JP5569965B2 - Lightweight and highly heat-resistant hard material with excellent oxidation resistance and method for producing the same - Google Patents

Lightweight and highly heat-resistant hard material with excellent oxidation resistance and method for producing the same Download PDF

Info

Publication number
JP5569965B2
JP5569965B2 JP2010136644A JP2010136644A JP5569965B2 JP 5569965 B2 JP5569965 B2 JP 5569965B2 JP 2010136644 A JP2010136644 A JP 2010136644A JP 2010136644 A JP2010136644 A JP 2010136644A JP 5569965 B2 JP5569965 B2 JP 5569965B2
Authority
JP
Japan
Prior art keywords
iron
hard material
oxidation resistance
boride
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010136644A
Other languages
Japanese (ja)
Other versions
JP2012001755A (en
Inventor
博行 中山
慶三 小林
周二 多田
祐史 三上
公洋 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010136644A priority Critical patent/JP5569965B2/en
Publication of JP2012001755A publication Critical patent/JP2012001755A/en
Application granted granted Critical
Publication of JP5569965B2 publication Critical patent/JP5569965B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、軽量で、耐酸化性に優れる硬質材料に関するものであり、更に詳しくは、耐酸化性に優れる硬質材料において、熱伝導性に優れる硬質粒子を、硬質粒子間及び結合相との反応を抑制して、複合化することで、熱伝導性及び強度を向上した硬質材料に関するものである。   The present invention relates to a hard material that is lightweight and excellent in oxidation resistance. More specifically, in a hard material excellent in oxidation resistance, hard particles excellent in thermal conductivity are reacted with each other between hard particles and a binder phase. It is related with the hard material which improved thermal conductivity and intensity | strength by suppressing and compounding.

本発明は、従来の硬質材料が、耐酸化性や高温での強度が劣ること、熱伝導率が低く熱の放散性が悪いこと、熱伝導率を改善したTiC−TiB−30mass%FeAl複合材料においても、結合相中の鉄とTiBが焼結中に反応し、硼化鉄が生成することで強度が低下し、実用硬質材料として用いることが難しいこと、などの問題があることに鑑みて、従来材と比較して、焼結時の鉄と硼化チタンの反応を抑制し、軽量、耐酸化性、高熱伝導率はそのままで、焼結時における硼化鉄の生成を抑制し、強度低下を抑制することで、強度を実用化レベルまで向上させた新しい硬質材料に関する新技術・新製品を提供するものである。 The present invention, conventional hard materials, the strength at oxidation resistance and high temperature is poor, it is poor dissipation of heat low thermal conductivity, TiC-TiB with improved thermal conductivity 2 -30mass% Fe 3 Even in the Al composite material, iron and TiB 2 in the binder phase react during sintering, and iron boride is generated, resulting in a decrease in strength and difficulty in use as a practical hard material. In view of this, compared to conventional materials, the reaction between iron and titanium boride during sintering is suppressed, and the formation of iron boride during sintering remains unchanged while maintaining light weight, oxidation resistance, and high thermal conductivity. We will provide new technologies and new products related to new hard materials that have improved strength to the practical level by suppressing and reducing strength.

代表的な硬質材料として、炭化タングステンをコバルトで結合させた超硬合金がある。しかし、炭化タングステンの比重は大きいため、これを用いた超硬合金も非常に重いものとなり、金型などに用いた場合、運搬、取り付け作業において、作業者への大きな負担となる。一方、軽量な炭化チタンをニッケルで結合した硬質材料に、サーメットがある。   A typical hard material is a cemented carbide in which tungsten carbide is bonded with cobalt. However, since the specific gravity of tungsten carbide is large, the cemented carbide using the tungsten carbide is also very heavy, and when used for a mold or the like, it is a heavy burden on the operator in transportation and mounting operations. On the other hand, cermet is a hard material in which lightweight titanium carbide is bonded with nickel.

しかし、サーメットは、結合相に純金属を用いていることから、耐酸化性や高温での強度が劣る。また、炭化チタンの熱伝導率は低いため、サーメットの熱伝導率も低い。これは、上記硬質材料を、切削工具へ応用することを考えた場合、酸化による工具の劣化や切削時に生じる摩擦熱の放散性が悪く、熱応力が発生して、工具寿命を低下させることにつながる。また、上記硬質材料を、高温用金型へ応用する際にも、加熱した熱が金型にこもりやすく、金型寿命が低下することになる。   However, since cermet uses pure metal for the binder phase, it is inferior in oxidation resistance and strength at high temperature. Moreover, since the thermal conductivity of titanium carbide is low, the thermal conductivity of cermet is also low. This is because, when considering the application of the hard material to a cutting tool, the deterioration of the tool due to oxidation and the dissipating property of frictional heat generated during cutting are poor, and thermal stress is generated, which reduces the tool life. Connected. In addition, when the hard material is applied to a high temperature mold, the heated heat tends to be trapped in the mold, and the mold life is reduced.

そこで、鉄とアルミニウムからなり、耐酸化性や高温強度に優れる金属間化合物を結合相として用いたサーメット材料が検討されている[非特許文献1]。更に、熱伝導率を改善したTiC−TiB−30mass%FeAl複合材料も開発されている[非特許文献2]。この材料の熱伝導率は、TiBの混合量により調整可能であるという特徴を有している。 Therefore, a cermet material made of iron and aluminum and using an intermetallic compound having excellent oxidation resistance and high-temperature strength as a binder phase has been studied [Non-Patent Document 1]. Furthermore, a TiC—TiB 2 -30 mass% Fe 3 Al composite material with improved thermal conductivity has also been developed [Non-Patent Document 2]. The thermal conductivity of this material is characterized by being adjustable by the amount of TiB 2 mixed.

しかし、この材料は、結合相中の鉄とTiBが焼結中に反応し、硼化鉄が生成することで強度が低下し、曲げ強度は0.8GPa程度しか示さないため、実用硬質材料として用いることは不可能であった。更に、このような硬質材料を作製するためには、高温で長時間の焼結を行う必要があり、炭化チタンと硼化チタンとの反応や結合金属相との反応が生じて、TiC−TiB−30mass%FeAlでは、緻密な焼結体ほど、強度が低下する傾向を示した。 However, this material is a practical hard material because the iron in the binder phase reacts with TiB 2 during the sintering, and iron boride is generated to reduce the strength and the bending strength is only about 0.8 GPa. It was impossible to use as. Furthermore, in order to produce such a hard material, it is necessary to sinter for a long time at a high temperature, and a reaction between titanium carbide and titanium boride and a reaction with a bonded metal phase occur, and TiC-TiB In 2-30 mass% Fe 3 Al, the denser the sintered body, the lower the strength.

