JP5572451B2 - Anti-ofloxacin monoclonal antibody and immunoassay for ofloxacin using the same - Google Patents
Anti-ofloxacin monoclonal antibody and immunoassay for ofloxacin using the same Download PDFInfo
- Publication number
- JP5572451B2 JP5572451B2 JP2010134639A JP2010134639A JP5572451B2 JP 5572451 B2 JP5572451 B2 JP 5572451B2 JP 2010134639 A JP2010134639 A JP 2010134639A JP 2010134639 A JP2010134639 A JP 2010134639A JP 5572451 B2 JP5572451 B2 JP 5572451B2
- Authority
- JP
- Japan
- Prior art keywords
- antibody
- formula
- compound represented
- antigen
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Peptides Or Proteins (AREA)
Description
本発明は、抗菌化合物であるオフロキサシン及び/又はこれを構成する各光学活性体に
反応する抗体であって、これらの主要な代謝物とは反応しない抗体に関するものである。
The present invention relates to an antibody that reacts with ofloxacin, which is an antibacterial compound, and / or each optically active substance constituting the antibacterial compound, and does not react with these major metabolites.
ニューキノロン系抗菌剤は、エノキサシンやノルフロキサシン等のピリドンカルボン酸
系抗菌剤の抗菌スペクトルと抗菌力が飛躍的に高められた薬剤で、細菌のDNAジャイレ
ースを阻害することにより高い選択毒性を示す。これまでにオフロキサシン、レボフロキ
サシン、ノルフロキサシン、シプロフロキサシンなどが各種感染症や化膿性疾患などの治
療の目的で臨床において使用され、優れた治療効果を挙げている。
New quinolone antibacterial agents are drugs in which the antibacterial spectrum and antibacterial activity of pyridone carboxylic acid antibacterial agents such as enoxacin and norfloxacin are drastically enhanced, and exhibit high selective toxicity by inhibiting bacterial DNA gyrase. So far, ofloxacin, levofloxacin, norfloxacin, ciprofloxacin and the like have been used clinically for the purpose of treatment of various infectious diseases and purulent diseases, and have shown excellent therapeutic effects.
オフロキサシンは、下記化学式(I)
びR-(+)体を1:1 の組成比で含んでいるラセミ体である。このラセミ体のうち、抗
菌活性本体はS-(−)体であるレボフロキサシンである。レボフロキサシンは、オフロ
キサシンのほぼ2倍の抗菌力を示し、呼吸器感染症、尿路感染症をはじめとする各種感染
症に広く奏効して、高い有効性を示すことが知られている。
Ofloxacin has the following chemical formula (I)
抗菌剤が効果を十分に発揮するには、有効成分の適切な量が体内に存在していることが
重要である。よって、抗菌活性の減弱もしく喪失した代謝物などの化合物(以下、「抗菌
活性を失った化合物」などの表現をすることがある)を測り込まず、体内に存在する抗菌
活性を有する化合物のみを定量する測定系は、抗菌剤を最も有効に処方するために欠かせ
ない。抗菌活性を有する化合物のみを測定する方法としては、被検抗菌剤を特異的に認識
する抗体を用いるイムノアッセイ法、被検抗菌剤の分子量や極性に基づきHPLCで分離
・分析する方法、菌との培養によって直接抗菌活性を測定する方法などが汎用されている
。このうち、イムノアッセイ法は、高価な機器を用いる必要がなく、短時間での測定が可
能な上、感度に優れ、多数の試料の測定に対応できることから有利である。
In order for the antibacterial agent to exert its effect sufficiently, it is important that an appropriate amount of the active ingredient is present in the body. Therefore, only compounds with antibacterial activity that exist in the body without measuring compounds such as metabolites that have diminished or lost antibacterial activity (hereinafter sometimes referred to as “compounds that have lost antibacterial activity”). A measurement system that quantifies the amount of water is indispensable for the most effective formulation of antibacterial agents. Methods for measuring only compounds with antibacterial activity include immunoassay methods using antibodies that specifically recognize the test antibacterial agent, methods for separation and analysis by HPLC based on the molecular weight and polarity of the test antibacterial agent, A method of directly measuring antibacterial activity by culturing is widely used. Among these, the immunoassay method is advantageous because it does not require the use of an expensive instrument, can be measured in a short time, has excellent sensitivity, and can cope with the measurement of a large number of samples.
また、多くの薬物は各種の経路で投与されると生体由来成分、例えばアルブミンなどの
血清タンパク質、糖タンパク質、リポタンパク質(以下、総称して血清タンパク質類とい
うことがある)と可逆的な結合をすることが知られている。つまり血中に存在する薬物の
濃度は、血清タンパク質類と結合した結合型薬物濃度と血清タンパク質類と結合していな
い遊離型(非結合型)薬物濃度の和に相当する。抗体を用いたイムノアッセイ法で血中の
薬物を正確に測定するためには、使用する抗体が結合型薬物と遊離型薬物の両方に同等に
反応する必要があるが、薬物に結合した血清タンパク質類が障害となって抗体が薬物の抗
原決定基に結合できず、正確な血中薬物濃度を測定できないことがある。
In addition, when administered by various routes, many drugs reversibly bind to biological components such as serum proteins such as albumin, glycoproteins, and lipoproteins (hereinafter sometimes collectively referred to as serum proteins). It is known to do. In other words, the concentration of the drug present in the blood corresponds to the sum of the concentration of bound drug bound to serum proteins and the concentration of free (unbound) drug not bound to serum proteins. In order to accurately measure drugs in blood by immunoassay methods using antibodies, it is necessary that the antibody used reacts equally to both bound and free drugs, but serum proteins bound to the drugs May interfere with the antibody binding to the antigenic determinant of the drug, making it impossible to accurately measure the drug concentration in the blood.
ニューキノロン系抗菌剤のイムノアッセイ法による検出方法としては、二環性ニューキ
ノロン系抗菌剤を認識するが、オフロキサシンなどの三環性ニューキノロンを認識しない
モノクローナル抗体を用いた免疫学的測定方法が公開されている(特許文献1)。しかし
、該発明は、家畜や養殖魚介類の感染症予防に用いられる二環性ニューキノロンの残留量
を検出することを目的としており、且つオフロキサシンを検出することができない。また
、本文献発明は、多種類のニューキノロン系抗菌剤を同時に検出できる抗体(言い換える
と多種類のニューキノロン系抗菌剤と交差反応する抗体)の取得を目的としている。
As an immunoassay method for detecting a new quinolone antibacterial agent, an immunoassay method using a monoclonal antibody that recognizes a bicyclic new quinolone antibacterial agent but does not recognize a tricyclic new quinolone such as ofloxacin has been published. (Patent Document 1). However, the object of the present invention is to detect the residual amount of bicyclic new quinolone used for the prevention of infectious diseases of livestock and cultured fish and shellfish and cannot detect ofloxacin. The present invention is also aimed at obtaining an antibody capable of simultaneously detecting many types of new quinolone antibacterial agents (in other words, an antibody that cross-reacts with many types of new quinolone antibacterial agents).
一方、特許文献2では、式(I)で示される化合物のS体であるレボフロキサシンの抗
体及び免疫学的測定方法が公開されている。該抗体は、抗菌活性を失った代謝物(レボフ
ロキサシン-N-オキシド、デスメチルレボフロキサシン)とも交差反応性があるポリクロ
ーナル抗体である。そのため、抗菌活性を失っていないレボフロキサシンのみを正確に検
出することができないという問題があった。
On the other hand, Patent Document 2 discloses an antibody and an immunological measurement method for levofloxacin, which is the S form of the compound represented by formula (I). The antibody is a polyclonal antibody that is also cross-reactive with metabolites that have lost antibacterial activity (levofloxacin-N-oxide, desmethyllevofloxacin). Therefore, there was a problem that only levofloxacin that did not lose antibacterial activity could not be detected accurately.
オフロキサシンをはじめとする、ニューキノロン系抗菌化合物の抗原性は極めて低く、
これらの化合物自体を抗体を製造するために用いる抗原(免疫用抗原)として直接免疫に
用いても、ニューキノロン系抗菌化合物を認識する抗体を効率良く製造することは困難で
ある。従って、ニューキノロン系抗菌化合物を認識する抗体を製造するための免疫用抗原
としては、これらの化合物にキャリアーとしてのタンパク質(キャリアータンパク質)を
結合させたものを用いることが適当である。ニューキノロン系抗菌化合物とキャリアータ
ンパク質との結合について従来は、抗原性に影響を与える官能基、例えばキノロン骨格4
位のケトン(カルボニル)基や3位のカルボキシ基、あるいはフッ素原子などを損なわず
に、ニューキノロン系抗菌化合物とタンパク質とを結合させることが必要であると考えら
れていた。そのため、特許文献2においては、レボフロキサシンの10位置換基である4
-メチル-ピペラジニル基を4-カルボキシメチルピペラジニル基に変換した化合物をキャ
リアーとしてのウシ血清アルブミン(BSA)と結合させ、免疫用抗原として用いている
。
The antigenicity of new quinolone antibacterial compounds, including ofloxacin, is extremely low,
Even if these compounds themselves are directly used for immunization as an antigen (immune antigen) used for producing an antibody, it is difficult to efficiently produce an antibody that recognizes a new quinolone antibacterial compound. Therefore, it is appropriate to use an antigen for producing an antibody that recognizes a new quinolone antibacterial compound, in which a protein (carrier protein) as a carrier is bound to these compounds. Conventionally, the binding of a new quinolone antibacterial compound and a carrier protein has a functional group that affects antigenicity, such as quinolone skeleton 4
It has been considered necessary to bind a new quinolone antibacterial compound and a protein without damaging the ketone (carbonyl) group at the position, the carboxy group at the 3 position, or the fluorine atom. Therefore, in Patent Document 2, 4 which is the 10-position substituent of levofloxacin
A compound obtained by converting a -methyl-piperazinyl group into a 4-carboxymethylpiperazinyl group is combined with bovine serum albumin (BSA) as a carrier and used as an antigen for immunization.
しかしながら、特許文献2の方法で得られた抗体は、レボフロキサシンの代謝物(N-
オキシド体、脱メチル体)とも交差反応を示し、レボフロキサシンのみに反応を示す抗体
は得られていない。
However, the antibody obtained by the method of Patent Document 2 is a levofloxacin metabolite (N-
Oxide, demethylated) also show a cross-reaction, and an antibody that reacts only with levofloxacin has not been obtained.
本発明は、式(I)で示される化合物を認識し、且つその代謝物であるN-オキシド体及
び脱メチル体を認識しない(交差反応しない)抗体及びその製造方法を提供することを目
的としている。また、それらの抗体を利用したイムノアッセイ法、例えば、ラジオイムノ
アッセイ法、エンザイムイムノアッセイ法、担体(粒子)凝集阻害イムノアッセイ法及び
イムノクロマト法を提供することを目的としている。さらに本発明は、前記の抗体の製造
のために有用な免疫用抗原を提供することを目的としている。
An object of the present invention is to provide an antibody that recognizes the compound represented by formula (I) and does not recognize N-oxide and demethylated metabolites (does not cross-react) and a method for producing the same. Yes. Another object of the present invention is to provide immunoassay methods using these antibodies, for example, radioimmunoassay methods, enzyme immunoassay methods, carrier (particle) aggregation inhibition immunoassay methods, and immunochromatography methods. A further object of the present invention is to provide an antigen for immunization useful for the production of the antibody.
本発明者は、レボフロキサシン[(−)-(S)-9-fluoro-2,3-dihydr
o-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-
7H-pyrido[1,2,3-de][1,4]benzoxazine-6-carb
oxylicacid]の6位置換基であるカルボキシ基にウシ血清アルブミンなどのキ
ャリアータンパク質を結合させることによって前記の目的を達成できる優れた免疫用抗原
を製造することに成功した。
また、前記の免疫用抗原を用いることにより、式(I)で示される化合物と反応し、且
つその代謝物であるN-オキシド体及び脱メチル体を認識しない有用な抗体を提供するこ
とができることを見いだした。さらに、前記の免疫用抗原を用いることにより、式(I)
で示される化合物のS体であるレボフロキサシンを認識し、且つその代謝物であるレボフ
ロキサシンN‐オキシド体及びレボフロキサシン脱メチル体を認識しない有用な抗体を提
供することができることを見いだした。またさらに、前記の免疫用抗原を用いることによ
り、式(I)で示される化合物のR体を認識し、且つその代謝物であるN-オキシド体及び
脱メチル体を認識しない有用な抗体を提供することができることを見いだした。また、該
抗体を用い、代謝・分解されていない式(I)で示される化合物を測定するイムノアッセ
イ法を完成させた。本発明は前記の知見に基づいて完成されたものである。
The present inventor made levofloxacin [(−)-(S) -9-fluoro-2,3-dihydrr
o-3-methyl-10- (4-methyl-1-piperazinyl) -7-oxo-
7H-pyrido [1,2,3-de] [1,4] benzoxazine-6-carb
The present inventors succeeded in producing an excellent antigen for immunization that can achieve the above-mentioned object by binding a carrier protein such as bovine serum albumin to a carboxy group that is the 6-position substituent of oxylicacid].
In addition, by using the immunizing antigen, it is possible to provide a useful antibody that reacts with the compound represented by the formula (I) and does not recognize N-oxide and demethylated metabolites thereof. I found. Further, by using the immunizing antigen, the compound of formula (I)
It was found that a useful antibody that recognizes levofloxacin, which is an S form of the compound represented by the formula (II), and does not recognize its metabolites, levofloxacin N-oxide and levofloxacin demethylated form, can be provided. Furthermore, by using the immunizing antigen, a useful antibody that recognizes the R form of the compound represented by the formula (I) and does not recognize the metabolite N-oxide form and demethylated form is provided. I found what I could do. In addition, an immunoassay method for measuring a compound represented by the formula (I) that is not metabolized or decomposed using the antibody was completed. The present invention has been completed based on the above findings.
従って本発明は、式(I)で示される化合物と反応し、且つその代謝物であるN-オキシ
ド体及び脱メチル体を認識しない抗体を提供する。本発明の一態様によれば、式(I)で
示される化合物のS体であるレボフロキサシンとキャリアータンパク質との結合物である
免疫用抗原を提供する。本発明の一態様によれば、レボフロキサシンの6位置換基である
カルボキシ基にキャリアータンパク質を結合させた免疫用抗原を提供する。また、これら
の抗原を用いて動物を免疫することにより、式(I)で示される化合物のR体及びS体、
あるいは式(I)で示される化合物のS体であるレボフロキサシンのみ、あるいは式(I)
で示される化合物のR体のみをそれぞれ認識し、且つその代謝物であるN-オキシド体及
び脱メチル体を認識しない抗体を製造する方法、及び該方法により製造された抗体を提供
するものである。さらに、これらの抗体を用いるイムノアッセイ法により試料中における
式(I)で示される化合物の濃度を測定する方法を提供するものである。
すなわち、本発明は以下の構成を有する。
(1)下記式(I)で示される化合物と反応し、且つその代謝物であるN-オキシド体及び
/又は脱メチル体と交差反応しない抗体。
抗体。
(3)式(I)で示される化合物のR体に強く反応する抗体である、前記(1)に記載の
抗体。
(4)式(I)で示される化合物のラセミ体と強く反応する抗体である、前記(1)に記
載の抗体。
(5)ジクロフェナクナトリウム、ナブメトン、フルルビプロフェン、ケトプロフェン、
ロキソプロフェンナトリウム、オキサプロジン、ナプロキセン、イブプロフェン、カルボ
システイン、サリチルアミド、アセトアミノフェン、無水カフェイン、メチレンジサリチ
ル酸、プロメタジン及びテオフィリンからなる群から選ばれるいずれか1以上と交差反応
しない、前記(1)に記載の抗体。
(6)式(I)で示される化合物を除くニューキノロン系抗菌剤と交差反応しないか、又
は交差反応性が弱い、前記(1)に記載の抗体。
(7)式(I)で示される化合物との反応性が、生物試料由来成分の共存により変化しな
い、前記(1)から前記(6)のいずれかに記載の抗体。
(8)生物試料由来成分が、血清成分、血漿成分又は唾液成分である、前記(1)から前
記(7)のいずれかに記載の抗体。
(9)式(I)で示される化合物との反応性が、式(I)で示される化合物と血清成分との
結合により変化しない、前記(1)から前記(6)のいずれかに記載の抗体。
(10)モノクローナル抗体である、前記(1)から前記(9)のいずれかに記載の抗体
。
(11)式(I)で示される化合物に特異的なモノクローナル抗体であって、固相に固定
化された当該化合物と当該抗体との免疫反応が阻害されるように試料中の当該化合物及び
試料中の当該化合物のN-オキシド体及び/又は脱メチル体が存在する反応系において、
当該試料中の当該化合物による免疫反応の50%阻害活性が、試料中の当該化合物のN-
オキシド体及び/又は脱メチル体による前記免疫反応の50%阻害活性と比較して大きく
なる反応条件を満たす、前記(10)に記載のモノクローナル抗体。
(12)前記(10)又は前記(11)に記載のモノクローナル抗体を産生するハイブリ
ドーマ。
(13)式(I)で示される化合物の6位のカルボキシ基を介してキャリアータンパク質
と結合させた、前記(1)に記載の抗体を製造するための抗原。
(14)キャリアータンパク質が、BSA又はトランスフェリンである、前記(13)に
記載の抗原。
(15)式(I)で示される化合物が、キャリアータンパク質1分子あたり12〜14分
子結合されている前記(13)又は前記(14)に記載の抗原。
(16)前記(13)から前記(15)のいずれかに記載の抗原を動物に免疫することを
特徴とする、免疫方法。
(17)前記(13)から前記(15)のいずれかに記載の抗原を動物に免疫して得られ
た抗体を、交差反応性を確認したい化合物の存在下、固相に固定化された式(I)で示さ
れる化合物と反応させ、交差反応性を確認したい化合物の非存在下での反応性と比較する
ことにより所望の抗体を選抜する、抗体のスクリーニング方法。
(18)前記(13)から前記(15)のいずれかに記載の抗原を動物に免疫して得られ
た抗体を、生物試料由来成分の存在下、固相に固定化した式(I)で示される化合物と反
応させ、生物試料由来成分の非存在下での反応性と比較することにより所望の抗体を選抜
する、抗体のスクリーニング方法。
(19)前記(1)から前記(11)のいずれかに記載の抗体を使用することを特徴とす
る、試料中の式(I)で示される化合物の免疫学的測定方法。
(20)固相に固定化した前記(1)から前記(11)のいずれかに記載の抗体に対し、
合成多価抗原及び試料中の式(I)で示される化合物を競合的に反応させることを特徴と
する、試料中の式(I)で示される化合物の免疫学的測定方法。
(21)前記(1)から前記(11)のいずれかに記載の抗体に対し、固相化合成多価抗
原及び試料中の式(I)で示される化合物を競合的に反応させることを特徴とする、試料
中の式(I)で示される化合物の免疫学的測定方法。
(22)固相に固定化した前記(1)から前記(11)のいずれかに記載の抗体に対し、
固相化合成多価抗原及び試料中の式(I)で示される化合物を競合的に反応させることを
特徴とする、試料中の式(I)で示される化合物の免疫学的測定方法。
(23)固相がラテックス粒子である、前記(19)から前記(22)のいずれかに記載
の免疫学的測定方法。
(24)競合反応を凝集阻害法によって測定することを特徴とする、前記(19)から前
記(23)のいずれかに記載の免疫学的測定方法。
(25)試料が、生物由来の血液、血清、血漿、尿、唾液、喀痰、涙液、耳漏又は前立腺
液である、前記(19)から前記(24)のいずれかに記載の免疫学的測定方法。
(26)試料が、式(I)で示される化合物を投与された患者の試料である前記(25)
に記載の免疫学的測定方法。
(27)下記(a)及び(b)から構成されることを特徴とする、試料中の式(I)で示
される化合物の免疫学的測定用試薬。
(a)前記(1)から前記(11)のいずれかに記載の抗体又は固相に固定化した(1)
から(11)のいずれかに記載の抗体
(b)合成多価抗原又は固相化合成多価抗原
Therefore, the present invention provides an antibody that reacts with the compound represented by the formula (I) and does not recognize N-oxide and demethylated metabolites thereof. According to one embodiment of the present invention, there is provided an immunizing antigen that is a conjugate of levofloxacin, which is the S form of the compound represented by formula (I), and a carrier protein. According to one embodiment of the present invention, there is provided an immunizing antigen in which a carrier protein is bound to a carboxy group that is a 6-position substituent of levofloxacin. Further, by immunizing an animal using these antigens, R-form and S-form of the compound represented by formula (I),
Or only levofloxacin, which is the S form of the compound represented by formula (I), or formula (I)
And a method for producing an antibody that recognizes only the R-form of the compound represented by the formula and does not recognize N-oxide and demethylated metabolites thereof, and an antibody produced by the method. . Furthermore, the present invention provides a method for measuring the concentration of a compound represented by formula (I) in a sample by an immunoassay method using these antibodies.
That is, the present invention has the following configuration.
(1) An antibody that reacts with a compound represented by the following formula (I) and does not cross-react with an N-oxide and / or demethylated metabolite thereof.
(3) The antibody according to (1) above, which is an antibody that reacts strongly with the R form of the compound represented by formula (I).
(4) The antibody according to (1) above, which is an antibody that reacts strongly with a racemate of the compound represented by formula (I).
(5) Diclofenac sodium, nabumetone, flurbiprofen, ketoprofen,
In the above (1), it does not cross-react with any one or more selected from the group consisting of loxoprofen sodium, oxaprozin, naproxen, ibuprofen, carbocysteine, salicylamide, acetaminophen, anhydrous caffeine, methylene disalicylic acid, promethazine and theophylline. The antibody described.
(6) The antibody according to (1), which does not cross-react with a new quinolone antibacterial agent excluding the compound represented by the formula (I) or has low cross-reactivity.
(7) The antibody according to any one of (1) to (6), wherein the reactivity with the compound represented by the formula (I) is not changed by the coexistence of a component derived from a biological sample.
(8) The antibody according to any one of (1) to (7), wherein the biological sample-derived component is a serum component, a plasma component, or a saliva component.
(9) The reactivity with the compound represented by the formula (I) is not changed by the binding of the compound represented by the formula (I) and a serum component, according to any one of (1) to (6) above antibody.
(10) The antibody according to any one of (1) to (9) above, which is a monoclonal antibody.
(11) A monoclonal antibody specific for the compound represented by formula (I), the compound in the sample and the sample so that an immune reaction between the antibody immobilized on the solid phase and the antibody is inhibited In the reaction system in which the N-oxide and / or demethylated form of the compound is present,
The 50% inhibitory activity of the immune response by the compound in the sample is determined by the N-
The monoclonal antibody according to (10), which satisfies a reaction condition that is greater than the 50% inhibitory activity of the immune reaction caused by an oxide and / or a demethylated form.
(12) A hybridoma that produces the monoclonal antibody according to (10) or (11).
(13) An antigen for producing the antibody according to (1), which is bound to a carrier protein via a carboxy group at position 6 of the compound represented by formula (I).
(14) The antigen according to (13), wherein the carrier protein is BSA or transferrin.
(15) The antigen according to (13) or (14) above, wherein 12 to 14 molecules of the compound represented by the formula (I) are bound per molecule of carrier protein.
(16) An immunization method comprising immunizing an animal with the antigen according to any one of (13) to (15).
(17) A formula in which an antibody obtained by immunizing an animal with the antigen according to any one of (13) to (15) is immobilized on a solid phase in the presence of a compound whose cross-reactivity is to be confirmed A method for screening an antibody, wherein a desired antibody is selected by reacting with the compound represented by (I) and comparing with the reactivity in the absence of the compound whose cross-reactivity is to be confirmed.
(18) Formula (I) in which an antibody obtained by immunizing an animal with the antigen according to any one of (13) to (15) above is immobilized on a solid phase in the presence of a biological sample-derived component A method for screening an antibody, wherein a desired antibody is selected by reacting with the indicated compound and comparing with reactivity in the absence of a biological sample-derived component.
(19) A method for immunological measurement of a compound represented by formula (I) in a sample, wherein the antibody according to any one of (1) to (11) is used.
(20) For the antibody according to any one of (1) to (11) above immobilized on a solid phase,
A method for immunological measurement of a compound represented by formula (I) in a sample, comprising competitively reacting a synthetic multivalent antigen and the compound represented by formula (I) in the sample.
(21) The antibody according to any one of (1) to (11) above, wherein the immobilized polyvalent antigen and the compound represented by formula (I) in the sample are competitively reacted. An immunological measurement method for a compound represented by formula (I) in a sample.
(22) The antibody according to any one of (1) to (11) above, immobilized on a solid phase,
A method for immunological measurement of a compound represented by formula (I) in a sample, characterized by competitively reacting a solid-phased synthetic multivalent antigen and the compound represented by formula (I) in the sample.
(23) The immunological measurement method according to any one of (19) to (22), wherein the solid phase is latex particles.
(24) The immunological measurement method according to any one of (19) to (23), wherein the competitive reaction is measured by an aggregation inhibition method.
(25) The immunological measurement according to any one of (19) to (24), wherein the sample is biological blood, serum, plasma, urine, saliva, sputum, tears, ear leakage or prostate fluid. Method.
(26) The above (25), wherein the sample is a sample of a patient administered with the compound represented by formula (I)
An immunological measurement method according to 1.
(27) A reagent for immunological measurement of a compound represented by formula (I) in a sample, characterized by comprising the following (a) and (b):
(A) Immobilized on the antibody or solid phase according to any one of (1) to (11) above (1)
To (11) (b) a synthetic multivalent antigen or a solid-phased synthetic multivalent antigen
本発明により提供される抗体は式(I)で示される化合物を認識する有用な抗体であり
、該抗体を用いたイムノアッセイ法により、各種の試料、例えば生体試料中の式(I)で
示される化合物の濃度を高感度で測定することができる。
The antibody provided by the present invention is a useful antibody that recognizes the compound represented by the formula (I), and is represented by the formula (I) in various samples, for example, biological samples, by an immunoassay method using the antibody. The concentration of the compound can be measured with high sensitivity.
本発明の抗体は、式(I)で示される化合物と反応し、且つその代謝物であるN-オキシ
ド体及び/又は脱メチル体と交差反応しない抗体であることを要する。式(I)で示され
る化合物と反応し、その代謝物とは反応しないことから、本発明の抗体をイムノアッセイ
に用いれば、血中に抗菌剤として有効に存在する式(I)で示される化合物のみを特異的
に測定することができ、非常に有用である。
また、本発明の抗体の別の態様は、式(I)で示される化合物のS体であるレボフロキ
サシンに強く反応する抗体、又は式(I)で示される化合物のR体に強く反応する抗体、
R体とS体の両方に反応する抗体である。
また、さらに、本発明の抗体の別の態様は、式(I)で示される化合物の併用薬又は式
(I)で示される化合物の類似化合物であるニューキノロン系抗菌剤に反応しない又は反
応性が弱い抗体である。
本発明の抗体としては、免疫した動物の血清(抗血清)から得られるポリクローナル抗
体でもよく、また、免疫した動物の抗体産生細胞を用いて作製したハイブリドーマから産
生されるモノクローナル抗体でもよい。
なお、「交差反応する」、「強く反応する」、「反応しない」、「反応性が弱い」、と
いう用語の意味については後述する。
The antibody of the present invention needs to be an antibody that reacts with the compound represented by the formula (I) and does not cross-react with its metabolite, N-oxide and / or demethylated form. Since it reacts with the compound represented by the formula (I) and does not react with its metabolite, the compound represented by the formula (I) which is effectively present as an antibacterial agent in the blood when the antibody of the present invention is used in an immunoassay. Can be measured specifically, and is very useful.
Another embodiment of the antibody of the present invention is an antibody that reacts strongly with levofloxacin, which is the S form of the compound represented by formula (I), or an antibody that reacts strongly with the R form of the compound represented by formula (I),
It is an antibody that reacts with both R and S isomers.
Furthermore, another embodiment of the antibody of the present invention is not reactive or reactive with a new quinolone antibacterial agent which is a concomitant drug of the compound represented by formula (I) or a similar compound of the compound represented by formula (I). It is a weak antibody.
The antibody of the present invention may be a polyclonal antibody obtained from the serum (antiserum) of an immunized animal, or a monoclonal antibody produced from a hybridoma prepared using antibody-producing cells of the immunized animal.
The meanings of the terms “cross-react”, “strongly react”, “do not react”, and “low reactivity” will be described later.
本発明に従い式(I)で示される化合物のS体及び/又はR体を認識する抗体を製造す
るために用いる抗原(免疫用抗原)としては、式(I)で示される化合物を認識し、且つ
その代謝物であるN-オキシド体及び脱メチル体を認識しない抗体を産生させるような抗
原であればいずれでもよく、そのうちでも、式(I)で示される化合物の6位置換基であ
るカルボキシ基にタンパク質などのキャリアー(以下、「キャリアー」ということがある
)を結合させることにより製造された抗原を用いるのが適当である。
In accordance with the present invention, as an antigen (antigen for immunization) used for producing an antibody that recognizes the S-form and / or R-form of the compound represented by the formula (I), the compound represented by the formula (I) is recognized, Any antigen may be used as long as it produces an antibody that does not recognize N-oxide and demethylated metabolites thereof. Among them, carboxy which is the 6-position substituent of the compound represented by formula (I) It is appropriate to use an antigen produced by binding a carrier such as a protein (hereinafter sometimes referred to as “carrier”) to a group.
免疫用抗原のキャリアーとして用いるタンパク質(「キャリアータンパク質」)は、一
般に低分子抗原(ハプテン)に対する抗体産生に有用とされている種々のタンパク質から
適宜選択して使用すればよく、また、キャリアータンパク質と抗原との結合はそれ自体公
知の方法で行うことができる。例えば、キャリアータンパク質としてウシ血清アルブミン
、トランスフェリンを用いることができ、キャリアータンパク質と抗原との結合には、ジ
シクロヘキシルカルボジイミドを使用した縮合反応や活性エステル法を利用することがで
きるが、キャリアーとして用いるタンパク質の種類やキャリアータンパク質と抗原との結
合方法はこれらの具体例に限定されることはない。
A protein used as a carrier of an antigen for immunization (“carrier protein”) may be appropriately selected from various proteins that are generally useful for antibody production against a low molecular antigen (hapten). Binding to an antigen can be performed by a method known per se. For example, bovine serum albumin or transferrin can be used as a carrier protein, and a condensing reaction using dicyclohexylcarbodiimide or an active ester method can be used for binding the carrier protein to an antigen. The type and the method of binding the carrier protein and the antigen are not limited to these specific examples.
また、キャリアータンパク質1分子あたりに結合する式(I)で示される化合物の分子
の数(結合数)は、免疫する動物において抗原として認識されうる数であればいずれでも
よい。抗体産生の効率を考慮すれば例えばキャリアータンパク質1分子あたり12〜14
分子の式(I)で示される化合物が結合されている抗原が望ましく用いられるが、前記結
合数はこの範囲に限定されることはない。免疫用抗原の調製方法の詳細は後述するが、調
製の際に原料として反応に使用する式(I)で示される化合物のキャリアータンパク質に
対する量を増減することで、所望の数の式(I)で示される化合物を結合させることが可
能である。すなわち、原料として添加する当該化合物量を増加させれば結合数は大きくな
り、原料として添加する当該化合物量を減少させれば結合数は小さくなる。なお、本明細
書においては「結合数」と同様の意味で「結合比」、「結合量」の表現をすることがある
。
Further, the number of molecules of the compound represented by the formula (I) bound per molecule of carrier protein (the number of bonds) may be any number as long as it can be recognized as an antigen in the immunized animal. Considering the efficiency of antibody production, for example, 12-14 per carrier protein molecule
Although an antigen to which a compound represented by the formula (I) of the molecule is bound is desirably used, the number of binding is not limited to this range. Details of the method for preparing the antigen for immunization will be described later. By increasing or decreasing the amount of the compound represented by the formula (I) used as a raw material for the reaction in the reaction at the time of preparation with respect to the carrier protein, a desired number of the formula (I) It is possible to bind a compound represented by That is, if the amount of the compound added as a raw material is increased, the number of bonds increases, and if the amount of the compound added as a raw material is decreased, the number of bonds decreases. In the present specification, “binding ratio” and “binding amount” may be expressed in the same meaning as “number of bonds”.
また、前記の方法で作成した本発明の免疫用抗原は、ハイブリドーマあるいは抗体のス
クリーニング用抗原さらには後述する免疫学的測定方法のための抗原(競合反応用の抗原
)としても使用することができる。スクリーニング用抗原や免疫学的測定方法のための抗
原として使用する際には、不溶性担体等の固体(固相)上に固定(固相化)して使用した
り、後述する当業者に周知慣用の標識物質で標識した標識抗原として使用することができ
る。このような固定(固相)化抗原や標識抗原はいずれも本発明の範囲に包含される。例
えば、不溶性担体に該抗原を物理的に吸着させ、あるいは化学的に結合させることにより
固定(固相)化抗原を製造することができる。化学的に結合させる場合には、適当なスペ
ーサーを介していてもよい。
In addition, the antigen for immunization of the present invention prepared by the above method can be used as an antigen for screening a hybridoma or antibody, and further as an antigen for an immunological measurement method described later (antigen for competitive reaction). . When used as an antigen for screening or an immunoassay, it can be used by immobilizing (immobilizing) it on a solid (solid phase) such as an insoluble carrier, or it can be commonly used by those skilled in the art described later. It can be used as a labeled antigen labeled with any labeling substance. Any of such immobilized (solid phase) antigen and labeled antigen is included in the scope of the present invention. For example, an immobilized (solid phase) antigen can be produced by physically adsorbing or chemically binding the antigen to an insoluble carrier. In the case of chemical bonding, an appropriate spacer may be interposed.
前記不溶性担体としては、ポリスチレン樹脂などの高分子基材、ガラスなどの無機基材
、セルロースやアガロースなどの多糖類基材などからなる不溶性担体を用いることができ
、その形状は特に限定されず、板状(例えば、マイクロプレートやメンブレン)、ビーズ
あるいは粒子状(例えば、ラテックス粒子)、筒状(例えば、試験管)など任意の形状を
選択できるスクリーニング用抗原として固定化する場合の固相としてはマイクロプレート
、免疫学的測定方法のための抗原として固定化する場合の固相としては、マイクロプレー
トやラテックス粒子を好適な例としてあげることができる。
As the insoluble carrier, an insoluble carrier comprising a polymer substrate such as polystyrene resin, an inorganic substrate such as glass, a polysaccharide substrate such as cellulose or agarose, and the shape thereof is not particularly limited, As a solid phase when immobilizing as an antigen for screening that can be selected in any shape such as plate (for example, microplate or membrane), beads or particles (for example, latex particles), cylinder (for example, test tube) As a solid phase in the case of immobilizing as a microplate or an antigen for an immunological measurement method, a microplate or a latex particle can be mentioned as a suitable example.
本発明の抗体は、前記の抗原をリン酸緩衝生理食塩水(PBS)などの溶媒に溶解し、
この溶液を動物に投与して免疫することによりに容易に製造できる。必要に応じて前記溶
液に適宜のアジュバントを添加した後、エマルジョンを用いて免疫を行ってもよい。アジ
ュバントとしては、油中水型乳剤、水中油中水型乳剤、水中油型乳剤、リポソーム、水酸
化アルミニウムゲルなどの汎用されるアジュバントのほか、生体成分由来のタンパク質や
ペプチド性物質などを用いてもよい。例えば、フロイントの不完全アジュバント又はフロ
イントの完全アジュバントなどを好適に用いることができる。アジュバントの投与経路、
投与量、投与時期は特に限定されないが、抗原を免疫する動物において所望の免疫応答を
増強できるように適宜選択することが望ましい。
The antibody of the present invention dissolves the antigen described above in a solvent such as phosphate buffered saline (PBS),
This solution can be easily produced by immunizing an animal by administering it. If necessary, an appropriate adjuvant may be added to the solution, and then immunization may be performed using an emulsion. Adjuvants include water-in-oil emulsions, water-in-oil-in-water emulsions, oil-in-water emulsions, liposomes, aluminum hydroxide gels, and other commonly used adjuvants, as well as protein and peptide substances derived from biological components. Also good. For example, Freund's incomplete adjuvant or Freund's complete adjuvant can be preferably used. The route of administration of the adjuvant,
The dose and administration timing are not particularly limited, but it is desirable to select appropriately so that a desired immune response can be enhanced in an animal immunized with an antigen.
免疫に用いる動物の種類も特に限定されないが、哺乳動物が好ましく、例えばマウス、
ラット、ウシ、ウサギ、ヤギ、ヒツジなどを用いることができ、より好ましくはマウスを
用いることができる。動物の免疫は当業界で利用可能な方法に従って行えばよく、例えば
、抗原の溶液、好ましくはアジュバントとの混合物を動物の皮下、皮内、静脈、又は腹腔
内に注射することにより免疫を行うことができる。免疫応答は、一般的に免疫される動物
の種類及び系統によって異なるので、免疫スケジュールは使用される動物に応じて適宜設
定することが望ましい。抗原投与は最初の免疫後に何回か繰り返し行うことが好ましい。
The type of animal used for immunization is not particularly limited, but mammals are preferable, for example, mice,
Rats, cows, rabbits, goats, sheep and the like can be used, and mice can be used more preferably. Animal immunization may be performed according to methods available in the art, for example, by injecting a solution of an antigen, preferably a mixture with an adjuvant, into the animal subcutaneously, intradermally, intravenously, or intraperitoneally. Can do. Since the immune response generally varies depending on the type and strain of the animal to be immunized, it is desirable to set the immunization schedule as appropriate according to the animal used. The antigen administration is preferably repeated several times after the first immunization.
ポリクローナル抗体を得る場合には、免疫された動物の血清(抗血清)から本発明の抗
体を取得することができるが、その方法は特に限定されず、当業者に利用可能な方法であ
ればいかなる方法を用いてもよい。抗体の精製は、例えば、DEAE陰イオン交換クロマ
トグラフィー、プロテインAなどを用いるアフィニティークロマトグラフィー、硫安分画
法、PEG分画法、エタノール分画法などを適宜組み合わせて行うことができる。得られ
た抗体が本発明の抗体であるか否か、すなわち目的とする式(I)で示される化合物を認
識し、且つそれ以外のニューキノロン系抗菌剤又はレボフロキサシンの併用薬(例えば、
抗生物質、消炎鎮痛剤、総合感冒剤、気道粘膜調製・粘膜正常化剤、気管支拡張剤など)
に対しては反応性が低いか、実質的にそれらを認識しない抗体であることは、当業者が周
知の方法を利用して容易に確認することが可能である。本明細書の実施例には本発明の抗
体の製造方法について、動物の免疫方法、抗体の精製方法、及び抗体の特性の確認方法が
具体的に説明されているので、当業者は前記の一般的説明及び実施例の具体的方法を参照
しつつ、必要に応じてそれらの方法に適宜の修飾ないし改変を加えることにより、本発明
の抗体を容易に製造することが可能である。
When obtaining a polyclonal antibody, the antibody of the present invention can be obtained from the serum (antiserum) of the immunized animal, but the method is not particularly limited, and any method available to those skilled in the art can be used. A method may be used. Purification of the antibody can be performed by appropriately combining, for example, DEAE anion exchange chromatography, affinity chromatography using protein A, ammonium sulfate fractionation method, PEG fractionation method, ethanol fractionation method and the like. Whether the obtained antibody is the antibody of the present invention, that is, the target compound represented by the formula (I) is recognized, and other quinolone antibacterial agents or levofloxacin concomitant drugs (for example,
Antibiotics, anti-inflammatory analgesics, general cold medicine, airway mucosa preparation / mucosal normalizing agent, bronchodilator, etc.)
It is possible for those skilled in the art to easily confirm that an antibody has low reactivity with respect to or is an antibody that does not substantially recognize them using a well-known method. In the examples of the present specification, an animal immunization method, an antibody purification method, and an antibody property confirmation method are specifically described for the antibody production method of the present invention. The antibody of the present invention can be easily produced by adding appropriate modifications or alterations to these methods as necessary while referring to the specific explanations and specific methods of the examples.
式(I)で示される化合物以外のニューキノロン系抗菌剤としては、式(I)で示される
化合物の類似化合物が挙げられ、具体的には、シプロフロキサシン、トスフロキサシン、
ガチフロキサシン、スパルフロキサシン、フレロキサシン、ロメフロキサシン、エノキサ
シン、モキシフロキサシン、パズフロキサシンなどが挙げられる。
式(I)で示される化合物の併用薬としては、ジクロフェナクナトリウム、ナブメトン
、フルルビプロフェン、ケトプロフェン、ロキソプロフェンナトリウム、オキサプロジン
、ナプロキセン、イブプロフェン、カルボシステイン、サリチルアミド、アセトアミノフ
ェン、無水カフェイン、メチレンジサリチル酸、プロメタジン、テオフィリンが挙げられ
る。
本発明の抗体の一態様として、これらの化合物のいずれか1以上と交差反応しないか、
交差反応性が弱い抗体が挙げられ、本抗体を式(I)で示される化合物の測定に用いた場
合には、当該化合物が試料中に存在しても、式(I)で示される化合物を特異的に測定す
ることができる。
Examples of new quinolone antibacterial agents other than the compound represented by the formula (I) include compounds similar to the compound represented by the formula (I), specifically, ciprofloxacin, tosufloxacin,
Examples include gatifloxacin, sparfloxacin, fleroxacin, lomefloxacin, enoxacin, moxifloxacin, pazufloxacin and the like.
As a concomitant drug of the compound represented by formula (I), diclofenac sodium, nabumetone, flurbiprofen, ketoprofen, loxoprofen sodium, oxaprozin, naproxen, ibuprofen, carbocysteine, salicylamide, acetaminophen, anhydrous caffeine, methylene Examples include disalicylic acid, promethazine, and theophylline.
As one aspect of the antibody of the present invention, it does not cross-react with any one or more of these compounds,
An antibody with weak cross-reactivity may be mentioned. When this antibody is used for measurement of a compound represented by the formula (I), the compound represented by the formula (I) It can be measured specifically.
モノクローナル抗体を得る場合、引き続き以下の操作が行われるがそれに限定されるこ
とはなく、モノクローナル抗体それ自体の製造方法については当業界で周知されており、
かつ汎用されているので当業者は前記の抗原を用いることによって本発明の抗体を容易に
製造することが可能である(例えばAntibodies,A Laboratory
Manual(Cold Spring Harbor Laboratory Pre
ss,(1988) 第6章などを参照のこと)。
In order to obtain a monoclonal antibody, the following operation is subsequently performed, but the present invention is not limited thereto. The production method of the monoclonal antibody itself is well known in the art,
Since it is widely used, those skilled in the art can easily produce the antibody of the present invention by using the antigen (for example, Antibodies, A Laboratory).
Manual (Cold Spring Harbor Laboratory Pre
ss, (1988) See Chapter 6).
最終免疫後、免疫した動物から抗体産生細胞である脾臓細胞あるいはリンパ節細胞を摘
出し、高い増殖能を有する骨髄腫由来の細胞株と細胞融合することによりハイブリドーマ
を作製することができる。細胞融合には抗体産生能(質・量)が高い細胞を用いることが
好ましく、また骨髄腫由来の細胞株は融合する抗体産生細胞の由来する動物と適合性があ
ることが好ましい。細胞融合は、当該分野で公知の方法に従って行うことができるが、例
えば、ポリエチレングリコール法、センダイウイルスを用いた方法、電流を利用する方法
などを採用することができる。得られたハイブリドーマは当業界で汎用の条件に従って増
殖させることができ、産生される抗体の性質を確認しつつ所望のハイブリドーマを選択す
ることができる。ハイブリドーマのクローニングは、例えば限界希釈法や軟寒天法などの
周知の方法により行うことが可能である。
ハイブリドーマの選択は、産生される抗体が実際の測定に用いられる条件を考慮し、選
択の段階で効率的に行うこともできる。例えば、動物に免疫して得られた抗体を、交差反
応性を確認したい化合物の存在下、固相に固定化した式(I)で示される化合物と反応さ
せ、交差反応性を確認したい化合物の非存在下での反応性と比較することにより所望の抗
体を産生するハイブリドーマをより効率よく選抜することができる。また、動物に免疫し
て得られた抗体を、生物試料由来成分の存在下、固相に固定化した式(I)で示される化
合物と反応させ、生物試料由来成分の非存在下での反応性と比較することにより所望の抗
体を産生するハイブリドーマをより効率よく選択することもできる。
After the final immunization, spleen cells or lymph node cells, which are antibody-producing cells, are removed from the immunized animal, and hybridomas can be prepared by cell fusion with a cell line derived from myeloma having high proliferation ability. For cell fusion, cells having high antibody production ability (quality / quantity) are preferably used, and cell lines derived from myeloma are preferably compatible with animals from which antibody-producing cells to be fused are derived. Cell fusion can be performed according to a method known in the art. For example, a polyethylene glycol method, a method using Sendai virus, a method using an electric current, or the like can be employed. The obtained hybridoma can be grown according to conditions generally used in the art, and a desired hybridoma can be selected while confirming the properties of the antibody produced. The hybridoma can be cloned by a known method such as a limiting dilution method or a soft agar method.
Hybridoma selection can be performed efficiently at the selection stage in consideration of the conditions under which the produced antibody is used for actual measurement. For example, an antibody obtained by immunizing an animal is reacted with a compound represented by formula (I) immobilized on a solid phase in the presence of a compound whose cross-reactivity is to be confirmed, and the cross-reactivity is confirmed. By comparing with reactivity in the absence, hybridomas producing the desired antibody can be selected more efficiently. In addition, an antibody obtained by immunizing an animal is reacted with a compound represented by the formula (I) immobilized on a solid phase in the presence of a biological sample-derived component, and a reaction in the absence of the biological sample-derived component The hybridoma producing the desired antibody can also be selected more efficiently by comparing with the sex.
クローニング工程後、産生される抗体と式(I)で示される化合物の結合能をELIS
A法、RIA法、蛍光抗体法などの方法を用いてアッセイすることにより、選択されたハ
イブリドーマが所望の性質を有するモノクローナル抗体を産生するか否かを確認すること
ができる。ここで、式(I)で示される化合物を認識し、その代謝物を認識しない抗体を
効率良く得るために、ハイブリドーマのスクリーニングに用いる抗原として、式(I)で
示される化合物をタンパク質に結合させたものを用いるのが好ましく、該タンパク質の種
類を、免疫用抗原のタンパク質と異なる種類のものを用いる方法がより好ましい。
前記のようにして選別されたハイブリドーマを大量培養することにより、所望の特性を
有するモノクローナル抗体を製造することができる。大量培養の方法は特に限定されない
が、例えば、ハイブリドーマを適宜の培地中で培養してモノクローナル抗体を培地中に産
生させる方法や、哺乳動物の腹腔内にハイブリドーマを注射して増殖させ、腹水中に抗体
を産生させる方法などを挙げることができる。モノクローナル抗体の精製は、先述した抗
血清からの抗体の精製法、例えばDEAE陰イオン交換クロマトグラフィー、アフィニテ
ィークロマトグラフィー、硫安分画法、PEG分画法、エタノール分画法などを適宜組み
合わせて行うことができる。
After the cloning step, the binding ability of the antibody produced and the compound represented by formula (I) is determined by ELISA.
By assaying using a method such as the A method, the RIA method, or the fluorescent antibody method, it can be confirmed whether or not the selected hybridoma produces a monoclonal antibody having a desired property. Here, in order to efficiently obtain an antibody that recognizes the compound represented by the formula (I) and does not recognize its metabolite, the compound represented by the formula (I) is bound to a protein as an antigen used for screening a hybridoma. It is preferable to use a protein that is different from the protein of the immunizing antigen.
Monoclonal antibodies having desired characteristics can be produced by mass-culturing the hybridomas selected as described above. The mass culture method is not particularly limited. For example, the hybridoma is cultured in an appropriate medium and a monoclonal antibody is produced in the medium, or the hybridoma is injected into the abdominal cavity of a mammal to be proliferated, and then in ascites. Examples thereof include a method for producing an antibody. Purification of the monoclonal antibody should be carried out by appropriately combining the above-described antibody purification methods from antiserum, such as DEAE anion exchange chromatography, affinity chromatography, ammonium sulfate fractionation method, PEG fractionation method, and ethanol fractionation method. Can do.
本発明の抗体としては、抗体分子全体のほかに抗原抗体反応活性を有する抗体のフラグ
メントを使用することも可能であり、前記のように動物への免疫工程を経て得られたもの
のほか、遺伝子組み換え技術を使用して得られるものやキメラ抗体を用いることも可能で
ある。抗体の断片としては機能性の断片であることが好ましく、例えば、F(ab’)2
、Fab’などが挙げられ、これらのフラグメントは前記のようにして得られる抗体をタ
ンパク質分解酵素(例えば、ペプシンやパパインなど)で処理することにより製造できる
。
As the antibody of the present invention, in addition to the whole antibody molecule, it is also possible to use an antibody fragment having antigen-antibody reaction activity. In addition to those obtained through the immunization process for animals as described above, It is also possible to use those obtained by using techniques or chimeric antibodies. The antibody fragment is preferably a functional fragment, for example, F (ab ′) 2
, Fab ′ and the like. These fragments can be produced by treating the antibody obtained as described above with a proteolytic enzyme (for example, pepsin or papain).
また、本発明のモノクローナル抗体は、不溶性担体上に固定された固定(固相)化抗体
として使用したり、後述する当業者に周知慣用の標識物質で標識した標識抗体として使用
することができる。このような固定化抗体や標識抗体はいずれも本発明の範囲に包含され
る。例えば、不溶性担体にモノクローナル抗体を物理的に吸着させ、あるいは化学的に結
合(適当なスペーサーを介してよい)させることにより固定化抗体を製造することができ
る。不溶性担体としては、ポリスチレン樹脂などの高分子基材、ガラスなどの無機基材、
セルロースやアガロースなどの多糖類基材などからなる不溶性担体を用いることができ、
その形状は特に限定されず、板状(例えば、マイクロプレートやメンブレン)、ビーズあ
るいは粒子状(例えば、ラテックス粒子)、筒状(例えば、試験管)など任意の形状を選
択できる。
In addition, the monoclonal antibody of the present invention can be used as an immobilized (solid phase) antibody immobilized on an insoluble carrier, or a labeled antibody labeled with a commonly used labeling substance known to those skilled in the art described later. Any of such immobilized antibodies and labeled antibodies are included in the scope of the present invention. For example, an immobilized antibody can be produced by physically adsorbing a monoclonal antibody to an insoluble carrier or chemically binding it (may be via an appropriate spacer). As an insoluble carrier, a polymer substrate such as polystyrene resin, an inorganic substrate such as glass,
An insoluble carrier comprising a polysaccharide base material such as cellulose or agarose can be used,
The shape is not particularly limited, and any shape such as a plate shape (for example, a microplate or a membrane), a bead or particle shape (for example, latex particles), or a tubular shape (for example, a test tube) can be selected.
本発明の抗体と結合可能な標識抗体(二次抗体)を用いることにより、式(I)で示さ
れる化合物に結合した本発明の抗体の量を測定することができ、それにより試料中の式(
I)で示される化合物を検出することができる。標識抗体を製造するための標識物質とし
ては、例えば酵素、蛍光物質、化学発光物質、ビオチン、アビジン、又は放射性同位体、
金コロイド粒子、着色ラテックスなどが挙げられる。標識物質と抗体との結合法としては
、当業者に利用可能なグルタルアルデヒド法、マレイミド法、ピリジルジスルフィド法、
又は過ヨウ素酸法などの方法を用いることができるが、固定化抗体や標識抗体の種類、及
びそれらの製造方法は前記の例に限定されることはない。例えば、ホースラディッシュパ
ーオキシダーゼ(HRP)やアルカリホスファターゼ(ALP)などの酵素を標識物質と
して用いる場合にはその酵素の特異的基質(酵素がHRPの場合には、例えばO-フェニ
レンジアミン(OPD)あるいは3,3’,5,5’-テトラメチルベンジジン(TMB
)、ALPの場合にはp-ニトロフェニル・ホスフェートなど) を用いて酵素活性を測定
することができ、ビオチンを標識物質として用いる場合には少なくともアビジンあるいは
酵素修飾アビジンを反応させるのが一般的である。
By using a labeled antibody (secondary antibody) that can bind to the antibody of the present invention, the amount of the antibody of the present invention bound to the compound represented by formula (I) can be measured, whereby the formula in the sample can be measured. (
The compound represented by I) can be detected. Examples of labeling substances for producing labeled antibodies include enzymes, fluorescent substances, chemiluminescent substances, biotin, avidin, or radioisotopes,
Examples thereof include colloidal gold particles and colored latex. As a method for binding a labeling substance and an antibody, a glutaraldehyde method, a maleimide method, a pyridyl disulfide method available to those skilled in the art,
Alternatively, a method such as the periodic acid method can be used, but the types of the immobilized antibody and the labeled antibody and the production method thereof are not limited to the above examples. For example, when an enzyme such as horseradish peroxidase (HRP) or alkaline phosphatase (ALP) is used as a labeling substance, a specific substrate of the enzyme (when the enzyme is HRP, for example, O-phenylenediamine (OPD) or 3,3 ′, 5,5′-tetramethylbenzidine (TMB
In the case of ALP, enzyme activity can be measured using p-nitrophenyl phosphate, etc.), and when biotin is used as a labeling substance, it is common to react at least with avidin or enzyme-modified avidin. is there.
本発明の抗体を用いて、例えば試料中に存在する、式(I)で示される化合物を検出す
ることができる。本明細書において、単に「式(I)で示される化合物」という場合、式
(I)で示される化合物の2種類の光学活性体であるS体、R体及びS体とR体の1:1
混合物であるラセミ体のいずれをも含む概念で用いられる。従って、「式(I)で示され
る化合物に反応する抗体」とは、式(I)で示される化合物のR体に反応する抗体、式(I
)で示される化合物のS体に反応する抗体、及び式(I)で示される化合物のS体及びR
体の両方に反応する抗体を含む概念で用いられることになる。
また、「ラセミ体」と「オフロキサシン」とは同義で用いられ、また、「式(I)で示
される化合物のS体」と「レボフロキサシン」とは同義で用いられる。
Using the antibody of the present invention, for example, a compound represented by the formula (I) present in a sample can be detected. In the present specification, when the term “compound represented by formula (I)” is simply referred to, S-form, R-form, and S-form and R-form, which are two types of optically active forms of the compound represented by formula (I): 1
It is used in the concept including any racemic mixture. Therefore, “an antibody that reacts with the compound represented by the formula (I)” means an antibody that reacts with the R form of the compound represented by the formula (I), the formula (I
An antibody that reacts with the S form of the compound represented by formula (I), and the S form and R of the compound represented by the formula (I)
It will be used in a concept that includes antibodies that react to both bodies.
“Racemic” and “ofloxacin” are used synonymously, and “S-form of the compound represented by formula (I)” and “levofloxacin” are used synonymously.
本明細書において、「不溶性担体」を「固相」、抗原や抗体を不溶性担体に物理的ある
いは化学的に担持させることあるいは担持させた状態を「固定」、「固定化」、「固相化
」と表現することがある。また、「検出」又は「測定」という用語は、式(I)で示され
る化合物の存在の証明及び/又は定量などを含めて最も広義に解釈する必要があり、いか
なる意味においても限定的に解釈してはならない。
In this specification, “insoluble carrier” is “solid phase”, antigen or antibody is physically or chemically supported on an insoluble carrier, or the state in which it is supported is “fixed”, “immobilized”, “solid phased” May be expressed. In addition, the term “detection” or “measurement” should be interpreted in the broadest sense including proof and / or quantification of the presence of the compound represented by formula (I), and should be interpreted in a limited manner in any sense. should not be done.
本発明の抗体を用いる測定方法における検出対象の「試料」としては、主に生体(生物
)由来の体液を挙げることができ、具体的には血液、血清、血漿、尿、唾液、喀痰、涙液
、耳漏又は前立腺液を挙げることができるがこれらに限定されるものではない。例えば、
家畜や魚介類の組織から抽出したものや、家畜の飼養、魚介類の養殖過程において使用さ
れる飼料や水なども、当然に本発明の試料たりうる。これらの試料のうちでも、オフロキ
サシンを投与された患者の体液が、治療との関係などから特に望ましく用いられる。
本明細書において、「生物試料由来成分」とは、前記試料を構成している成分をいい、
例えば、生物試料が血清である場合の血清成分として、アルブミンやグロブリンなどの血
清タンパク質、糖タンパク質、リポタンパク質などの血清タンパク質類を、生物試料が血
漿である場合の血漿成分として、血漿タンパク質(血清には含まれない血液凝固因子など
含む)、生物試料が唾液である場合の唾液成分として、リゾチームなどの酵素やムコ多糖
などをいう。これらは、投与されたオフロキサシンと結合等する場合があり、抗体による
抗原決定基の認識に障害を与える可能性があることは本明細書の他の部分においても言及
している。
Examples of the “sample” to be detected in the measurement method using the antibody of the present invention include body fluids derived from living organisms (organisms), specifically blood, serum, plasma, urine, saliva, sputum, tears. Examples include, but are not limited to, fluid, otorrhea or prostate fluid. For example,
Naturally, samples extracted from tissues of livestock and seafood, feed and water used in livestock breeding and seafood culture processes, and the like can be used as a sample of the present invention. Among these samples, the bodily fluid of a patient who has been administered ofloxacin is particularly preferably used because of its relation to treatment.
In the present specification, the “biological sample-derived component” means a component constituting the sample,
For example, serum proteins such as albumin and globulin, serum proteins such as glycoproteins and lipoproteins as serum components when the biological sample is serum, and plasma proteins (serum) as plasma components when the biological sample is plasma. (Including blood coagulation factors not included in the above) and saliva components when the biological sample is saliva, such as enzymes such as lysozyme and mucopolysaccharides. It is mentioned elsewhere in this document that these may bind to the administered ofloxacin, etc., and may interfere with the recognition of antigenic determinants by the antibody.
また、本明細書において「抗菌活性を失った」とは、一般に「代謝物」や「分解物」な
どの名称で呼ばれる、抗菌化合物が変化体になったものを指し、未変化体化合物が有する
抗菌スペクトルあるいは抗菌活性の一部が喪失したり、弱まったものをいう。さらに「結
合型」とは、測定系内において抗原が試料由来のタンパク質と可逆的あるいは不可逆的に
結合していること及び人為的に種々のキャリアーへ結合されていることを表し、「遊離型
」とは試料由来タンパク質や種々のキャリアーと結合していないことを表す。
Further, in this specification, “lost antibacterial activity” refers to what is generally called “metabolite”, “degradation product”, or the like, in which the antibacterial compound is changed, and the unchanged compound has A part of the antibacterial spectrum or activity that has been lost or weakened. Furthermore, “bound type” means that the antigen is reversibly or irreversibly bound to the sample-derived protein in the measurement system and artificially bound to various carriers. Means that it is not bound to a sample-derived protein or various carriers.
さらにまた、本明細書中において、本発明の抗体が抗原を「認識する」ことは抗原と「
反応する」、「交差反応する」ことと同義でありさらに抗原と「結合する」ことと同義で
あるがこれに限定されることはなく、最も広義に解釈する必要がある。
Furthermore, in the present specification, that the antibody of the present invention “recognizes” an antigen and “
It is synonymous with “reacting” and “cross-reacting”, and further synonymous with “binding” with an antigen, but is not limited thereto and should be interpreted in the broadest sense.
本発明の抗体とある化合物が「交差反応しない」とは、ある化合物と全く反応しないこ
とをいい、定量的には、実施例1の競合ELISA法における反応の判定基準に従い、交
差反応性が1%未満の場合をいう。
また、本発明の抗体とある化合物との「交差反応性が弱い」とは、ある化合物と反応は
するもののその交差反応性が他の化合物との交差反応性に比べて低く、他の化合物を十分
に区別して認識できるような場合をいい、定量的には、実施例1の競合ELISA法にお
ける交差反応性の判定に従い、交差反応性が1%以上40%未満の場合をいう。
「S体に強く反応する」とは、式(I)で示される化合物のR体よりもS体に強く反応
することをいい、定量的には、実施例1の競合ELISA法におけるオフロキサシンと抗
体との交差反応性の判定に従い、交差反応性が100%未満の場合をいう。「R体に強く
反応する」とは、同判定に従い、交差反応性が100%より大きい場合をいう。
「式(I)で示される化合物との反応性が、生物由来試料成分の共存により変化しない
」とは、本発明の抗体と遊離型の式(I)で示される化合物との反応を、生物由来試料成
分の存在および非存在下に行い、両者の反応性を比較した場合に実質的に変化がないこと
をいう。共存により反応性が変化する場合としては、薬物動態学でいう薬物との結合のほ
かに、例えば、唾液中のムコ多糖など粘性の高い物質が式(I)で示される化合物中の抗
原決定基への抗体の結合を妨害するような場合を挙げることができる。
「式(I)で示される化合物との反応性が、式(I)で示される化合物と血清成分との結
合により変化しない」とは、本発明の抗体を血清試料中の式(I)で示される化合物を測
定するために用いるために必要な性質であり、血清アルブミンなどの血清成分と式(I)
で示される化合物が結合するなどして、抗体と式(I)で示される化合物との反応性が無
くなる、又は弱まることがない状態をいう。定量的には、実施例3の競合ELISA法に
より、式(I)で示される化合物をヒト血清とインキュベーションすることによる影響を
みる試験において、インキュベーション時間0分のときとインキュベーション時間15分
の反応性を比較してその差が5%未満をいう。
また、競合ELISA法において本発明の抗体と遊離型の式(I)で示される化合物と
の反応性を測定する際に、遊離型の式(I)で示される化合物を、血清を用いて調製した
場合と血清を用いないで調製した場合とを比較し、その差が5%未満である場合も、「式
(I)で示される化合物との反応性が、当該化合物と血清成分との結合により変化しない
」といえる。
“No cross-reaction” between the antibody of the present invention and a compound means that it does not react at all with a compound. Quantitatively, the cross-reactivity is 1 according to the criteria for reaction in the competitive ELISA method of Example 1. If less than%.
The term “weak cross-reactivity” between an antibody of the present invention and a compound means that the compound reacts with a certain compound but its cross-reactivity is lower than the cross-reactivity with other compounds. This refers to a case where the recognition can be sufficiently distinguished, and quantitatively refers to the case where the cross-reactivity is 1% or more and less than 40% according to the determination of cross-reactivity in the competitive ELISA method of Example 1.
“Strongly reacting with S-form” means reacting more strongly with S-form than R-form of the compound represented by formula (I), and quantitatively, ofloxacin and antibody in the competitive ELISA method of Example 1 The cross-reactivity is less than 100% according to the determination of the cross-reactivity. “Strongly reacts with R-form” refers to the case where the cross-reactivity is greater than 100% according to the same determination.
“The reactivity with the compound represented by the formula (I) does not change due to the coexistence of the biological sample component” means that the reaction between the antibody of the present invention and the free-form compound represented by the formula (I) When the reaction is performed in the presence and absence of the derived sample component and the reactivity of both is compared, it means that there is no substantial change. In the case where the reactivity changes due to coexistence, in addition to binding to a drug in pharmacokinetics, for example, a highly viscous substance such as mucopolysaccharide in saliva is an antigenic determinant in the compound represented by formula (I) And the like, which may interfere with the binding of the antibody to.
“The reactivity of the compound represented by the formula (I) does not change due to the binding of the compound represented by the formula (I) and the serum component” means that the antibody of the present invention is expressed by the formula (I) in the serum sample. Properties required for use in measuring the indicated compounds, serum components such as serum albumin and formula (I)
A state in which the reactivity between the antibody and the compound represented by formula (I) is not lost or weakened due to the binding of the compound represented by Quantitatively, in the test for examining the effect of incubating the compound represented by the formula (I) with human serum by the competitive ELISA method of Example 3, the reactivity at the incubation time of 0 minutes and at the incubation time of 15 minutes The difference is less than 5%.
Further, when measuring the reactivity between the antibody of the present invention and the free form of the compound represented by formula (I) in the competitive ELISA method, the free form of the compound represented by formula (I) is prepared using serum. Even when the difference was less than 5%, the “reactivity with the compound represented by the formula (I) is determined by the binding between the compound and the serum component”. Does not change.
本発明の抗体を用いた生物試料中の式(I)で示される化合物の検出は公知の方法(例
えば、日本臨床病理学会編「臨床病理臨時増刊特集第53号臨床検査のためのイムノアッ
セイ−技術と応用−」、臨床病理刊行会、1983年、石川榮治ら編「酵素免疫測定法」
、第3版、医学書院、1987年、北川常廣ら編「蛋白質核酸酵素別冊No.31酵素免
疫測定法」、共立出版、1987年などに記載の方法)に従って行うことができる。もっ
とも、本発明の抗体を用いた式(I)で示される化合物の検出方法は前記に例示したもの
に限定されることはなく、当業者が目的に応じて適宜選択可であることは言うまでもない
。本明細書の実施例には具体的測定方法が示されているので、当業者は実施例の方法を参
照しつつ、必要に応じて該方法に適宜の修飾ないし改変を加えることにより、生物試料に
含まれる式(I)で示される化合物を簡便かつ確実に検出することができる。
Detection of the compound represented by the formula (I) in the biological sample using the antibody of the present invention can be performed by a known method (for example, the Japanese Society of Clinical Pathology, “Special Issue on Clinical Pathology Special Issue 53 Immunoassay for Clinical Examination-Technology” And Application- ”, Clinical Pathology Publications, 1983, edited by Yuji Ishikawa et al.“ Enzyme Immunoassay ”
3rd Edition, Medical School, 1987, edited by Kitagawa Tsuneki et al., “Protein Nucleic Acid Enzyme Separate Volume No. 31 Enzyme Immunoassay”, Kyoritsu Shuppan, 1987, etc.). However, the method for detecting the compound represented by the formula (I) using the antibody of the present invention is not limited to those exemplified above, and it goes without saying that those skilled in the art can appropriately select depending on the purpose. . Since specific measurement methods are shown in the examples of the present specification, a person skilled in the art can refer to the methods of the examples and add appropriate modifications or alterations to the methods as necessary to obtain biological samples. The compound represented by the formula (I) contained in can be easily and reliably detected.
本発明により提供される測定用試薬(キット)の態様としては、(1)式(I)で示さ
れる化合物が固相化されている場合、(2)式(I)で示される化合物を認識する抗体(
本発明の抗体)が固相化されている場合、(3)式(I)で示される化合物及び式(I)で
示される化合物を認識する抗体の双方が固相化されている場合に大別することができる。
以下、代表的な標識イムノアッセイ法であるELISAと代表的な粒子凝集阻害イムノア
ッセイ法であるラテックス凝集阻害法を例にそれぞれを説明する。なおいずれも試料中の
オフロキサシンとの競合反応を利用したものである。
As an embodiment of the measuring reagent (kit) provided by the present invention, (1) when the compound represented by formula (I) is immobilized, (2) the compound represented by formula (I) is recognized. Antibody (
When the antibody of the present invention is immobilized, (3) large when both the compound represented by formula (I) and the antibody recognizing the compound represented by formula (I) are immobilized. Can be separated.
Hereinafter, each of the examples will be described by taking ELISA as a representative labeled immunoassay method and latex agglutination inhibition method as a typical particle aggregation inhibition immunoassay method as examples. In each case, a competitive reaction with ofloxacin in the sample is used.
<標識イムノアッセイ法:特にELISA法を例として> <Labeled immunoassay method: In particular, ELISA method as an example>
(1)式(I)で示される化合物が固相化されている場合は、少なくとも以下の要素:
(a)式(I)で示される化合物が固相化された不溶性担体;及び(b)式(I)で示され
る化合物を認識する抗体により、測定用試薬(キット)を構成することができる。ここで
(a)式(I)で示される化合物が固相化された不溶性担体は、キャリアーを介して式(I
)で示される化合物を固相化したり、不溶性担体と式(I)で示される化合物に相互結合
性の官能基を導入した上で化学反応を行わせ固相化するなどにより得ることができる。な
お、ここでいうキャリアーは、式(I)で示される化合物を不溶性担体に固定するために
介在させるものを指しており、タンパク質も使用されうるが、前述した免疫用抗原におけ
るキャリアーのように、低分子抗原(ハプテン)に対する抗体産生に寄与しうることは必
要とされない。従って免疫用抗原をキャリアーを含む式(I)で示される化合物として使
用することも可能であるし、免疫源性を有しないタンパク質や合成高分子をキャリアーと
して使用することも可能である。次に(b)式(I)で示される化合物を認識する抗体は
、検出可能な標識がされていても、いなくてもよい。検出可能な標識がされていない場合
には、検出可能な標識が付された二次抗体などを使用し、検出可能な標識がされている場
合には、該標識に適した検出方法で検出を行うことができる。検出可能な標識が酵素であ
る場合には、酵素反応基質を測定用試薬(キット)にさらに含ませた形態をとることもで
きる。酵素や基質の好ましい組み合わせなどは前述した。
(1) When the compound represented by the formula (I) is immobilized, at least the following elements:
A measurement reagent (kit) can be constituted by (a) an insoluble carrier on which a compound represented by formula (I) is solid-phased; and (b) an antibody recognizing the compound represented by formula (I). . Here, (a) the insoluble carrier on which the compound represented by the formula (I) is solid-phased is bonded to the formula (I
The compound represented by () can be obtained by solid-phase or by introducing a cross-linking functional group into the compound represented by the formula (I) and an insoluble carrier and then performing a chemical reaction for solid-phase. In addition, the carrier here refers to what interposes in order to fix the compound shown by a formula (I) to an insoluble carrier, and although protein can also be used, like the carrier in the immunity antigen mentioned above, It is not necessary to be able to contribute to antibody production against small molecule antigens (haptens). Therefore, it is possible to use an antigen for immunization as a compound represented by the formula (I) including a carrier, and it is also possible to use a protein or a synthetic polymer having no immunogenicity as a carrier. Next, (b) the antibody recognizing the compound represented by formula (I) may or may not have a detectable label. If no detectable label is present, use a secondary antibody with a detectable label. If a detectable label is present, detect with a detection method suitable for the label. It can be carried out. When the detectable label is an enzyme, the enzyme reaction substrate may be further included in a measurement reagent (kit). Preferred combinations of enzymes and substrates have been described above.
(2)式(I)で示される化合物を認識する抗体が固相化されている場合には、少なくと
も以下の要素:(a)式(I)で示される化合物を認識する抗体が固相化された不溶性担
体;及び(b)標識された式(I)で示される化合物により、測定用試薬(キット)を構
成することができる。ここで(a)式(I)で示される化合物を認識する抗体が固相化さ
れた不溶性担体は、抗体を物理的、化学的に固相化することによって得ることができる。
また、(b)標識された式(I)で示される化合物は、当業者にとって周知慣用の技術を
使用して得ることができる。検出可能な標識がされている場合には、該標識に適した検出
方法で検出を行うことができる。検出可能な標識が酵素である場合には、酵素反応基質を
測定用試薬(キット)にさらに含ませた形態をとることもできる。これらは前記(1)の
場合と同様である。
(2) When the antibody recognizing the compound represented by formula (I) is immobilized, at least the following elements: (a) the antibody recognizing the compound represented by formula (I) is immobilized A measurement reagent (kit) can be constituted by the insoluble carrier thus prepared; and (b) the labeled compound represented by the formula (I). Here, (a) an insoluble carrier on which an antibody recognizing the compound represented by formula (I) is immobilized can be obtained by physically and chemically immobilizing the antibody.
In addition, (b) the labeled compound represented by the formula (I) can be obtained using a technique well known to those skilled in the art. When a detectable label is provided, detection can be performed by a detection method suitable for the label. When the detectable label is an enzyme, the enzyme reaction substrate may be further included in a measurement reagent (kit). These are the same as in the case of (1).
(3)式(I)で示される化合物及び式(I)で示される化合物を認識する抗体の双方が固
相化されている場合は、少なくとも以下の要素:(a)式(I)で示される化合物が固相
化された不溶性担体;及び(b)式(I)で示される化合物を認識する抗体が固相化され
た不溶性担体により、測定用試薬(キット)を構成することができる。(a)式(I)で
示される化合物が固相化された不溶性担体は前記(1)の場合と同様であり、(b)式(
I)で示される化合物を認識する抗体が固相化された不溶性担体は前記(2)の場合と同
様である。
(3) When both the compound represented by the formula (I) and the antibody recognizing the compound represented by the formula (I) are immobilized, at least the following elements: (a) represented by the formula (I) A measurement reagent (kit) can be composed of an insoluble carrier on which a compound to be immobilized is solidified; and (b) an insoluble carrier on which an antibody recognizing the compound represented by formula (I) is immobilized. (A) The insoluble carrier on which the compound represented by formula (I) is solid-phased is the same as in the case of (1), and (b)
The insoluble carrier on which the antibody recognizing the compound represented by I) is immobilized is the same as in (2) above.
<粒子凝集阻害イムノアッセイ法:特にラテックス凝集阻害法を例として> <Particle aggregation inhibition immunoassay method: Especially, latex aggregation inhibition method as an example>
前記標識イムノアッセイ法とは別の、試料中に存在する式(I)で示される化合物を検
出するための測定用試薬(キット)の態様として、少なくとも以下の要素:
(1A)(a)式(I)で示される化合物を認識する抗体及び(b)固相化合成多価抗原
、
(2A)(a)式(I)で示される化合物を認識する抗体を固定化したラテックス粒子及
び(b)合成多価抗原、
(3A)(a)式(I)で示される化合物を認識する抗体を固相化したラテックス粒子及
び(b)固相化合成多価抗原、
により構成された測定用試薬(キット)を例示することができる。なお「合成多価抗原」
及び「固相化合成多価抗原」の定義は後述する。
これらの測定用試薬(キット)はラテックス凝集阻害法に好適に使用できる。(a)、
(b)に使用するラテックス粒子は、感度向上などの所望の性能を得るため、粒径や種類
を適宜選択することができる。ラテックスの材質としては、抗原あるいは抗体の担持に適
したものなら良く、一般的に用いられるポリスチレンを主成分とするラテックスの他に、
スチレン−ブタジエン共重合体、(メタ)アクリル酸エステル類ポリマーなどが挙げられ
る。また、金属コロイド、ゼラチン、リポソーム、マイクロカプセル、シリカ、アルミナ
、カーボンブラック、金属化合物、金属、セラミックス又は磁性体等の材質よりなる粒子
をラテックス粒子に代えて使用することもできる。
As an embodiment of a measuring reagent (kit) for detecting a compound represented by the formula (I) present in a sample, which is different from the labeled immunoassay method, at least the following elements:
(1A) (a) an antibody recognizing a compound represented by formula (I) and (b) a solid-phased synthetic multivalent antigen,
(2A) (a) latex particles on which an antibody recognizing the compound represented by formula (I) is immobilized, and (b) a synthetic multivalent antigen,
(3A) (a) Latex particles on which an antibody that recognizes the compound represented by formula (I) is immobilized, and (b) a solid-phased synthetic multivalent antigen,
The reagent for measurement (kit) comprised by these can be illustrated. "Synthetic multivalent antigen"
The definition of “solid-phase synthetic multivalent antigen” will be described later.
These measuring reagents (kits) can be suitably used for the latex aggregation inhibition method. (A),
The latex particles used in (b) can be appropriately selected in particle size and type in order to obtain desired performance such as sensitivity improvement. As the material of the latex, any material suitable for carrying an antigen or an antibody may be used. In addition to latex generally used as a main component,
Examples thereof include styrene-butadiene copolymers and (meth) acrylic acid ester polymers. Further, particles made of a material such as metal colloid, gelatin, liposome, microcapsule, silica, alumina, carbon black, metal compound, metal, ceramics or magnetic material can be used instead of latex particles.
さらに前記とは別の試料中に存在する式(I)で示される化合物を検出するための測定
用試薬(キット)の態様として、少なくとも以下の要素:
(a)式(I)で示される化合物を認識する抗体を固相化した不溶性担体;及び(b)標
識された式(I)で示される化合物を含むことを特徴とする測定用試薬(キット):
(b)標識された式(I)で示される化合物を認識する抗体;及び(b)式(I)で示され
る化合物もしくは合成多価抗原を含むことを特徴とする測定用試薬(キット)
であって、イムノクロマト法を測定原理とする測定用試薬(キット)を例示することがで
きる。
Furthermore, as an embodiment of the measuring reagent (kit) for detecting the compound represented by the formula (I) present in a sample different from the above, at least the following elements:
(A) an insoluble carrier on which an antibody recognizing the compound represented by formula (I) is solid-phased; and (b) a labeled reagent represented by formula (I). ):
(B) an antibody that recognizes a labeled compound represented by formula (I); and (b) a reagent for measurement (kit) comprising the compound represented by formula (I) or a synthetic multivalent antigen
Thus, a reagent for measurement (kit) based on the immunochromatography method can be exemplified.
前記「合成多価抗原」は、低分子抗原(ハプテン)のイムノアッセイ法、特に粒子凝集
イムノアッセイ法において、凝集の程度を向上させるため、ハプテンを多量体化させて多
価抗原を構成し凝集素としたもので、ポリハプテンなどと呼ばれるものと同様のものであ
る。合成多価抗原は、オフロキサシンを多量体化した後、凝集素としての機能を発揮でき
ることを限度として製造方法や構成は制限されない。オフロキサシンを適当なタンパク質
、ポリアミノ酸、ペプチド、糖の重合物(低分子多糖や高分子多糖など)、水溶性合成ポ
リマー、スペーサー化合物などのキャリアーを介して多量体化したものを使用できる。本
発明の免疫用抗原やスクリーニング用抗原も合成多価抗原に該当する。キャリアー1分子
あたりに結合する式(I)で示される化合物の分子の数(結合比)は免疫用抗原やスクリ
ーニング用抗原の製造方法と同様に調整して製造することができる。前記結合比は、多価
抗原として認識されうる2以上であればいずれでも良く、凝集素として所望の性能を得ら
れるよう、適宜選択することができる。例えば後述する実施例((a)式(I)で示され
る化合物を認識する抗体を固相化したラテックス粒子;及び(b)合成多価抗原(キャリ
アーとしてウシ血清アルブミンを用いた)により構成された測定用試薬(キット)を用い
るラテックス凝集阻害法)における前記結合比は、8以上が好ましく、15以上がさらに
好ましい値である。この、結合比はキャリアー種や測定試薬及び測定方法の設計に依存し
て至適な数値が変動する値である。当業者は所望のキャリアーを選択し、各キャリアーに
対し最適な結合比を決定した上で、前記測定試薬を構築することができる。
The above-mentioned “synthetic multivalent antigen” is a low molecular antigen (hapten) immunoassay method, particularly a particle aggregation immunoassay method, in order to improve the degree of aggregation. It is similar to what is called a polyhapten or the like. A synthetic multivalent antigen is not limited in its production method or configuration as long as it can function as an agglutinin after multimerizing ofloxacin. A product obtained by polymerizing ofloxacin through a carrier such as an appropriate protein, polyamino acid, peptide, sugar polymer (low molecular polysaccharide or high molecular polysaccharide, etc.), water-soluble synthetic polymer, spacer compound, etc. can be used. The antigen for immunization and the antigen for screening of the present invention also correspond to the synthetic multivalent antigen. The number of molecules (binding ratio) of the compound represented by the formula (I) that binds to one carrier molecule can be adjusted and manufactured in the same manner as in the immunization antigen and screening antigen production methods. The binding ratio may be any as long as it is 2 or more that can be recognized as a multivalent antigen, and can be appropriately selected so as to obtain desired performance as an agglutinin. For example, it is composed of examples described later (a) latex particles in which an antibody recognizing a compound represented by formula (I) is immobilized; and (b) a synthetic multivalent antigen (using bovine serum albumin as a carrier). In the latex agglutination inhibition method using the measuring reagent (kit), the binding ratio is preferably 8 or more, and more preferably 15 or more. This binding ratio is a value at which the optimum numerical value varies depending on the carrier type, the measuring reagent, and the design of the measuring method. A person skilled in the art can construct the measurement reagent after selecting a desired carrier and determining an optimal binding ratio for each carrier.
前記「固相化合成多価抗原」は、その目的や機能は前記「合成多価抗原」と同様である
。固相化合成多価抗原は、オフロキサシンを2分子以上不溶性担体(ラテックス粒子など
)に化学的あるいは物理的に結合させたもの(この場合、キャリアーやスペーサーを介し
てもよい)や前記合成多価抗原を不溶性担体(ラテックス粒子など)に化学的あるいは物
理的に結合させたものが該当する。
The “solid-phase synthetic multivalent antigen” has the same purpose and function as the “synthetic multivalent antigen”. Solid-phase synthetic polyvalent antigens are those in which ofloxacin is chemically or physically bound to two or more molecules of an insoluble carrier (such as latex particles) (in this case, via a carrier or a spacer) or the synthetic polyvalent antigen. This is obtained by chemically or physically binding an antigen to an insoluble carrier (such as latex particles).
以下、本発明を実施例によりさらに具体的に説明するが、本発明の範囲は下記の実施例
に限定されることはない。
〔実施例1〕ハイブリドーマの作製と抗体の獲得
(I)材料と方法
(1)免疫用抗原及びスクリーニング用抗原の調製
(i)式(I)で示される化合物のS体(以下、単にレボフロキサシン又はLVFXと表す
ことがある)10mgを2mLの溶解液(0.1mol/Lリン酸バッファー0.4mL
、DMSO 0.2mL、 精製水1.4mL)に溶解してLVFX溶液を得た。なお、式
(I)で示される化合物のS体として、本願の実施例ではすべてレボフロキサシンの1/
2水和物([(−)-(S)-9-fluoro-2,3-dihydro-3-methyl-
10-(4-methyl-1-piperazinyl)-7-oxo-7H-pyrido[
1,2,3-de][1,4]benzoxazine-6-carboxylicaci
d hemihydrate])を用いた。
(ii)該LVFX溶液に対し、2mgのBSA粉末又は2mgのトランスフェリン粉末を
加え、それぞれ緩やかに回転させながら溶解した後、5分間氷中に静置し、2種類のLV
FXタンパク混合液を得た。
(iii)ついで、各LVFXタンパク混合液に対し、架橋剤として水溶性カルボジイミド
(WSC) 160mgを添加し、溶解させた後、遮光下、4℃で緩やかに回転させなが
ら70時間インキュベートした。
(iv)その後、4℃で2日間、PBS(pH7.2) 中にて透析を行った。
(v)透析後の液を回収し、330nmにおける吸光度を測定することでLVFXの濃度
を求め、カップリング率(LVFX-タンパク質結合比)を確認した。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the following examples.
[Example 1] Hybridoma preparation and antibody acquisition (I) Materials and methods (1) Preparation of immunizing antigen and screening antigen (i) S-form of the compound represented by formula (I) (hereinafter simply referred to as levofloxacin or 10 mL of 10 mg of LVFX (sometimes referred to as LVFX) (0.1 mol / L phosphate buffer 0.4 mL)
DMSO 0.2 mL, purified water 1.4 mL) to obtain an LVFX solution. Incidentally, as the S form of the compound represented by the formula (I), in the examples of the present application, all of levofloxacin 1 /
Dihydrate ([(−)-(S) -9-fluor-2,3-dihydro-3-methyl-
10- (4-methyl-1-piperazinyl) -7-oxo-7H-pyrido [
1,2,3-de] [1,4] benzoxazine-6-carboxylicaci
d hemihydrate]).
(Ii) 2 mg of BSA powder or 2 mg of transferrin powder was added to the LVFX solution, each was dissolved while gently rotating, then left on ice for 5 minutes, and two types of LV
An FX protein mixture was obtained.
(Iii) Next, 160 mg of water-soluble carbodiimide (WSC) was added as a cross-linking agent to each LVFX protein mixed solution, dissolved, and then incubated for 70 hours while gently rotating at 4 ° C. in the dark.
(Iv) Thereafter, dialysis was performed in PBS (pH 7.2) at 4 ° C. for 2 days.
(V) The dialyzed solution was collected and the absorbance at 330 nm was measured to determine the LVFX concentration, and the coupling rate (LVFX-protein binding ratio) was confirmed.
(2)免疫と試験採血
前記LVFXとBSAのカップリング物(LVFX-BSA)をPBSに溶解し、アジ
ュバントと1:1で混合後、連結シリンジを用いて混和してエマルジョンを作成し、該エ
マルジョンを免疫用抗原として用いた。
3匹の雌のBALB/cマウス(ML−1、ML−2:ともに7週齢、ML−3:11
週齢)それぞれに対し、免疫用抗原を1匹当たりの1回投与量として、10μg(ML−
1)、20μg(ML−2)、40μg(ML−3)ずつを皮下投与した。1週間後、同
じ投与量で再度皮下投与した。
免疫開始14日後に各マウスの眼底からマウス抗血清を採取し、後述する抗原固相化E
LISA法にて該抗血清中の抗体価を確認した。さらに、遊離型のレボフロキサシンに対
する抗血清中の抗体の反応性を確認するため、後述する競合ELISA法にて、反応系に
遊離型のレボフロキサシンを2μmol/L、10μmol/L、50μmol/L共存
させた条件下での各抗血清の反応性を調べた。
なお、いずれのELISA法においても、免疫していないマウスの眼底から採取した正
常血清をコントロールとして用いた。
(2) Immunization and test blood collection The LVFX-BSA coupling product (LVFX-BSA) is dissolved in PBS, mixed with an adjuvant 1: 1, and mixed with a connected syringe to prepare an emulsion. Was used as an antigen for immunization.
Three female BALB / c mice (ML-1, ML-2: 7 weeks old, ML-3: 11
Each week), 10 μg (ML−) of the antigen for immunization as a single dose per animal.
1), 20 μg (ML-2) and 40 μg (ML-3) were subcutaneously administered. One week later, the same dose was administered again subcutaneously.
After 14 days from the start of immunization, mouse antiserum was collected from the fundus of each mouse, and antigen-immobilized E described later was collected.
The antibody titer in the antiserum was confirmed by the LISA method. Furthermore, in order to confirm the reactivity of the antibody in the antiserum to free levofloxacin, free levofloxacin was allowed to coexist in the reaction system at 2 μmol / L, 10 μmol / L, and 50 μmol / L in a competitive ELISA method described later. The reactivity of each antiserum under conditions was examined.
In any ELISA method, normal serum collected from the fundus of an unimmunized mouse was used as a control.
(3)細胞融合
試験採血5日後、マウスML−1について、10μgLVFX-BSAを静注して最終
免疫した。該最終免疫の3日後に脾臓を摘出し、ポリエチレングリコールを用いた常法に
より細胞融合を行った。ミエローマ細胞はSP2/Oを用いた。得られた融合細胞は、脾
臓細胞として2.5×106/mLになるようにヒポキサンチン-アミノプテリン-チミジ
ン(HAT)及び15%ウシ胎児血清を含むRPMI1640培地に懸濁し、96穴培養
プレートに0.2mLずつ分注した。これを5%CO2インキュベーター中で37℃にて
培養した。
(3) Cell fusion Five days after the test blood collection, the mouse ML-1 was intravenously injected with 10 μg LVFX-BSA for final immunization. Three days after the final immunization, the spleen was removed and cell fusion was performed by a conventional method using polyethylene glycol. As myeloma cells, SP2 / O was used. The obtained fused cells were suspended in RPMI 1640 medium containing hypoxanthine-aminopterin-thymidine (HAT) and 15% fetal calf serum so as to be 2.5 × 10 6 / mL as spleen cells. Was dispensed at 0.2 mL each. This was cultured at 37 ° C. in a 5% CO 2 incubator.
(4)スクリーニング
細胞融合11日後に1次スクリーニングとして、培養上清を用いて抗原固相化ELIS
A法を行い、LVFXとトランスフェリンのカップリング物(LVFX-トランスフェリ
ン)に対し高い反応性を示したwellを1次陽性wellとして選別した。該1次陽性
well中の細胞は、48穴プレートにおいて継代した。
継代2日後、2次スクリーニングとして、培養上清を用いて競合ELISA法を行い、
遊離型のレボフロキサシンに対し高い反応性を示したwellを2次陽性wellとして
選択した。
2次スクリーニングで選択された細胞株は、3次スクリーニングとしてレボフロキサシ
ンの併用薬、類似化合物、及び代謝物との競合ELISA法を行った。さらに3次スクリ
ーニングによって選択された細胞株の培養上清を用い、遊離型レボフロキサシンとの競合
ELISA法の反応系にヒト血清が共存した場合及び予めレボフロキサシンを血清とイン
キュベートした場合に、血清が抗体の反応性に影響を与えるか調べた。
(4) Screening As a primary screening 11 days after cell fusion, antigen-immobilized ELISA using culture supernatant
The A method was performed, and wells that showed high reactivity to the LVFX-transferrin coupling product (LVFX-transferrin) were selected as primary positive wells. Cells in the primary positive well were passaged in 48-well plates.
Two days after passage, as a secondary screening, a competitive ELISA was performed using the culture supernatant,
Wells that showed high reactivity to free levofloxacin were selected as secondary positive wells.
Cell lines selected in the secondary screening were subjected to competitive ELISA with levofloxacin concomitant drugs, similar compounds, and metabolites as the tertiary screening. Furthermore, using the culture supernatant of the cell line selected by the third screening, when human serum coexists in the reaction system of the competitive ELISA method with free levofloxacin or when levofloxacin is pre-incubated with serum, It was investigated whether the reactivity was affected.
(5)クローニング及びイムノグロブリン(抗体)採取
3次スクリーニングで選別した10株のハイブリドーマを限界希釈法にてクローニング
した。次いで各ハイブリドーマが産生するイムノグロブリン(抗体)を採取するため、2
週間前にプリスタン0.5mLを腹腔内に注射しておいた12週齢の雌BALB/cマウ
スに、ハイブリドーマを細胞数0.5×106個の量で腹腔内に投与した。14日後に腹
水を採取し、遠心処理して上清を得た。上清を等量の吸着用緩衝液(3mol/LNaC
l、1.5mol/L Glycine-NaOH緩衝液、pH8.5)と混和後、濾過し
た。該ろ液を、吸着用緩衝液で平衡化したプロテインAカラムに通し、ろ液中の抗体をカ
ラムに吸着させた後、0.1mol/Lクエン酸緩衝液(pH3.0)で溶出させた。該
溶出液を、1mol/LTris-HCl緩衝液(pH8.0)で中和後、PBSで透析
を行い、抗体を採取した。
(5) Cloning and immunoglobulin (antibody) collection Ten hybridomas selected in the third screening were cloned by the limiting dilution method. Next, in order to collect the immunoglobulin (antibody) produced by each hybridoma, 2
Pristane 0.5mL prior week to 12-week-old female BALB / c mice that had been injected intraperitoneally, hybridomas were intraperitoneally administered in an amount of several 0.5 × 10 6 cells cells. After 14 days, ascites was collected and centrifuged to obtain a supernatant. Equal amount of buffer for adsorption (3 mol / LNaC)
l, 1.5 mol / L Glycine-NaOH buffer, pH 8.5) and then filtered. The filtrate was passed through a protein A column equilibrated with an adsorption buffer, and the antibody in the filtrate was adsorbed onto the column and then eluted with 0.1 mol / L citrate buffer (pH 3.0). . The eluate was neutralized with 1 mol / LT Tris-HCl buffer (pH 8.0), dialyzed with PBS, and the antibody was collected.
(6)サブクラスの確認
採取した10種類のイムノグロブリン(抗体)について、サブクラス判定キット(ZY
MED社製)を用いサブクラスの確認を行った。
(6) Confirmation of subclass Subclass determination kit (ZY) for 10 kinds of collected immunoglobulins (antibodies)
The subclass was confirmed using MED).
(7)ELISA用プレートの作成
PBSに溶解して1μg/mLの濃度に調製したLVFX-トランスフェリンをスクリ
ーニング用抗原として、50μL/wellずつ96穴プレートに固相化し、4℃で一晩
静置した。PBST(0.05%Tween20-PBS)で3回洗浄後(400μL/
well)、ブロッキング液(3%スキムミルク-PBST)を100μL/wellず
つ分注し、室温で1時間静置してブロッキングを行い、ELISA用プレートを作成した
。該ELISA用プレートは、PBSTで3回洗浄後、各試薬を添加して実施例記載の各
ELISA法試験に用いた。
(7) Preparation of ELISA plate LVFX-transferrin dissolved in PBS and adjusted to a concentration of 1 μg / mL was used as a screening antigen, and 50 μL / well was immobilized on a 96-well plate and allowed to stand overnight at 4 ° C. . After washing 3 times with PBST (0.05% Tween20-PBS) (400 μL /
well) and blocking solution (3% skim milk-PBST) were dispensed at 100 μL / well, and allowed to stand at room temperature for 1 hour for blocking to prepare an ELISA plate. The ELISA plate was washed three times with PBST, and then each reagent was added and used for each ELISA method test described in the Examples.
(8)抗原固相化ELISA法
(i)ELISA用プレートに、1%BSA-PBSTにより100倍から5倍ずつ8段階
に希釈した各マウス抗血清、あるいは融合細胞の培養上清を50μL/wellずつ分注
し、室温で1時間静置した。
(ii)PBSTで3回洗浄後、HRP-GtF(ab’)2-Anti-Mouse Ig
’s(Biosource、AMI4404)を1%BSA-PBSTで5000倍希釈
した溶液を50μL/wellずつ分注し、室温で1時間静置した。
(iii)PBSTで3回洗浄後、OPD発色液(OPDを2mg/mL、過酸化水素を0
.02%の濃度でpH5.0クエン酸緩衝液に溶解)を分注し(50μL/well)、
室温で10分間静置した。
(iv)0.75mol/L硫酸を50μL/wellずつ分注して反応を停止した後、プ
レートリーダーで492nmの吸光度を測定した。
(8) Antigen-immobilized ELISA method (i) 50 μL / well of mouse antiserum or fusion cell culture supernatant diluted in 8 stages of 1% BSA-PBST in 100-fold to 5-fold increments on an ELISA plate It dispensed at a time and allowed to stand at room temperature for 1 hour.
(Ii) After washing 3 times with PBST, HRP-GtF (ab ′) 2 -Anti-Mouse Ig
A solution obtained by diluting s (Biosource, AMI4404) 5000 times with 1% BSA-PBST was dispensed at 50 μL / well and allowed to stand at room temperature for 1 hour.
(Iii) After washing 3 times with PBST, OPD coloring solution (OPD 2 mg / mL, hydrogen peroxide 0
. (Dissolved in pH 5.0 citrate buffer at a concentration of 02%) (50 μL / well)
It was left to stand at room temperature for 10 minutes.
(Iv) After 0.75 mol / L sulfuric acid was dispensed by 50 μL / well to stop the reaction, the absorbance at 492 nm was measured with a plate reader.
(9)競合ELISA法に用いる化合物溶液の調製
競合ELISA法に用いる化合物として、レボフロキサシン、後述するレボフロキサシ
ンの併用薬、レボフロキサシンの類似化合物であるニューキノロン系抗菌剤、レボフロキ
サシンの代謝物及びオフロキサシン(ラセミ体)を選んだ。これらの化合物を容易に溶解
可能な溶解液を、精製水、PBST、DMSO、メタノール、0.1mol/L HCl
、又は0.1mol/LNaOHの中からそれぞれ選択した。溶解液として0.1mol
/L HCl、又は0.1mol/LNaOHを選択した場合には、これらに化合物を溶
解した後、直ちに1%BSA-PBSTで50倍希釈し、pH試験紙で中性付近のpHで
あることを確認した。溶解した化合物は、化合物の濃度が0.01μmol/L、0.1
μmol/L、1μmol/L、10μmol/L、100μmol/Lとなるように、
1%BSA-PBSTで段階的に希釈し、競合ELISA法に使用した。例えば、レボフ
ロキサシンは、精製水で1mmol/Lに溶解し、さらに1%BSA-PBSTで段階希
釈して競合ELISA法に使用した。
(9) Preparation of compound solution used in competitive ELISA method As compounds used in competitive ELISA method, levofloxacin, concomitant drug of levofloxacin described later, new quinolone antibacterial agent which is a similar compound of levofloxacin, metabolite of levofloxacin and ofloxacin (racemate) I chose. A solution that can easily dissolve these compounds is purified water, PBST, DMSO, methanol, 0.1 mol / L HCl.
Or 0.1 mol / L NaOH. 0.1 mol as solution
When / L HCl or 0.1 mol / L NaOH is selected, after dissolving the compound in these, immediately dilute 50-fold with 1% BSA-PBST, and check that the pH is near neutrality with pH test paper. confirmed. The dissolved compound has a compound concentration of 0.01 μmol / L, 0.1
In order to be μmol / L, 1 μmol / L, 10 μmol / L, 100 μmol / L,
Dilute serially with 1% BSA-PBST and use in competitive ELISA. For example, levofloxacin was dissolved in purified water to 1 mmol / L, and further diluted serially with 1% BSA-PBST and used in the competitive ELISA method.
<交差反応性を試験したレボフロキサシンの併用薬>
ジクロフェナクナトリウム、ナブメトン、フルルビプロフェン、ケトプロフェン、ロキ
ソプロフェンナトリウム、オキサプロジン、ナプロキセン、イブプロフェン、カルボシス
テイン、サリチルアミド、アセトアミノフェン、無水カフェイン、メチレンジサリチル酸
、プロメタジン、及びテオフィリン
<交差反応性を試験したレボフロキサシンの類似化合物>
シプロフロキサシン、トスフロキサシン、ガチフロキサシン、スパルフロキサシン、フ
レロキサシン、ロメフロキサシン、ノルフロキサシン、エノキサシン、モキシフロキサシ
ン、及びパズフロキサシン
<交差反応性を試験したレボフロキサシンの代謝物>
N-オキシド体、及び脱メチル体
<オフロキサシン>
式(I)で示される化合物のS体及びR体混在物(組成比1:1)
<Levofloxacin concomitant drug tested for cross-reactivity>
Diclofenac sodium, nabumetone, flurbiprofen, ketoprofen, loxoprofen sodium, oxaprozin, naproxen, ibuprofen, carbocysteine, salicylamide, acetaminophen, anhydrous caffeine, methylenedisalicylic acid, promethazine, and theophylline <cross reactivity was tested Analogs of levofloxacin>
Ciprofloxacin, tosufloxacin, gatifloxacin, sparfloxacin, fleroxacin, lomefloxacin, norfloxacin, enoxacin, moxifloxacin, and pazufloxacin <metabolite of levofloxacin tested for cross-reactivity>
N-oxide and demethylated <ofloxacin>
S form and R form mixture of the compound represented by formula (I) (composition ratio 1: 1)
(10)競合ELISA法
(i)ELISA用プレートに前記(9)競合ELISA法に用いる化合物溶液の調製で
調製した各化合物溶液を25μL/wellずつ分注した。
(ii)次いで、1%BSA-PBSTで1000倍希釈した各マウス抗血清、あるいは融
合細胞の培養上清を25μL/wellずつ分注し、室温で1時間静置した。
以降の操作は、前記(8)抗原固相化ELISA法の工程(ii)〜(iv)と同様に行っ
た。
(10) Competitive ELISA method (i) Each compound solution prepared in the preparation of the compound solution used in the (9) competitive ELISA method was dispensed into an ELISA plate at 25 μL / well.
(Ii) Next, each mouse antiserum diluted 1000-fold with 1% BSA-PBST or culture supernatant of fused cells was dispensed at 25 μL / well and allowed to stand at room temperature for 1 hour.
The subsequent operations were performed in the same manner as in steps (ii) to (iv) of the above-described (8) antigen-immobilized ELISA method.
(11)本発明抗体を用いた競合ELISA法における血清の影響の評価
(i)1%BSA-PBSTによりヒト血清を希釈し、5%ヒト血清を作製した。なお、本
発明の各実施例で使用したヒト血清、血漿は、いずれも同意を得て採取したボランティア
の血液に由来するものである。
(ii)5%ヒト血清を用いて2.0μmol/L、0.2μmol/L、0.02μmo
l/L レボフロキサシンを調製し、ヒト血清試薬aとした。コントロール試薬として、
1%BSA-PBSTを用いて2.0μmol/L、0.2μmol/L、0.02μm
ol/L レボフロキサシンを調製した。
(iii)ELISA用プレートに、ヒト血清試薬aあるいはコントロール試薬を25μL
/wellずつ分注した。
(iv)次いで、融合細胞の培養上清を25μL/well分注して、室温で1時間静置し
た。
以降の操作は、前記(8)抗原固相化ELISA法の工程(ii)〜(iv)と同様に行っ
た。
(11) Evaluation of effect of serum in competitive ELISA method using the antibody of the present invention (i) Human serum was diluted with 1% BSA-PBST to prepare 5% human serum. The human serum and plasma used in each example of the present invention are derived from volunteer blood collected with consent.
(Ii) 2.0 μmol / L, 0.2 μmol / L, 0.02 μmo using 5% human serum
l / L levofloxacin was prepared and used as human serum reagent a. As a control reagent,
2.0 μmol / L, 0.2 μmol / L, 0.02 μm using 1% BSA-PBST
ol / L levofloxacin was prepared.
(Iii) 25 μL of human serum reagent a or control reagent on the ELISA plate
/ Well dispensed.
(Iv) Next, the culture supernatant of the fused cells was dispensed at 25 μL / well and allowed to stand at room temperature for 1 hour.
The subsequent operations were performed in the same manner as in steps (ii) to (iv) of the above-described (8) antigen-immobilized ELISA method.
(12)予め遊離型レボフロキサシンとヒト血清とをインキュベーションした試料を競合
ELISA法で測定した場合の影響の評価
(i)精製水で溶解したレボフロキサシン溶液をヒト血清で100倍希釈して30μmo
l/L レボフロキサシン溶液を調製し、37℃にて0、15、60分間インキュベート
した。
(ii)各時間のインキュベート後、前記30μmol/L レボフロキサシン溶液を1%
BSA‐PBSTで15倍、150倍、1500倍に希釈し、ヒト血清試薬bとした。
(iii)ELISA用プレートに、ヒト血清試薬bを25μL/wellずつ分注した。
(iv)次いで、融合細胞の培養上清を25μL/wellずつ分注し、室温で1時間静置
した。
以降の操作は、前記(8)抗原固相化ELISA法の工程(ii)〜(iv)と同様に行っ
た。
(12) Evaluation of the effect when a sample in which free levofloxacin was previously incubated with human serum was measured by a competitive ELISA method (i) A levofloxacin solution dissolved in purified water was diluted 100-fold with human serum to 30 μmo
A 1 / L levofloxacin solution was prepared and incubated at 37 ° C. for 0, 15, 60 minutes.
(Ii) After incubation for each time, 1% of the 30 μmol / L levofloxacin solution was added.
Diluted 15 times, 150 times and 1500 times with BSA-PBST to obtain human serum reagent b.
(Iii) 25 μL / well of human serum reagent b was dispensed onto the ELISA plate.
(Iv) Next, the culture supernatant of the fused cells was dispensed at 25 μL / well and allowed to stand at room temperature for 1 hour.
The subsequent operations were performed in the same manner as in steps (ii) to (iv) of the above-described (8) antigen-immobilized ELISA method.
(13)反応の数値化
(i)測定された吸光度より、まず各化合物の各添加濃度における反応性(%)を以下の
式(1)を用いて算出した。
反応性(%)=[Abs.(x)]/[Abs.(0)]×100・・・式(1
)
Abs.(x):
(化合物濃度xμmol/Lでの吸光度)−(抗体0μg/mLでの吸光度)
Abs.(0):
(化合物濃度0μmol/Lでの吸光度)−(抗体0μg/mLでの吸光度)
(ii)次に、各化合物について添加濃度と反応性の関係をプロットしたグラフを作成し、
反応性が50%になるときの各化合物の添加濃度を求めた。この濃度を50%阻害濃度(
IC50)とした。
(iii)IC50から以下の式にて各抗体の各化合物に対する交差率(%)を求めた。求
めた交差率を元に、各抗体の各化合物に対する交差反応性の強さの判定基準を設定した。
交差率(%)=[レボフロキサシンのIC50]/[各化合物のIC50]×100
・・・式(2)
交差反応性強 :交差率80%以上〜100%
交差反応性中 :交差率40%以上〜80%未満
交差反応性弱 :交差率1%以上〜40%未満
交差反応しない:交差率0%以上〜1%未満
また、各抗体のオフロキサシンに対する交差反応性の強さの判定基準は次のように設
定した。
S体と強く反応 :交差率が100%未満
S体とR体等価に反応:交差率が100%
R体と強く反応 :交差率が100%超
(13) Digitization of reaction (i) From the measured absorbance, first, the reactivity (%) at each addition concentration of each compound was calculated using the following formula (1).
Reactivity (%) = [Abs. (X)] / [Abs. (0)] × 100 (1)
)
Abs. (X):
(Absorbance at compound concentration x μmol / L) − (Absorbance at antibody 0 μg / mL)
Abs. (0):
(Absorbance at compound concentration 0 μmol / L) − (Absorbance at antibody 0 μg / mL)
(Ii) Next, for each compound, create a graph plotting the relationship between additive concentration and reactivity,
The concentration of each compound added when the reactivity reached 50% was determined. This concentration is 50% inhibitory concentration (
IC 50 ).
(Iii) The crossing rate (%) of each antibody with respect to each compound was determined from the IC 50 by the following formula. Based on the calculated crossover rate, a criterion for determining the strength of crossreactivity of each antibody against each compound was set.
Crossing rate (%) = [IC 50 of each compound] / [IC 50 of levofloxacin] × 100
... Formula (2)
Strong cross reactivity: Cross rate 80% or more to 100%
During cross-reactivity: Crossing rate: 40% to less than 80% Cross-reactivity weak: Crossing rate: 1% to less than 40% No cross-reaction: Crossing rate: 0% to less than 1% Cross-reactivity of each antibody to ofloxacin The criteria for determining the strength of sex were set as follows.
Reacts strongly with S form: Crossing rate is less than 100% S form reacts with R form equivalent: Crossing rate is 100%
Reacts strongly with R-form: Crossing rate exceeds 100%
(II)結果
(1)免疫用抗原及びスクリーニング用抗原の調製
調製した免疫用抗原及びスクリーニング用抗原のLVFX-タンパク質結合比は、LV
FX-BSAが12.0、LVFX-トランスフェリンが13.9で、いずれも高い値を示
した。なお、結合比の値は、透析後のLVFXの濃度を透析前のBSA又はトランスフェ
リン濃度で除すことにより算出したもので、BSA又はトランスフェリン1分子当りに結
合したLVFXの分子数を表している。
(2)試験採血における抗原固相化ELISA法試験の結果
試験採血を行い、抗原固相化ELISA法により各マウス抗血清中の抗体価を調べた結
果、3種のマウス抗血清すべてにおいて高い抗体価が確認された(図1)。ELISA用
プレートに固相化したスクリーニング用抗原と免疫用抗原とではカップリングさせたタン
パク質が異なるので、各抗体が固相化したスクリーニング用抗原のタンパク質部分(言い
換えればキャリアー)へ非特異的に反応する可能性は排除されている。従って本実施例で
得られた各マウス抗血清は、免疫用、スクリーニング用抗原中の共通部分であるレボフロ
キサシンを特異的に認識する抗体を含むと考えられた。
(3)試験採血における競合ELISA法試験の結果
タンパク質と結合していない遊離型のレボフロキサシンを競合ELISA法の反応系に
共存させ、固相化抗原と競合させた場合におけるスクリーニング用抗原と各マウス抗血清
中の抗体との反応量の変化を調べた結果、3種のマウス抗血清のいずれにおいても反応系
へのレボフロキサシンの添加量に応じ、スクリーニング用抗原に対する抗体の反応量が低
下した(図2)。従って、本実施例で得られた各マウス抗血清中には、遊離型のレボフロ
キサシンを認識する抗体が含まれていると考えられた。
(II) Results (1) Preparation of immunizing antigen and screening antigen The LVFX-protein binding ratio of the prepared immunizing antigen and screening antigen was LV
FX-BSA was 12.0 and LVFX-transferrin was 13.9, both showing high values. The value of the binding ratio is calculated by dividing the concentration of LVFX after dialysis by the concentration of BSA or transferrin before dialysis, and represents the number of LVFX molecules bound per molecule of BSA or transferrin.
(2) Results of antigen-immobilized ELISA test in test blood collection As a result of test blood sampling and antibody titer in each mouse antiserum examined by antigen-immobilized ELISA method, high antibody in all three mouse antisera The value was confirmed (FIG. 1). Since the coupled antigen is different between the screening antigen and the immunization antigen immobilized on the ELISA plate, each antibody reacts nonspecifically with the protein portion (in other words, the carrier) of the screening antigen immobilized on the plate. The possibility to do is excluded. Therefore, each mouse antiserum obtained in this example was considered to contain an antibody that specifically recognizes levofloxacin, which is a common part in immunization and screening antigens.
(3) Results of competitive ELISA test in blood collection Test antigen and each mouse anti-antigen when free levofloxacin not bound to protein coexists in the reaction system of competitive ELISA and competes with immobilized antigen. As a result of examining the change in the reaction amount with the antibody in the serum, the reaction amount of the antibody against the screening antigen decreased in any of the three mouse antisera according to the amount of levofloxacin added to the reaction system (FIG. 2). ). Therefore, each mouse antiserum obtained in this example was considered to contain an antibody that recognizes free levofloxacin.
(4)スクリーニング
1次スクリーニングの結果、固相化されたLVFX-トランスフェリンに高い反応性を
示した63株を1次陽性株として選択した。さらに2次スクリーニングの結果、遊離型の
レボフロキサシンと高い反応性を示した32株を2次陽性株として得た。また、3次スク
リーニングの結果、レボフロキサシンの併用薬、類似化合物、及び代謝物と交差反応しな
いか、もしくは交差反応性が比較的弱い10株を選択し、この10株由来の抗体について
さらに試験した。
(4) Screening As a result of the primary screening, 63 strains that showed high reactivity to the immobilized LVFX-transferrin were selected as primary positive strains. As a result of secondary screening, 32 strains showing high reactivity with free levofloxacin were obtained as secondary positive strains. As a result of the third screening, 10 strains that did not cross-react with levofloxacin concomitant drugs, similar compounds, and metabolites or that had relatively weak cross-reactivity were selected, and antibodies derived from these 10 strains were further tested.
3次スクリーニングによって選択された前記10種類の抗体について競合ELISA法
の反応系にヒト血清を共存させ抗体の反応性に与える血清成分の影響を調べた。血清の添
加により、遊離型レボフロキサシンが血清中のタンパク質と結合して結合型レボフロキサ
シンとなり、抗体の反応に影響を与える可能性が考えられたが、いずれの抗体においても
コントロール(血清非添加)と血清を添加した場合の反応性の差は5%未満であった。
For the 10 types of antibodies selected by the tertiary screening, human serum was allowed to coexist in the reaction system of the competitive ELISA method, and the influence of serum components on antibody reactivity was examined. The addition of serum could cause free levofloxacin to bind to protein in serum to form conjugated levofloxacin, which may affect the antibody response. In either antibody, control (no serum added) and serum The difference in reactivity when adding was less than 5%.
3次スクリーニングによって選択された前記10種類の抗体について、予め遊離型オフ
ロキサシンと血清をインキュベートし、遊離型オフロキサシンが血清タンパク質と結合し
た結合型オフロキサシンに変換されるようにしたヒト血清試薬bを、競合ELISA法の
試料として測定した。競合ELISA法により該抗体の反応性を求めた結果、インキュベ
ーション時間が0分の場合と比較して、インキュベーション時間15分及び60分のとき
の反応性の差は5%未満であった。
For the 10 types of antibodies selected by the tertiary screening, free serum ofloxacin was incubated with serum in advance, and human serum reagent b was converted into bound ofloxacin bound to serum protein. It measured as a sample of ELISA method. As a result of determining the reactivity of the antibody by the competitive ELISA method, the difference in reactivity at the incubation time of 15 minutes and 60 minutes was less than 5% compared to the case of the incubation time of 0 minutes.
前記、血清の影響をみる2種類の試験結果より、3次スクリーニングによって選択され
た10種類の抗体は、血清タンパク質と結合した結合型レボフロキサシンであっても、血
清タンパク質と結合していない遊離型レボフロキサシンと同様の反応性を示し、試料中の
遊離型、結合型を同時に検出可能と考えられた。
From the above-mentioned two kinds of test results for examining the effect of serum, the 10 types of antibodies selected by the tertiary screening are free levofloxacin not bound to serum protein even though it is bound levofloxacin bound to serum protein. It was considered that free and bound types in the sample could be detected simultaneously.
(5)クローニング及びイムノグロブリン(抗体)、採取サブクラスの確認
3次スクリーニングで選択された10種類の抗体のサブクラスを調べた結果、10種類
中8種類はサブクラスがIgGで、その他2種類の抗体はIgAとIgMであった。これ
以降、サブクラスがIgGであった77201〜77207及び77209の8種類のモ
ノクローナル抗体のみ評価を継続した。
また、これら8種類の抗体の中から、実施例2においてレボフロキサシン脱メチル体に
対して若干の反応性を示した77203の1種類を除いた7種類について、該モノクロー
ナル抗体を産生するハイブリドーマを独立行政法人産業技術総合研究所(日本国茨城県つ
くば市東一丁目1番地1中央第6)に寄託した。寄託番号は以下のとおりである。
抗体番号 : 寄託番号
77201:FERM BP−11010
77202:FERM BP−11011
77204:FERM BP−11012
77205:FERM BP−11013
77206:FERM BP−11014
77207:FERM BP−11015
77209:FERM BP−11016
(5) Cloning and confirmation of immunoglobulin (antibody) and collection subclass As a result of examining the subclasses of 10 types of antibodies selected in the third screening, 8 out of 10 types are IgG subclasses, and the other 2 types of antibodies are IgA and IgM. Thereafter, only the eight monoclonal antibodies 77201 to 77207 and 77209 whose subclass was IgG were evaluated.
Of these 8 types of antibodies, 7 hybridomas except for one of 77203, which showed some reactivity with levofloxacin demethylated product in Example 2, were designated as independent administrations of hybridomas producing the monoclonal antibodies. Deposited with the National Institute of Advanced Industrial Science and Technology (1st, 1st, 1st East, Tsukuba City, Ibaraki, Japan). The deposit number is as follows.
Antibody number: Deposit number 77201: FERM BP-11010
77202: FERM BP-11011
77204: FERM BP-11012
77205: FERM BP-11013
77206: FERM BP-11014
77207: FERM BP-11015
77209: FERM BP-11016
〔実施例2〕各ハイブリドーマが産生するモノクローナル抗体の交差反応性評価
(I)材料と方法
(1)試薬の調製
競合ELISA法に用いた各化合物は、実施例1(I)(9)と同様の操作で調製した
。
(2)交差反応性の評価(競合ELISA法)
実施例1(I)(10)競合ELISA法と同様に行った。ただし用いた抗体は実施例
1(II)(5)で選択した7種類のモノクローナル抗体(精製IgG:0.2μg/mL
)である。また、抗体の反応性及び交差反応性の算出も実施例1(I)(13)と同様に
行い数値化した。
[Example 2] Cross-reactivity evaluation of monoclonal antibodies produced by each hybridoma (I) Materials and methods (1) Preparation of reagents Each compound used in the competitive ELISA was the same as in Example 1 (I) (9). It was prepared by the operation.
(2) Evaluation of cross-reactivity (competitive ELISA method)
Example 1 (I) (10) Performed in the same manner as the competitive ELISA method. However, the antibodies used were 7 types of monoclonal antibodies (purified IgG: 0.2 μg / mL) selected in Example 1 (II) (5).
). The antibody reactivity and cross-reactivity were also calculated in the same manner as in Example 1 (I) (13) and digitized.
(II)結果
(1)遊離型のレボフロキサシンに対する各モノクローナル抗体の反応性
図3に示すように、各抗体とも遊離型のレボフロキサシンに対して反応することが確認
された。
(II) Results (1) Reactivity of each monoclonal antibody against free levofloxacin As shown in FIG. 3, it was confirmed that each antibody reacts with free levofloxacin.
(2)類似化合物、代謝物及び式(I)で示される化合物のS体(レボフロキサシン)、
R体及びS体とR体の1:1混合物であるラセミ体(オフロキサシン)との交差反応性
類似化合物及びレボフロキサシン代謝物及びオフロキサシンに対する各抗体の交差率を
表1に示した。
(2) S compound (levofloxacin) of the compound represented by the similar compound, metabolite and formula (I),
Cross-reactivity of racemic body (ofloxacin) which is a 1: 1 mixture of R-form and S-form and R-form Table 1 shows the crossover ratio of each antibody against similar compounds, levofloxacin metabolite and ofloxacin.
各類似化合物に対する各モノクローナル抗体の交差反応性については、77201、7
7202、及び77204がモキシフロキサシンに対し交差反応性を示した。77205
、77207、及び77209は、フレロキサシンに若干交差反応性を示したものの、そ
の他の類似化合物全てに対して交差反応しないか、弱い交差反応性であった。
77201,7 for the cross-reactivity of each monoclonal antibody to each analogous compound
7202 and 77204 showed cross-reactivity to moxifloxacin. 77205
77207 and 77209 showed some cross-reactivity with fleroxacin, but did not cross-react with all other similar compounds or were weakly cross-reactive.
オフロキサシンに対する各抗体の交差反応性については、77201、77202、7
7204、77205、77207の5種類の抗体は、S体への交差反応性とオフロキサ
シンへの交差反応性が等しかった。77206は、オフロキサシンに対する交差反応性が
50%であったので、S体に強く反応する抗体であると判定した。一方、77209はオ
フロキサシンへの交差率が250%でレボフロキサシン単体よりもオフロキサシンに対す
る交差反応性の方が強いことから、R体に強く反応する抗体であると判定した。
77201, 77202, 7 for the cross-reactivity of each antibody to ofloxacin
The five types of antibodies, 7204, 77205, and 77207, had the same cross-reactivity to S-form and cross-reactivity to ofloxacin. 77206 was determined to be an antibody that strongly reacts with S-isomer because the cross-reactivity to ofloxacin was 50%. On the other hand, 77209 has a crossing rate to ofloxacin of 250%, and its cross-reactivity to ofloxacin is stronger than that of levofloxacin alone.
各抗体のレボフロキサシン代謝物、オフロキサシンに対する交差反応性をまとめると以
下のとおりである。
77201、77202、77204、77205、77207:オフロキサシンと反
応し、且つその代謝物であるN-オキシド体及び脱メチル体と反応しない抗体で、式(I)
で示される化合物のS体(レボフロキサシン)とR体の両方に反応する抗体
77206:オフロキサシンと反応し、且つその代謝物であるN-オキシド体及び脱メ
チル体と反応しない抗体で、レボフロキサシンと強く反応する抗体
77209:オフロキサシンと反応し、且つその代謝物であるN-オキシド体及び脱メ
チル体と反応しない抗体で、オフロキサシンR体と強く反応する抗体
The cross-reactivity of each antibody to the levofloxacin metabolite, ofloxacin, is summarized as follows.
77201, 77202, 77204, 77205, 77207: An antibody that reacts with ofloxacin and does not react with N-oxide and demethylated metabolites thereof, and has the formula (I)
That reacts with both S-form (levofloxacin) and R-form of the compound represented by 7777206: An antibody that reacts with ofloxacin and does not react with its metabolite N-oxide and demethylated form and strongly reacts with levofloxacin Antibody 77209: An antibody that reacts with ofloxacin and does not react with its metabolite N-oxide and demethylated form, and strongly reacts with ofloxacin R-form
さらに、代表的なレボフロキサシン併用薬との交差反応性を調べたが、これらに対する
交差反応性はいずれも0.1%未満であった。よって、各抗体はいずれも代表的なレボフ
ロキサシン併用薬に対して反応しないと判定した。
Furthermore, the cross-reactivity with typical levofloxacin concomitant drugs was examined, and the cross-reactivity for these was less than 0.1%. Therefore, it was determined that each antibody did not respond to a typical levofloxacin combination drug.
〔実施例3〕血清による影響の評価(競合ELISA法)
(I)方法と手順
(1)血清添加による影響
「実施例1(I)(11)競合ELISA法による本発明抗体への血清の影響の評価」
の操作のうち、工程(iv)における融合細胞の培養上清をモノクローナル抗体(精製Ig
G、0.2μg/mg)に変えた以外は同様に行った。また、反応性及び交差反応性も実
施例1(I)(13)に従い数値化して評価した。
(2)予め遊離型レボフロキサシンとヒト血清とをインキュベーションした場合の影響
「実施例1(I)(12)予め遊離型レボフロキサシンとヒト血清とをインキュベーシ
ョンした試料を競合ELISA法で測定した場合の影響の評価」の操作のうち、融合細胞
の培養上清をモノクローナル抗体(精製IgG、0.2μg/mg)に変えた以外は同様
に行った。また、反応性及び交差反応性も実施例1(I)(13)に従い数値化して評価
した。
[Example 3] Evaluation of influence by serum (competitive ELISA method)
(I) Method and procedure (1) Influence of serum addition "Example 1 (I) (11) Evaluation of the influence of serum on the antibody of the present invention by competitive ELISA"
In the step (iv), the culture supernatant of the fused cells in step (iv)
G, 0.2 μg / mg). In addition, reactivity and cross-reactivity were also evaluated numerically according to Example 1 (I) (13).
(2) Effect of Incubation of Free Levofloxacin and Human Serum [Example 1 (I) (12) Effect of Inhibition of Sample Incubated with Free Levofloxacin and Human Serum by Competitive ELISA Method The operation of “Evaluation” was performed in the same manner except that the culture supernatant of the fused cells was changed to a monoclonal antibody (purified IgG, 0.2 μg / mg). In addition, reactivity and cross-reactivity were also evaluated numerically according to Example 1 (I) (13).
(II)結果
(1)血清添加による影響
競合ELISA法の反応系にヒト血清を共存させ抗体の反応性に与える血清成分の影響
を調べた。血清の添加により、遊離型レボフロキサシンが血清中のタンパク質と結合して
結合型レボフロキサシンとなり、抗体の反応性に影響を与える可能性が考えられたが、い
ずれの抗体においてもコントロール(血清非添加)と血清を添加した場合の反応性の差は
5%未満であった。
(2)予めインキュベーションした遊離型レボフロキサシンとヒト血清の添加による影響
予め遊離型レボフロキサシンと血清をインキュベートし、遊離型レボフロキサシンが血
清タンパク質と結合した結合型レボフロキサシンに変換されるようにしたヒト血清試薬b
を、競合ELISA法の試料として測定した。競合ELISA法により該抗体の反応性を
求めた結果、インキュベーション時間が0分の場合と比較して、インキュベーション時間
15分及び60分のときの反応性の差は5%未満であった。
(II) Results (1) Effects of adding serum Human serum was allowed to coexist in the reaction system of the competitive ELISA method to examine the influence of serum components on antibody reactivity. By adding serum, free levofloxacin bound to protein in serum to form bound levofloxacin, which may affect the reactivity of the antibody. The difference in reactivity when serum was added was less than 5%.
(2) Effect of addition of pre-incubated free levofloxacin and human serum Human serum reagent b in which free levofloxacin and serum are pre-incubated to convert free levofloxacin to bound levofloxacin bound to serum protein b
Was measured as a sample of the competitive ELISA method. As a result of determining the reactivity of the antibody by the competitive ELISA method, the difference in reactivity at the incubation time of 15 minutes and 60 minutes was less than 5% compared to the case of the incubation time of 0 minutes.
以上(1)及び(2)の結果より、本抗体は抗原抗体反応において血清タンパク質の影
響を受けないことがわかった。よって、本抗体は血中薬物濃度測定に利用可能な抗体であ
る。
From the results of (1) and (2) above, it was found that this antibody is not affected by serum proteins in the antigen-antibody reaction. Therefore, this antibody is an antibody that can be used for blood drug concentration measurement.
〔実施例4〕本発明の抗体を用いた試料中のレボフロキサシンの免疫学的測定方法
(I)方法と手順
(1)試薬の調製
レボフロキサシンの粉末を精製水に溶解して1mmol/Lとし、標準品レボフロキサ
シン溶液(標準品溶液)とした。該標準品溶液は、セラムチューブに分注後、使用時まで
−80℃で凍結して保存した。
[Example 4] Immunological measurement method of levofloxacin in sample using antibody of the present invention (I) Method and procedure (1) Preparation of reagent Dissolve levofloxacin powder in purified water to 1 mmol / L A product levofloxacin solution (standard solution) was used. The standard solution was dispensed into a serum tube and then stored frozen at −80 ° C. until use.
(2)検量線の作成
(i)標準品溶液を、1%BSA-PBSTで2μmol/Lから0.0625μmol/
Lまで6段階に希釈し、標準試料とした。
(ii)ELISA用プレートに前記標準試料を25μL/wellずつ分注し、次いで、
77206抗体(精製IgG、0.1μg/mL、1%BSA-PBST)を25μL/
wellずつ分注し、室温で1時間静置した。
以降の操作は、実施例1(I)(8)抗原固相化ELISA法の工程(ii)〜(iv)と
同様に行った。
(2) Preparation of calibration curve (i) A standard solution was prepared with 1% BSA-PBST from 2 μmol / L to 0.0625 μmol /
Dilute in 6 steps up to L to obtain a standard sample.
(Ii) Dispensing 25 μL / well of the standard sample onto an ELISA plate;
77206 antibody (purified IgG, 0.1 μg / mL, 1% BSA-PBST) at 25 μL /
Each well was dispensed and allowed to stand at room temperature for 1 hour.
The subsequent operations were carried out in the same manner as steps (ii) to (iv) of Example 1 (I) (8) Antigen-immobilized ELISA method.
(3)希釈直線性試験
(i)標準品溶液をヒト血清で適当な濃度に希釈し、レボフロキサシン含有ヒト血清を3
種類調製した。
(ii)前記レボフロキサシン含有ヒト血清それぞれを、まず1%BSA-PBSTで11
倍希釈し、以後これを2倍ずつ704倍まで希釈して希釈直線性試験試料とした。
(iii)ELISA用プレートに、前記希釈直線性試験試料を25μL/wellずつ分
注し、次いで、77206抗体(精製IgG、0.1μg/mL、1%BSA-PBST
)を25μL/wellずつ分注し、室温で1時間静置した。
以降の操作は、実施例1(I)(8)抗原固相化ELISA法の工程(ii)〜(iv)と
同様に行った。測定した吸光度を検量線を用いて濃度に換算し、血清希釈率をx軸、濃度
換算値をy軸とするグラフにプロットした(なお、x軸の血清希釈率は、10倍希釈を1
0/100のように表記した)。また、濃度換算値と血清希釈率の相関係数を求めた。
(3) Dilution linearity test (i) Dilute the standard solution with human serum to an appropriate concentration, and add levofloxacin-containing human serum to 3
Kinds were prepared.
(Ii) Each of the levofloxacin-containing human sera was first treated with 1% BSA-PBST for 11
The sample was diluted 2-fold and then diluted 2 times to 704-fold to obtain a diluted linearity test sample.
(Iii) 25 μL / well of the diluted linearity test sample was dispensed onto an ELISA plate, and then the 77206 antibody (purified IgG, 0.1 μg / mL, 1% BSA-PBST
) Was dispensed at 25 μL / well and allowed to stand at room temperature for 1 hour.
The subsequent operations were carried out in the same manner as steps (ii) to (iv) of Example 1 (I) (8) Antigen-immobilized ELISA method. The measured absorbance was converted into a concentration using a calibration curve, and plotted on a graph with the serum dilution rate on the x-axis and the concentration-converted value on the y-axis.
0/100). In addition, the correlation coefficient between the concentration conversion value and the serum dilution rate was determined.
(4)同時再現性試験
(i)標準品溶液を1%BSA-PBSTで30μmol/L、10μmol/L、6μm
ol/Lに希釈し、血清で11倍希釈した後、さらに1%BSA-PBSTで2倍希釈し
て同時再現性試験用試料(検体A、検体B、検体C)とした。
(ii)ELISA用プレートに前記同時再現性試験用試料を25μL/wellずつ分注
し、次いで、77206抗体(精製IgG、0.1μg/mL、1%BSA-PBST)
を25μL/wellずつ分注し、室温で1時間静置した。
以降の操作は、実施例1(I)(8)抗原固相化ELISA法の工程(ii)〜(iv)と
同様に行った。測定した吸光度を検量線を用いて濃度に換算した。各同時再現性試験用試
料について、それぞれ8回測定を行い、測定値の平均、標準偏差、変動係数を求めた。
(4) Simultaneous reproducibility test (i) Standard solution is 30 μmol / L, 10 μmol / L, 6 μm with 1% BSA-PBST
After diluting to ol / L and diluting 11 times with serum, it was further diluted 2 times with 1% BSA-PBST to obtain samples for simultaneous reproducibility test (sample A, sample B, sample C).
(Ii) 25 μL / well of the sample for simultaneous reproducibility test was dispensed on an ELISA plate, followed by 77206 antibody (purified IgG, 0.1 μg / mL, 1% BSA-PBST)
Was dispensed at 25 μL / well and allowed to stand at room temperature for 1 hour.
The subsequent operations were carried out in the same manner as steps (ii) to (iv) of Example 1 (I) (8) Antigen-immobilized ELISA method. The measured absorbance was converted into a concentration using a calibration curve. Each simultaneous reproducibility test sample was measured eight times, and the average, standard deviation, and coefficient of variation of the measured values were obtained.
(5)添加回収試験
(i)標準品溶液を1%BSA-PBSTで適当な濃度に希釈し、血清で11倍希釈した後
、さらに1%BSA-PBSTで2倍希釈して添加回収試験用試料とした。
(ii)ELISA用プレートに前記添加回収試験用試料を25μL/wellずつ分注し
、次いで、77206抗体(精製IgG、0.1μg/mL、1%BSA-PBST)を
25μL/wellずつ分注し、室温で1時間静置した。
以降の操作は、実施例1(I)(8)抗原固相化ELISA法の工程(ii)〜(iv)と
同様に行った。測定した吸光度を検量線を用いて濃度に換算し、理論値をx軸、濃度換算
値をy軸とするグラフにプロットした。また、濃度換算値と理論値の回帰式と相関係数を
求めた。
(5) Addition / recovery test (i) The standard solution was diluted to an appropriate concentration with 1% BSA-PBST, diluted 11-fold with serum, and then further diluted 2-fold with 1% BSA-PBST. A sample was used.
(Ii) 25 μL / well of the sample for addition recovery test was dispensed to the ELISA plate, and then 77206 antibody (purified IgG, 0.1 μg / mL, 1% BSA-PBST) was dispensed at 25 μL / well. And left at room temperature for 1 hour.
The subsequent operations were carried out in the same manner as steps (ii) to (iv) of Example 1 (I) (8) Antigen-immobilized ELISA method. The measured absorbance was converted to a concentration using a calibration curve, and plotted on a graph with the theoretical value as the x-axis and the concentration converted value as the y-axis. Moreover, the regression formula and correlation coefficient of the concentration conversion value and the theoretical value were obtained.
(II)結果
(1)検量線の作成
標準試料を用い、0.0625μmol/Lから2μmol/Lの範囲における検量線
を作成した。前記範囲において検量線は良好な直線性を示し、本発明の測定方法が試料中
の式(I)で示される化合物の定量測定に使用できることが確認された。(図4)。
(II) Results (1) Preparation of calibration curve Using a standard sample, a calibration curve in the range of 0.0625 μmol / L to 2 μmol / L was prepared. In the said range, the calibration curve showed favorable linearity, and it was confirmed that the measuring method of the present invention can be used for quantitative measurement of the compound represented by the formula (I) in the sample. (FIG. 4).
(2)希釈直線性試験
3種類の希釈直線性試験試料の濃度換算値と血清希釈率の相関係数は、いずれも0.9
9以上であり、良好な希釈直線性を示した(図5)。本発明の抗体を使用すると、試料由
来の血清成分の影響を受けない測定系を構築できることが示された。
(2) Dilution linearity test The correlation coefficient between the concentration conversion values of three types of dilution linearity test samples and the serum dilution rate is 0.9.
It was 9 or more, and showed good dilution linearity (FIG. 5). Using the antibody of the present invention, it was shown that a measurement system that is not affected by the serum component derived from the sample can be constructed.
(3)同時再現性試験
3濃度の同時再現性試験用試料について、同時に8回測定を行ったところ、いずれの試
料においても変動係数(CV%)10%未満で高い同時再現性を示した(表2)。
(4)濃度既知検体の測定
添加回収試験用試料の理論値と濃度換算値の回帰式はy=1.078x+0.021で
あり、相関係数は0.993であった(図6)。以上より、本発明の抗体を使用した測定
方法は、生物試料中の式(I)で示される化合物の濃度を正確に測定できることが示され
た。
(4) Measurement of Sample with Known Concentration The regression equation between the theoretical value and the converted value of the sample for addition recovery test was y = 1.080x + 0.021, and the correlation coefficient was 0.993 (FIG. 6). From the above, it was shown that the measurement method using the antibody of the present invention can accurately measure the concentration of the compound represented by the formula (I) in the biological sample.
〔実施例5〕生物由来の試料が唾液の場合
(I)方法と手順
(1)試薬の調製
実施例4(I)(1)で調製した標準品溶液を使用した。
(2)競合ELISA法
(i)1%BSA-PBSTで10%、5%、2%ヒト唾液希釈液を作成した。
(ii)標準品溶液を各濃度のヒト唾液希釈液で0.2μmol/Lに希釈し、ヒト唾液試
料とした。ヒト唾液を含まない(0%)試料をコントロールとした。
(iii)ELISA用プレートにヒト唾液試料を25μL/wellずつ分注した。
(iv)次いで、77201抗体(精製IgG、0.2μg/mL、1%BSA-PBST
)を25μL/well分注して、室温で1時間静置した。
以降の操作は、実施例1(I)(8)抗原固相化ELISA法の工程(ii)〜(iv)と同
様に行った。
[Example 5] When biological sample is saliva (I) Method and procedure (1) Preparation of reagent The standard solution prepared in Example 4 (I) (1) was used.
(2) Competitive ELISA (i) 10%, 5%, 2% human saliva dilutions were made with 1% BSA-PBST.
(Ii) The standard solution was diluted to 0.2 μmol / L with each concentration of human saliva diluted solution to prepare a human saliva sample. A sample containing no human saliva (0%) was used as a control.
(Iii) A human saliva sample was dispensed at 25 μL / well into an ELISA plate.
(Iv) The 77201 antibody (purified IgG, 0.2 μg / mL, 1% BSA-PBST
) Was dispensed at 25 μL / well and allowed to stand at room temperature for 1 hour.
The subsequent operations were performed in the same manner as in steps (ii) to (iv) of Example 1 (I) (8) antigen-immobilized ELISA method.
(II)結果
(1)生物由来の試料が唾液の場合
測定試料中の唾液濃度が0%の場合と唾液濃度が10%、5%、2%の場合で、反応性
の差は5%未満であり唾液成分の影響を受けなかった(図7)。唾液中には、リゾチーム
やムコ多糖など免疫反応系を阻害する成分が存在し、また該唾液中の成分により遊離型抗
原中のエピトープが覆われてしまう可能性などが考えられたが、本発明の抗体を使用した
測定方法は、唾液成分の影響を受けずに生物試料中の式(I)で示される化合物の濃度を
正確に測定できることが示された。
(II) Results (1) When the biological sample is saliva The difference in reactivity is less than 5% when the saliva concentration in the measurement sample is 0% and when the saliva concentration is 10%, 5%, 2% And was not affected by salivary components (FIG. 7). In saliva, there are components that inhibit the immune reaction system such as lysozyme and mucopolysaccharide, and it is considered that epitopes in free antigen may be covered by components in the saliva. It was shown that the measurement method using this antibody can accurately measure the concentration of the compound represented by the formula (I) in the biological sample without being affected by the saliva component.
〔実施例6〕血漿による影響の評価(競合ELISA法)
血清よりも含有タンパク質の種類、量の多い血漿の影響を検討した。
(I)方法と手順
(1)試薬の調製
競合ELISA法に用いた各化合物の調製は、実施例1(I)(9)試薬の調製と同様
に行った。
(2)競合ELISA法による血漿の影響の評価
(i)1%BSA-PBSTで10%ヒト血漿を作製した。
(ii)10%ヒト血漿を用いて0.4μmol/L、0.2μmol/L、0.01μm
ol/Lレボフロキサシンを調製し、ヒト血漿試薬aとした。コントロール試薬として、
1%BSA-PBSTを用いて0.4μmol/L、0.2μmol/L、0.01μm
ol/Lレボフロキサシンを調製した。
(iii)ELISA用プレートにヒト血漿試薬aあるいはコントロール試薬を25μL/
wellずつ分注した。
(iv)次いで、77206抗体(精製IgG、0.2μg/mL、1%BSA-PBST
)を分注して、室温で1時間静置した。
以降の操作は、実施例1(I)(8)抗原固相化ELISA法の工程(ii)〜(iv)と
同様に行った。
[Example 6] Evaluation of influence by plasma (competitive ELISA method)
We examined the effects of plasma containing a larger amount and amount of protein than serum.
(I) Method and Procedure (1) Preparation of Reagents Each compound used in the competitive ELISA method was prepared in the same manner as the preparation of the reagent in Example 1 (I) (9).
(2) Evaluation of influence of plasma by competitive ELISA method (i) 10% human plasma was prepared with 1% BSA-PBST.
(Ii) 0.4 μmol / L, 0.2 μmol / L, 0.01 μm using 10% human plasma
ol / L levofloxacin was prepared and used as human plasma reagent a. As a control reagent,
0.4 μmol / L, 0.2 μmol / L, 0.01 μm using 1% BSA-PBST
ol / L levofloxacin was prepared.
(Iii) 25 μL / ml of human plasma reagent a or control reagent on the ELISA plate
Wells were dispensed.
(Iv) The 77206 antibody (purified IgG, 0.2 μg / mL, 1% BSA-PBST)
) And dispensed at room temperature for 1 hour.
The subsequent operations were carried out in the same manner as steps (ii) to (iv) of Example 1 (I) (8) Antigen-immobilized ELISA method.
(II)結果
(1)血漿添加による影響
血漿の添加により遊離型抗原が血漿タンパク質と結合して結合型抗原になり、競合反応
が阻害されることが予想されたが、いずれの抗体においてもコントロール(血漿非添加)
と血漿を添加した場合の反応性の差は5%未満であった(図8)。本抗体は、抗原抗体反
応において血漿タンパク質の影響を受けず、血中薬物濃度測定に利用可能な抗体である。
(II) Results (1) Effects of plasma addition It was expected that free antigen binds to plasma protein and becomes bound antigen by plasma addition, and competitive reaction is expected to be inhibited. (No plasma added)
The difference in reactivity when plasma and plasma were added was less than 5% (FIG. 8). This antibody is not affected by plasma proteins in antigen-antibody reaction, and is an antibody that can be used for blood drug concentration measurement.
〔比較例〕
(1)従来抗体の性質(血漿成分の影響)
(I)方法と手順
特許文献2に記載の方法を一部改変して実施した。
(i)96穴プレートに、0.1mol/L炭酸緩衝液(pH9.5)で20μg/mL
に調製したヤギ抗ウサギIgGを100μL/well加え、室温で2時間インキュベー
トし、1次抗体を固相化した後、プレートを洗浄液(0.05%Tween20、50m
mol/L Tris-HCl、pH7.4)で3回洗浄した。
(ii)次に1%BSAを含む50mmol/L Tris-HCl緩衝液(pH7.4)3
00μL/wellを加えて室温で2時間インキュベートした後、プレートを洗浄液で3
回洗浄した。
(iii)次に0.5%BSAを含む50mmol/L Tris-HCl緩衝液(EIA緩
衝液)で適切な濃度に希釈した抗レボフロキサシンウサギ抗血清を加えて室温で2時間イ
ンキュベートして、前記抗レボフロキサシンウサギ抗血清中の抗レボフロキサシン抗体を
1次抗体に捕捉させた。その後、プレートを洗浄液で3回洗浄した。
(iv)さらに各ウェルにEIA緩衝液で50倍希釈したアルカリホスファターゼ標識抗原
50μLと10%ヒト血漿を含むEIA緩衝液又はヒト血漿を含まないEIA緩衝液で希
釈した10μg/mLレボフロキサシン溶液50μLを加え、室温で2時間インキュベー
トした。
(v)プレートを洗浄液で3回洗浄し、p-ニトロフェニル・ホスフェート基質液を100
μL 加えて室温で30分間インキュベートした後、1.6mol/L水酸化ナトリウム
溶液25μLを加えて反応を停止して405nmにおける吸光度を測定した。
[Comparative example]
(1) Properties of conventional antibodies (effects of plasma components)
(I) Method and procedure The method described in Patent Document 2 was partially modified.
(I) 20 μg / mL in a 96-well plate with 0.1 mol / L carbonate buffer (pH 9.5)
100 μL / well of the goat anti-rabbit IgG prepared above was added, incubated at room temperature for 2 hours to solidify the primary antibody, and the plate was washed with a washing solution (0.05% Tween 20, 50 m).
It was washed 3 times with mol / L Tris-HCl, pH 7.4).
(Ii) 50 mmol / L Tris-HCl buffer (pH 7.4) 3 containing 1% BSA
After adding 00 μL / well and incubating at room temperature for 2 hours, the plate was washed with washing solution.
Washed twice.
(Iii) Next, an anti-levofloxacin rabbit antiserum diluted to an appropriate concentration with 50 mmol / L Tris-HCl buffer (EIA buffer) containing 0.5% BSA was added and incubated at room temperature for 2 hours to Anti-levofloxacin antibody in levofloxacin rabbit antiserum was captured by the primary antibody. Thereafter, the plate was washed 3 times with a washing solution.
(Iv) Further, 50 μL of alkaline phosphatase-labeled antigen diluted 50 times with EIA buffer and 50 μL of 10 μg / mL levofloxacin solution diluted with EIA buffer containing 10% human plasma or EIA buffer not containing human plasma were added to each well. Incubated for 2 hours at room temperature.
(V) Wash the plate 3 times with washing solution and add 100 p-nitrophenyl phosphate substrate solution.
After adding μL and incubating at room temperature for 30 minutes, the reaction was stopped by adding 25 μL of 1.6 mol / L sodium hydroxide solution, and the absorbance at 405 nm was measured.
(II)結果
血漿が添加されている試料の反応性は、血漿非添加試料の反応性のおよそ2倍になった
(図9)。これは、血漿タンパク質が遊離型のレボフロキサシンと結合して結合型のレボ
フロキサシンになったことにより、抗体がレボフロキサシン中のエピトープを認識できな
くなった結果、競合反応が阻害されたためと考えられる。一方、反応液中の酵素標識抗原
については、抗原に結合している標識酵素が血漿タンパク質とレボフロキサシンとの結合
を妨害するため、抗原抗体反応に影響しなかったと考えられる。
(II) Results The reactivity of the sample to which plasma was added was approximately twice that of the sample without plasma (FIG. 9). This is presumably because the competitive reaction was inhibited as a result of the antibody becoming unable to recognize the epitope in levofloxacin due to the plasma protein binding to free levofloxacin to form bound levofloxacin. On the other hand, it is considered that the enzyme-labeled antigen in the reaction solution did not affect the antigen-antibody reaction because the labeled enzyme bound to the antigen interferes with the binding between plasma protein and levofloxacin.
〔実施例7〕競合ELISA法別法(1ステップ競合ELISA法)
実施例1(I)(8)抗原固相化ELISA法の工程に記載した競合ELISA法は、
抗体をあらかじめHRP標識することにより検出を1ステップで行う下記の方法で実施す
ることも可能である。
(I)方法と手順
(1)HRP標識抗体の調製
(i)7種類のモノクローナル抗体、抗体77201、77202、77204、772
05、77206、77207、77209を4℃で2日間、0.1mol/L炭酸水素
ナトリウム緩衝液(pH9.3)中にて透析を行った。透析後液を回収し、280nmに
おける吸光度を測定することで抗体濃度を確認した。
(ii)HRP(東洋紡、PEO−301)50mgを5mmol/L酢酸緩衝液(pH4
.5)5mLに溶解した。ここへ過ヨウ素酸ナトリウム水溶液(100mg/mL)を2
1.5μL添加し、遮光条件下室温で30分間静置した。
(iii)続いてPD−10カラム(Amersham Biosciences、17−
0851−01)(溶出液として5mM酢酸緩衝液(pH4.5)を使用)を用いて精製
し、濃緑色溶液画分を回収した。本溶液に含まれる活性化HRPの濃度を、280nmの
吸光度を測定することで確認した。
(iv)(i)で調製した抗体および(iii)で調製した活性化HRPを、0.1mol/L
炭酸水素ナトリウム緩衝液(pH9.3)を用いて1mg/mLに希釈した。両溶液を2
50μLずつ混和し、遮光条件下室温で1時間静置した。
(v)水素化ホウ素ナトリウム水溶液(2mg/mL)を10μL添加し、遮光条件下、
室温で15分間静置した。
(vi)続いて飽和硫酸アンモニウム水溶液を510μL添加し、遮光条件下、氷上で1時
間静置した。
(vii)得られた溶液を4℃、10000rpmにて10分間遠心分離し、抗体ペレット
を得た。
(viii)該抗体ペレットをPBS(pH7.2)500μLを用いて再溶解し、さらに4
℃で2日間、PBS(pH7.2)中にて透析を行った。
(ix)透析後の液を回収し、280nmにおける吸光度を測定することでHRP標識抗体
の濃度を確認した。
[Example 7] Alternative method of competitive ELISA method (1-step competitive ELISA method)
The competitive ELISA method described in the step of Example 1 (I) (8) antigen-immobilized ELISA method was
It is also possible to carry out the detection by the following method in which detection is performed in one step by labeling the antibody with HRP in advance.
(I) Methods and procedures (1) Preparation of HRP-labeled antibodies (i) Seven types of monoclonal antibodies, antibodies 77201, 77202, 77204, 772
05, 77206, 77207, and 77209 were dialyzed in 0.1 mol / L sodium bicarbonate buffer (pH 9.3) at 4 ° C. for 2 days. The solution after dialysis was collected, and the antibody concentration was confirmed by measuring the absorbance at 280 nm.
(Ii) 50 mg of HRP (Toyobo, PEO-301) in 5 mmol / L acetate buffer (pH 4)
. 5) Dissolved in 5 mL. 2 parts of sodium periodate aqueous solution (100 mg / mL)
1.5 μL was added, and the mixture was allowed to stand at room temperature for 30 minutes under light shielding conditions.
(Iii) PD-10 column (Amersham Biosciences, 17-
0851-01) (using 5 mM acetate buffer (pH 4.5) as eluent), and the dark green solution fraction was collected. The concentration of activated HRP contained in this solution was confirmed by measuring the absorbance at 280 nm.
(Iv) 0.1 mol / L of the antibody prepared in (i) and the activated HRP prepared in (iii)
Diluted to 1 mg / mL with sodium bicarbonate buffer (pH 9.3). 2 solutions
50 μL each was mixed and allowed to stand at room temperature for 1 hour under light shielding conditions.
(V) 10 μL of aqueous sodium borohydride solution (2 mg / mL) was added,
The mixture was allowed to stand at room temperature for 15 minutes.
(Vi) Subsequently, 510 μL of a saturated aqueous ammonium sulfate solution was added, and the mixture was allowed to stand on ice for 1 hour under light-shielding conditions.
(Vii) The obtained solution was centrifuged at 10000 rpm for 10 minutes at 4 ° C. to obtain an antibody pellet.
(Viii) Redissolving the antibody pellet with 500 μL of PBS (pH 7.2),
Dialysis was performed in PBS (pH 7.2) for 2 days at ° C.
(Ix) The concentration of the HRP-labeled antibody was confirmed by collecting the solution after dialysis and measuring the absorbance at 280 nm.
(2)1ステップ競合ELISA法
(i)ELISA用プレートに、実施例1(I)(9)競合ELISA法に用いる化合物溶
液の調製と同様の方法で調製した各濃度のレボフロキサシン溶液を25μL/wellず
つ分注した。
(ii)次いで前記(1)HRP標識抗体の調製で調製したHRP標識抗体を1%BSA−
PBSTで70倍〜3500倍希釈した抗体液を25μL/wellずつ分注し、室温で
1時間静置した。
以降の操作は、実施例1(I)(8)抗原固相化ELISA法の工程(iii)〜(iv)と同
様に行った。
(2) One-step competitive ELISA method (i) The levofloxacin solution of each concentration prepared in the same manner as the preparation of the compound solution used in Example 1 (I) (9) competitive ELISA method was added to an ELISA plate at 25 μL / well. Dispensed one by one.
(Ii) Next, the HRP-labeled antibody prepared in (1) Preparation of HRP-labeled antibody was treated with 1% BSA-
The antibody solution diluted 70-fold to 3500-fold with PBST was dispensed at 25 μL / well and allowed to stand at room temperature for 1 hour.
The subsequent operations were carried out in the same manner as in steps (iii) to (iv) of Example 1 (I) (8) antigen-immobilized ELISA method.
(II)結果
タンパク質と結合していない遊離型のレボフロキサシンを1ステップ競合ELISA法
の反応系に共存させ、固相化抗原と競合させた結果、いずれのHRP標識抗体においても
反応系へのレボフロキサシンの添加量に応じて固相化抗原に対するHRP標識抗体の反応
量が低下した(図10)。従って、本実施例に示した1ステップ競合ELISA法は、試
料中の式(I)で示される化合物の免疫学的測定方法として有用であると考えられた。
(II) Results As a result of free levofloxacin not bound to the protein coexisting in the reaction system of the one-step competitive ELISA method and competing with the immobilized antigen, levofloxacin was released into the reaction system in any HRP-labeled antibody. The reaction amount of the HRP-labeled antibody against the immobilized antigen was decreased according to the amount added (FIG. 10). Therefore, the one-step competitive ELISA shown in this example was considered useful as an immunological measurement method for the compound represented by formula (I) in the sample.
〔実施例8〕ラテックス凝集阻害法(抗体固相化ラテックス系)
本実施例は、本発明(20)、
「固相に固定化した本発明(1)から本発明(11)のいずれかに記載の抗体に対し、合
成多価抗原及び試料中の式(I)で示される化合物を競合的に反応させることを特徴とす
る、試料中の式(I)で示される化合物の免疫学的測定方法。」
に対応するものとして、粒子凝集阻害法のひとつであるラテックス凝集阻害法(抗体固相
化ラテックス系)について試験したものである。
[Example 8] Latex aggregation inhibition method (antibody-immobilized latex system)
This example shows the present invention (20),
“The antibody according to any one of the present invention (1) to the present invention (11) immobilized on a solid phase is competitively reacted with a synthetic multivalent antigen and a compound represented by the formula (I) in a sample. A method for immunological determination of a compound represented by formula (I) in a sample, ”
As a response to this, a latex agglutination inhibition method (antibody-immobilized latex system), which is one of the particle agglutination inhibition methods, was tested.
(I)方法と手順
(1)試薬の調製
(i)実施例1(I)(1)免疫用抗原及びスクリーニング用抗原の調製に記載した方法で
調製したLVFX−BSA(結合比18)を1.0μg/mLとなるよう、20mmol
/Lトリス緩衝液(pH7.0、500mmol/L塩化ナトリウム、1%BSAを含む
)で希釈し、第一試薬とした。該第一試薬は上記本発明(20)中の、「固相に固定化し
た本発明(1)から本発明(11)のいずれかに記載の抗体」を含むものである。
(ii)モノクローナル抗体77209を0.8mg/mL含む20mmol/Lトリス緩
衝液(pH8.5)1.5mLに、平均粒径約200nmの1%ラテックス(積水化学工
業社製)懸濁液を1.5mL加え、4℃で2時間撹拌した。続いて0.1%BSAを含む
20mmol/Lトリス緩衝液(pH8.5)3.0mLを添加し、4℃で1時間撹拌し
た。4℃、13000rpmで35分間遠心後、上清を除去し、除去量と等量の5mmo
l/L MOPS緩衝液(pH7.0、0.1%BSAを含む)で再懸濁した。超音波分
散(ニッセイUltrasonic Generater)を行った後、得られた溶液を
50℃で1時間加熱した。冷却後、波長600nmにおける吸光度が3Absとなるよう
、5mmol/L MOPS緩衝液(pH7.0)で希釈し、第二試薬とした。
(iii)実施例1(I)(9)競合ELISA法に用いる化合物溶液の調製と同様の方法で
濃度0.0μg/mL、1.0μg/mL、2.5μg/mL、5.0μg/mL、10
μg/mL、20μg/mLのレボフロキサシン水溶液を調製した。さらに別途、実施例
1(I)(9)競合ELISA法に用いる化合物溶液の調製と同様の方法で濃度0.0μ
g/mL、10μg/mL、25μg/mL、50μg/mL、100μg/mL、15
0μg/mL、200μg/mLの濃レボフロキサシン標準品溶液を調製した。該濃レボ
フロキサシン標準品溶液をヒト血清、ヒト血漿もしくはヒト唾液で10倍希釈し、レボフ
ロキサシン濃度0.0μg/mL、1.0μg/mL、2.5μg/mL、5.0μg/
mL、10μg/mL、15μg/mL、20μg/mLのレボフロキサシン含有ヒト血
清、ヒト血漿もしくはヒト唾液を調製した。
(I) Method and Procedure (1) Preparation of Reagent (i) Example 1 (I) (1) LVFX-BSA (binding ratio 18) prepared by the method described in Preparation of immunizing antigen and screening antigen is 1 20 mmol to 0.0 μg / mL
/ L Tris buffer (pH 7.0, containing 500 mmol / L sodium chloride, 1% BSA) was used as the first reagent. The first reagent includes “the antibody according to any one of the present invention (1) to the present invention (11) immobilized on a solid phase” in the present invention (20).
(Ii) A suspension of 1% latex (manufactured by Sekisui Chemical Co., Ltd.) having an average particle size of about 200 nm is added to 1.5 mL of 20 mmol / L Tris buffer (pH 8.5) containing 0.8 mg / mL of monoclonal antibody 77209. .5 mL was added and stirred at 4 ° C. for 2 hours. Subsequently, 3.0 mL of 20 mmol / L Tris buffer (pH 8.5) containing 0.1% BSA was added, and the mixture was stirred at 4 ° C. for 1 hour. After centrifugation at 13,000 rpm for 35 minutes at 4 ° C., the supernatant is removed and 5 mmo of the same amount as the removed amount is removed.
Resuspended in 1 / L MOPS buffer (pH 7.0, containing 0.1% BSA). After ultrasonic dispersion (Nissei Ultrasonic Generator), the resulting solution was heated at 50 ° C. for 1 hour. After cooling, the solution was diluted with a 5 mmol / L MOPS buffer (pH 7.0) so that the absorbance at a wavelength of 600 nm was 3 Abs, and used as a second reagent.
(Iii) Example 1 (I) (9) Concentrations of 0.0 μg / mL, 1.0 μg / mL, 2.5 μg / mL, 5.0 μg / mL in the same manner as the preparation of the compound solution used in the competitive ELISA method 10
μg / mL and 20 μg / mL levofloxacin aqueous solutions were prepared. Separately, a concentration of 0.0 μm was obtained in the same manner as in the preparation of the compound solution used in Example 1 (I) (9) competitive ELISA.
g / mL, 10 μg / mL, 25 μg / mL, 50 μg / mL, 100 μg / mL, 15
Concentrated levofloxacin standard solution of 0 μg / mL and 200 μg / mL was prepared. The concentrated levofloxacin standard solution is diluted 10-fold with human serum, human plasma or human saliva, and levofloxacin concentrations of 0.0 μg / mL, 1.0 μg / mL, 2.5 μg / mL, 5.0 μg /
mL, 10 μg / mL, 15 μg / mL, and 20 μg / mL levofloxacin-containing human serum, human plasma, or human saliva were prepared.
(2)測定手順
汎用型日立7170S型自動分析装置を用いて、各レボフロキサシン溶液を測定した。
具体的には、各試料液2.5μLに第一試薬150μLを添加後37℃で5分間加温し、
さらに第二試薬150μLを添加した後、37℃加温下、測光ポイント19〜34におけ
る600nmにおける吸光度変化量を測定した。
(2) Measurement procedure Each levofloxacin solution was measured using a general-purpose Hitachi 7170S automatic analyzer.
Specifically, after adding 150 μL of the first reagent to 2.5 μL of each sample solution, warming at 37 ° C. for 5 minutes,
Further, 150 μL of the second reagent was added, and the amount of change in absorbance at 600 nm at photometric points 19 to 34 was measured under 37 ° C. heating.
(II)結果
まず前記レボフロキサシン水溶液を測定し、各レボフロキサシン濃度に対する吸光度変
化量をプロットした(図11)。反応系へのレボフロキサシンの添加量に応じて吸光度が
低下した。続いてスプライン関数を用いて検量線を作成した後、各濃度の前記レボフロキ
サシン含有ヒト血清もしくはヒト血漿を測定し、検量線より測定値を計算した。本測定範
囲において、レボフロキサシン溶液濃度の理論値と測定値は良好な相関を示した(図12
、13)。一方、前記レボフロキサシン含有唾液を測定し、各レボフロキサシン濃度に対
する吸光度変化量をプロットした。反応系へのレボフロキサシンの添加量に応じて吸光度
が低下した(図14)。
以上より、本実施例に示した抗体固相化ラテックスを使用したラテックス凝集阻害法は、
血清、血漿、唾液試料中の式(I)で示される化合物の定量測定に使用できることが確認
された。
(II) Results First, the levofloxacin aqueous solution was measured, and the change in absorbance with respect to each levofloxacin concentration was plotted (FIG. 11). The absorbance decreased according to the amount of levofloxacin added to the reaction system. Subsequently, after preparing a calibration curve using a spline function, each concentration of the levofloxacin-containing human serum or human plasma was measured, and the measured value was calculated from the calibration curve. In this measurement range, the theoretical value and the measured value of the levofloxacin solution concentration showed a good correlation (FIG. 12).
13). On the other hand, the levofloxacin-containing saliva was measured, and the change in absorbance with respect to each levofloxacin concentration was plotted. The absorbance decreased according to the amount of levofloxacin added to the reaction system (FIG. 14).
From the above, the latex aggregation inhibition method using the antibody-immobilized latex shown in this Example is
It was confirmed that it can be used for quantitative measurement of the compound represented by the formula (I) in serum, plasma and saliva samples.
〔実施例9〕ラテックス凝集阻害法(抗原固相化ラテックス系)
本実施例は本発明(21)、
「本発明(1)から本発明(11)のいずれかに記載の抗体に対し、固相化合成多価抗原
及び試料中の式(I)で示される化合物を競合的に反応させることを特徴とする、試料中
の式(I)で示される化合物の免疫学的測定方法。」
に対応するものとして、粒子凝集阻害法のひとつであるラテックス凝集阻害法(抗原固相
化ラテックス系)について試験したものである。
[Example 9] Latex aggregation inhibition method (antigen-immobilized latex system)
This example shows the present invention (21),
“The antibody according to any one of the present invention (1) to the present invention (11) is competitively reacted with an immobilized synthetic multivalent antigen and a compound represented by the formula (I) in a sample. And an immunological measurement method for a compound represented by formula (I) in a sample. "
In response to the above, a latex agglutination inhibition method (antigen-immobilized latex system), which is one of the particle agglutination inhibition methods, was tested.
(I)方法と手順
(1)試薬の調製
(i)モノクローナル抗体77206を5.2mg/mLとなるよう、5mmol/L M
OPS緩衝液(pH7.0)で希釈し、第一試薬とした。
(ii)実施例1(I)(1)免疫用抗原及びスクリーニング用抗原の調製に記載した方法
で調製したLVFX−BSA(結合比3)を20μg/mL含む10mmol/Lクエン
酸−リン酸水素二ナトリウム緩衝液(pH5.5、0.8%BSAを含む)3.0mLに
、平均粒径約210nmの1%ラテックス(積水化学工業社製)懸濁液を3.0mL加え
、4℃で2時間撹拌した。4℃、13000rpmで30分間遠心後、上清を除去し、除
去量と等量の5mmol/L MOPS緩衝液(pH7.0、0.1%BSAを含む)で
再懸濁した。超音波分散を行った後、得られた溶液を波長280nmにおける吸光度が1
.1Absとなるよう、5mmol/LMOPS緩衝液(pH7.0)で希釈し、第二試
薬とした。該第二試薬は上記本発明(21)中の、「(b)式(I)で示される化合物を
含有する抗原担体複合物を固相に2分子以上固定化した合成多価抗原」を含むものである
。
(iii)実施例1(9)競合ELISA法に用いる化合物溶液の調製と同様の方法で濃度
0.0μg/mL、5.0μg/mL、10μg/mL、20μg/mLのレボフロキサ
シン水溶液を調製した。
(I) Method and procedure (1) Preparation of reagent (i) Monoclonal antibody 77206 is 5 mmol / L M so as to be 5.2 mg / mL.
Diluted with OPS buffer (pH 7.0) to obtain the first reagent.
(Ii) 10 mmol / L citrate-hydrogen phosphate containing 20 μg / mL of LVFX-BSA (binding ratio 3) prepared by the method described in Example 1 (I) (1) Preparation of antigen for immunization and antigen for screening To 3.0 mL of disodium buffer (pH 5.5, containing 0.8% BSA), add 3.0 mL of a 1% latex (manufactured by Sekisui Chemical Co., Ltd.) suspension having an average particle size of about 210 nm at 4 ° C. Stir for 2 hours. After centrifugation at 13,000 rpm for 30 minutes at 4 ° C., the supernatant was removed and resuspended in 5 mmol / L MOPS buffer (pH 7.0, containing 0.1% BSA) in an amount equal to the removed amount. After ultrasonic dispersion, the resulting solution had an absorbance of 1 at a wavelength of 280 nm.
. It diluted with 5 mmol / LMOPS buffer (pH 7.0) so that it might become 1 Abs, and it was set as the 2nd reagent. The second reagent includes “(b) a synthetic polyvalent antigen obtained by immobilizing two or more molecules of an antigen carrier complex containing a compound represented by formula (I) on a solid phase” in the present invention (21). It is a waste.
(Iii) Example 1 (9) Levofloxacin aqueous solutions having concentrations of 0.0 μg / mL, 5.0 μg / mL, 10 μg / mL, and 20 μg / mL were prepared in the same manner as the preparation of the compound solution used in the competitive ELISA method.
(2)測定手順
汎用型日立7170S型自動分析装置を用いて、各濃度のレボフロキサシン水溶液を測
定した。具体的には、第一試薬20μLに各濃度のレボフロキサシン水溶液4μLを添加
後37℃で5分間加温し、さらに第二試薬180μLを添加した後、37℃、測光ポイン
ト19〜34における700nmにおける吸光度変化量を測定した。
(2) Measurement procedure The levofloxacin aqueous solution of each concentration was measured using a general-purpose Hitachi 7170S type automatic analyzer. Specifically, 4 μL of levofloxacin aqueous solution of each concentration was added to 20 μL of the first reagent, followed by heating at 37 ° C. for 5 minutes, and after addition of 180 μL of the second reagent, absorbance at 700 nm at 37 ° C. and photometry points 19 to 34 The amount of change was measured.
(II)結果
レボフロキサシン水溶液を測定し、各レボフロキサシン濃度に対する吸光度変化量をプ
ロットした。本測定範囲において、プロット近似式は良好な直線性を示し、本発明の測定
方法が試料中の式(I)で示される化合物の定量測定に使用できることが確認された(図
15)。
(II) Results The levofloxacin aqueous solution was measured, and the amount of change in absorbance with respect to each levofloxacin concentration was plotted. In this measurement range, the plot approximation formula showed good linearity, confirming that the measurement method of the present invention can be used for quantitative measurement of the compound represented by formula (I) in the sample (FIG. 15).
〔実施例10〕ラテックス凝集阻害法(抗体固相化ラテックス系)における合成多価抗原
(結合比)の検討
本実施例は、本発明(20)、
「固相に固定化した本発明(1)から本発明(11)のいずれかに記載の抗体に対し、合
成多価抗原及び試料中の式(I)で示される化合物を競合的に反応させることを特徴とす
る、試料中の式(I)で示される化合物の免疫学的測定方法。」
において「合成多価抗原」中のオフロキサシン結合比を検討したものである。
[Example 10] Examination of synthetic multivalent antigen (binding ratio) in latex aggregation inhibition method (antibody-immobilized latex system)
“The antibody according to any one of the present invention (1) to the present invention (11) immobilized on a solid phase is competitively reacted with a synthetic multivalent antigen and a compound represented by the formula (I) in a sample. A method for immunological determination of a compound represented by formula (I) in a sample, ”
1 examines the ofloxacin binding ratio in the “synthetic multivalent antigen”.
(I)方法と手順
(1)試薬の調製
実施例1(I)(1)免疫用抗原及びスクリーニング用抗原の調製に記載した方法にお
けるレボフロキサシン溶液として2.2、5.4、8.7、11.9、15.2、18.
4、21.7mg/2mLの溶液を使用してBSAとのカップリング反応を行った。得ら
れたカップリング物のLVFX−BSA結合比を実施例1(I)(1)(v)の吸光度測定
により求めた。
(2)測定手順
各LVFX−BSAをそれぞれ合成多価抗原として用い、実施例8(I)ラテックス凝
集阻害法(抗体固相化ラテックス系)記載の方法で、検体として実施例1(I)(9)競
合ELISA法に用いる化合物溶液の調製と同様の方法で調製した濃度0.0μg/mL
、16.0μg/mLのレボフロキサシン水溶液を測定した。続いてレボフロキサシン濃
度0.0μg/mL、16.0μg/mLの場合の各反応の吸光度差を計算した。結合比
に対するグラフを作成した。
(I) Methods and Procedures (1) Preparation of Reagents 2.2, 5.4, 8.7 as levofloxacin solutions in the method described in Example 1 (I) (1) Preparation of immunizing antigen and screening antigen 11.9, 15.2, 18.
4, Coupling reaction with BSA was performed using 21.7 mg / 2 mL solution. The LVFX-BSA binding ratio of the obtained coupled product was determined by measuring the absorbance in Example 1 (I) (1) (v).
(2) Measurement procedure Each LVFX-BSA was used as a synthetic polyvalent antigen, and the method described in Example 8 (I) latex aggregation inhibition method (antibody-immobilized latex system) was used as a sample in Example 1 (I) ( 9) Concentration of 0.0 μg / mL prepared by the same method as the preparation of the compound solution used in the competitive ELISA method
16.0 μg / mL levofloxacin aqueous solution was measured. Subsequently, the difference in absorbance of each reaction when the levofloxacin concentration was 0.0 μg / mL and 16.0 μg / mL was calculated. A graph for the binding ratio was created.
(II)結果
得られたカップリング物の結合比を、使用したレボフロキサシン溶液濃度(mg/2m
L)⇒結合比の形式で示すと以下であった。2.2⇒3.9、5.4⇒5.0、8.7⇒
6.2、11.9⇒8.1、15.2⇒10.2、18.4⇒13.0、21.7⇒16
.7。これよりBSAキャリアー1分子と反応させるLVFX量に依存して、LVFX−
BSA結合比が増加することが確認された(図16)。
次に、レボフロキサシン濃度0.0μg/mLと16.0μg/mLの場合の吸光度の
差を求め結合比に対するグラフを作成したところ、LVFX−BSAの結合比の上昇とと
もに吸光度差も大きくなった。ラテックス凝集阻害法においては、試料中の抗原非存在(
濃度0)の場合の吸光度と試料中に抗原が存在する場合の吸光度差が大きいほど、試料中
の抗原を高感度に測定できていると言える。本実施例の条件では、結合比が8〜15であ
る場合に良好な感度が得られ、結合比15以上ではさらに良好であることがわかった(図
17)。
(II) Results The binding ratio of the obtained coupling product was determined by using the concentration of levofloxacin solution used (mg / 2 m
L) ⇒The following was shown in the form of the coupling ratio. 2.2⇒3.9, 5.4⇒5.0, 8.7⇒
6.2, 11.9⇒8.1, 15.2⇒10.2, 18.4⇒13.0, 21.7⇒16
. 7. From this, depending on the amount of LVFX reacted with one molecule of BSA carrier, LVFX-
It was confirmed that the BSA binding ratio increased (FIG. 16).
Next, when the difference in absorbance between the levofloxacin concentrations of 0.0 μg / mL and 16.0 μg / mL was determined and a graph for the binding ratio was created, the absorbance difference increased with the increase in the binding ratio of LVFX-BSA. In the latex aggregation inhibition method, the absence of antigen in the sample (
It can be said that the antigen in the sample can be measured with higher sensitivity as the difference between the absorbance in the case of concentration 0) and the absorbance in the case where the antigen is present in the sample is larger. Under the conditions of this example, it was found that good sensitivity was obtained when the coupling ratio was 8 to 15 and that the coupling ratio was 15 or more (FIG. 17).
本発明は、オフロキサシンに対する抗体及びその製造方法に関するものである。また本
発明は、それらの抗体を利用したイムノアッセイ法、例えば、ラジオイムノアッセイ法、
エンザイムイムノアッセイ法や粒子凝集阻害イムノアッセイ法などに関する。本発明を用
いることによって、強力な抗菌剤であるオフロキサシンの体内存在量を、臨床現場におい
て迅速且つ正確に測定することが可能である。
The present invention relates to an antibody against ofloxacin and a method for producing the same. The present invention also relates to an immunoassay method using these antibodies, for example, a radioimmunoassay method,
The present invention relates to enzyme immunoassay and particle aggregation inhibition immunoassay. By using the present invention, it is possible to quickly and accurately measure the abundance of ofloxacin, a powerful antibacterial agent, in the clinical setting.
[寄託生物材料への言及]
(1)抗体番号77201
イ 当該生物材料を寄託した寄託機関の名称及び住所
独立行政法人 産業技術総合研究所 特許生物寄託センター
日本国茨城県つくば市東1丁目1番地1中央第6(郵便番号305-8566)
ロ イの寄託機関に生物材料を寄託した日付
平成19年9月11日(原寄託日)
平成20年9月5日(原寄託によりブタペスト条約に基づく寄託への移管日)
ハ イの寄託機関が寄託について付した受託番号
FERM BP−11010
(2)抗体番号77202
イ 当該生物材料を寄託した寄託機関の名称及び住所
独立行政法人 産業技術総合研究所 特許生物寄託センター
日本国茨城県つくば市東1丁目1番地1中央第6(郵便番号305-8566)
ロ イの寄託機関に生物材料を寄託した日付
平成19年9月11日(原寄託日)
平成20年9月5日(原寄託によりブタペスト条約に基づく寄託への移管日)
ハ イの寄託機関が寄託について付した受託番号
FERM BP−11011
(3)抗体番号77204
イ 当該生物材料を寄託した寄託機関の名称及び住所
独立行政法人 産業技術総合研究所 特許生物寄託センター
日本国茨城県つくば市東1丁目1番地1中央第6(郵便番号305-8566)
ロ イの寄託機関に生物材料を寄託した日付
平成19年9月11日(原寄託日)
平成20年9月5日(原寄託によりブタペスト条約に基づく寄託への移管日)
ハ イの寄託機関が寄託について付した受託番号
FERM BP−11012
(4)抗体番号77205
イ 当該生物材料を寄託した寄託機関の名称及び住所
独立行政法人 産業技術総合研究所 特許生物寄託センター
日本国茨城県つくば市東1丁目1番地1中央第6(郵便番号305-8566)
ロ イの寄託機関に生物材料を寄託した日付
平成19年9月11日(原寄託日)
平成20年9月5日(原寄託によりブタペスト条約に基づく寄託への移管日)
ハ イの寄託機関が寄託について付した受託番号
FERM BP−11013
(5)抗体番号77206
イ 当該生物材料を寄託した寄託機関の名称及び住所
独立行政法人 産業技術総合研究所 特許生物寄託センター
日本国茨城県つくば市東1丁目1番地1中央第6(郵便番号305-8566)
ロ イの寄託機関に生物材料を寄託した日付
平成19年9月11日(原寄託日)
平成20年9月5日(原寄託によりブタペスト条約に基づく寄託への移管日)
ハ イの寄託機関が寄託について付した受託番号
FERM BP−11014
(6)抗体番号77207
イ 当該生物材料を寄託した寄託機関の名称及び住所
独立行政法人 産業技術総合研究所 特許生物寄託センター
日本国茨城県つくば市東1丁目1番地1中央第6(郵便番号305-8566)
ロ イの寄託機関に生物材料を寄託した日付
平成19年9月11日(原寄託日)
平成20年9月5日(原寄託によりブタペスト条約に基づく寄託への移管日)
ハ イの寄託機関が寄託について付した受託番号
FERM BP−11015
(7)抗体番号77209
イ 当該生物材料を寄託した寄託機関の名称及び住所
独立行政法人 産業技術総合研究所 特許生物寄託センター
日本国茨城県つくば市東1丁目1番地1中央第6(郵便番号305-8566)
ロ イの寄託機関に生物材料を寄託した日付
平成19年9月11日(原寄託日)
平成20年9月5日(原寄託によりブタペスト条約に基づく寄託への移管日)
ハ イの寄託機関が寄託について付した受託番号
FERM BP−11016
[Reference to deposited biological materials]
(1) Antibody number 77201
The name and address of the depository that deposited the biological material AIST National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center 1-chome, East 1-chome, Tsukuba City, Ibaraki Prefecture, Japan 6 (zip code 305-8566)
Date of deposit of biological materials at Loi depository, September 11, 2007 (original deposit date)
September 5, 2008 (Date of transfer to deposit under the Budapest Treaty by original deposit)
Deposit number FERM BP-11010 attached to the depositary by the high depository
(2) Antibody No. 77202
The name and address of the depository that deposited the biological material AIST National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center 1-chome, East 1-chome, Tsukuba City, Ibaraki Prefecture, Japan 6 (zip code 305-8566)
Date of deposit of biological materials at Loi depository, September 11, 2007 (original deposit date)
September 5, 2008 (Date of transfer to deposit under the Budapest Treaty by original deposit)
Deposit number FERM BP-11011 attached to the depositary by the high depository
(3) Antibody No. 77204
The name and address of the depository that deposited the biological material AIST National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center 1-chome, East 1-chome, Tsukuba City, Ibaraki Prefecture, Japan 6 (zip code 305-8566)
Date of deposit of biological materials at Loi depository, September 11, 2007 (original deposit date)
September 5, 2008 (Date of transfer to deposit under the Budapest Treaty by original deposit)
Deposit number FERM BP-11012 attached to the depositary by the high depository
(4) Antibody No. 77205
The name and address of the depository that deposited the biological material AIST National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center 1-chome, East 1-chome, Tsukuba City, Ibaraki Prefecture, Japan 6 (zip code 305-8566)
Date of deposit of biological materials at Loi depository, September 11, 2007 (original deposit date)
September 5, 2008 (Date of transfer to deposit under the Budapest Treaty by original deposit)
Deposit number FERM BP-11013 attached by the depository in Hai for the deposit
(5) Antibody No. 77206
The name and address of the depository that deposited the biological material AIST National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center 1-chome, East 1-chome, Tsukuba City, Ibaraki Prefecture, Japan 6 (zip code 305-8566)
Date of deposit of biological materials at Loi depository, September 11, 2007 (original deposit date)
September 5, 2008 (Date of transfer to deposit under the Budapest Treaty by original deposit)
Deposit number FERM BP-11014 assigned by the depository in Thailand for deposit
(6) Antibody No. 77207
The name and address of the depository that deposited the biological material AIST National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center 1-chome, East 1-chome, Tsukuba City, Ibaraki Prefecture, Japan 6 (zip code 305-8566)
Date of deposit of biological materials at Loi depository, September 11, 2007 (original deposit date)
September 5, 2008 (Date of transfer to deposit under the Budapest Treaty by original deposit)
Deposit number FERM BP-11015 assigned by the depository in Thailand for deposit
(7) Antibody No. 77209
The name and address of the depository that deposited the biological material AIST National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center 1-chome, East 1-chome, Tsukuba City, Ibaraki Prefecture, Japan 6 (zip code 305-8566)
Date of deposit of biological materials at Loi depository, September 11, 2007 (original deposit date)
September 5, 2008 (Date of transfer to deposit under the Budapest Treaty by original deposit)
Deposit number FERM BP-11016 assigned by the depository in Hai for the deposit
Claims (16)
試料中の下記式(I)で示される化合物の免疫学的測定方法。
An immunological measurement method for a compound represented by the following formula (I) in a sample.
(a)請求項1から請求項8のいずれかの測定方法に用いられる、固相に固定化されているか、または固相に固定化されていない抗体
(b)合成多価抗原又は固相化合成多価抗原 A reagent for immunological measurement of a compound represented by formula (I) in a sample, characterized by comprising the following (a) and (b):
(A) an antibody which is used in the measurement method according to any one of claims 1 to 8 and is immobilized on a solid phase or not immobilized on a solid phase; (b) a synthetic multivalent antigen or solid phase Synthetic multivalent antigen
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010134639A JP5572451B2 (en) | 2009-06-12 | 2010-06-14 | Anti-ofloxacin monoclonal antibody and immunoassay for ofloxacin using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009141318 | 2009-06-12 | ||
JP2009141318 | 2009-06-12 | ||
JP2010134639A JP5572451B2 (en) | 2009-06-12 | 2010-06-14 | Anti-ofloxacin monoclonal antibody and immunoassay for ofloxacin using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011017697A JP2011017697A (en) | 2011-01-27 |
JP5572451B2 true JP5572451B2 (en) | 2014-08-13 |
Family
ID=43595581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010134639A Expired - Fee Related JP5572451B2 (en) | 2009-06-12 | 2010-06-14 | Anti-ofloxacin monoclonal antibody and immunoassay for ofloxacin using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5572451B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102269765B (en) * | 2011-06-13 | 2014-03-19 | 清华大学深圳研究生院 | Immunochromatographic test paper for detecting enrofloxacin and preparation method thereof |
CN106749632A (en) * | 2016-12-28 | 2017-05-31 | 河南科技学院 | A kind of Ofloxacin hemocyanin coating antigen and preparation method thereof and Test paper card |
CN108507989B (en) * | 2018-03-28 | 2021-10-26 | 韶关学院 | Quantum dot immunochromatography detection card and detection method for detecting oxaprozin by double-antibody sandwich immune competition method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3712133B2 (en) * | 1994-03-29 | 2005-11-02 | 第一製薬株式会社 | Immunoassay for antibacterial compounds |
US6225073B1 (en) * | 1994-07-07 | 2001-05-01 | Dade Behring Marburg Gmbh | Immunoassay for mycophenolic acid |
JP2007078705A (en) * | 1997-04-04 | 2007-03-29 | Seikagaku Kogyo Co Ltd | Method and kit for quantitation of heparan sulfate |
JP3771788B2 (en) * | 2000-09-01 | 2006-04-26 | 株式会社堀場製作所 | Theophylline measuring device |
JP2007063180A (en) * | 2005-08-31 | 2007-03-15 | Frontier Kenkyusho:Kk | Method of detecting new quinolone antibacterial agent |
-
2010
- 2010-06-14 JP JP2010134639A patent/JP5572451B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011017697A (en) | 2011-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4494522B2 (en) | Anti-ofloxacin monoclonal antibody and immunoassay for ofloxacin using the same | |
JP5149806B2 (en) | Antibody against aflatoxin, carrier using the antibody, immunological detection method for aflatoxin, and method for concentrating and purifying aflatoxin | |
JPWO2011010673A1 (en) | Insulin measurement method | |
JP5276924B2 (en) | Antibody to ochratoxin, affinity column using the antibody, and kit for immunological detection of ochratoxin | |
CN111308084A (en) | Detection method and kit for hypersensitive cardiac troponin I | |
US20040248222A1 (en) | Monoclonal antibodies specific for buprenorphine and metabolites thereof | |
JP5572451B2 (en) | Anti-ofloxacin monoclonal antibody and immunoassay for ofloxacin using the same | |
JP4183777B2 (en) | Indoxyl sulfate derivative, antigen, antibody and method for detecting indoxyl sulfate using the same | |
JP4663831B2 (en) | Monoclonal antibodies, cell lines, and methods for measuring N1, N12-diacetylspermine | |
EP2484694B1 (en) | Monoclonal antibody against human hig-1 polypeptide | |
EP3066122A2 (en) | Pre-haptoglobin-2 monoclonal antibodies and uses thereof | |
JP4664340B2 (en) | Monoclonal antibodies, cell lines, and methods for measuring N1, N12-diacetylspermine | |
KR101806522B1 (en) | Pathogenic Escherichia coli-Specific Novel Monoclonal Antibody, Hybridoma For Producing The Antibody, Method For Detecting The Same Comprising The Antibody And Kit For Detecting The Same | |
US10538580B2 (en) | Anti-equol antibody composition and use therefor | |
JP5448424B2 (en) | Reagent for measuring protein containing Fc of human IgG | |
WO2014168242A1 (en) | Monoclonal antibody against peptide specific to periodontal diseases, and use thereof | |
JP2010241731A (en) | Anti-dcd monoclonal antibody | |
JP7002101B2 (en) | Anti-glycyrrhetinic acid antibody and its utilization | |
US9017959B2 (en) | 5.9 kDa peptide immunoassay method | |
CN114384249A (en) | Detection method and kit for cardiac troponin I | |
JP2009084199A (en) | Anti-catechins antibody | |
Kitjaroentham et al. | Monoclonal antibodies to quinine | |
JPH09278800A (en) | Monoclonal antibody specific to methoprene, hybridoma producing the same antibody and measurement of methoprene | |
JPH03183497A (en) | Monoclonal antibody against tetracyclic compound and its preparation and application | |
JPH06189785A (en) | Production of anti-d@(3754/24)+)-6-erithro-neopterin monoclonal antibody |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130530 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130729 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140610 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140630 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5572451 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |