JP5570174B2 - Piston for hydraulic shock absorber - Google Patents

Piston for hydraulic shock absorber Download PDF

Info

Publication number
JP5570174B2
JP5570174B2 JP2009234641A JP2009234641A JP5570174B2 JP 5570174 B2 JP5570174 B2 JP 5570174B2 JP 2009234641 A JP2009234641 A JP 2009234641A JP 2009234641 A JP2009234641 A JP 2009234641A JP 5570174 B2 JP5570174 B2 JP 5570174B2
Authority
JP
Japan
Prior art keywords
piston
hole
flow path
groove
shaped flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009234641A
Other languages
Japanese (ja)
Other versions
JP2011080563A (en
Inventor
誠良 小仲井
直樹 瀬能
聡 山添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Corp
Original Assignee
Showa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Corp filed Critical Showa Corp
Priority to JP2009234641A priority Critical patent/JP5570174B2/en
Publication of JP2011080563A publication Critical patent/JP2011080563A/en
Application granted granted Critical
Publication of JP5570174B2 publication Critical patent/JP5570174B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は油圧緩衝器用ピストンに関する。   The present invention relates to a piston for a hydraulic shock absorber.

油圧緩衝器用ピストンとして、特許文献1に記載の如く、シリンダ内に挿入されたピストンロッドに固定可能にされ、該シリンダ内を2つの油室に区画可能にするピストン本体と、ピストン本体の一端面から軸方向の中間部にまで延在され、一方の油室に開口する孔状流路と、ピストン本体の外周に旋削されて上記孔状流路に連通し、他方の油室に開口する溝状流路とを有するものがある。   As described in Patent Document 1, as a piston for a hydraulic shock absorber, a piston body which can be fixed to a piston rod inserted into a cylinder and can be divided into two oil chambers, and one end surface of the piston body A hole-like channel extending from the first to the middle in the axial direction and opened to one oil chamber, and a groove that is turned to the outer periphery of the piston body and communicates with the hole-like channel and opens to the other oil chamber Some of them have a flow path.

上述のピストンにあっては、ピストン本体の一端面に孔状流路の開口を囲む花弁状(円環状でも可)弁シートを突出させ、この弁シートに接離するディスクバルブを設ける。   In the above-described piston, a petal-like (or ring-shaped) valve seat surrounding the opening of the hole-shaped flow path is projected on one end surface of the piston body, and a disc valve that contacts and separates from the valve seat is provided.

油圧緩衝器が伸縮すると、ピストンがピストンロッドとともにシリンダ内を摺動し、例えば他方の油室が加圧されると、この他方の油室の作動油圧力がピストン本体の溝状流路から孔状流路に流れ、ひいてはディスクバルブに作用する。このディスクバルブに作用する圧力が該ディスクバルブのばね力より大きくなると、その外周縁部が撓み変形して弁シートから離れ、ディスクバルブを開く。これにより、他方の油室の作動油が一方の油室へ流れ、この間のディスクバルブと弁シートの間の絞り抵抗に起因する減衰力を生じ、油圧緩衝器の伸縮振動を制振する。   When the hydraulic shock absorber expands and contracts, the piston slides in the cylinder together with the piston rod. For example, when the other oil chamber is pressurized, the hydraulic oil pressure in the other oil chamber is removed from the groove-like flow path of the piston body. Flows into the flow path and thus acts on the disc valve. When the pressure acting on the disc valve becomes larger than the spring force of the disc valve, the outer peripheral edge of the disc valve is deflected and separated from the valve seat, and the disc valve is opened. As a result, the hydraulic oil in the other oil chamber flows into one oil chamber, and a damping force is generated due to the throttle resistance between the disk valve and the valve seat during this time, thereby suppressing the expansion and contraction vibration of the hydraulic shock absorber.

実公昭63-3299263-32992

図9(A)は従来の焼結又は鋳造等により製造されたピストン1を示す模式図であり、1Aはピストン本体、1Bは弁シート、1Cは外周溝、1Dは孔状流路を示す。図9(B)は旋盤のバイト2によりピストン本体1Aの外周溝1Cを旋削し、孔状流路1Dに連通する溝状流路1Eを作製する過程を示す。   FIG. 9A is a schematic diagram showing a piston 1 manufactured by conventional sintering or casting, in which 1A is a piston body, 1B is a valve seat, 1C is an outer peripheral groove, and 1D is a hole-like channel. FIG. 9B shows a process of turning the outer peripheral groove 1C of the piston main body 1A with a turning tool 2 of a lathe to produce a groove-like channel 1E communicating with the hole-like channel 1D.

従来技術では、ピストン本体1Aに焼結又は鋳造等により作製済の孔状流路1Dの内面fであって、溝状流路1Eが連通する内面f1が、ピストン本体1Aの中心cと同芯をなす円弧面により形成されている。   In the prior art, the inner surface f1 of the hole-shaped flow path 1D that has been prepared on the piston body 1A by sintering or casting, and the inner surface f1 that communicates with the groove-shaped flow path 1E is concentric with the center c of the piston main body 1A. It is formed by the circular arc surface which makes | forms.

他方、バイト2はピストン本体1Aの中心cをセンタリングされて回転する該ピストン本体1Aにおける外周溝1Cの溝底を旋削するものであるため、バイト2は外周溝1Cの溝底をピストン本体1Aの中心cと同芯をなす円弧面で切削するものになる。   On the other hand, the cutting tool 2 rotates the groove bottom of the outer peripheral groove 1C in the piston main body 1A that is rotated by being centered on the center c of the piston main body 1A. Therefore, the cutting tool 2 uses the groove bottom of the outer peripheral groove 1C of the piston main body 1A. Cutting is performed with an arc surface concentric with the center c.

このため、バイト2が外周溝1Cの溝底を切削していって孔状流路1Dに連通する溝状流路1Eを形成するに至るときには、バイト2の切刃2Aが孔状流路1Dの溝状流路1Eに連通する上記内面f1の全部に対応する全範囲に渡って該内面f1と同一曲率をなす最後の1枚の薄皮(薄膜)を一度に切り破って孔状流路1Dと溝状流路1Eの連通部Pを形成することになる。このとき、旋盤の主軸の回転振れやピストン本体1Aの真円度により、孔状流路1Dと溝状流路1Eの連通部Pでは薄皮が折り畳まれる如くに切除され、それらの一部がバリになって残留し易い。従って、孔状流路1Dと溝状流路1Eの連通部Pに残留したバリBを除去する工数が必要になり、ピストン1の生産性を阻害する。   For this reason, when the cutting tool 2 cuts the groove bottom of the outer peripheral groove 1C to form the groove-shaped flow path 1E communicating with the hole-shaped flow path 1D, the cutting edge 2A of the bit 2 has the hole-shaped flow path 1D. The last thin film (thin film) having the same curvature as the inner surface f1 is cut at once over the entire range corresponding to the entire inner surface f1 communicating with the groove-shaped flow channel 1E. And the communication portion P of the groove-like flow path 1E is formed. At this time, due to the rotational deflection of the main spindle of the lathe and the roundness of the piston body 1A, the communicating portion P between the hole-like channel 1D and the groove-like channel 1E is cut so that the thin skin is folded, and some of them are variably formed. It tends to remain. Therefore, a man-hour for removing the burrs B remaining in the communicating portion P between the hole-like channel 1D and the groove-like channel 1E is required, and the productivity of the piston 1 is hindered.

本発明の課題は、ピストン本体の外周に設けられる溝状流路を旋削し、該ピストン本体に作製済とされてその軸方向に延在されている孔状流路に連通する油圧緩衝器用ピストンにおいて、溝状流路と孔状流路の連通部におけるバリの発生を抑制することにある。 An object of the present invention, a hydraulic shock absorber which a groove-like passage provided on the outer periphery of the piston body by turning, communicating with the hole shaped flow path is a fabricated already in the piston body is extended in the axial direction of its In the piston, it is to suppress the generation of burrs at the communication portion between the groove-like channel and the hole-like channel.

請求項1の発明は、シリンダ内に挿入されたピストンロッドに固定可能にされ、該シリンダ内を2つの油室に区画可能にするピストン本体と、前記ピストン本体の一端面から軸方向の中間部にまで延在され、一方の油室に開口する孔状流路と、前記孔状流路が作製済とされている前記ピストン本体の中心がセンタリングされて、該ピストン本体の外周に旋削されると共に、該孔状流路に連通し、他方の油室に開口する溝状流路とを有する油圧緩衝器用ピストンにおいて、前記孔状流路の内面であって、前記溝状流路が連通すると共に該ピストン本体の外周側で旋削される内面が、平面により形成されてなるようにしたものである。 The invention according to claim 1 is a piston main body that can be fixed to a piston rod inserted into the cylinder and can be divided into two oil chambers, and an intermediate portion in the axial direction from one end surface of the piston main body. And the center of the piston main body in which the hole-shaped flow path has been prepared is centered and turned to the outer periphery of the piston main body. In addition, in the hydraulic shock absorber piston having a groove-shaped channel that communicates with the hole-shaped channel and opens to the other oil chamber, the groove-shaped channel communicates with the inner surface of the hole-shaped channel. At the same time, the inner surface that is turned on the outer peripheral side of the piston body is formed by a flat surface.

請求項2の発明は、請求項1の発明において更に、前記孔状流路の内面が、単一平面からなるようにしたものである。 According to a second aspect of the present invention, in the first aspect of the present invention, the inner surface of the hole-shaped flow path is a single plane .

請求項3の発明は、請求項1の発明において更に、前記孔状流路の内面が、前記ピストン本体の端面視で、前記ピストン本体の中心から視て逆V字面をなすようにしたものである。 According to a third aspect of the present invention, in the first aspect of the present invention, the inner surface of the hole-shaped channel is an inverted V-shaped surface as viewed from the center of the piston main body as viewed from the end surface of the piston main body. is there.

請求項4の発明は、請求項1の発明において更に、前記孔状流路の内面が、前記ピストン本体の端面視で、前記ピストン本体の中心から視てV字面をなすようにしたものである。 According to a fourth aspect of the present invention, in the first aspect of the present invention, the inner surface of the hole-shaped flow path is a V-shaped surface as viewed from the center of the piston main body as viewed from the end surface of the piston main body. .

(請求項1)
(a)ピストン本体に焼結又は鋳造等により作製済の孔状流路の内面fであって、溝状流路が連通すると共に該ピストン本体の外周側で旋削される内面f1が、平面により形成されている。
(Claim 1)
(a) an inner surface f of the hole-shaped flow path manufactured already by sintering or casting or the like to the piston body, the inner surface f1 of the groove-shaped flow path is turned at the outer peripheral side of the piston body with communicating with, the plane Is formed.

他方、バイトがピストン本体の中心をセンタリングされて回転するピストン本体における外周溝の溝底を旋削して溝状流路を作製するとき、バイトは外周溝の溝底をピストン本体の中心と同芯をなす円弧面で切削するものになる。   On the other hand, when turning the groove bottom of the outer circumferential groove in the piston body that rotates with the center of the piston body being centered, the bite is concentric with the center of the piston body. It cuts with the circular arc surface which makes.

このため、バイトが外周溝の溝底を切削していって孔状流路に連通する溝状流路を形成するに至るときには、バイトの切刃が孔状流路の溝状流路に連通する上記内面f1に対応する全範囲(孔状流路と溝状流路の連通部)を一度に切り破ることがない。バイトの切刃は、外周溝の溝底のうち、上記内面f1を形成する平面の一部に対応して他の部分よりも薄皮になった部分を徐々に切除し、ひいては上記内面f1の全域に渡る連通部を形成する。バイトの切刃が外周溝の溝底において、上記内面f1の全部に対応する連通部の全範囲に渡る薄皮を一度に切り破るものでないから、孔状流路と溝状流路の連通部に薄皮の一部からなるバリを残留させにくい。   For this reason, when the cutting tool cuts the groove bottom of the outer peripheral groove to form a groove-shaped flow path communicating with the hole-shaped flow path, the cutting edge of the bite communicates with the groove-shaped flow path of the hole-shaped flow path. The entire range corresponding to the inner surface f1 (the communication portion between the hole-like channel and the groove-like channel) is not cut at a time. The cutting edge of the cutting tool gradually cuts a portion of the groove bottom of the outer peripheral groove that is thinner than the other portion corresponding to a part of the plane that forms the inner surface f1, and consequently the entire area of the inner surface f1. A communication section extending over to is formed. Since the cutting edge of the cutting tool does not cut the thin skin over the entire range of the communication portion corresponding to all of the inner surface f1 at the groove bottom of the outer peripheral groove at one time, Hard to leave burrs made of a part of thin skin.

(請求項
(b)孔状流路の内面が、単一平面からなるものとすることにより、上述(a)を確実に実現できる。
(Claim 2 )
(b) By making the inner surface of the hole-like flow path consist of a single plane, the above-mentioned (a) can be realized reliably.

(請求項
(c)孔状流路の内面が、ピストン本体の端面視で、ピストン本体の中心から視て逆V字面をなすものとすることにより、上述(a)を確実に実現できる。
(Claim 3 )
(c) When the inner surface of the hole-shaped flow path forms an inverted V-shaped surface as viewed from the center of the piston body as viewed from the end surface of the piston body, the above-described (a) can be reliably realized.

(請求項
(d)孔状流路の内面が、ピストン本体の端面視で、ピストン本体の中心から視てV字面をなすものとすることにより、上述(a)を確実に実現できる。
(Claim 4 )
(d) When the inner surface of the hole-shaped flow path forms a V-shaped surface as viewed from the center of the piston body as viewed from the end surface of the piston body, the above-described (a) can be reliably realized.

図1は本発明の原理を示す模式図である。FIG. 1 is a schematic diagram showing the principle of the present invention. 図2は参考例1のピストンを示し、(A)は端面図、(B)は(A)のII−II線に沿う断面図、(C)は斜視図である。2A and 2B show a piston of Reference Example 1, in which FIG. 2A is an end view, FIG. 2B is a cross-sectional view taken along line II-II in FIG. 図3は参考例1における溝状流路の旋削過程を示す斜視図である。FIG. 3 is a perspective view showing the turning process of the groove-like channel in Reference Example 1. 図4は参考例2のピストンを示し、(A)は端面図、(B)は(A)のIV−IV線に沿う断面図、(C)は斜視図である。4A and 4B show a piston of Reference Example 2, in which FIG. 4A is an end view, FIG. 4B is a cross-sectional view taken along line IV-IV in FIG. 図5は実施例のピストンを示し、(A)は端面図、(B)は(A)のV−V線に沿う断面図、(C)は斜視図である。FIG. 5: shows the piston of Example 1 , (A) is an end elevation, (B) is sectional drawing which follows the VV line of (A), (C) is a perspective view. 図6は実施例のピストンを示し、(A)は端面図、(B)は(A)のVI−VI線に沿う断面図、(C)は斜視図である。FIG. 6: shows the piston of Example 2 , (A) is an end elevation, (B) is sectional drawing which follows the VI-VI line of (A), (C) is a perspective view. 図7は実施例のピストンを示し、(A)は端面図、(B)は(A)のVII−VII線に沿う断面図、(C)は斜視図である。7A and 7B show a piston of Example 3 , where FIG. 7A is an end view, FIG. 7B is a sectional view taken along line VII-VII in FIG. 7A, and FIG. 図8は実施例のピストンを示し、(A)は端面図、(B)は(A)のVIII−VIII線に沿う断面図、(C)は斜視図である。FIG. 8: shows the piston of Example 4 , (A) is an end elevation, (B) is sectional drawing which follows the VIII-VIII line of (A), (C) is a perspective view. 図9は従来例を示す模式図である。FIG. 9 is a schematic diagram showing a conventional example.

図1(A)は焼結又は鋳造等により製造された油圧緩衝器用ピストン1を示す模式図であり、1Aはピストン本体、1Bは弁シート、1Cは外周溝、1Dは孔状流路、1Eは溝状流路を示す。   FIG. 1A is a schematic view showing a piston 1 for a hydraulic shock absorber manufactured by sintering or casting, where 1A is a piston body, 1B is a valve seat, 1C is an outer peripheral groove, 1D is a hole-like flow path, and 1E. Indicates a channel.

ピストン1は、不図示のシリンダ内に挿入されたピストンロッド(不図示)に固定可能にされ、シリンダ内を2つの油室に区画可能にするピストン本体1Aを有する。   The piston 1 has a piston body 1A that can be fixed to a piston rod (not shown) inserted into a cylinder (not shown) and that can partition the cylinder into two oil chambers.

ピストン本体1Aの一端面から軸方向の中間部にまで孔状流路1Dが延在され、孔状流路1Dは一方の油室に開口する。ピストン本体1Aの外周には溝状流路1Eが旋削され、溝状流路1Eは孔状流路1Dに連通し、他方の油室に開口する。ピストン1にあっては、ピストン本体1Aの一端面に孔状流路1Dの開口を囲む花弁状(ピストン本体1Aの外周縁に沿う円環状でも可)弁シート1Bを突出させ、この弁シート1Bに接離するディスクバルブ(不図示)を設ける。   A hole-like channel 1D extends from one end surface of the piston body 1A to an intermediate portion in the axial direction, and the hole-like channel 1D opens into one oil chamber. A groove-like channel 1E is turned on the outer periphery of the piston body 1A, and the groove-like channel 1E communicates with the hole-like channel 1D and opens to the other oil chamber. In the piston 1, a valve seat 1B that protrudes from one end face of the piston main body 1A and surrounds the opening of the hole-shaped flow path 1D (or an annular shape along the outer periphery of the piston main body 1A) is protruded, and this valve seat 1B A disc valve (not shown) that contacts and separates from is provided.

油圧緩衝器が伸縮すると、ピストン1がピストンロッドとともにシリンダ内を摺動し、例えば他方の油室が加圧されると、この他方の油室の作動油圧力がピストン本体1Aの溝状流路1Eから孔状流路1Dに流れ、ひいてはディスクバルブに作用する。このディスクバルブに作用する圧力が該ディスクバルブのばね力より大きくなると、その外周縁部が撓み変形して弁シート1Bから離れ、ディスクバルブを開く。これにより、他方の油室の作動油が一方の油室へ流れ、この間のディスクバルブと弁シート1Bの間の絞り抵抗に起因する減衰力を生じ、油圧緩衝器の伸縮振動を制振する。   When the hydraulic shock absorber expands and contracts, the piston 1 slides in the cylinder together with the piston rod. For example, when the other oil chamber is pressurized, the hydraulic oil pressure in the other oil chamber is changed to the groove-like flow path of the piston body 1A. It flows from 1E to the hole-like flow path 1D and thus acts on the disk valve. When the pressure acting on the disc valve becomes larger than the spring force of the disc valve, the outer peripheral edge is bent and deformed to leave the valve seat 1B and open the disc valve. As a result, the hydraulic oil in the other oil chamber flows into one oil chamber, and a damping force is generated due to the throttle resistance between the disk valve and the valve seat 1B during this period, thereby suppressing the expansion and contraction vibration of the hydraulic shock absorber.

図1(B)、(C)は、ピストン本体1Aに弁シート1B、外周溝1C、孔状流路1Dを作製済とされたピストン1の素材を用いて、旋盤のバイト2によりピストン本体1Aの外周溝1Cを旋削し、孔状流路1Dに連通する溝状流路1Eを作製する過程を示す。   FIGS. 1B and 1C show a piston main body 1A by a lathe tool 2 using a material of the piston 1 in which a valve seat 1B, an outer peripheral groove 1C, and a hole-like flow path 1D have been prepared on the piston main body 1A. A process of turning the outer peripheral groove 1C to produce a groove-like channel 1E communicating with the hole-like channel 1D is shown.

図1(B)、(C)では、ピストン本体1Aに焼結又は鋳造等により作製済の孔状流路1Dの内面fであって、溝状流路1Eが連通する内面f1が、ピストン本体1Aの中心cと同芯をなす円弧面以外の面により形成されている。図1(B)の孔状流路1Dにおいて、溝状流路1Eが連通する内面f1は、ピストン本体1Aの中心cと同芯をなさない円弧面からなる。図1(C)の孔状流路1Dにおいて、溝状流路1Eが連通する内面f1は台形の上辺及び左右2側辺を呈する平面からなる。   In FIGS. 1B and 1C, the inner surface f1 of the hole-shaped flow path 1D that has been produced by sintering or casting the piston main body 1A, and the groove-shaped flow path 1E communicates with the inner surface f1. It is formed by a surface other than the circular arc surface concentric with the center c of 1A. In the hole-like channel 1D of FIG. 1B, the inner surface f1 with which the groove-like channel 1E communicates is an arc surface that is not concentric with the center c of the piston body 1A. In the hole-shaped flow path 1D of FIG. 1C, the inner surface f1 with which the groove-shaped flow path 1E communicates consists of a flat surface having a trapezoidal upper side and left and right sides.

他方、バイト2はピストン本体1Aの中心cをセンタリングされて回転する該ピストン本体1Aにおける外周溝1Cの溝底を旋削するものであるため、バイト2は外周溝1Cの溝底をピストン本体1Aの中心cと同芯をなす円弧面で切削するものになる。   On the other hand, the cutting tool 2 rotates the groove bottom of the outer peripheral groove 1C in the piston main body 1A that is rotated by being centered on the center c of the piston main body 1A. Cutting is performed with an arc surface concentric with the center c.

このため、バイト2が外周溝1Cの溝底を切削していって孔状流路1Dに連通する溝状流路1Eを形成するに至るときには、バイト2の切刃2Aが孔状流路1Dの溝状流路1Eに連通する上記内面f1に対応する全範囲(孔状流路1Dと溝状流路1Eの連通部P)を一度に切り破ることがない。バイト2の切刃2Aは、外周溝1Cの溝底のうち、上記内面f1の一部に対応して他の部分よりも薄皮になった部分を徐々に切除し、ひいては上記内面f1の全域に渡る連通部Pを形成する。バイト2の切刃2Aが外周溝1Cの溝底において、上記内面f1の全部に対応する連通部Pの全範囲に渡る薄皮を一度に切り破るものでないから、孔状流路1Dと溝状流路1Eの連通部Pに薄皮の一部からなるバリを残留させにくい。   For this reason, when the cutting tool 2 cuts the groove bottom of the outer peripheral groove 1C to form the groove-shaped flow path 1E communicating with the hole-shaped flow path 1D, the cutting edge 2A of the bit 2 has the hole-shaped flow path 1D. The entire range corresponding to the inner surface f1 communicating with the groove-shaped flow path 1E (the communication portion P between the hole-shaped flow path 1D and the groove-shaped flow path 1E) is not cut at a time. The cutting edge 2A of the cutting tool 2 gradually cuts out a portion of the groove bottom of the outer peripheral groove 1C that is thinner than the other portion corresponding to a part of the inner surface f1, and eventually extends over the entire inner surface f1. The crossing communication part P is formed. Since the cutting edge 2A of the cutting tool 2 does not cut the thin skin over the entire range of the communication portion P corresponding to the entire inner surface f1 at the groove bottom of the outer circumferential groove 1C, the hole-like flow path 1D and the groove-like flow It is difficult to leave burrs made of a part of thin skin at the communication portion P of the path 1E.

以下、本発明の具体的実施例について説明する。
参考例1)(図2、図3)
図2は焼結又は鋳造等により製造された油圧緩衝器用ピストン10を示す。11はピストン本体、12は弁シート、13は外周溝、14は孔状流路、15は溝状流路を示す。また、16は弁シート、17は孔状流路を示す。
Hereinafter, specific examples of the present invention will be described.
( Reference Example 1) (FIGS. 2 and 3)
FIG. 2 shows a hydraulic shock absorber piston 10 manufactured by sintering or casting. 11 is a piston body, 12 is a valve seat, 13 is an outer peripheral groove, 14 is a hole-like channel, and 15 is a groove-like channel. Reference numeral 16 denotes a valve seat, and 17 denotes a hole-like channel.

ピストン10は、不図示のシリンダ内に挿入されたピストンロッド(不図示)の挿入端に固定可能にされ、シリンダ内を2つの油室(ピストンロッド側油室とピストン側油室)に区画可能にするピストン本体11を有する。   The piston 10 can be fixed to an insertion end of a piston rod (not shown) inserted in a cylinder (not shown), and the cylinder can be divided into two oil chambers (piston rod side oil chamber and piston side oil chamber). It has the piston main body 11 to make.

ピストン本体11の一端面から軸方向の中間部にまで複数個(図2では6個)の孔状流路14が延在され、孔状流路14は一方の油室(例えばピストンロッド側油室)に開口する。ピストン本体11の外周には溝状流路15が旋削され、溝状流路15は孔状流路14に連通し、他方の油室(例えばピストン側油室)に開口する。ピストン10にあっては、ピストン本体11の一端面に各1個又は複数個(図2では各2個)の孔状流路14の開口を囲む花弁状(ピストン本体11の外周縁に沿う円環状でも可)弁シート12を突出させ、この弁シート12に接離するディスクバルブ(例えば圧側ディスクバルブ)を設ける。   A plurality (six in FIG. 2) of hole-shaped flow paths 14 extend from one end surface of the piston body 11 to an intermediate portion in the axial direction, and the hole-shaped flow paths 14 are formed in one oil chamber (for example, piston rod side oil). Open to the room. A groove-like flow path 15 is turned on the outer periphery of the piston body 11, and the groove-like flow path 15 communicates with the hole-shaped flow path 14 and opens to the other oil chamber (for example, the piston-side oil chamber). In the piston 10, a petal shape (a circle along the outer peripheral edge of the piston body 11) surrounding one or more (two in FIG. 2) hole-shaped flow paths 14 on one end surface of the piston body 11. A disc valve (for example, a pressure side disc valve) that makes contact with and separates from the valve seat 12 is provided.

ピストン本体11の他端面から一端側段差面まで複数個(図2では3個)の孔状流路17が延在され、孔状流路17は両方の油室に開口する。ピストン10にあっては、ピストン本体11の他端面に各1個又は複数個(図2では3個)の孔状流路17の開口を囲むピストン本体11の外周縁に沿う円環状(花弁状でも可)弁シート16を突出させ、この弁シート16に接離するディスクバルブ(例えば伸側ディスクバルブ)を設ける。   A plurality (three in FIG. 2) of hole channels 17 extend from the other end surface of the piston body 11 to the step surface on the one end side, and the hole channels 17 open to both oil chambers. In the piston 10, an annular shape (petal shape) along the outer peripheral edge of the piston main body 11 surrounding one or a plurality (three in FIG. 2) of the hole-shaped flow paths 17 on the other end surface of the piston main body 11. However, the valve seat 16 is protruded, and a disc valve (for example, an extension side disc valve) that contacts and separates from the valve seat 16 is provided.

油圧緩衝器が圧縮すると、ピストン10がピストンロッドとともにシリンダ内に進入し、他方の油室(ピストン側油室)が加圧され、この他方の油室の作動油圧力がピストン本体11の溝状流路15から孔状流路14に流れ、ひいては圧側ディスクバルブに作用する。この圧側ディスクバルブに作用する圧力が該圧側ディスクバルブのばね力より大きくなると、その外周縁部が撓み変形して弁シート12から離れ、圧側ディスクバルブを開く。これにより、他方の油室(ピストン側油室)の作動油が一方の油室(ピストンロッド側油室)へ流れ、この間の圧側ディスクバルブと弁シート12の間の絞り抵抗に起因する圧側減衰力を生ずる。   When the hydraulic shock absorber is compressed, the piston 10 enters the cylinder together with the piston rod, the other oil chamber (piston side oil chamber) is pressurized, and the hydraulic oil pressure in the other oil chamber is grooved in the piston body 11. It flows from the flow path 15 to the hole-shaped flow path 14 and thus acts on the pressure side disk valve. When the pressure acting on the pressure side disk valve becomes larger than the spring force of the pressure side disk valve, the outer peripheral edge of the pressure side disk valve is bent and deformed to leave the valve seat 12 to open the pressure side disk valve. As a result, the hydraulic oil in the other oil chamber (piston side oil chamber) flows into one oil chamber (piston rod side oil chamber), and compression side damping caused by the throttle resistance between the pressure side disk valve and the valve seat 12 during this period. Produce power.

油圧緩衝器が伸長すると、ピストン10がピストンロッドとともにシリンダ外へ退出し、一方の油室(ピストンロッド側油室)が加圧され、この一方の油室の作動油圧力がピストン本体11の孔状流路17に流れ、ひいては伸側ディスクバルブに作用する。この伸側ディスクバルブに作用する圧力が該伸側ディスクバルブのばね力より大きくなると、その外周縁部が撓み変形して弁シート16から離れ、伸側ディスクバルブを開く。これにより、一方の油室(ピストンロッド側油室)の作動油が他方の油室(ピストン側油室)へ流れ、この間の伸側ディスクバルブと弁シート16の間の絞り抵抗に起因する伸側減衰力を生ずる。上述の圧側減衰力と伸側減衰力により、ピストン10の伸縮振動を制振する。   When the hydraulic shock absorber extends, the piston 10 moves out of the cylinder together with the piston rod, and one oil chamber (piston rod side oil chamber) is pressurized, and the hydraulic oil pressure in this one oil chamber becomes the hole of the piston body 11. Flows into the flow path 17 and thus acts on the extension side disk valve. When the pressure acting on the extension side disk valve becomes larger than the spring force of the extension side disk valve, the outer peripheral edge portion thereof is bent and deformed to leave the valve seat 16 and open the extension side disk valve. As a result, the hydraulic oil in one oil chamber (piston rod side oil chamber) flows to the other oil chamber (piston side oil chamber), and the expansion caused by the throttle resistance between the expansion side disk valve and the valve seat 16 during this period. Side damping force is generated. The expansion / contraction vibration of the piston 10 is suppressed by the compression side damping force and the extension side damping force.

しかるに、図3は旋盤のバイト(不図示)によりピストン本体11の外周溝13(焼結又は鋳造等により作製済)を徐々に旋削し、外周溝13の溝底において各孔状流路14に連通する孔状連通部Pを開口し、ひいては各孔状流路14に連通する溝状流路15を作製する過程を示す。図3は、旋削の繰り返しにより、外周溝13の溝底が徐々に深く旋削されるに従い、連通部Pの開口面積が徐々に拡大される様子を示す。   However, in FIG. 3, the outer peripheral groove 13 (prepared by sintering or casting) of the piston body 11 is gradually turned by a lathe tool (not shown), and each hole channel 14 is formed at the groove bottom of the outer peripheral groove 13. The process of creating the groove-like flow path 15 that opens the hole-shaped communication portion P that communicates with each other, and thus communicates with each hole-shaped flow path 14 is shown. FIG. 3 shows a state in which the opening area of the communication portion P is gradually enlarged as the groove bottom of the outer circumferential groove 13 is gradually deeply turned by repeating the turning.

このとき、ピストン本体11に焼結又は鋳造等により作製済の孔状流路14の内面fであって、溝状流路15が連通する内面f1が、ピストン本体11の中心cと同芯をなす円弧面以外の面により形成されている。参考例1の各孔状流路14において、溝状流路15が連通する内面f1はピストン本体11の中心cと同芯をなさない円弧面からなる。 At this time, the inner surface f1 of the hole-shaped flow path 14 that has been produced by sintering or casting the piston main body 11 and the inner surface f1 communicating with the groove-shaped flow path 15 is concentric with the center c of the piston main body 11. It is formed by a surface other than the arc surface formed. In each hole-like channel 14 of the reference example 1, the inner surface f1 with which the groove-like channel 15 communicates is an arc surface that is not concentric with the center c of the piston body 11.

他方、バイトはピストン本体11の中心cをセンタリングされて回転する該ピストン本体11における外周溝13の溝底を旋削するものであるため、バイトは外周溝13の溝底をピストン本体11の中心cと同芯をなす円弧面で切削するものになる。   On the other hand, the cutting tool turns the groove bottom of the outer peripheral groove 13 in the piston main body 11 that rotates with the center c of the piston main body 11 being rotated. It cuts with a circular arc surface concentric with.

このため、バイトが外周溝13の溝底を切削していって孔状流路14に連通する溝状流路15を形成するに至るときには、バイトの切刃が孔状流路14の溝状流路15に連通する上記内面f1に対応する全範囲(孔状流路14と溝状流路15の連通部P)を一度に切り破ることがない。バイトの切刃は、外周溝13の溝底のうち、上記内面f1の一部に対応して他の部分よりも薄皮になった部分を徐々に切除し、ひいては上記内面f1の全域に渡る連通部Pを形成する。バイトの切刃が外周溝13の溝底において、上記内面f1の全部に対応する連通部Pの全範囲に渡る薄皮を一度に切り破るものでないから、孔状流路14と溝状流路15の連通部Pに薄皮の一部からなるバリを残留させにくい。これにより、孔状流路14と溝状流路15の連通部Pにおけるバリの発生を抑制できるから、バリを除去する工数が不要になり、ピストン10の生産性を向上できる。   For this reason, when the cutting tool cuts the groove bottom of the outer peripheral groove 13 to form the groove-shaped flow path 15 communicating with the hole-shaped flow path 14, the cutting edge of the bite has the groove shape of the hole-shaped flow path 14. The entire range corresponding to the inner surface f1 communicating with the flow path 15 (the communication portion P between the hole-shaped flow path 14 and the groove-shaped flow path 15) is not broken at a time. The cutting edge of the cutting tool gradually cuts out a portion of the groove bottom of the outer circumferential groove 13 that is thinner than the other portion corresponding to a part of the inner surface f1, and consequently communicates over the entire inner surface f1. Part P is formed. Since the cutting edge of the cutting tool does not cut through the thin skin over the entire range of the communication portion P corresponding to the entire inner surface f1 at the groove bottom of the outer peripheral groove 13, the hole-shaped flow path 14 and the groove-shaped flow path 15 It is difficult to leave burrs made of a part of the thin skin at the communication part P. Thereby, since generation | occurrence | production of the burr | flash in the communicating part P of the hole-shaped flow path 14 and the groove-shaped flow path 15 can be suppressed, the man-hour which removes a burr | flash becomes unnecessary and productivity of the piston 10 can be improved.

参考例2)(図4)
参考例2のピストン10が参考例1におけると異なる点は、ピストン本体11に3個の孔状流路14を設け、弁シート12により各1個の孔状流路14の開口を囲むようにしたことにある。
( Reference Example 2) (Fig. 4)
The difference between the piston 10 of the reference example 2 and the reference example 1 is that the piston body 11 is provided with three hole-shaped flow paths 14 and the valve seat 12 surrounds the opening of each one hole-shaped flow path 14. It is to have done.

参考例でも、孔状流路14の内面fであって、溝状流路15が連通する内面f1が、ピストン本体11の中心cと同芯をなす円弧面以外の面、換言すればピストン本体11の中心cと同芯をなさない円弧面からなるものにした。従って、本参考例でも、孔状流路14と溝状流路15の連通部Pにおけるバリの発生を抑制できる。 Also in this reference example, the inner surface f1 of the hole-shaped flow path 14 and the inner surface f1 communicating with the groove-shaped flow path 15 is a surface other than the arc surface concentric with the center c of the piston body 11, in other words, the piston. It was made of an arc surface that is not concentric with the center c of the main body 11. Therefore, also in this reference example, it is possible to suppress the generation of burrs in the communication portion P between the hole-like channel 14 and the groove-like channel 15.

(実施例)(図5)
実施例のピストン10が参考例1におけると異なる点は、ピストン本体11に3個の孔状流路14を設け、弁シート12により各1個の孔状流路14の開口を囲むようにしたことにある。
Example 1 (FIG. 5)
The difference between the piston 10 of the first embodiment and the reference example 1 is that the piston body 11 is provided with three hole-shaped channels 14 and the valve seat 12 surrounds the opening of each one hole-shaped channel 14. It is to have done.

本実施例では、孔状流路14の内面fであって、溝状流路15が連通する内面f1が、ピストン本体11の中心cと同芯をなす円弧面以外の面、換言すれば単一平面からなるものにした。従って、本実施例でも、孔状流路14と溝状流路15の連通部Pにおけるバリの発生を抑制できる。   In this embodiment, the inner surface f1 of the hole-like channel 14 and the inner surface f1 communicating with the groove-like channel 15 is a surface other than the arc surface concentric with the center c of the piston body 11, in other words, a single surface. It consisted of one plane. Therefore, also in the present embodiment, it is possible to suppress the generation of burrs in the communication portion P between the hole-like channel 14 and the groove-like channel 15.

(実施例)(図6)
実施例のピストン10が参考例1におけると異なる点は、ピストン本体11に3個の孔状流路14を設け、弁シート12により各1個の孔状流路14の開口を囲むようにしたことにある。
Example 2 (FIG. 6)
The difference between the piston 10 of the second embodiment and the reference example 1 is that the piston body 11 is provided with three hole-shaped flow paths 14 and the valve seat 12 surrounds the opening of each one hole-shaped flow path 14. It is to have done.

本実施例では、孔状流路14の内面fであって、溝状流路15が連通する内面f1が、ピストン本体11の中心cと同芯をなす円弧面以外の面、換言すればピストン本体11の中心cから視て逆V字面(逆V字状をなすように交差する2平面)をなすものにした。従って、本実施例でも、孔状流路14と溝状流路15の連通部Pにおけるバリの発生を抑制できる。   In the present embodiment, the inner surface f1 of the hole-like channel 14 and the inner surface f1 communicating with the groove-like channel 15 is a surface other than the arc surface concentric with the center c of the piston main body 11, in other words, the piston. When viewed from the center c of the main body 11, an inverted V-shaped surface (two planes intersecting so as to form an inverted V-shape) is formed. Therefore, also in the present embodiment, it is possible to suppress the generation of burrs in the communication portion P between the hole-like channel 14 and the groove-like channel 15.

(実施例)(図7)
実施例のピストン10が実施例におけると異なる点は、ピストン本体11に6個の孔状流路14を設け、弁シート12により各2個の孔状流路14の開口を囲むようにしたことにある。本実施例でも、孔状流路14の内面fであって、溝状流路15が連通する内面f1が、ピストン本体11の中心cと同芯をなす円弧面以外の面、換言すればピストン本体11の中心cから視て逆V字面(逆V字状をなすように交差する2平面)をなすものにした。従って、本実施例でも、孔状流路14と溝状流路15の連通部Pにおけるバリの発生を抑制できる。
Example 3 (FIG. 7)
The difference between the piston 10 of the third embodiment and the second embodiment is that the piston body 11 is provided with six hole-shaped channels 14 and the valve seat 12 surrounds the openings of the two hole-shaped channels 14. It is to have done. Also in this embodiment, the inner surface f1 of the hole-like channel 14 and the inner surface f1 communicating with the groove-like channel 15 is a surface other than the arc surface concentric with the center c of the piston main body 11, in other words, the piston. When viewed from the center c of the main body 11, an inverted V-shaped surface (two planes intersecting so as to form an inverted V-shape) is formed. Therefore, also in the present embodiment, it is possible to suppress the generation of burrs in the communication portion P between the hole-like channel 14 and the groove-like channel 15.

(実施例)(図8)
実施例のピストン10が参考例1におけると異なる点は、ピストン本体11に3個の孔状流路14を設け、弁シート12により各1個の孔状流路14の開口を囲むようにしたことにある。
Example 4 (FIG. 8)
The difference between the piston 10 of the fourth embodiment and the reference example 1 is that the piston body 11 is provided with three hole-shaped flow paths 14 and the valve seat 12 surrounds the opening of each one hole-shaped flow path 14. It is to have done.

本実施例では、孔状流路14の内面fであって、溝状流路15が連通する内面f1が、ピストン本体11の中心cと同芯をなす円弧面以外の面、換言すればピストン本体11の中心cから視てV字面(V字状をなすように交差する2平面)をなすものにした。従って、本実施例でも、孔状流路14と溝状流路15の連通部Pにおけるバリの発生を抑制できる。   In the present embodiment, the inner surface f1 of the hole-like channel 14 and the inner surface f1 communicating with the groove-like channel 15 is a surface other than the arc surface concentric with the center c of the piston main body 11, in other words, the piston. As viewed from the center c of the main body 11, a V-shaped surface (two planes intersecting to form a V shape) was formed. Therefore, also in the present embodiment, it is possible to suppress the generation of burrs in the communication portion P between the hole-like channel 14 and the groove-like channel 15.

以上、本発明の実施例を図面により詳述したが、本発明の具体的な構成はこの実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration of the present invention is not limited to this embodiment, and even if there is a design change or the like without departing from the gist of the present invention. It is included in the present invention.

本発明によれば、ピストン本体の外周に設けられる溝状流路を旋削し、該ピストン本体の軸方向に延在されている孔状流路に連通する油圧緩衝器用ピストンにおいて、溝状流路と孔状流路の連通部におけるバリの発生を抑制できる。   According to the present invention, in a hydraulic shock absorber piston that turns a groove-like channel provided on the outer periphery of the piston body and communicates with a hole-like channel that extends in the axial direction of the piston body, And the occurrence of burrs at the communicating part of the hole-like channel can be suppressed.

1 ピストン
1A ピストン本体
1B 弁シート
1C 外周溝
1D 孔状流路
1E 溝状流路
10 ピストン
11 ピストン本体
12 弁シート
13 外周溝
14 孔状流路
15 溝状流路
DESCRIPTION OF SYMBOLS 1 Piston 1A Piston main body 1B Valve seat 1C Peripheral groove 1D Hole-shaped flow path 1E Groove-shaped flow path 10 Piston 11 Piston main body 12 Valve seat 13 Outer peripheral groove 14 Hole-shaped flow path 15 Groove-shaped flow path

Claims (4)

シリンダ内に挿入されたピストンロッドに固定可能にされ、該シリンダ内を2つの油室に区画可能にするピストン本体と、
前記ピストン本体の一端面から軸方向の中間部にまで延在され、一方の油室に開口する孔状流路と、
前記孔状流路が作製済とされている前記ピストン本体の中心がセンタリングされて、該ピストン本体の外周に旋削されると共に、該孔状流路に連通し、他方の油室に開口する溝状流路とを有する油圧緩衝器用ピストンにおいて、
前記孔状流路の内面であって、前記溝状流路が連通すると共に該ピストン本体の外周側で旋削される内面が、平面により形成されてなることを特徴とする油圧緩衝器用ピストン。
A piston body which is fixable to a piston rod inserted into the cylinder and allows the inside of the cylinder to be divided into two oil chambers;
A hole-like flow path extending from one end surface of the piston body to an intermediate portion in the axial direction and opening to one oil chamber;
The center of the piston main body in which the hole-shaped flow path has been prepared is centered, and is turned to the outer periphery of the piston main body, and communicates with the hole-shaped flow path and opens to the other oil chamber In a piston for a hydraulic shock absorber having a flow path,
A hydraulic shock absorber piston, characterized in that an inner surface of the hole-shaped flow path, which is communicated with the groove-shaped flow path and is turned on the outer peripheral side of the piston main body, is formed by a flat surface.
前記孔状流路の内面が、単一平面からなる請求項1に記載の油圧緩衝器用ピストン。 The piston for a hydraulic shock absorber according to claim 1, wherein an inner surface of the hole-shaped flow path is formed of a single plane. 前記孔状流路の内面が、前記ピストン本体の端面視で、前記ピストン本体の中心から視て逆V字面をなす請求項1に記載の油圧緩衝器用ピストン。   2. The hydraulic shock absorber piston according to claim 1, wherein an inner surface of the hole-shaped flow path forms an inverted V-shaped surface as viewed from the center of the piston body in an end surface view of the piston body. 前記孔状流路の内面が、前記ピストン本体の端面視で、前記ピストン本体の中心から視てV字面をなす請求項1に記載の油圧緩衝器用ピストン。   2. The hydraulic shock absorber piston according to claim 1, wherein an inner surface of the hole-shaped flow path forms a V-shaped surface as viewed from the center of the piston body in an end surface view of the piston body.
JP2009234641A 2009-10-08 2009-10-08 Piston for hydraulic shock absorber Active JP5570174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009234641A JP5570174B2 (en) 2009-10-08 2009-10-08 Piston for hydraulic shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009234641A JP5570174B2 (en) 2009-10-08 2009-10-08 Piston for hydraulic shock absorber

Publications (2)

Publication Number Publication Date
JP2011080563A JP2011080563A (en) 2011-04-21
JP5570174B2 true JP5570174B2 (en) 2014-08-13

Family

ID=44074816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009234641A Active JP5570174B2 (en) 2009-10-08 2009-10-08 Piston for hydraulic shock absorber

Country Status (1)

Country Link
JP (1) JP5570174B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5923323B2 (en) * 2012-01-31 2016-05-24 日立オートモティブシステムズ株式会社 Cylinder device
KR101364454B1 (en) 2012-07-26 2014-02-19 주식회사 만도 Piston assembly of shock absorbr
JP6572102B2 (en) 2015-04-27 2019-09-04 曙ブレーキ工業株式会社 Disc brake device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954236U (en) * 1982-10-01 1984-04-09 トキコ株式会社 hydraulic shock absorber
JPH0942354A (en) * 1995-07-25 1997-02-10 Nok Corp Piston
JP3887760B2 (en) * 1996-08-09 2007-02-28 株式会社日立製作所 Damping force adjustable hydraulic shock absorber
JPH10103512A (en) * 1996-09-30 1998-04-21 Showa:Kk Piston structure of hydraulic damper
JP3899710B2 (en) * 1998-11-12 2007-03-28 松下電器産業株式会社 Damper device
JP3995376B2 (en) * 1999-12-21 2007-10-24 カヤバ工業株式会社 Molding method of valve seat member
JP2002005211A (en) * 2000-06-19 2002-01-09 Showa Corp Reaction adjustable gas spring
JP4198555B2 (en) * 2003-07-10 2008-12-17 カヤバ工業株式会社 Seal structure
JP2006300158A (en) * 2005-04-19 2006-11-02 Ttk:Kk Damper device and opening/closing mechanism having the same

Also Published As

Publication number Publication date
JP2011080563A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
JP5570174B2 (en) Piston for hydraulic shock absorber
JP3191509U (en) Fluid pressure cylinder
JP6159938B2 (en) Fluid pressure cylinder
JP5945276B2 (en) Manufacture of valve components for embedded hydraulic applications that are composed of multiple parts and have a groove shape for embedded sealing
JP7135006B2 (en) electronically controlled valve for buffer
WO2014119388A1 (en) Dashpot
KR20170083090A (en) Damping valve for a vibration damper
WO2014156445A1 (en) Damping valve
CN105658988A (en) Valve
WO2016013129A1 (en) Piston and damper
JP2014149005A (en) Buffer
EP2833017A1 (en) Damping valve
JPH1073140A (en) Piston for shock absorber
JP6750578B2 (en) shock absorber
JP6456155B2 (en) Spool switching valve device
JP2007016880A (en) Valve structure of pneumatic buffer
JP5406672B2 (en) valve
JP5856521B2 (en) Valve structure
JP4905955B2 (en) Hydraulic attenuator
JP2008175281A (en) Hydraulic control device
JP5831980B2 (en) Shock absorber
CN106536966B (en) Buffer device
WO2023095571A1 (en) Valve and shock absorber
JP6646483B2 (en) valve
JP6063109B2 (en) Piston ring, piston structure and hydraulic shock absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140624

R150 Certificate of patent or registration of utility model

Ref document number: 5570174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250