しかし、硬質材料の強度は、焼結性に依存しており、硬質粒子−結合相間の反応は必要である。この矛盾する2つの現象を同時に解決することは難しく、これまで、軽量で、耐酸化性に優れる、高熱伝導性の実用的な強度を有する硬質材料を作製することはできなかった。このようなことから、当技術分野においては、軽量で、耐酸化性に優れ、高熱伝導率を有し、強度が実用レベルまで向上した新しい硬質材料を作製する技術を開発することが強く要請されていた。   However, the strength of the hard material depends on the sinterability, and a reaction between the hard particles and the binder phase is necessary. It has been difficult to solve these two contradictory phenomena at the same time, and it has not been possible to produce a hard material that is lightweight, excellent in oxidation resistance, and has high thermal conductivity and practical strength. For this reason, there is a strong demand in this technical field to develop a technique for producing a new hard material that is lightweight, excellent in oxidation resistance, has high thermal conductivity, and has improved strength to a practical level. It was.

粉体粉末冶金協会講演概要集 平成20年度春季大会(2008),pp29Summary of Powder and Powder Metallurgy Association 2008 Spring Meeting (2008), pp29 粉体及び粉末冶金、第56巻、「通電焼結で作製したTiB2添加TiC/Fe−Alサーメットの特性」、(2009)775Powder and Powder Metallurgy, Vol. 56, “Characteristics of TiB2-added TiC / Fe—Al Cermet Prepared by Current Sintering”, (2009) 775

このような状況の中で、本発明者らは、上記従来技術に鑑みて、軽量で、耐酸化性に優れる、高熱伝導性硬質材料を開発することを目標として鋭意研究を積み重ねた結果、炭化チタン、硼化チタンを、鉄とアルミニウムからなるFeAl金属間化合物で結合した複合材料において、結合相の割合を小さくすること、結合相中の鉄の割合を小さくすること、あるいは硼化チタンの一部を熱伝導性に優れる炭化物系の硬質粒子で置き換えること、更に、短時間での焼結を行うことにより、硼化チタンと鉄との反応を抑制して、強度を向上させた、軽量で、耐酸化性に優れる、高熱伝導性の硬質材料を作製できることを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors, as a result of intensive research aimed at developing a highly thermally conductive hard material that is light in weight and excellent in oxidation resistance in view of the above-described prior art, In a composite material in which titanium and titanium boride are bonded with an FeAl intermetallic compound composed of iron and aluminum, the ratio of the binder phase is reduced, the ratio of iron in the binder phase is reduced, or one of the titanium borides By replacing the hard part with carbide-based hard particles with excellent thermal conductivity, and by sintering in a short time, the reaction between titanium boride and iron is suppressed and the strength is improved. The inventors have found that a hard material having excellent oxidation resistance and high thermal conductivity can be produced, and the present invention has been completed.

本発明は、軽量で、耐酸化性、熱伝導性に優れるTiC−TiB−(Fe−Al)複合材料において、結合金属相の割合を小さくする、硬質材料における鉄の割合を小さくする、あるいは硼化チタンの一部を炭化物系硬質材料に置き換えることにより、焼結時の鉄と硼化チタンの反応を抑制し、軽量で、耐酸化性、高熱伝導性を有し、強度を向上させた実用的な硬質材料を作製するための技術及びその製品を提供することを目的とするものである。 The present invention is a light-weight TiC-TiB 2- (Fe-Al) composite material that is excellent in oxidation resistance and thermal conductivity, reduces the proportion of the bonded metal phase, reduces the proportion of iron in the hard material, or By replacing a part of titanium boride with a carbide-based hard material, the reaction between iron and titanium boride during sintering is suppressed, light weight, oxidation resistance, high thermal conductivity, and improved strength. The object is to provide a technique for producing a practical hard material and its product.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)硬質粒子の炭化チタン粉末と硼化チタン粉末を、金属の鉄とアルミニウムを含むFeAl合金あるいはFeAl金属間化合物を結合相として焼き固めて、軽量で、耐酸化性に優れる、高熱伝導性硬質材料を作製する方法であって、
メカニカルアイロニングにより原料の硬質粒子粉末と金属粉末を強制的に接着させることにより硬質粒子と金属との界面反応を焼結前に促進させ、これを成形して、ホットプレス又は通電焼結により直接加熱することにより、焼結を行い、鉄と硼化チタンとの反応を抑制して、鉄の硼化物である硼化鉄の生成を抑制することで機械的強度を向上させることを特徴とする、軽量で、耐酸化性に優れる、高熱伝導性硬質材料の作製方法。
(2)鉄とアルミニウムを含む結合相が、鉄とアルミニウムの割合が重量比で6:1(Fe−13.9mass%Al)から2:1(Fe−33.3mass%Al)の範囲で、結晶構造がBCCあるいはB2構造を有している、前記(1)に記載の軽量で耐酸化性に優れる高熱伝導性硬質材料の作製方法。
(3)鉄とアルミニウムを含む結合相を40質量%又はそれより少なくして、硼化鉄の生成を抑制する、前記(1)又は(2)に記載の軽量で耐酸化性に優れる高熱伝導性硬質材料の作製方法。
(4)硼化チタンの一部を炭化物系の硬質粒子のWC、ZrC又はHfCに置き換え、鉄と硼化チタンとの反応を抑制して硼化鉄の生成を抑制する、前記(1)から(3)のいずれか一項に記載の軽量で耐酸化性に優れる高熱伝導性硬質材料の作製方法。
(5)炭化チタン粉末、硼化チタン粉末、鉄及びアルミニウム粉末を機械的に混合することにより機械的な力で硬質粒子と金属を接合させ、次いで、焼結を行うことで、硼化鉄の生成を抑制する、前記(1)から(4)のいずれか一項に記載の軽量で耐酸化性に優れる高熱伝導性硬質材料の作製方法。
(6)原料粉末に通電して、焼結する通電焼結を行うことで、硼化鉄の生成を抑制する、前記(1)から(5)のいずれか一項に記載の軽量で耐酸化性に優れる高熱伝導性硬質材料の作製方法。
(7)前記(1)から(6)のいずれか一項に記載の方法により作製した、軽量で、耐酸化性に優れる、高熱伝導性硬質材料であって、
炭化チタンと硼化チタンを、鉄とアルミニウムを含むFeAl合金あるいはFeAl金属間化合物を結合相として焼き固めた構造を有し、鉄とアルミニウムを含む結合相の結晶構造がBCCあるいはB2構造であり、鉄の硼化物である硼化鉄の生成が抑制されており、少なくとも1000MPaの曲げ強度の機械的強度を示すことを特徴とする高熱伝導性硬質材料。
(8)鉄とアルミニウムを含む結合相が、0超〜40重量%である、前記(7)に記載の高熱伝導性硬質材料。
(9)鉄とアルミニウムを含む結合相が、鉄とアルミニウムの割合が重量比でFe−13.9mass%Al〜33.3mass%Alの範囲の組成を有する、前記(7)又は(8)に記載の高熱伝導性硬質材料。
The present invention for solving the above-described problems comprises the following technical means.
(1) Titanium carbide powder and titanium boride powder, which are hard particles, are baked and hardened with FeAl alloy or FeAl intermetallic compound containing metallic iron and aluminum as a binder phase, light weight, excellent oxidation resistance, and high thermal conductivity A method of making a hard material,
Mechanical ironing forcibly bonds the raw hard particle powder and metal powder to promote the interfacial reaction between the hard particles and the metal before sintering, molding this, and then heating directly by hot pressing or electric sintering By carrying out sintering, the reaction between iron and titanium boride is suppressed, and the mechanical strength is improved by suppressing the formation of iron boride that is an iron boride. A method for producing a highly thermally conductive hard material that is lightweight and excellent in oxidation resistance.
(2) The binder phase containing iron and aluminum has a weight ratio of iron: aluminum in the range of 6: 1 (Fe-13.9 mass% Al) to 2: 1 (Fe-33.3 mass% Al), The method for producing a lightweight, highly heat-conductive hard material having excellent oxidation resistance, as described in (1), wherein the crystal structure has a BCC or B2 structure.
(3) High thermal conductivity excellent in oxidation resistance with light weight as described in (1) or (2) above, wherein the binder phase containing iron and aluminum is 40% by mass or less to suppress the formation of iron boride. Of producing a hard material.
(4) A part of titanium boride is replaced with WC , ZrC or HfC of carbide-based hard particles, and the reaction between iron and titanium boride is suppressed to suppress the formation of iron boride. To (3). A method for producing a highly thermally conductive hard material that is lightweight and excellent in oxidation resistance.
(5) Titanium carbide powder, titanium boride powder, iron and aluminum powder are mechanically mixed to join the hard particles and metal with mechanical force, and then sintered, The method for producing a highly thermally conductive hard material that suppresses formation and is lightweight and excellent in oxidation resistance according to any one of (1) to (4).
(6) The light weight and oxidation resistance according to any one of (1) to (5), wherein the raw material powder is energized and subjected to sintering to suppress the formation of iron boride. For producing a highly heat-conductive hard material with excellent heat resistance.
(7) A highly thermally conductive hard material that is light and excellent in oxidation resistance, produced by the method according to any one of (1) to (6),
Titanium carbide and titanium boride have a structure in which a FeAl alloy containing iron and aluminum or a FeAl intermetallic compound is baked and solidified as a binder phase, and the crystal structure of the binder phase containing iron and aluminum is a BCC or B2 structure, A highly heat-conductive hard material characterized in that the formation of iron boride, which is an iron boride, is suppressed, and exhibits a mechanical strength with a bending strength of at least 1000 MPa.
(8) The high thermal conductive hard material according to (7), wherein the binder phase containing iron and aluminum is more than 0 to 40% by weight.
(9) In the above (7) or (8), the binder phase containing iron and aluminum has a composition in which the ratio of iron to aluminum is in the range of Fe-13.9 mass% Al to 33.3 mass% Al by weight ratio. High thermal conductivity hard material as described.

次に、本発明について、更に詳細に説明する。
本発明は、炭化チタンと硼化チタンを、鉄とアルミニウムを含むFeAl合金あるいはFeAl金属間化合物を結合相とした、軽量で、耐酸化性、熱伝導性に優れた複合材料において、機械的特性を改善するために、結合相や結合相中の鉄の割合を小さくすること、硼化チタンの一部を炭化物系硬質材料で置き換えること、短時間での焼結を行うことで、鉄−硼化チタン間の反応を抑制させ、実用的な、軽量で、耐酸化性に優れる、高熱伝導性硬質材料を作製することを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention is a lightweight composite material having titanium carbide and titanium boride and a FeAl alloy containing iron and aluminum or a FeAl intermetallic compound as a binder phase and excellent in oxidation resistance and thermal conductivity. In order to improve this, iron-boron is reduced by reducing the binder phase and the proportion of iron in the binder phase, replacing a part of titanium boride with a carbide-based hard material, and performing sintering in a short time. It is characterized in that a reaction between titanium hydrides is suppressed, and a highly heat-resistant hard material that is practical, lightweight, and excellent in oxidation resistance is produced.

焼結で得られた硬質材料の硬度は、結合相の量に大きく左右される。結合相である鉄とアルミニウムを含む金属間化合物や合金からなる金属相の量は、0超〜40質量%であり、40重量%を超えると、硬度は、85HRAより小さくなり、硬質材料としての耐摩耗性が大きく低下する。また、結合相が多いと、高温での硬度が低下し、高温での使用には不向きとなる。更に、焼結時に、結合相と硬質粒子の反応が促進し、硼化鉄の生成量が増加し、機械的強度が低下することとなる。   The hardness of the hard material obtained by sintering greatly depends on the amount of the binder phase. The amount of the metal phase composed of an intermetallic compound or alloy containing iron and aluminum as the binder phase is more than 0 to 40% by mass, and when it exceeds 40% by weight, the hardness becomes smaller than 85HRA, Abrasion resistance is greatly reduced. Moreover, when there are many binder phases, the hardness at high temperature falls and it becomes unsuitable for use at high temperature. Furthermore, during the sintering, the reaction between the binder phase and the hard particles is promoted, the amount of iron boride produced is increased, and the mechanical strength is lowered.

一般に、硬質粒子と金属からなる超硬合金やサーメットなどの硬質材料は、硬質粒子粉末と金属粉末を均質に混合した後、プレス成形して、真空中において加熱することで、焼結して作製されている。複数の硬質粒子を含有する本願発明の高熱伝導性硬質材料では、硬質粒子相互の反応を抑制するために、低温での焼結が有効であると考えられる。   In general, hard materials such as cemented carbides and cermets made of hard particles and metal are mixed by mixing the hard particle powder and metal powder, then press-molded and heated in a vacuum for sintering. Has been. In the highly heat conductive hard material of the present invention containing a plurality of hard particles, it is considered that sintering at a low temperature is effective in order to suppress the reaction between the hard particles.

しかし、焼結で得られた硬質材料の強度は、硬質粒子と金属との界面反応で決定される場合が多く、十分な反応が進行するためには、高温が必要である。本発明者らは、この矛盾した2つの現象を同時に満足させるためには、硬質粒子と金属の界面反応を焼結前に促進させることが有効であると考えた。   However, the strength of the hard material obtained by sintering is often determined by the interfacial reaction between the hard particles and the metal, and a high temperature is required for sufficient reaction to proceed. The present inventors considered that it is effective to promote the interfacial reaction between hard particles and metal before sintering in order to satisfy these two contradictory phenomena simultaneously.

これを実現するためには、硬質粒子と金属を強い力で撹拌し、機械的な力で硬質粒子と金属を接合することが効果的である。例えば、機械的合金化法(メカニカルアロイング)などは、その効果的な技術として例示でき、酸化を防止できる雰囲気中で、好適なエネルギーのもとで実施することが有効である。   In order to realize this, it is effective to stir the hard particles and the metal with a strong force and join the hard particles and the metal with a mechanical force. For example, a mechanical alloying method (mechanical alloying) or the like can be exemplified as an effective technique, and it is effective to carry out under suitable energy in an atmosphere that can prevent oxidation.

得られた硬質材料粉末の焼結温度を更に低減するためには、真空焼結より、加圧力を利用したホットプレスや通電焼結などが有効であり、急速な加熱と冷却が実現できる通電焼結は、好適な焼結方法である。   In order to further reduce the sintering temperature of the obtained hard material powder, hot pressing using pressure and electric current sintering are more effective than vacuum sintering, and electric heating that can realize rapid heating and cooling is effective. Consolidation is a suitable sintering method.

また、焼結時に燃焼合成反応のような発熱反応を誘発させることも強固な界面を形成する上では有効である。特に、Fe−13.9〜33.0mass%Alの組成を有するFe−Al系金属間化合物は、燃焼合成反応で合成されることから、焼結中に金属間化合物相を合成することは、低温焼結に効果的である。   Inducing an exothermic reaction such as a combustion synthesis reaction during sintering is also effective in forming a strong interface. In particular, since an Fe-Al-based intermetallic compound having a composition of Fe-13.9 to 33.0 mass% Al is synthesized by a combustion synthesis reaction, synthesizing an intermetallic compound phase during sintering, Effective for low temperature sintering.

本発明では、1)メカニカルアイロニングにより粉末を強制的に接着させること、2)ホットプレスや通電焼結法により直接加熱することにより、比較的低温での焼結あるいは短時間での焼結を行うこと、が重要である。本発明は、従来材と比べて、1)軽量、耐酸化性、高熱伝導率はそのままで、2)硼化鉄の生成が抑制され、強度が実用レベルまで向上し、それにより、軽量で、耐酸化性に優れ、かつ強度が実用レベルに向上した高熱伝導硬質材料を提供することを可能としたものである。   In the present invention, 1) powder is forcibly adhered by mechanical ironing, and 2) sintering is performed at a relatively low temperature or in a short time by direct heating by hot pressing or electric current sintering. This is very important. Compared with the conventional material, the present invention is 1) light weight, oxidation resistance and high thermal conductivity as it is, 2) generation of iron boride is suppressed, and the strength is improved to a practical level. This makes it possible to provide a highly heat-conductive hard material that is excellent in oxidation resistance and has a strength improved to a practical level.

焼結で得られる硬質材料の機械的特性、特に強度は、結合相の組成に大きく依存している。結合相となる(FeAl)金属間化合物あるいは合金のFe:Alの重量比は、6:1(Fe−13.9mass%Al)から2:1(Fe−33.3mass%Al)の範囲で、結晶構造は、BCCあるいはB2構造を有するものである。更に、置き換える炭化物系の硬質粒子の量は、TiBが5mass%以上、硬質材料に含まれるようにすることが望ましい。従来材であるFeAlは、DOと呼ばれる結晶構造を有しており、本発明の硬質材料と比べて、結合相の結晶構造が相違する。 The mechanical properties, in particular the strength, of the hard material obtained by sintering are highly dependent on the composition of the binder phase. The Fe: Al weight ratio of the (FeAl) intermetallic compound or alloy to be the binder phase is in the range of 6: 1 (Fe-13.9 mass% Al) to 2: 1 (Fe-33.3 mass% Al), The crystal structure has a BCC or B2 structure. Furthermore, the amount of carbide-based hard particles to be replaced is preferably such that TiB 2 is contained in the hard material in an amount of 5 mass% or more. Fe 3 Al which is a conventional material has a crystal structure called DO 3, and the crystal structure of the binder phase is different from that of the hard material of the present invention.

Al量が、FeAl金属間化合物より少ない場合、硬質材料の結合相は、700℃を超える高温での耐酸化性が低下する。更に、鉄の量が増加することで、鉄と硼化チタンとの焼結時の反応が起こり、機械的強度は大幅に低下する。また、Al量が、FeAl金属間化合物より多い場合には、硬質材料の強度が低下する。更に、アルミニウム量が増加すると、硬質材料の熱伝導率は低下し、高熱伝導性という特性を維持できなくなる。 When the amount of Al is less than that of the Fe 3 Al intermetallic compound, the binder phase of the hard material has reduced oxidation resistance at a high temperature exceeding 700 ° C. Furthermore, when the amount of iron increases, a reaction occurs during the sintering of iron and titanium boride, and the mechanical strength is greatly reduced. Moreover, when there is more Al content than a FeAl intermetallic compound, the intensity | strength of a hard material falls. Furthermore, when the amount of aluminum increases, the thermal conductivity of the hard material decreases, and it becomes impossible to maintain the characteristic of high thermal conductivity.

本発明では、従来材と比較して、1)結合相の割合を少なくすること、2)結合相中の鉄の割合を少なくすること、3)TiBの一部を炭化物系の硬質粒子に置き換えること、4)短時間での焼結を行うこと、が重要である。ここで、結合相の割合は、40mass%以下であることが好ましく、結合相中の鉄の割合は、86.1mass%以下であることが好ましい。TiBの一部に置き換える炭化物系の硬質粒子としては、WC,SiC,TiC,MoC,VC,BC,Cr,TaC,ZrC,FeC,NbC及びHfCが例示され、特に、WC、ZrC又はHfCが好適である。更に、置き換える炭化物系の硬質粒子の量は、TiBが5mass%以上、硬質材料に含まれるようにすることが望ましい。
In the present invention, compared with the conventional material, 1) the proportion of the binder phase is reduced, 2) the proportion of iron in the binder phase is reduced, and 3) a part of TiB 2 is converted into carbide-based hard particles. It is important to replace, and 4) to perform sintering in a short time. Here, the ratio of the binder phase is preferably 40 mass% or less, and the ratio of iron in the binder phase is preferably 86.1 mass% or less. The hard particles of carbide replacing a part of TiB 2, WC, SiC, TiC N, Mo 2 C, VC, B 4 C, Cr 2 C 3, TaC, ZrC, Fe 3 C, NbC and HfC are illustrative In particular, WC , ZrC or HfC is preferred. Furthermore, the amount of carbide-based hard particles to be replaced is preferably such that TiB 2 is contained in the hard material in an amount of 5 mass% or more.

そして、結合相のFeAl金属間化合物あるいは合金は、Fe−13.9〜33.0mass%Alの組成範囲において、700℃を超える高温でも耐酸化性が低下することがなく、また、機械的強度が低下せず、更に、熱伝導率は低下せず、高強度で、高熱伝導性という特性が維持される。   Further, the FeAl intermetallic compound or alloy of the binder phase does not deteriorate in oxidation resistance even at a high temperature exceeding 700 ° C. in the composition range of Fe-13.9 to 33.0 mass% Al, and has a mechanical strength. However, the thermal conductivity does not decrease, and the characteristics of high strength and high thermal conductivity are maintained.

本発明は、炭化チタン、硼化チタンを、鉄とアルミからなるFeAl金属間化合物で複合化した硬質材料に対して、結合相や結合相中の鉄の割合を減らすこと、あるいは硼化チタンの一部を炭化物系の硬質材料に置き換えることで、軽量で、熱伝導性、耐酸化性に優れた高強度の硬質材料を作製するものである。   The present invention reduces the binder phase and the ratio of iron in the binder phase to a hard material in which titanium carbide and titanium boride are compounded with an FeAl intermetallic compound composed of iron and aluminum, or By replacing a part with a carbide-based hard material, a light-weight, high-strength hard material excellent in thermal conductivity and oxidation resistance is produced.

従来、炭化チタンをニッケルで複合化した硬質材料には、サーメットがあるが、純金属が結合相として用いられるため、500℃を超える高温域での利用は、酸化や軟化の問題から適用が困難であった。そこで、結合相を耐酸化性に優れる金属間化合物で置き換え、更に、熱伝導性に優れる硼化チタンを添加することで、軽量で、耐酸化性、熱伝導性に優れた硬質材料を作製することができる。   Conventionally, hard materials in which titanium carbide is composited with nickel include cermet, but pure metal is used as the binder phase, so it is difficult to apply it in high temperatures exceeding 500 ° C due to oxidation and softening problems. Met. Therefore, by replacing the binder phase with an intermetallic compound having excellent oxidation resistance, and further adding titanium boride having excellent thermal conductivity, a light, hard material having excellent oxidation resistance and thermal conductivity is produced. be able to.

しかしながら、この種の硬質材料は、鉄と硼素の反応により、硼化鉄が形成され、強度が低下するという問題を有しており、その解決が求められていた。そこで、本発明では、結合相や結合相中の鉄の割合を減らすこと、あるいは硼化チタンの一部を炭化物系硬質材料に置き換えることで、強度を向上させることに成功し、実用的な、軽量で、耐酸化性、熱伝導性に優れた硬質材料を作製することに成功した。   However, this type of hard material has a problem that iron boride is formed by the reaction between iron and boron, and the strength is lowered, and a solution to this problem has been demanded. Therefore, in the present invention, by reducing the binder phase and the ratio of iron in the binder phase, or by replacing a part of titanium boride with a carbide-based hard material, the present invention succeeded in improving the strength, and is practical. We succeeded in producing a hard material that is lightweight, excellent in oxidation resistance and thermal conductivity.

本発明による硬質材料を金型へ適用することで、加工温度を高くすることが可能となり、加工時の素材の変形抵抗も小さくなり、省エネルギーで加工を行うことが可能となる。更に、本発明の硬質材料は、耐熱性の効果で、従来、冷却のため、湿式の環境でしか加工できなかった作業が、乾式で実施することができ、環境への負荷も小さくすることが可能となる、また、本発明の硬質材料は、軽量であるため、金型の運搬、取り付けにかかる作業者の負担を大幅に軽減できる、という利点を有する。   By applying the hard material according to the present invention to the mold, the processing temperature can be increased, the deformation resistance of the material during processing can be reduced, and processing can be performed with energy saving. Furthermore, the hard material of the present invention has a heat resistance effect, so that the work that has been conventionally processed only in a wet environment for cooling can be carried out in a dry manner, and the burden on the environment can be reduced. Moreover, since the hard material of the present invention is lightweight, it has an advantage that the burden on the worker for transporting and mounting the mold can be greatly reduced.

本発明により、次のような効果が奏される。
(1)軽量で、熱伝導性、耐酸化性に優れた高強度の硬質材料を製造し、提供することができる。
(2)従来材と比較して、軽量、耐酸化性、高熱伝導率はそのままで、硼化鉄の生成が抑制され、強度が実用レベルにまで向上した新規硬質材料を提供することができる。
(3)従来材に比べて、結合相や結合相中の鉄の割合を減らすこと、あるいは硼化チタンの一部を炭化物硬質材料に置き換えることで、強度を向上させることが可能となった。
(4)本発明の硬質材料を金型へ適用することで、加工温度を高くすることが可能となり、加工時の素材の変形抵抗も少さくなり、省エネルギーで加工を行うことが実現できる。
(5)耐熱性の効果で、従来、湿式での環境でしかできなかった作業を、乾式で実施することが可能となり、環境への負荷を小さくすることができる。
(6)軽量であるため、金型の運搬、取り付けにかかる作業者の負担を大幅に軽減することができる。
The present invention has the following effects.
(1) A high-strength hard material that is lightweight and excellent in thermal conductivity and oxidation resistance can be manufactured and provided.
(2) Compared with the conventional material, it is possible to provide a novel hard material whose weight, oxidation resistance, and high thermal conductivity are kept as they are, generation of iron boride is suppressed, and strength is improved to a practical level.
(3) Compared to the conventional material, it has become possible to improve the strength by reducing the binder phase and the proportion of iron in the binder phase, or by replacing a part of titanium boride with a carbide hard material.
(4) By applying the hard material of the present invention to the mold, it is possible to increase the processing temperature, the deformation resistance of the material during processing is reduced, and it is possible to perform processing with energy saving.
(5) Due to the effect of heat resistance, it is possible to carry out operations that have heretofore been performed only in a wet environment in a dry manner, and the load on the environment can be reduced.
(6) Since it is lightweight, the burden on the operator concerning transportation and attachment of the mold can be greatly reduced.

TiB−30mass%(Fe−15mass%Al)焼結体(上)と、TiB−30mass%(Fe−33mass%Al)焼結体(下)のX線回折パターンである。TiB 2 -30mass% and (Fe-15 mass% Al) sintered body (top), an X-ray diffraction pattern of TiB 2 -30mass% (Fe-33mass % Al) sintered body (bottom).

次に、実施例により本発明を更に具体的に説明するが、本発明は、これらの例によって何ら限定されるものではない。すなわち、本発明は、本発明の技術思想の範囲で、以下の実施例以外の態様あるいは変形を全て包含するものである。   EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited at all by these examples. That is, the present invention encompasses all aspects or modifications other than the following examples within the scope of the technical idea of the present invention.

硼化チタン粉末、鉄粉末、アルミニウム粉末を、TiB−30mass%(Fe−Al)組成になるように秤量し、乳鉢による混合を行った後、内径10mm、外径30mm、高さ30mmの黒鉛型に充填して、通電焼結で、10mmφ×4mmの焼結体を作製した。 Titanium boride powder, iron powder, and aluminum powder were weighed so as to have a TiB 2 -30 mass% (Fe—Al) composition, mixed with a mortar, and then graphite having an inner diameter of 10 mm, an outer diameter of 30 mm, and a height of 30 mm. The mold was filled and a sintered body of 10 mmφ × 4 mm was produced by electric current sintering.

焼結は、真空中で行い、30MPaの加圧下で加熱し、1250℃で、1分間保持した。なお、Feに対するAlの割合は、15mass%Al、25mass%Al、33mass%Alとした。得られた焼結体の構成相をX線回折により分析し、密度、比熱、熱拡散率から、熱伝導率を求めた。   Sintering was performed in a vacuum, heated under a pressure of 30 MPa, and held at 1250 ° C. for 1 minute. Note that the ratio of Al to Fe was 15 mass% Al, 25 mass% Al, and 33 mass% Al. The constituent phases of the obtained sintered body were analyzed by X-ray diffraction, and the thermal conductivity was determined from the density, specific heat, and thermal diffusivity.

TiB−30mass%(Fe−15mass%Al)焼結体(上)と、TiB−30mass%(Fe−33mass%Al)焼結体(下)のX線回折パターンを、図1に示す。構成相は、TiBが支配的であり、結合相であるFeAl金属間化合物の生成が認められる。一部、FeBが生成しているが、硬質相は、TiB以外には変化していない。 FIG. 1 shows X-ray diffraction patterns of a TiB 2 -30 mass% (Fe-15 mass% Al) sintered body (upper) and a TiB 2 -30 mass% (Fe-33 mass% Al) sintered body (lower). The constituent phase is predominantly TiB 2 , and the formation of FeAl intermetallic compound as a binder phase is observed. Although FeB is partially generated, the hard phase is not changed except for TiB 2 .

TiB−30mass%(Fe−15mass%Al)焼結体は、密度が4.75g/cmで、熱伝導率は69.7W/mKを示した。また、TiB−30mass%(Fe−25mass%Al)焼結体は、密度が4.73g/cmで、熱伝導率は61.7W/mKを示した。TiB−30mass%(Fe−33mass%Al)焼結体では、密度が3.11g/cmで、熱伝導率は、56.0W/mKであった。 The TiB 2 -30 mass% (Fe-15 mass% Al) sintered body had a density of 4.75 g / cm 3 and a thermal conductivity of 69.7 W / mK. The TiB 2 -30 mass% (Fe-25 mass% Al) sintered body had a density of 4.73 g / cm 3 and a thermal conductivity of 61.7 W / mK. In the TiB 2 -30 mass% (Fe-33 mass% Al) sintered body, the density was 3.11 g / cm 3 and the thermal conductivity was 56.0 W / mK.

いずれの焼結体も、軽量であり、高い熱伝導性を示した。結合相のアルミニウム量が増加するにしたがって、密度は軽くなっており、熱伝導率は、若干低下した。また、得られた焼結体は、いずれも大気中で900℃に加熱した場合の酸化増量は、TiB−30mass%Fe焼結体の5%以下であり、高い耐酸化性を示した。 All the sintered bodies were lightweight and showed high thermal conductivity. As the amount of aluminum in the binder phase increased, the density decreased and the thermal conductivity decreased slightly. In addition, the obtained sintered bodies exhibited an oxidation resistance increase of 5% or less of the TiB 2 -30 mass% Fe sintered body when heated to 900 ° C. in the air, and exhibited high oxidation resistance.

硬質粒子に、TiC、WC、TiBを用い、TiB−14.3mass%TiC−37.1mass%WC−25.9mass%Fe−8.4mass%Al組成になるように、原料粉末であるTiB、TiC、WC、Fe及びAlを秤量した後、遊星型ボールミルで混合を行った。 Using TiC, WC, and TiB 2 as hard particles, TiB 2 -14.3 mass% TiC-37.1 mass% WC-25.9 mass% Fe-8.4 mass% TiB, which is a raw material powder, is used. 2 , TiC, WC, Fe and Al were weighed and then mixed with a planetary ball mill.

得られた粉末8gを、25mm×25mm×4mmの焼結体が作製できる黒鉛製型に充填した。黒鉛製のパンチを用いて、原料粉末を上下から40MPaで加圧しながら通電により加熱した。焼結は、真空中で、1250℃、保持時間は、3分の条件で行った。   8 g of the obtained powder was filled into a graphite mold capable of producing a sintered body of 25 mm × 25 mm × 4 mm. Using a graphite punch, the raw material powder was heated by energization while being pressed from above and below at 40 MPa. Sintering was performed in vacuum at 1250 ° C. and holding time of 3 minutes.

得られた焼結体から、3mm×4mm×25mmの試験片を切り出し、3点曲げによる強度測定を行った。焼結体は、1254MPaの曲げ強度を示し、ロックウェルAスケールにおける硬度は、90.4HRAと、高強度で、高硬度であった。また、結合相中の鉄の含有量を減らし、TiBの一部をWCで置き換えることで、硼化鉄の生成が抑制されていることが分かった。 A test piece of 3 mm × 4 mm × 25 mm was cut out from the obtained sintered body, and the strength was measured by three-point bending. The sintered body exhibited a bending strength of 1254 MPa, and the hardness on the Rockwell A scale was 90.4 HRA, which was high strength and high hardness. Also, reducing the iron content of binder phase, by replacing a portion of TiB 2 in WC, it was found that the formation of iron boride is suppressed.

硬質粒子に、TiC、WC、TiBを用い、TiB−17.1mass%TiC−42.9mass%WC−25.9mass%Fe−8.4mass%Al組成になるように、原料粉末であるTiB、TiC、WC、Fe及びAlを秤量した後、遊星型ボールミルで混合を行った。 Using TiC, WC, and TiB 2 as hard particles, TiB 2 -17.1 mass% TiC-42.9 mass% WC-25.9 mass% Fe-8.4 mass% TiB as a raw material powder is used. 2 , TiC, WC, Fe and Al were weighed and then mixed with a planetary ball mill.

得られた粉末8gを、25mm×25mm×4mmの焼結体が作製できる黒鉛製型に充填した。黒鉛製のパンチを用いて、原料粉末を上下から40MPaで加圧しながら通電により加熱した。焼結は、真空中で、1250℃、保持時間は、3分の条件で行った。   8 g of the obtained powder was filled into a graphite mold capable of producing a sintered body of 25 mm × 25 mm × 4 mm. Using a graphite punch, the raw material powder was heated by energization while being pressed from above and below at 40 MPa. Sintering was performed in vacuum at 1250 ° C. and holding time of 3 minutes.

得られた焼結体から、3mm×4mm×25mmの試験片を切り出し、3点曲げによる強度測定を行った。焼結体は、1392MPaの曲げ強度を示し、ロックウェルAスケールにおける硬度は、89.0HRAと、高強度で、高硬度であった。また、結合相中の鉄の含有量を減らし、TiBの一部をWCで置き換えることで、硼化鉄の生成が抑制されていることが分かった。 A test piece of 3 mm × 4 mm × 25 mm was cut out from the obtained sintered body, and the strength was measured by three-point bending. The sintered body exhibited a bending strength of 1392 MPa, and the hardness on the Rockwell A scale was 89.0HRA, which was high strength and high hardness. Also, reducing the iron content of binder phase, by replacing a portion of TiB 2 in WC, it was found that the formation of iron boride is suppressed.

硬質粒子に、TiC,TiBを用い、TiC−30mass%TiB−30.3mass%Fe−9.7mass%Al組成になるように原料粉末であるTiC,TiB,Fe及びAlを秤量したのち、遊星型ボールミルで混合を行った。得られた粉末8gを25mm×25mm×4mmの焼結体が作製できる黒鉛製型に充填した。黒鉛製のパンチを用いて、原料粉末を、40MPaで加圧しながら通電を行い、加熱した。焼結は、真空中で1280℃、保持時間2分の条件で行った。 TiC, TiB 2 are used for the hard particles, and TiC, TiB 2 , Fe and Al as raw material powders are weighed so that the composition of TiC-30 mass% TiB 2 -30.3 mass% Fe-9.7 mass% Al is obtained. Mixing was performed using a planetary ball mill. 8 g of the obtained powder was filled into a graphite mold capable of producing a sintered body of 25 mm × 25 mm × 4 mm. Using a graphite punch, the raw material powder was energized and heated while being pressurized at 40 MPa. Sintering was performed in vacuum at 1280 ° C. and a holding time of 2 minutes.

得られた焼結体から3mm×4mm×25mmの試験片を切り出し、3点曲げによる強度測定を行った。焼結体は、1023MPaの曲げ強度を示し、ロックウェルAスケールにおける硬度は、88.3HRAであり、高強度で高硬度であった。   A test piece of 3 mm × 4 mm × 25 mm was cut out from the obtained sintered body, and the strength was measured by three-point bending. The sintered body exhibited a bending strength of 1023 MPa, and the hardness on the Rockwell A scale was 88.3 HRA, which was high strength and high hardness.

以上詳述したように、本発明は、軽量で、耐酸化性に優れる、高熱伝導性硬質材料及びその作製方法に係るものであり、本発明により、軽量で、熱伝導性、耐酸化性に優れた高強度の硬質材料を製造し、提供することができる。本発明により、従来材と比較して、軽量、耐酸化性、高熱伝導率はそのままで、硼化鉄の生成が抑制され、強度が実用レベルにまで向上した新規硬質材料を提供することができ、従来材に比べて、結合相や結合相中の鉄の割合を減らすこと、あるいは硼化チタンの一部を炭化物系の硬質材料に置き換えることで、強度を向上させることができる。本発明の硬質材料を金型へ適用することで、加工温度を高くすることが可能となり、加工時の素材の変形抵抗も少さくなり、省エネルギーで加工を行うことが可能であり、耐熱性の効果で、従来、湿式での環境でしかできなかった作業を、乾式で実施することが可能となり、環境への負荷を小さくすることができる。本発明の硬質材料は、軽量であるため、金型の運搬、取り付けにかかる作業者の負担を大幅に軽減することができる。本発明は、耐酸化性に優れる硬質材料において、熱伝導性に優れる硬質粒子を、硬質粒子間及び結合相との反応を抑制して、複合化することで、熱伝導性及び強度を向上した硬質材料を提供するものとして有用である。   As described above in detail, the present invention relates to a highly heat conductive hard material that is lightweight and excellent in oxidation resistance, and a method for producing the same, and according to the present invention, the light weight, heat conductivity, and oxidation resistance are reduced. An excellent high-strength hard material can be manufactured and provided. According to the present invention, compared to conventional materials, it is possible to provide a novel hard material whose weight, oxidation resistance, and high thermal conductivity remain the same, generation of iron boride is suppressed, and strength is improved to a practical level. Compared to conventional materials, the strength can be improved by reducing the binder phase or the ratio of iron in the binder phase, or by replacing a part of titanium boride with a carbide-based hard material. By applying the hard material of the present invention to the mold, the processing temperature can be increased, the deformation resistance of the material during processing is reduced, it is possible to perform processing with energy saving, heat resistance As a result, it is possible to carry out operations that have been conventionally performed only in a wet environment in a dry manner, and the load on the environment can be reduced. Since the hard material of the present invention is lightweight, it can greatly reduce the burden on the operator for carrying and mounting the mold. The present invention improves the thermal conductivity and strength by combining hard particles with excellent thermal conductivity in a hard material with excellent oxidation resistance by suppressing the reaction between the hard particles and with the binder phase. Useful for providing a hard material.

Claims (9)

硬質粒子の炭化チタン粉末と硼化チタン粉末を、金属の鉄とアルミニウムを含むFeAl合金あるいはFeAl金属間化合物を結合相として焼き固めて、軽量で、耐酸化性に優れる、高熱伝導性硬質材料を作製する方法であって、
メカニカルアイロニングにより原料の硬質粒子粉末と金属粉末を強制的に接着させることにより硬質粒子と金属との界面反応を焼結前に促進させ、これを成形して、ホットプレス又は通電焼結により直接加熱することにより、焼結を行い、鉄と硼化チタンとの反応を抑制して、鉄の硼化物である硼化鉄の生成を抑制することで機械的強度を向上させることを特徴とする、軽量で、耐酸化性に優れる、高熱伝導性硬質材料の作製方法。
Titanium carbide powder and titanium boride powder of hard particles are baked and hardened with FeAl alloy or FeAl intermetallic compound containing metallic iron and aluminum as binder phase, and light weight, high oxidation resistance hard material with excellent oxidation resistance A method of making,
Mechanical ironing forcibly bonds the raw hard particle powder and metal powder to promote the interfacial reaction between the hard particles and the metal before sintering, molding this, and then heating directly by hot pressing or electric sintering By carrying out sintering, the reaction between iron and titanium boride is suppressed, and the mechanical strength is improved by suppressing the formation of iron boride that is an iron boride. A method for producing a highly thermally conductive hard material that is lightweight and excellent in oxidation resistance.
鉄とアルミニウムを含む結合相が、鉄とアルミニウムの割合が重量比で6:1(Fe−13.9mass%Al)から2:1(Fe−33.3mass%Al)の範囲で、結晶構造がBCCあるいはB2構造を有している、請求項1に記載の軽量で耐酸化性に優れる高熱伝導性硬質材料の作製方法。   The binder phase containing iron and aluminum has a ratio of iron to aluminum in a weight ratio of 6: 1 (Fe-13.9 mass% Al) to 2: 1 (Fe-33.3 mass% Al), and has a crystal structure of The method for producing a lightweight, highly heat-conductive hard material having excellent oxidation resistance according to claim 1 having a BCC or B2 structure. 鉄とアルミニウムを含む結合相を40質量%又はそれより少なくして、硼化鉄の生成を抑制する、請求項1又は2に記載の軽量で耐酸化性に優れる高熱伝導性硬質材料の作製方法。   The method for producing a lightweight, highly heat-resistant hard material with excellent oxidation resistance according to claim 1 or 2, wherein the formation of iron boride is suppressed by reducing the binder phase containing iron and aluminum to 40% by mass or less. . 硼化チタンの一部を炭化物系の硬質粒子のWC、ZrC又はHfCに置き換え、鉄と硼化チタンとの反応を抑制して硼化鉄の生成を抑制する、請求項1から3のいずれか一項に記載の軽量で耐酸化性に優れる高熱伝導性硬質材料の作製方法。 4. A part of titanium boride is replaced with WC , ZrC or HfC of carbide-based hard particles, and the reaction between iron and titanium boride is suppressed to suppress the formation of iron boride. A method for producing a highly thermally conductive hard material that is lightweight and excellent in oxidation resistance. 炭化チタン粉末、硼化チタン粉末、鉄及びアルミニウム粉末を機械的に混合することにより機械的な力で硬質粒子と金属を接合させ、次いで、焼結を行うことで、硼化鉄の生成を抑制する、請求項1から4のいずれか一項に記載の軽量で耐酸化性に優れる高熱伝導性硬質材料の作製方法。   Titanium carbide powder, titanium boride powder, iron and aluminum powder are mechanically mixed to join hard particles and metal with mechanical force, and then sintering to suppress the formation of iron boride. The manufacturing method of the highly heat conductive hard material which is excellent in oxidation resistance with the light weight as described in any one of Claim 1 to 4. 原料粉末に通電して、焼結する通電焼結を行うことで、硼化鉄の生成を抑制する、請求項1から5のいずれか一項に記載の軽量で耐酸化性に優れる高熱伝導性硬質材料の作製方法。   The high thermal conductivity that is excellent in light weight and excellent in oxidation resistance according to any one of claims 1 to 5, wherein the formation of iron boride is suppressed by conducting electric current sintering to energize the raw material powder. Manufacturing method of hard material. 請求項1から6のいずれか一項に記載の方法により作製した、軽量で、耐酸化性に優れる、高熱伝導性硬質材料であって、
炭化チタンと硼化チタンを、鉄とアルミニウムを含むFeAl合金あるいはFeAl金属間化合物を結合相として焼き固めた構造を有し、鉄とアルミニウムを含む結合相の結晶構造がBCCあるいはB2構造であり、鉄の硼化物である硼化鉄の生成が抑制されており、少なくとも1000MPaの曲げ強度の機械的強度を示すことを特徴とする高熱伝導性硬質材料。
A highly heat-conductive hard material that is lightweight and excellent in oxidation resistance, produced by the method according to claim 1,
Titanium carbide and titanium boride have a structure in which a FeAl alloy containing iron and aluminum or a FeAl intermetallic compound is baked and solidified as a binder phase, and the crystal structure of the binder phase containing iron and aluminum is a BCC or B2 structure, A highly heat-conductive hard material characterized in that the formation of iron boride, which is an iron boride, is suppressed, and exhibits a mechanical strength with a bending strength of at least 1000 MPa.
鉄とアルミニウムを含む結合相が、0超〜40重量%である、請求項7に記載の高熱伝導性硬質材料。   The high thermal conductive hard material according to claim 7, wherein the binder phase containing iron and aluminum is more than 0 to 40% by weight. 鉄とアルミニウムを含む結合相が、鉄とアルミニウムの割合が重量比でFe−13.9mass%Al〜33.3mass%Alの範囲の組成を有する、請求項7又は8に記載の高熱伝導性硬質材料。   9. The highly thermally conductive hard material according to claim 7, wherein the binder phase containing iron and aluminum has a composition in which the ratio of iron to aluminum is in the range of Fe-13.9 mass% Al to 33.3 mass% Al in weight ratio. material.
JP2010136644A 2010-06-15 2010-06-15 Lightweight and highly heat-resistant hard material with excellent oxidation resistance and method for producing the same Expired - Fee Related JP5569965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010136644A JP5569965B2 (en) 2010-06-15 2010-06-15 Lightweight and highly heat-resistant hard material with excellent oxidation resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010136644A JP5569965B2 (en) 2010-06-15 2010-06-15 Lightweight and highly heat-resistant hard material with excellent oxidation resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012001755A JP2012001755A (en) 2012-01-05
JP5569965B2 true JP5569965B2 (en) 2014-08-13

Family

ID=45534076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010136644A Expired - Fee Related JP5569965B2 (en) 2010-06-15 2010-06-15 Lightweight and highly heat-resistant hard material with excellent oxidation resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5569965B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5756928B2 (en) * 2011-05-27 2015-07-29 国立研究開発法人産業技術総合研究所 Hard mold suitable for electric heating and its material
JP5760197B2 (en) * 2011-05-27 2015-08-05 国立研究開発法人産業技術総合研究所 Hard material with embedded heating element and its manufacturing method
CN110493526B (en) * 2019-09-10 2020-11-20 北京小米移动软件有限公司 Image processing method, device, equipment and medium based on multiple camera modules

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151911A (en) * 1974-05-30 1975-12-06
JP2611177B2 (en) * 1993-06-15 1997-05-21 工業技術院長 Cemented carbide with high hardness and excellent oxidation resistance
JP3032818B2 (en) * 1998-05-11 2000-04-17 工業技術院長 Titanium boride dispersed hard material

Also Published As

Publication number Publication date
JP2012001755A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
US7879129B2 (en) Wear part formed of a diamond-containing composite material, and production method
CN110423930A (en) A kind of high entropy ceramic-metal composite of Ultra-fine Grained and preparation method thereof
JP2008538228A (en) Intermetallic bonded diamond composite composition and method of forming an article from the composition
Majidian et al. Effect of heating method on microstructure and mechanical properties of zircon reinforced aluminum composites
US20110262295A1 (en) Method for fabricating hard particle-dispersed composite materials
Kol’tsova et al. Fabrication of a compacted aluminum-carbon nanofiber material by hot pressing
CN103231064A (en) Manufacturing method for novel nickel base solder brazing monolayer diamond grinding wheel
CN108251705A (en) A kind of TiCx-Ni3(Al, Ti)/Ni based composites and its hot pressing method for preparing
Cai et al. Microstructure and properties of Al/Sip composites for thermal management applications
JP5569965B2 (en) Lightweight and highly heat-resistant hard material with excellent oxidation resistance and method for producing the same
Dmitruk et al. Development of pore-free Ti-Si-C MAX/Al-Si composite materials manufactured by squeeze casting infiltration
CN113817933B (en) Ceramic reinforced titanium-based composite material, preparation method and application thereof
CN105728734A (en) High-strength superfine (TixBy-TiC)/7075Al composite and preparation method thereof
Wang et al. Ti-coated SiC particle reinforced sintered Fe–Cu–Sn alloy
JP2019203149A (en) Hard material and manufacturing method therefor
Davoodi et al. An investigation of the reduction mechanisms and magnesiothermic reactions in ZrC-Ni nanocomposite synthesis
Li et al. Fabrication and performance evaluation of metal bond diamond tools based on aluminothermic reaction
JP2004346368A (en) Method for manufacturing composite material, and composite material
CN108034866B (en) A kind of high-performance aluminium silicon nitride based composites and preparation method thereof
Rominiyi et al. Spark plasma sintering of discontinuously reinforced titanium matrix composites: densification, microstructure and mechanical properties—a review
Yin et al. Impacts of interface modification by Ni coating on the property of Cu matrix composites reinforced by β-Si3N4 whiskers
Amosov et al. Fabrication of Al-AlN nanocomposites
CN105154707A (en) Preparation method and application of wolfram carbide (WC) composite
JP2004339591A (en) W-Ti-C TYPE COMPOSITE BODY AND ITS MANUFACTURING METHOD
Huang et al. An environment-friendly metal bond diamond tool based on reactive sintered Fe3Al and grinding performance on ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140619

R150 Certificate of patent or registration of utility model

Ref document number: 5569965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees