km/h(30m/s)以上のボールBが衝突したときの衝撃力)を想定している。   That is, for a predetermined impact force, the progressing speed of the separation of the impact-resistant member 3 from the shell member 1 is faster than the progressing speed of the deflection of the impact-resistant member 3 in the form of following the shell member 1. Adhering with force causes a phenomenon in which the impact-resistant member 3 is peeled off from the shell member 1 as the shell member 1 is bent or bent with a predetermined impact force. In this example, in view of the use for baseball, as a predetermined impact force, an impact force when a ball B having a ball speed of 108 km / h (30 m / s) or more impacts when a pitch is received. Power).

前記シェル部材1は、ABS樹脂素材から約2mmの厚み寸法t1で構成されているとともに、前記ライナー2は、軟質のEPS素材から約10mmの厚み寸法t2で構成されている。   The shell member 1 is made of an ABS resin material with a thickness dimension t1 of about 2 mm, and the liner 2 is made of a soft EPS material with a thickness dimension t2 of about 10 mm.

また、前記対衝撃用部材3は、シェル部材1よりも大なる撓み剛性となるように、シェル部材1よりも撓み剛性の高い素材の一例であるCFRP素材(炭素繊維強化プラスチック、FRP素材の一例)から約1mmの厚み寸法t3で構成されている。なお、前記対衝撃性用部材3と前記シェル部材2との接着は、エポキシ樹脂系接着剤(接着剤の一例、接着手段の一例)で接着されている。   The impact-resistant member 3 is an example of a CFRP material (an example of a carbon fiber reinforced plastic or an FRP material) that is an example of a material having a higher flexural rigidity than the shell member 1 so as to have a greater flexural rigidity than the shell member 1. ) To a thickness dimension t3 of about 1 mm. The impact-resistant member 3 and the shell member 2 are bonded with an epoxy resin adhesive (an example of an adhesive and an example of an adhesive means).

前記対衝撃用部材3の高さ方向での長さ寸法h1は、シェル部材1からの剥離が起こり易いように、所定の衝撃力を受けたときのシェル部材1に変形が生じる高さ範囲h2よりも小さく設定されている。   The length dimension h1 in the height direction of the impact-resistant member 3 is a height range h2 in which the shell member 1 is deformed when subjected to a predetermined impact force so that the shell member 1 is easily peeled off. Is set smaller than.

上述の如く構成されたヘルメットは、衝突前の状態(図2(a)を参照)からボールBが衝突すると、変形の初期段階として、シェル部材1と対衝撃用部材3との重合体がライナー2を圧縮変形させながら変形していく。   In the helmet configured as described above, when the ball B collides from the state before the collision (see FIG. 2A), the polymer of the shell member 1 and the impact-resistant member 3 is a liner as an initial stage of deformation. 2 is deformed while being compressed and deformed.

そして、対衝撃用部材3の撓み剛性とシェル部材1と対衝撃用部材3の接着力との関係で接着力が負けてくると、変形の後期段階として、シェル部材1の湾曲又は屈曲変形は続きながら平面状の対衝撃用部材3が、それの端縁部3a、3aの側から徐々に積層方向に剥離していく(図2(b)を参照)。   When the adhesion force is lost due to the relationship between the flexural rigidity of the impact member 3 and the adhesion force of the shell member 1 and the impact member 3, the shell member 1 is bent or bent as a later stage of deformation. While continuing, the planar impact-resistant member 3 gradually peels in the stacking direction from the side of the edge portions 3a and 3a (see FIG. 2B).

なお、剥離が生じる前の段階(つまり、前記初期段階)では、対衝撃用部材3による撓み剛性の面での補強作用によってシェル部材1の変形範囲h2を広げることができるから、その分、シェル部材1の変形に関与する体積を増加させることができる。   In the stage before peeling occurs (that is, the initial stage), the deformation range h2 of the shell member 1 can be widened by the reinforcing action on the surface of the bending rigidity by the impact-resistant member 3, and accordingly, the shell The volume involved in the deformation of the member 1 can be increased.

また、剥離が生じた後の段階(つまり、前記の後期段階)では、シェル部材1からの剥離によって対衝撃用部材3の剥離部分やその近傍においてシェル部材1の内面側に隙間Sが形成される(換言すれば、シェル部材の該当部分で内側からの支持が不存となる)から、その分、シェル部材1における隙間Sに隣接する部分の変形量を大きく取ることができる。   Further, in the stage after the peeling occurs (that is, the latter stage), the gap S is formed on the inner surface side of the shell member 1 at or near the peeling portion of the impact-resistant member 3 by peeling from the shell member 1. (In other words, support from the inside of the corresponding portion of the shell member becomes unnecessary), and accordingly, the amount of deformation of the portion adjacent to the gap S in the shell member 1 can be increased.

なお、当該構造による衝撃エネルギーの吸収効果を検証するために実験を行ったので、以下に説明する。   In addition, since it experimented in order to verify the absorption effect of the impact energy by the said structure, it demonstrates below.

(実験設備及び測定データ)
一般にヘルメットを装着する人頭模型には、質量5Kgのマグネシウム合金製の人頭形状を模擬したものを用いるが形状が曲率を有するなど複雑である。そこで、板状のシェル材とライナー材を用いて衝突実験を行うため、六面体の人頭模型をJIS規格、および製品安全協会の検査マニュアルを参考に作製した。その質量は5.05Kg、材質はマグネ
シウム合金製であり、加速度計を重心付近に装着できるものとした。以下,これを人頭模型と称する。
(Experimental equipment and measurement data)
In general, a model of a human head made of a magnesium alloy having a mass of 5 kg is used as a human head model to be worn with a helmet, but the shape is complicated such as having a curvature. Therefore, in order to conduct a collision experiment using a plate-like shell material and liner material, a hexahedral human head model was made with reference to the JIS standard and the inspection manual of the Product Safety Association. The mass was 5.05 kg, the material was made of magnesium alloy, and the accelerometer could be mounted near the center of gravity. Hereinafter, this is called a human head model.

発射装置には、エアーガン方式の野球用ボール発射装置(高圧システム株式会社製)を用いた。本装置は作動力に加圧が容易な液化二酸化炭素を用いてボールを加速するものであり、ボンベ、蓄圧器、エア駆動バルブ、発射管および試料室から構成される。発射されたボールの速度測定には高速度ビデオカメラ(株式会社フォトロン製)を用いた。そして、衝突前後のボールの速度測定から次式により損失エネルギーE(%)を算出した。
損失エネルギーE(%)=(Va2−Vb2)/Va2×100
Va:衝突前のボールの速度(衝突速度)(m/s)
Vb:衝突後のボールの速度(m/s)
An air gun baseball ball launcher (manufactured by High Pressure System Co., Ltd.) was used as the launcher. This device accelerates the ball using liquefied carbon dioxide, which can be easily pressurized as the operating force, and is composed of a cylinder, a pressure accumulator, an air drive valve, a launch tube, and a sample chamber. A high-speed video camera (manufactured by Photoron Co., Ltd.) was used to measure the velocity of the ball that was fired. Then, the loss energy E (%) was calculated by the following formula from the velocity measurement of the ball before and after the collision.
Loss energy E (%) = (Va2−Vb2) / Va2 × 100
Va: Ball speed before impact (impact speed) (m / s)
Vb: velocity of the ball after collision (m / s)

(実験対象)
図3(a)に示すように、前述した本発明の構成を採用した実施例1、実施例2と、本構成を採用していない従来例を対象とした。なお、ライナー2の素材は、いずれもEPS(発泡スチロール)である。実施例1と実施例2は、対衝撃用部材3を構成する繊維層の配置が異なる。具体的には、実施例1は、対衝撃用部材3を構成する各層について繊維の向きが直行する状態で積層したもの(交差タイプ)であり、実施例2は、対衝撃用部材3を構成する各層について繊維が平行に並ぶ状態で積層したもの(ストレートタイプ)である。
(Experiment subject)
As shown in FIG. 3A, the first and second embodiments adopting the above-described configuration of the present invention and the conventional example not adopting the present configuration are targeted. Note that the material of the liner 2 is EPS (styrene foam). Example 1 and Example 2 differ in the arrangement | positioning of the fiber layer which comprises the member 3 for impact. Specifically, in Example 1, each layer constituting the impact-resistant member 3 is laminated in a state where the direction of the fibers is perpendicular (cross type), and Example 2 constitutes the impact-resistant member 3. In each layer, the fibers are laminated in a state of being aligned in parallel (straight type).

(実験結果)
図3(b)に示すように、実施例1、実施例2のいずれも、所定の衝撃力に対応する衝突速度Vaが約30m/s以上の範囲において損失エネルギーEが従来例よりも高くなった。特に、実施例2では、衝突速度Vaが約25m/sでも損失エネルギーEが従来例よりも高くなった。つまり、本発明の構成の採用により、所定の衝撃力に対する衝撃力減衰効果が高まることが検証できた。
(Experimental result)
As shown in FIG. 3B, in both the first and second embodiments, the loss energy E is higher than that in the conventional example in the range where the collision speed Va corresponding to the predetermined impact force is about 30 m / s or more. It was. In particular, in Example 2, the loss energy E was higher than that of the conventional example even when the collision speed Va was about 25 m / s. That is, it was verified that the impact force damping effect with respect to a predetermined impact force is enhanced by employing the configuration of the present invention.

[第2実施形態]
本実施形態では、図4(a)、(b)に示すように、前記シェル部材1における前記対衝撃用部材3の周縁部を除く中間部に対応位置する部位に、外方からの衝撃力でシェル部材1が湾曲又は屈曲変形するときにシェル部材1の屈折破壊を誘発する凹部1a(破壊誘発部の一例、脆弱部の一例)が形成されている。当該凹部1aは、横方向(ヘルメットの周方向)に延びるV溝状の凹溝から構成されている。
[Second Embodiment]
In the present embodiment, as shown in FIGS. 4A and 4B, an impact force from the outside is applied to a portion of the shell member 1 corresponding to the intermediate portion excluding the peripheral portion of the impact-resistant member 3. Thus, when the shell member 1 is bent or bent, a concave portion 1a (an example of a fracture inducing portion, an example of a fragile portion) that induces refractive fracture of the shell member 1 is formed. The said recessed part 1a is comprised from the V-groove-shaped recessed groove extended in a horizontal direction (circumferential direction of a helmet).

なお、その他の構成は、第1実施形態で説明した構成と同一であるから、同一の構成箇所には、第1実施形態と同一の番号を付記してそれの説明は省略する。   In addition, since the other structure is the same as the structure demonstrated in 1st Embodiment, the same number is attached to the same structure location as 1st Embodiment, and the description is abbreviate | omitted.

[別実施形態]
前述の各実施形態では、身体防護具の一例として、野球用ヘルメットを例に示したが、工事用ヘルメット等の種々の用途のヘルメットであってもよく、また、ヘルメットに限らず、胸部プロテクター、レッグガート、エルボーガード、フェイスガード等であってもよい。これらの場合、各用途等に応じて所定の衝撃力を設定し、その衝撃力でシェル部材1から対衝撃用部材3が剥離するように対衝撃用部材3の撓み剛性や接着力を適宜に設定すればよい。
[Another embodiment]
In each of the above-described embodiments, a baseball helmet is shown as an example of a body protection device, but it may be a helmet for various uses such as a construction helmet, and is not limited to a helmet, but a chest protector, Leg girt, elbow guard, face guard, etc. may be used. In these cases, a predetermined impact force is set according to each application, and the flexural rigidity and adhesive force of the impact member 3 are appropriately set so that the impact member 3 is peeled off from the shell member 1 by the impact force. You only have to set it.

なお、例えば、身体以外の物品を防護対象とする防護具(例えば、ケースや鞄)にも本発明の原理を適用することができる。すなわち、前記防護具において、樹脂製のシェル部材1における防護対象側となる内面1aに対衝撃用部材3を積層接着し、外方からの所定の衝撃力でシェル部材1が湾曲又は屈曲変形するのに連れて対衝撃用部材3がシェル部材
1から剥離する構造にしてもよい。
For example, the principle of the present invention can be applied to a protective device (for example, a case or a bag) that protects an article other than the body. That is, in the protective device, the impact member 3 is laminated and bonded to the inner surface 1a on the protection target side of the resin shell member 1, and the shell member 1 is bent or bent by a predetermined impact force from the outside. The anti-impact member 3 may be peeled off from the shell member 1 along with this.

前述の各実施形態では、シェル部材1の一部に対衝撃用部材3が積層接着されている場合を例に示したが、シェル部材1の全部に対衝撃用部材3が積層接着されていてもよい。   In each of the above-described embodiments, the case where the impact-resistant member 3 is laminated and bonded to a part of the shell member 1 is shown as an example. However, the impact-resistant member 3 is laminated and bonded to the entire shell member 1. Also good.

前述の実施形態では、シェル部材1と対衝撃用部材3とを接着する接着手段として、接着剤を例に示したが、粘着材(例えば、両面テープ等)等であってもよい。また、熱融着等でシェル部材1と対衝撃用部材3とを接着させる構造を採ってもよい。   In the above-described embodiment, an adhesive is shown as an example of the bonding means for bonding the shell member 1 and the impact-resistant member 3, but an adhesive material (for example, a double-sided tape) may be used. Moreover, you may take the structure which adhere | attaches the shell member 1 and the member 3 for an impact by heat sealing | fusion etc. FIG.

前述の実施形態では、対衝撃用部材3が、シェル部材1よりも大なる撓み剛性に構成されている場合を例に示したが、シェル部材1と同等の撓み剛性から構成されていてもよい。その場合、例えば、対衝撃用部材3とシェル部材1とを同等の素材・厚みで構成すればよい。   In the above-described embodiment, the case where the anti-impact member 3 is configured to have a flexural rigidity greater than that of the shell member 1 has been described as an example. However, the impact-resistant member 3 may be configured to have a flexural rigidity equivalent to that of the shell member 1. . In that case, what is necessary is just to comprise the member 3 for impact, and the shell member 1 by the equivalent raw material and thickness, for example.

前述の各実施形態では、シェル部材1と対衝撃用部材3と衝撃緩衝材2からなる3層構造を例に示したが、シェル部材1と対衝撃用部材3からなる2層構造、或いは、シェル部材1の外面又は対衝撃用部材3と衝撃緩衝材2との間又は衝撃緩衝材2の内面に別部材が配設された4層以上の構造であってもよい。   In each of the above-described embodiments, the three-layer structure including the shell member 1, the impact-resistant member 3, and the shock-absorbing material 2 has been shown as an example, but the two-layer structure including the shell member 1 and the impact-resistant member 3 or It may have a structure of four or more layers in which another member is disposed on the outer surface of the shell member 1 or between the shock-absorbing member 3 and the shock-absorbing material 2 or on the inner surface of the shock-absorbing material 2.

シェル部材1や対衝撃用部材3や衝撃緩衝材2の素材種や形状や厚み等の具体的構成は、種々の構成変更が可能である。例えば、衝撃緩衝材2を構成する軟質材は、EPS素材(樹脂材の一例、発泡樹脂素材の一例)に限らず、スポンジやエラストマー素材等の弾性材であってもよく、また、対衝撃用部材3を構成する素材は、CFRP素材(FRP素材の一例)に限らず、樹脂や金属等であってもよい。   Various configurations can be changed with respect to the specific configuration such as the material type, shape, and thickness of the shell member 1, the impact-resistant member 3, and the shock-absorbing material 2. For example, the soft material constituting the shock absorbing material 2 is not limited to an EPS material (an example of a resin material, an example of a foamed resin material), and may be an elastic material such as a sponge or an elastomer material. The material constituting the member 3 is not limited to the CFRP material (an example of the FRP material), and may be a resin, a metal, or the like.

前述の第2実施形態では、外方からの衝撃力でシェル部材が湾曲又は屈曲変形するときにシェル部材の屈折破壊を誘発する破壊誘発部として、V字状の凹溝を例に示したが、半円状の凹溝や切れ込みや半球状の凹み等の脆弱部であってもよく、或いは、凸部(例えば、凸状や突起等)や段部など、衝撃力が加わったときに応力集中が生じる応力集中部であってもよい。   In the second embodiment described above, the V-shaped concave groove is shown as an example of the fracture inducing portion that induces refractive fracture of the shell member when the shell member is bent or bent by an external impact force. It may be a fragile part such as a semicircular concave groove, a notch or a hemispherical dent, or a stress when an impact force is applied, such as a convex part (for example, convex part or protrusion) or a step part. It may be a stress concentration portion where concentration occurs.

1 シェル部材
1a 内面
1d 凹部
2 衝撃緩衝材(ライナー)
3 対衝撃用部材
P 身体
DESCRIPTION OF SYMBOLS 1 Shell member 1a Inner surface 1d Recessed part 2 Shock absorbing material (liner)
3 Anti-impact member P Body

Claims (4)

身体を被覆する状態で身体に装着される身体防護具であって、
樹脂製のシェル部材における身体側となる平面状の内面部分に平面状の対衝撃用部材を積層接着し、外方からの所定の衝撃力で前記シェル部材が湾曲又は屈曲変形するのに連れて前記対衝撃用部材の端縁部の側から前記対衝撃用部材が前記シェル部材から徐々にそれらの積層方向に剥離する構造にしてあり、
前記シェル部材の平面状の内面部分には、軟質材からなる平面状の衝撃緩衝材が配設されており、
前記対衝撃用部材が、前記シェル部材と前記衝撃緩衝材との間に配設されているとともに、
前記シェル部材と同等又はそれよりも大なる撓み剛性に構成されており、
前記シェル部材における前記対衝撃用部材の周縁部を除く中間部に対応位置する部位には、外方からの衝撃力で前記シェル部材が湾曲又は屈曲変形するときに前記シェル部材の屈折破壊を誘発する破壊誘発部が形成されている身体防護具。
A body armor worn on the body while covering the body,
A planar impact-resistant member is laminated and bonded to the planar inner surface portion serving as the body side of the resin of the shell member, to take a predetermined impact force from the outside to the shell member is curved or bent and deformed The anti-impact member is gradually peeled off from the shell member in the stacking direction from the end edge side of the anti-impact member,
A planar impact cushioning material made of a soft material is disposed on the planar inner surface portion of the shell member,
The impact-resistant member is disposed between the shell member and the shock-absorbing material,
It is configured to have a flexural rigidity equal to or greater than that of the shell member,
In a portion of the shell member that corresponds to an intermediate portion excluding the peripheral edge portion of the anti-impact member, refractive failure of the shell member is induced when the shell member is bent or bent by an impact force from the outside. A body armor with a destruction trigger.
身体を被覆する状態で身体に装着される身体防護具であって、
樹脂製のシェル部材における身体側となる平面状の内面部分に平面状の対衝撃用部材を積層接着し、外方からの所定の衝撃力で前記シェル部材が湾曲又は屈曲変形するのに連れて前記対衝撃用部材の端縁部の側から前記対衝撃用部材が前記シェル部材から徐々にそれらの積層方向に剥離する構造にしてある身体防護具。
A body armor worn on the body while covering the body,
A planar impact-resistant member is laminated and bonded to the planar inner surface portion serving as the body side of the resin of the shell member, to take a predetermined impact force from the outside to the shell member is curved or bent and deformed A body armor having a structure in which the impact-impacting member is gradually peeled from the shell member in the stacking direction from the end edge portion side of the impact-impacting member.
前記シェル部材の平面状の内面部分には、軟質材からなる平面状の衝撃緩衝材が配設されているとともに、
前記対衝撃用部材が、前記シェル部材と前記衝撃緩衝材との間に配設されている請求項2記載の身体防護具。
A planar impact cushioning material made of a soft material is disposed on the planar inner surface portion of the shell member,
The body armor according to claim 2, wherein the impact-resistant member is disposed between the shell member and the shock-absorbing material.
前記対衝撃用部材が、前記シェル部材と同等又はそれよりも大なる撓み剛性に構成されている請求項3記載の身体防護具。   The body armor according to claim 3, wherein the impact-resistant member is configured to have a bending rigidity equal to or greater than that of the shell member.
JP2009038493A 2009-02-20 2009-02-20 Body armor Expired - Fee Related JP5572884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009038493A JP5572884B2 (en) 2009-02-20 2009-02-20 Body armor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009038493A JP5572884B2 (en) 2009-02-20 2009-02-20 Body armor

Publications (2)

Publication Number Publication Date
JP2010189820A JP2010189820A (en) 2010-09-02
JP5572884B2 true JP5572884B2 (en) 2014-08-20

Family

ID=42816150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009038493A Expired - Fee Related JP5572884B2 (en) 2009-02-20 2009-02-20 Body armor

Country Status (1)

Country Link
JP (1) JP5572884B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652398B2 (en) 2001-08-27 2003-11-25 Innercore Grip Company Vibration dampening grip cover for the handle of an implement
US20110314589A1 (en) * 2001-08-27 2011-12-29 Vito Robert A Vibration dampening material
JP5572891B2 (en) * 2010-09-30 2014-08-20 ゼット株式会社 Baseball or softball catcher helmet
JP5706267B2 (en) * 2011-08-10 2015-04-22 株式会社アシックス Baseball helmet
US11864599B2 (en) 2015-12-18 2024-01-09 Matscitechno Licensing Company Apparatuses, systems and methods for equipment for protecting the human body by absorbing and dissipating forces imparted to the body
CN108437574A (en) * 2018-04-27 2018-08-24 广东新秀新材料股份有限公司 Shock resistance case material, preparation method, the preparation method of digital product shell and digital product shell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696905A (en) * 1979-12-28 1981-08-05 Daicel Ltd Helmet and production thereof
JPH06173110A (en) * 1992-12-02 1994-06-21 Yamaha Motor Co Ltd Cap structure of helmet
JPH06240508A (en) * 1993-02-18 1994-08-30 Shoei Kako Kk Helmet headgear
JPH08269809A (en) * 1995-03-30 1996-10-15 Toray Ind Inc Helmet
JP3654319B2 (en) * 1996-03-28 2005-06-02 ディックプラスチック株式会社 Manufacturing method of helmet made of glass fiber reinforced thermosetting resin
GB0116738D0 (en) * 2001-07-09 2001-08-29 Phillips Helmets Ltd Protective headgear and protective armour and a method of modifying protective headgear and protective armour
AU2003254000A1 (en) * 2002-08-08 2004-02-25 Marc S. Schneider Energy absorbing sports helmet
GB2457077A (en) * 2008-02-01 2009-08-05 Julian Joshua Preston-Powers Cooling system for headwear

Also Published As

Publication number Publication date
JP2010189820A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP5572884B2 (en) Body armor
US8927088B2 (en) Helmet designs utilizing foam structures having graded properties
ES2621834T3 (en) Antiballistic article and its production method
US6042493A (en) Tubular metal bat internally reinforced with fiber and metallic composite
US9119431B2 (en) Helmet for reducing concussive forces during collision
CN106945728B (en) Local energy absorber
TWI419792B (en) Gas cushion
US9370216B2 (en) Safety helmet
US10350851B2 (en) Composite element for protection devices of parts of the human body
US20090260133A1 (en) Impact Absorbing Frame and Layered Structure System for Safety Helmets
US9603408B2 (en) Football helmet having improved impact absorption
US10349696B2 (en) Football helmet
CN210346484U (en) Bulletproof flashboard and bulletproof vest
CN109068783A (en) Protective lining for the helmet and other articles
JP2011516296A (en) Protective panel
WO2014172744A1 (en) Armour
Mills et al. Bicycle helmet design
CN104943635B (en) Energy-absorbing air bag for bumper
KR200447426Y1 (en) A Helmet
JP5330071B2 (en) Impact resistant member, human body protective clothing, and method of manufacturing impact resistant member
US9526969B1 (en) Composite athletic cup
US20180242675A1 (en) Helmet
CN112710193A (en) Small-recess impact-resistant bionic bulletproof helmet
CN218468435U (en) Anti-cracking composite modified PE gas pipe
US20210007434A1 (en) Helmet liner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140613

R150 Certificate of patent or registration of utility model

Ref document number: 5572884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees