JP5569734B2 - Method for producing hydrogen production catalyst for ethanol steam reforming and hydrogen production catalyst for ethanol steam reforming - Google Patents

Method for producing hydrogen production catalyst for ethanol steam reforming and hydrogen production catalyst for ethanol steam reforming Download PDF

Info

Publication number
JP5569734B2
JP5569734B2 JP2010179614A JP2010179614A JP5569734B2 JP 5569734 B2 JP5569734 B2 JP 5569734B2 JP 2010179614 A JP2010179614 A JP 2010179614A JP 2010179614 A JP2010179614 A JP 2010179614A JP 5569734 B2 JP5569734 B2 JP 5569734B2
Authority
JP
Japan
Prior art keywords
hydrogen production
steam reforming
production catalyst
water
ethanol steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010179614A
Other languages
Japanese (ja)
Other versions
JP2011056499A (en
Inventor
豊 福元
隆志 円城寺
有樹 田栗
俊平 久間
圭司 帆秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga Prefecture
Original Assignee
Saga Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga Prefecture filed Critical Saga Prefecture
Priority to JP2010179614A priority Critical patent/JP5569734B2/en
Publication of JP2011056499A publication Critical patent/JP2011056499A/en
Application granted granted Critical
Publication of JP5569734B2 publication Critical patent/JP5569734B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は、非晶質シリカと触媒活性成分としての金属酸化物との非晶質複合酸化物からなる水素製造触媒の製造方法に関する。   The present invention relates to a method for producing a hydrogen production catalyst comprising an amorphous composite oxide of amorphous silica and a metal oxide as a catalytic active component.

水素は、石油化学の原料として大量に使用されてきており、また、次世代型クリーンエネルギーの一つとして注目されている。水素は、メタン、エタン、プロパン、ブタン、灯油、メタノール、エタノールなどの炭化水素やアルコール等を主原料ガスとし、水(水蒸気)、二酸化炭素、酸素等を副原料ガスとして用い、それら原料ガスから、水蒸気改質反応、二酸化炭素改質反応、部分酸化反応等を利用して得ることができる。   Hydrogen has been used in large quantities as a raw material for petrochemicals, and has attracted attention as one of the next generation type clean energy. Hydrogen uses hydrocarbons such as methane, ethane, propane, butane, kerosene, methanol, ethanol, etc. as the main raw material gas, and water (steam), carbon dioxide, oxygen, etc. as the auxiliary raw material gas. , Steam reforming reaction, carbon dioxide reforming reaction, partial oxidation reaction and the like.

通常、上記主原料ガスのうち、特にバイオマスから製造することができるエタノールがカーボンニュートラルの観点から注目されている。エタノールの水蒸気改質は以下の式(1)で表される。

25OH+3H2O → 2CO2+6H2 (1)
Usually, among the above main raw material gases, ethanol that can be produced from biomass has attracted attention from the viewpoint of carbon neutrality. The steam reforming of ethanol is represented by the following formula (1).

C 2 H 5 OH + 3H 2 O → 2CO 2 + 6H 2 (1)

従来のアルコール改質触媒としては、例えば、特許文献1に記載の酸化物からなる担体の表面に貴金属触媒粒子を担持したPt/Al23やRh/Al23触媒や、あるいは特許文献2に記載の非晶質シリカにPdやCuを分散した触媒などが知られている。 As a conventional alcohol reforming catalyst, for example, a Pt / Al 2 O 3 or Rh / Al 2 O 3 catalyst in which noble metal catalyst particles are supported on the surface of a support made of an oxide described in Patent Document 1, or Patent Document A catalyst in which Pd or Cu is dispersed in the amorphous silica described in 2 is known.

特開昭63−182033号公報JP 63-182033 A 特開2002−263499号公報JP 2002-263499 A

ところで、上記式(1)の反応は、熱力学的には400℃程度で進行するが、十分な反応率を得るために、より高温で反応させることも多い。しかしながら、高温で長時間使用すると、触媒粒子の凝集が起こりやすく、有効反応表面積が低減するという問題がある。
また、アルコール等の原料ガスが熱分解した際に副生成物として、熱分解炭素が生成するため、高価な貴金属触媒を使用せざるを得ない。
By the way, the reaction of the above formula (1) proceeds thermodynamically at about 400 ° C., but is often reacted at a higher temperature in order to obtain a sufficient reaction rate. However, when used at a high temperature for a long time, there is a problem that the catalyst particles tend to aggregate and the effective reaction surface area is reduced.
Further, since pyrolytic carbon is generated as a by-product when the raw material gas such as alcohol is thermally decomposed, an expensive noble metal catalyst must be used.

一方、非晶質シリカは、有望な触媒担体の一つであるがテトラエトキシシランなどのアルコキシシランや水ガラスを原料として、酸や塩基を触媒として添加することで重合反応を進行させてゲルを形成し、そのゲルを数百度程度で焼成することで形成することができる。しかしながら、このような方法で作製した非晶質シリカは焼成の際に凝集して緻密に成りやすく、十分な反応表面積が得られないことが多い。   Amorphous silica, on the other hand, is one of the promising catalyst carriers. However, by using an alkoxysilane such as tetraethoxysilane or water glass as a raw material and adding an acid or a base as a catalyst, the polymerization reaction is allowed to proceed and the gel is formed. It can be formed by firing and firing the gel at about several hundred degrees. However, amorphous silica produced by such a method tends to aggregate and become dense during firing, and a sufficient reaction surface area is often not obtained.

このように、アルコールを原料にした反応で用いられる水素製造触媒に関しては、いまだ課題が多いのが実情である。   As described above, there are still many problems regarding the hydrogen production catalyst used in the reaction using alcohol as a raw material.

そこで、本発明の目的は、アルコール、特にエタノールを原料として、熱分解炭素の生成を抑制し、かつ、効率よく水素を製造するための水素製造触媒の製造方法、及び該製造方法によって製造した水素製造触媒を提供することである。   Accordingly, an object of the present invention is to provide a method for producing a hydrogen production catalyst for producing hydrogen efficiently while suppressing production of pyrolytic carbon using alcohol, particularly ethanol as a raw material, and hydrogen produced by the production method. It is to provide a production catalyst.

本発明者らは、上記の課題を解決すべく鋭意研究を重ね、本発明に至った。すなわち、本発明は、下記の発明を提供するものである。   The inventors of the present invention have intensively studied to solve the above-mentioned problems and have arrived at the present invention. That is, the present invention provides the following inventions.

すなわち、本発明は、以下の発明に係るものである。
<1> 触媒活性成分としての金属酸化物MOx(但し、Mは、スズ、コバルト、銅、マンガン、チタン、亜鉛、鉄、バナジウムより選ばれた1種または2種以上の金属元素であり、xは0<x≦3である。)の前駆体(A)、ケイ酸アルカリ金属塩(B)及び水溶性高分子(C)を含む混合溶液をゲル化させてゲル状体を形成し、該ゲル状体を乾燥した後、該乾燥したゲル状体を焼成する非晶質シリカと金属酸化物との非晶質複合酸化物からなるエタノール水蒸気改質用水素製造触媒の製造方法。
<2> 属元素Mが、スズ、コバルト、亜鉛、鉄より選ばれた1種または2種以上である前記<1>記載のエタノール水蒸気改質用水素製造触媒の製造方法。
<3> 金属元素Mが、スズである前記<2>記載のエタノール水蒸気改質用水素製造触媒の製造方法。
<4> ケイ酸アルカリ金属塩(B)が、水ガラスである前記<1>から<3>のいずれかに記載のエタノール水蒸気改質用水素製造触媒の製造方法。
<5> 水溶性高分子(C)が、ケイ酸アルカリ金属塩(B)と分相する水溶性高分子である前記<1>から<4>のいずれかに記載のエタノール水蒸気改質用水素製造触媒の製造方法。
<6> 水溶性高分子(C)が、ポリアクリル酸である前記<1>から<5>のいずれかに記載のエタノール水蒸気改質用水素製造触媒の製造方法。
<7> 前記混合溶液における、金属酸化物MOxの前駆体(A)の濃度が0.01〜2.0mol/L(金属元素M原子濃度換算)、ケイ酸アルカリ金属塩(B)の濃度が0.05〜3.0mol/L(Si原子濃度換算)である前記<1>から<6>のいずれかに記載のエタノール水蒸気改質用水素製造触媒の製造方法。
<8> 前記混合溶液における、水溶性高分子(C)の濃度が0.5〜10重量%である前記<1>から<7>のいずれかに記載のエタノール水蒸気改質用水素製造触媒の製造方法。
<9> ゲル状体の乾燥を行う前に、ゲル状体の水洗を行う前記<1>から<8>のいずれかに記載のエタノール水蒸気改質用水素製造触媒の製造方法。
<10> 焼成温度が、400〜800℃である前記<1>から<9>のいずれかに記載のエタノール水蒸気改質用水素製造触媒の製造方法。
<11> 前記<1>から<10>のいずれかに記載の製造方法で製造されてなる水素製造触媒。
<12> BET比表面積が、35m2/g以上である前記<11>記載のエタノール水蒸気改質用水素製造触媒。
<13> 前記非晶質複合酸化物中の金属元素MとSiとの原子比M/Siが、0.01/1〜1.2/1である前記<11>または<12>記載のエタノール水蒸気改質用水素製造触媒。
That is, the present invention relates to the following inventions.
<1> Metal oxide MOx as a catalytically active component (where M is one or more metal elements selected from tin, cobalt, copper, manganese, titanium, zinc, iron, vanadium, and x Is a gel-like body by gelling a mixed solution containing a precursor (A) of 0 <x ≦ 3), an alkali metal silicate (B) and a water-soluble polymer (C), A method for producing a hydrogen production catalyst for ethanol steam reforming comprising an amorphous composite oxide of amorphous silica and a metal oxide, which comprises drying a gel-like body and then firing the dried gel-like body.
<2> Metals element M, tin, cobalt, zinc, wherein at least one or two or selected Ri by iron <1> method for producing ethanol steam reforming hydrogen production catalyst according.
<3> The method for producing a hydrogen production catalyst for ethanol steam reforming according to <2>, wherein the metal element M is tin.
<4> The method for producing a hydrogen production catalyst for ethanol steam reforming according to any one of <1> to <3>, wherein the alkali metal silicate (B) is water glass.
<5> Hydrogen for ethanol steam reforming according to any one of <1> to <4>, wherein the water-soluble polymer (C) is a water-soluble polymer phase-separated from the alkali metal silicate (B). Production method of production catalyst.
<6> The method for producing a hydrogen production catalyst for ethanol steam reforming according to any one of <1> to <5>, wherein the water-soluble polymer (C) is polyacrylic acid.
<7> The concentration of the precursor (A) of the metal oxide MOx in the mixed solution is 0.01 to 2.0 mol / L (in terms of metal element M atom concentration) and the concentration of the alkali metal silicate (B). The method for producing a hydrogen production catalyst for ethanol steam reforming according to any one of <1> to <6>, which is 0.05 to 3.0 mol / L (Si atom concentration conversion).
<8> The hydrogen production catalyst for ethanol steam reforming according to any one of <1> to <7>, wherein the concentration of the water-soluble polymer (C) in the mixed solution is 0.5 to 10% by weight. Production method.
<9> The method for producing a hydrogen production catalyst for ethanol steam reforming according to any one of <1> to <8>, wherein the gel is washed with water before drying the gel.
<10> The method for producing a hydrogen production catalyst for ethanol steam reforming according to any one of <1> to <9>, wherein the firing temperature is 400 to 800 ° C.
<11> A hydrogen production catalyst produced by the production method according to any one of <1> to <10>.
<12> The hydrogen production catalyst for ethanol steam reforming according to <11>, wherein the BET specific surface area is 35 m 2 / g or more.
<13> The ethanol according to <11> or <12>, wherein an atomic ratio M / Si between the metal element M and Si in the amorphous composite oxide is 0.01 / 1 to 1.2 / 1. Hydrogen production catalyst for steam reforming .

本発明の製造方法によると、アルコール、特にエタノールを原料として、熱分解炭素の生成を抑制し、かつ、効率よく水素を製造するための水素製造触媒を得ることができる。   According to the production method of the present invention, it is possible to obtain a hydrogen production catalyst for efficiently producing hydrogen while suppressing production of pyrolytic carbon using alcohol, particularly ethanol, as a raw material.

試料S2についてのXRDの結果である。It is a result of XRD about sample S2. 水素製造触媒活性評価前後の試料S2およびSnO2のXANESスペクトルである。Hydrogen production catalyst activity evaluation is a XANES spectrum of a sample S2 and SnO 2 before and after. 試料C1についてのXRDの結果である。It is a result of XRD about sample C1. 水素製造触媒活性評価前後の試料C1と酢酸コバルトのXANESスペクトルである。It is a XANES spectrum of sample C1 and cobalt acetate before and after hydrogen production catalyst activity evaluation. 試料Z1についてのXRDの結果である。It is a result of XRD about sample Z1. 試料F1についてのXRDの結果である。It is a result of XRD about sample F1.

本発明は、触媒活性成分としての金属酸化物MOx(但し、xは0<x≦3である。)の前駆体(A)、ケイ酸アルカリ金属塩(B)及び水溶性高分子(C)を含む混合溶液をゲル化させてゲル状体を形成し、該ゲル状体を乾燥した後、該乾燥したゲル状体を焼成する非晶質シリカと金属酸化物との非晶質複合酸化物からなる水素製造触媒の製造方法(以下、「本発明の製造方法」と称す。)に係るものである。
なお、本発明において、「非晶質」とは、X線回折法(XRD、測定条件;電圧:40kV、電流40mA、線源:CuKα)において、シリカ由来のシグナル以外のシグナルが実質的に観測されないことをいう。
また、「非晶質シリカと金属酸化物との非晶質複合酸化物」とは、その成分として、シリカ(SiO2)と、金属酸化物MOxとの複合酸化物であって、非晶質であるものをいう。
また、本発明の水素製造触媒は、実質的に非晶質シリカと金属酸化物とからなる非晶質複合酸化物であればよい。すなわち、本発明の効果を損なわない範囲で、非晶質シリカと金属酸化物との非晶質複合酸化物以外にも、結晶性の金属酸化物MOxを含んでいてもよい。
The present invention relates to a precursor (A) of a metal oxide MOx (where x is 0 <x ≦ 3), an alkali metal silicate (B), and a water-soluble polymer (C) as a catalytically active component. An amorphous composite oxide of amorphous silica and a metal oxide is formed by forming a gel-like body by gelling a mixed solution containing, drying the gel-like body, and firing the dried gel-like body Is a hydrogen production catalyst production method (hereinafter referred to as “production method of the present invention”).
In the present invention, “amorphous” means that a signal other than a silica-derived signal is substantially observed in an X-ray diffraction method (XRD, measurement conditions; voltage: 40 kV, current 40 mA, radiation source: CuKα). It means not being done.
In addition, “amorphous composite oxide of amorphous silica and metal oxide” is a composite oxide of silica (SiO 2 ) and metal oxide MOx as its component, and is amorphous. It means what is.
In addition, the hydrogen production catalyst of the present invention may be an amorphous composite oxide substantially composed of amorphous silica and a metal oxide. That is, as long as the effects of the present invention are not impaired, a crystalline metal oxide MOx may be included in addition to the amorphous composite oxide of amorphous silica and metal oxide.

本発明の方法で製造した水素製造触媒(以下、「本発明の触媒」と呼ぶ場合がある。)は、実質的にシリカと金属酸化物とからなる非晶質複合酸化物からなり、該複合酸化物中において、金属酸化物は、シリカ中に高度に分散し、非晶質体を形成している。すなわち、本発明の触媒の特徴は、触媒活性成分(金属酸化物)をシリカ中に分散していることにあり、さらに還元された金属ではなく、複合酸化物として、触媒活性を有することにある。そのため、使用前に還元処理する必要がなく、改質反応に係る高温雰囲気においても、金属酸化物の金属への還元及び金属酸化物の凝集が回避される。
また、本発明の触媒は、触媒活性成分が金属酸化物であるため、原料としてアルコールを使用しても副反応である熱分解炭素の生成が起こりづらい。
なお、本発明において、「触媒活性」とは、水蒸気改質反応、二酸化炭素改質反応、部分酸化反応等によって、アルコール原料から水素生成する反応に対する触媒活性のいずれも包含する。
The hydrogen production catalyst produced by the method of the present invention (hereinafter sometimes referred to as “the catalyst of the present invention”) is substantially composed of an amorphous complex oxide composed of silica and a metal oxide. In the oxide, the metal oxide is highly dispersed in the silica and forms an amorphous body. That is, the catalyst of the present invention is characterized in that a catalytically active component (metal oxide) is dispersed in silica and further has catalytic activity as a composite oxide rather than a reduced metal. . Therefore, it is not necessary to perform a reduction treatment before use, and reduction of metal oxide to metal and aggregation of metal oxide are avoided even in a high temperature atmosphere related to the reforming reaction.
In the catalyst of the present invention, since the catalytically active component is a metal oxide, it is difficult for pyrolytic carbon to be generated as a side reaction even when alcohol is used as a raw material.
In the present invention, the “catalytic activity” includes any catalytic activity for a reaction of generating hydrogen from an alcohol raw material by a steam reforming reaction, a carbon dioxide reforming reaction, a partial oxidation reaction, or the like.

また、本発明の製造方法の特徴の一つは、触媒の前駆体として水溶性高分子を含むことにある。この水溶性高分子は、焼成した際に燃焼して気体として脱離し、製造される非晶質複合酸化物に微細な空間を作るため、本発明の触媒の表面積が増大する。なお、本発明において、水溶性高分子とは、25℃の水100gに対し、高分子化合物1gを加えたときに、その液が濁らず透明である高分子をいう。   One of the features of the production method of the present invention is that it contains a water-soluble polymer as a catalyst precursor. This water-soluble polymer burns and desorbs as a gas when calcined, and creates a fine space in the produced amorphous composite oxide, thereby increasing the surface area of the catalyst of the present invention. In the present invention, the water-soluble polymer refers to a polymer that is transparent and not transparent when 1 g of a polymer compound is added to 100 g of water at 25 ° C.

本発明の触媒のBET表面積は、通常、5m2/g以上であり、好ましくは、35m2/g以上であり、より好ましくは、60m2/g以上であり、特に好ましくは、200m2/g以上である。
本発明の触媒は、合成時に水溶性高分子を混合しているため、緻密体ではなく、多孔質体になっており、大きな反応面積を確保することができる。
The BET surface area of the catalyst of the present invention is usually 5 m 2 / g or more, preferably 35 m 2 / g or more, more preferably 60 m 2 / g or more, and particularly preferably 200 m 2 / g. That's it.
Since the catalyst of the present invention is mixed with a water-soluble polymer at the time of synthesis, it is not a dense body but a porous body, and a large reaction area can be secured.

本発明の水素製造触媒は、水蒸気改質反応、二酸化炭素改質反応、部分酸化反応のいずれの触媒としても利用できるが、水蒸気改質反応として特に有効である。
また、本発明において水素原料となるアルコールとしては、メタノール、エタノール、プロパノール、ブタノール、ペンタノール等の脂肪族アルコールが挙げられ、この中でもメタノール、エタノール、プロパノール、ブタノールなどの炭素数4以下の脂肪族アルコールが好適であり、特に入手性、安全性の観点からエタノールが好適である。
The hydrogen production catalyst of the present invention can be used as any catalyst for a steam reforming reaction, a carbon dioxide reforming reaction, and a partial oxidation reaction, but is particularly effective as a steam reforming reaction.
In addition, examples of the alcohol used as a hydrogen raw material in the present invention include aliphatic alcohols such as methanol, ethanol, propanol, butanol, and pentanol. Among these, aliphatic compounds having 4 or less carbon atoms such as methanol, ethanol, propanol, and butanol. Alcohol is preferred, and ethanol is particularly preferred from the viewpoint of availability and safety.

以下、本発明について更に詳細に説明する。   Hereinafter, the present invention will be described in more detail.

金属酸化物MOxの前駆体(A)としては、金属元素Mの水酸化物、ハロゲン化物、硝酸塩、硫酸塩、炭酸塩、シュウ酸塩、酢酸塩、金属カルボニルなどが挙げられる。これらは、混合溶液中や後工程の焼成によって金属酸化物へと変化する。   Examples of the metal oxide MOx precursor (A) include hydroxides, halides, nitrates, sulfates, carbonates, oxalates, acetates, and metal carbonyls of the metal element M. These change into a metal oxide in the mixed solution or by firing in a later step.

金属元素Mとしては、スズ(Sn)、コバルト(Co)、銅(Cu)、マンガン(Mn)、チタン(Ti)、亜鉛(Zn)、鉄(Fe)、バナジウム(V)が挙げられる。これらは酸化物単体として水素改質触媒活性を有する必要はなく、シリカと複合酸化物を形成した際に触媒活性が生じればよい。   Examples of the metal element M include tin (Sn), cobalt (Co), copper (Cu), manganese (Mn), titanium (Ti), zinc (Zn), iron (Fe), and vanadium (V). These do not need to have hydrogen reforming catalytic activity as a single oxide, but only have catalytic activity when a composite oxide is formed with silica.

この中でも、金属元素Mが、Sn、Co、Zn、Feであることが好適であり、Sn、Coであることが特に好適であり、Snであることが最も好適である。
Snは、その酸化物SnO2の形態では、水素改質触媒活性をほとんど有さないが、非晶質シリカと複合化して、非晶質複合酸化物となると、高い水素改質触媒活性を示す。
Among these, the metal element M is preferably Sn, Co, Zn, or Fe, particularly preferably Sn or Co, and most preferably Sn.
Sn has almost no hydrogen reforming catalytic activity in the form of its oxide SnO 2 , but shows high hydrogen reforming catalytic activity when complexed with amorphous silica to form an amorphous composite oxide. .

本発明の触媒において、非晶質複合酸化物中の金属元素MとSiとの原子比M/Siが0.01/1〜1.2/1であることが、触媒活性と安定性を高める観点から望ましい。
また、特に金属元素MがSnの場合には、Sn原子とSi原子の比、Sn/Siが、0.01/1〜1.0/1(特に0.03/1〜0.2/1)が好適である。
なお、非晶質複合酸化物中の金属元素MとSiとの原子比は、蛍光X線分析によって求めた値である。
In the catalyst of the present invention, when the atomic ratio M / Si between the metal element M and Si in the amorphous composite oxide is 0.01 / 1 to 1.2 / 1, the catalytic activity and stability are improved. Desirable from a viewpoint.
In particular, when the metal element M is Sn, the ratio of Sn atoms to Si atoms, Sn / Si is 0.01 / 1 to 1.0 / 1 (particularly 0.03 / 1 to 0.2 / 1). ) Is preferred.
The atomic ratio between the metal element M and Si in the amorphous composite oxide is a value obtained by fluorescent X-ray analysis.

ケイ酸アルカリ金属塩(B)は、一般式[nSiO2・A2O](「A」はアルカリ金属、「n」は正の整数)で表され、ケイ酸リチウム、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸ルビジウム、ケイ酸セシウムを挙げることができ、これらを水などの溶媒に溶解して本発明の製造方法に使用される。
特に、入手性、操作性の観点からは、水ガラスが好ましく使用される。
水ガラスとは、SiO2と炭酸ナトリウムなどのアルカリ金属炭酸塩とを融解して得られるケイ酸ナトリウム(SiO2・Na2O)の高濃度水溶液のことであり、粘り気の強い無色透明の液体である。水ガラスの中でも、SiとNaの比、SiO2/Na2Oが1.5〜2.5が好適である。
Alkali metal silicates (B) has the general formula [nSiO 2 · A 2 O] ( "A" is an alkali metal, "n" is a positive integer) is represented by, lithium silicate, sodium silicate, silicic acid Examples thereof include potassium, rubidium silicate, and cesium silicate, which are dissolved in a solvent such as water and used in the production method of the present invention.
In particular, water glass is preferably used from the viewpoint of availability and operability.
Water glass is a highly concentrated aqueous solution of sodium silicate (SiO 2 · Na 2 O) obtained by melting SiO 2 and an alkali metal carbonate such as sodium carbonate. It is. Among water glasses, the ratio of Si and Na and SiO 2 / Na 2 O of 1.5 to 2.5 are suitable.

水溶性高分子(C)は、水に可溶であり、ゲル化後の焼成工程で燃焼脱離する高分子であればよく、天然由来のデンプン、ゼラチン、半合成のメチルセルロース、カルボキシメチルセルロース等のセルロース誘導体、ポリアクリル酸、ポリビニルアルコール、ポリアクリル系ポリマー、ポリアクリルアミドなどを挙げることができる。
水溶性高分子(C)の分子量は、特に制限はないが、作業に好適な溶液粘度を容易に得ることができるという観点からは、数平均分子量Mnとして、好ましくは、5000〜50000である。
The water-soluble polymer (C) may be any polymer that is soluble in water and burns and desorbs in the baking step after gelation, such as naturally occurring starch, gelatin, semi-synthetic methylcellulose, carboxymethylcellulose, etc. Examples thereof include cellulose derivatives, polyacrylic acid, polyvinyl alcohol, polyacrylic polymers, and polyacrylamide.
The molecular weight of the water-soluble polymer (C) is not particularly limited, but is preferably 5000 to 50000 as the number average molecular weight Mn from the viewpoint that a solution viscosity suitable for work can be easily obtained.

この中でも、水溶性高分子(C)が、ケイ酸アルカリ金属塩(B)と分相を起こす水溶性高分子であることが好ましい。水溶性高分子(C)が、ケイ酸アルカリ金属塩(B)と分相を起こす水溶性高分子であると、酸やアルカリなどシリカの重合触媒を含まずとも、ケイ酸アルカリを結合させ、好適にゲル化させることができる。
ケイ酸アルカリ金属塩(B)と分相を起こす水溶性高分子として、具体的には、ポリアクリル酸、ポリビニルアルコールなどが挙げられ、特に安全で取扱いが容易であるという観点から、ポリアクリル酸が好適である。
Among these, the water-soluble polymer (C) is preferably a water-soluble polymer that causes phase separation with the alkali metal silicate (B). When the water-soluble polymer (C) is a water-soluble polymer that causes a phase separation with the alkali metal silicate (B), the alkali silicate is bonded without including a silica polymerization catalyst such as acid or alkali, It can be suitably gelled.
Specific examples of the water-soluble polymer that causes phase separation with the alkali metal silicate (B) include polyacrylic acid and polyvinyl alcohol. From the viewpoint of being particularly safe and easy to handle, polyacrylic acid Is preferred.

次に本発明の製造方法に従って、触媒を製造する手順を説明する。   Next, the procedure for producing the catalyst according to the production method of the present invention will be described.

上記の金属酸化物の前駆体(A)、ケイ酸アルカリ金属塩(B)及び水溶性高分子(C)を所定量の溶媒と混合し、混合溶液を形成する。混合する際の各成分の配合順序は任意である。   The metal oxide precursor (A), alkali metal silicate (B), and water-soluble polymer (C) are mixed with a predetermined amount of solvent to form a mixed solution. The mixing order of each component at the time of mixing is arbitrary.

混合溶液の溶媒としては、通常、水が使用されるが、上記成分(A),(B)及び(C)を溶解できるものであればよく、例えば、メタノール、エタノールなどのアルコール類なども使用することもできる。また、これらの溶媒(水を含む)は1種あるいは2種以上を混合して使用することができる。また、混合温度は、特に制限はないが、通常、0〜80℃(特に10〜50℃)が好適である。   As the solvent of the mixed solution, water is usually used, but any solvent that can dissolve the components (A), (B), and (C) is used. For example, alcohols such as methanol and ethanol are also used. You can also These solvents (including water) can be used alone or in combination of two or more. Moreover, although mixing temperature does not have a restriction | limiting in particular, Usually, 0-80 degreeC (especially 10-50 degreeC) is suitable.

混合溶液における好適なそれぞれの成分の濃度は、金属酸化物MOxの前駆体(A)の濃度が、金属元素M原子濃度換算で、0.01〜2.0mol/L、好適には0.01〜0.5mol/Lであり、ケイ酸アルカリ金属塩(B)の濃度が、Si原子濃度換算で、0.05〜3.0mol/L、好適には0.5〜1.5mol/Lである。このような濃度範囲であると、水素製造触媒としてより好適な非晶質複合酸化物を得ることができる。
また、水溶性高分子(C)の濃度は、得られる非晶質複合酸化物の比表面積を十分大きくし、かつ、適度な溶液粘度とするためには、通常0.5〜15重量%であり、好適には、1〜10重量であり、より好適には1〜7重量%である。
The concentration of each suitable component in the mixed solution is such that the concentration of the precursor (A) of the metal oxide MOx is 0.01 to 2.0 mol / L, preferably 0.01 in terms of metal element M atom concentration. The concentration of the alkali metal silicate (B) is 0.05 to 3.0 mol / L, preferably 0.5 to 1.5 mol / L in terms of Si atom concentration. is there. In such a concentration range, an amorphous composite oxide more suitable as a hydrogen production catalyst can be obtained.
The concentration of the water-soluble polymer (C) is usually 0.5 to 15% by weight in order to sufficiently increase the specific surface area of the obtained amorphous composite oxide and to obtain an appropriate solution viscosity. Yes, preferably 1 to 10% by weight, more preferably 1 to 7% by weight.

上記成分を混合した混合溶液を、適当な大きさの容器にいれ、ゲル化させ、ゲル状体を形成する。なお、ゲル化は短時間で完結するものではなく、温度や溶液濃度などによって、ゲル化の開始と終了にはある程度時間の幅がある。均一性が高いゲル状体を得るための好適なゲル化時間は特に制限はないが、通常、半日〜2日程度である。ゲル化温度は、特に制限はないが、0〜80℃(特に10〜50℃)が好適である。ゲル化の際の雰囲気は、特に限定されるものではなく、空気、酸素、窒素、アルゴンまたはそれらの混合ガスを用いることができるが、通常、空気中である。   The mixed solution in which the above components are mixed is put into a container of an appropriate size and gelled to form a gel-like body. Note that gelation is not completed in a short time, and the start and end of gelation have a certain amount of time depending on temperature, solution concentration, and the like. A suitable gelation time for obtaining a gel-like body having high uniformity is not particularly limited, but is usually about half a day to 2 days. Although there is no restriction | limiting in particular in gelling temperature, 0-80 degreeC (especially 10-50 degreeC) is suitable. The atmosphere at the time of gelation is not particularly limited, and air, oxygen, nitrogen, argon or a mixed gas thereof can be used, but it is usually in the air.

ゲル化終了後、得られたゲル状体には、通常、ゲル化されなかった未反応原料や副生物が残存するが、残存した未反応原料や副生物の含有量が多いと、該ゲル状体の乾燥を行う際に未反応原料や副生物が偏析したり、乾燥後のゲル状体を焼成して得られる非晶質複合酸化物の品質が劣化したりするおそれがある。特にケイ酸アルカリ金属塩(B)に由来するアルカリ金属は非晶質複合酸化物の品質に影響する。
そのため、残存した未反応原料や副生物を除去する目的で、ゲル状体の乾燥を行う前に、ゲル状体の水洗を行うことが好ましい。水洗に用いられる水は、純水、イオン交換水が好ましい。
水洗の方法は特に限定はなく、例えば、水中で1日以上(好適には3日以上)静置する方法が挙げられる。なお、不純物濃度が高い場合などより不純物濃度を低減させるために水洗を2回以上繰り返し行ってもよい。
After the completion of gelation, the gel-like body obtained usually contains unreacted raw materials and by-products that have not been gelled, but if the content of the remaining unreacted raw materials and by-products is large, When the body is dried, unreacted raw materials and by-products may segregate, or the quality of the amorphous composite oxide obtained by firing the dried gel-like body may deteriorate. In particular, the alkali metal derived from the alkali metal silicate (B) affects the quality of the amorphous composite oxide.
Therefore, for the purpose of removing the remaining unreacted raw materials and by-products, it is preferable to wash the gel-like body with water before drying the gel-like body. The water used for washing is preferably pure water or ion exchange water.
The method for washing with water is not particularly limited, and examples thereof include a method of standing in water for 1 day or longer (preferably 3 days or longer). In order to reduce the impurity concentration more than when the impurity concentration is high, the water washing may be repeated twice or more.

次いで、ゲル状体から水分などの溶媒を蒸発させ、乾燥させる。乾燥方法としては、特に制限はなく自然乾燥、加熱乾燥、減圧乾燥のいずれでもよく、ゲル状体から十分に溶媒が除去出来ればよい。乾燥が不十分であると、焼成工程において、残存した溶媒が急激に蒸発するため、最終品である品質が低下するため好ましくない。
乾燥時の雰囲気は特に限定されるものではなく、空気、酸素、窒素、アルゴンまたはそれらの混合ガスを用いることができるが、通常、空気中である。
Next, a solvent such as moisture is evaporated from the gel and dried. The drying method is not particularly limited, and may be any of natural drying, heat drying, and reduced pressure drying, as long as the solvent can be sufficiently removed from the gel. Insufficient drying is not preferable because the remaining solvent rapidly evaporates in the baking step, and the quality of the final product is lowered.
The atmosphere during drying is not particularly limited, and air, oxygen, nitrogen, argon, or a mixed gas thereof can be used, but is usually in the air.

次いで、得られた乾燥ゲル状体を焼成し焼成体を形成する。乾燥ゲル状体は、焼成前にボールミル、振動ミル、ジェットミル等を用いて粉砕、分級等を行い、粒度を調節することができる。   Next, the obtained dried gel-like body is fired to form a fired body. The dried gel can be pulverized and classified using a ball mill, a vibration mill, a jet mill or the like before firing to adjust the particle size.

焼成時の雰囲気は特に限定されるものではなく、空気、酸素、窒素、アルゴンまたはそれらの混合ガスを用いることができるが、酸素を含む雰囲気が好ましく、通常、空気中である。
焼成温度としては、400〜800℃(特に550〜700℃)が好適である。
400℃より低温である場合には、有機高分子を完全に除去することが困難であり、また焼成体の機械的強度が小さく、粉々になりやすく、触媒として必要とする大きさにすることが困難となるなどの問題があり、800℃より高温である場合には、焼成体が緻密に成りすぎて、触媒としての取扱いが困難になる場合がある。
The atmosphere at the time of firing is not particularly limited, and air, oxygen, nitrogen, argon, or a mixed gas thereof can be used. However, an atmosphere containing oxygen is preferable and is usually in air.
As a calcination temperature, 400-800 degreeC (especially 550-700 degreeC) is suitable.
When the temperature is lower than 400 ° C., it is difficult to completely remove the organic polymer, the mechanical strength of the fired body is small, the powder is easily shattered, and the size required for the catalyst can be obtained. There are problems such as difficulty, and when the temperature is higher than 800 ° C., the fired body may be too dense and may be difficult to handle as a catalyst.

得られた焼成体を、無処理のまま、またはボールミル、振動ミル、ジェットミル等を用いて粉砕、分級等を行い、粒度を調節して、本発明の触媒として使用することができる。また、粉砕等と焼成を2回以上繰り返し行ってもよい。   The obtained fired product can be used as a catalyst of the present invention without treatment or by pulverizing, classifying or the like using a ball mill, vibration mill, jet mill or the like to adjust the particle size. Further, pulverization or the like and firing may be repeated twice or more.

以下、実施例により本発明を更に詳細に説明するが、本発明の要旨を越えない限り以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, unless it exceeds the summary of this invention, it is not limited to a following example.

使用した試薬は次の通りである。
「試薬」
・水ガラス(SiO2/Na2Oモル比:2.06〜2.31)(和光純薬工業株式会社)
・ポリアクリル酸(PAA、平均分子量25000)(和光純薬工業株式会社)
・塩化スズ(IV)5水和物(和光純薬株式会社)
・酢酸コバルト4水和物(和光純薬株式会社)
・塩化鉄(II)6水和物(和光純薬株式会社)
・塩化亜鉛(和光純薬株式会社)
The reagents used are as follows.
"reagent"
Water glass (SiO 2 / Na 2 O molar ratio: 2.06 to 2.31) (Wako Pure Chemical Industries, Ltd.)
・ Polyacrylic acid (PAA, average molecular weight 25000) (Wako Pure Chemical Industries, Ltd.)
・ Tin (IV) chloride pentahydrate (Wako Pure Chemical Industries, Ltd.)
・ Cobalt acetate tetrahydrate (Wako Pure Chemical Industries, Ltd.)
・ Iron chloride (II) hexahydrate (Wako Pure Chemical Industries, Ltd.)
・ Zinc chloride (Wako Pure Chemical Industries, Ltd.)

実施例1
(1)水素製造触媒の合成
(試料S1)
ビーカーに水10mLを入れ、これに塩化スズ(IV)5水和物0.5gを溶解して溶液(A)を得た。別のビーカーに水30mLを入れ、これに水ガラス15gを溶解して溶液(B)を得た。さらに、別のビーカーに水30mLを入れ、これにPAA3gを溶解して溶液(C)を得た。溶液(A),(B)及び(C)を約25℃で撹拌しながら混合することで、混合溶液L1を得た。
表1に混合溶液L1における各成分濃度(Sn濃度、Si濃度、PAA濃度)を示す。
なお、Si濃度は、水ガラスを、55重量%ケイ酸ナトリウム(Na2SiO3)の水溶液として計算した。
次いで、混合溶液をポリエチレン製チューブ(内径12mm、長さ120mm)に小分けし、室温付近(約25℃)で一晩放置して完全にゲル化させゲル状体を得た。得られたゲル状体を取り出し、水中で3日間放置して洗浄後(約25℃)、50℃で乾燥させて白色固体を得た。得られた白色固体を650℃、30分間焼成して、水素製造触媒である試料S1を得た。
Example 1
(1) Synthesis of hydrogen production catalyst (Sample S1)
10 mL of water was put into a beaker, and 0.5 g of tin (IV) chloride pentahydrate was dissolved therein to obtain a solution (A). 30 mL of water was put into another beaker, and 15 g of water glass was dissolved therein to obtain a solution (B). Furthermore, 30 mL of water was put into another beaker, and 3 g of PAA was dissolved therein to obtain a solution (C). The solutions (A), (B) and (C) were mixed with stirring at about 25 ° C. to obtain a mixed solution L1.
Table 1 shows each component concentration (Sn concentration, Si concentration, PAA concentration) in the mixed solution L1.
The Si concentration was calculated by using water glass as an aqueous solution of 55 wt% sodium silicate (Na 2 SiO 3 ).
Next, the mixed solution was subdivided into polyethylene tubes (inner diameter 12 mm, length 120 mm) and left to stand overnight at about room temperature (about 25 ° C.) to completely gelate to obtain a gel-like body. The obtained gel was taken out, washed by standing in water for 3 days (about 25 ° C.), and dried at 50 ° C. to obtain a white solid. The obtained white solid was calcined at 650 ° C. for 30 minutes to obtain a sample S1 which is a hydrogen production catalyst.

(試料S2)
溶液(A)における塩化スズ(IV)5水和物1.0gを水20mLに溶解した溶液を用いた以外は、混合溶液L1の作製手順と同様にして、混合溶液L2を作製した。表1に混合溶液L2の成分濃度を併せて示す。
次いで、混合溶液L2を使用した以外は、試料S1の作製手順と同様にして、試料S2を得た。
(Sample S2)
A mixed solution L2 was prepared in the same manner as the mixed solution L1 except that a solution of 1.0 g of tin (IV) chloride pentahydrate in the solution (A) was dissolved in 20 mL of water. Table 1 also shows the component concentrations of the mixed solution L2.
Next, a sample S2 was obtained in the same manner as the sample S1 except that the mixed solution L2 was used.

(試料S3)
溶液(A)における塩化スズ(IV)5水和物3.0gを水20mLに溶解した溶液を用いた以外は、混合溶液L1の作製手順と同様にして、混合溶液L3を作製した。表1に混合溶液L3の成分濃度を併せて示す。
次いで、混合溶液L3を使用した以外は、試料S1の作製手順と同様にして、試料S3を得た。
(Sample S3)
A mixed solution L3 was prepared in the same manner as the mixed solution L1 except that a solution obtained by dissolving 3.0 g of tin (IV) chloride pentahydrate in the solution (A) in 20 mL of water was used. Table 1 also shows the component concentrations of the mixed solution L3.
Next, a sample S3 was obtained in the same manner as the sample S1 except that the mixed solution L3 was used.

(試料S4)
溶液(A)における塩化スズ(IV)5水和物10gを水40mLに溶解した溶液を用いた以外は、混合溶液L1の作製手順と同様にして、混合溶液L4を作製した。表1に混合溶液L4の成分濃度を併せて示す。
次いで、混合溶液L4を使用した以外は、試料S1の作製手順と同様にして、試料S4を得た。
(Sample S4)
A mixed solution L4 was prepared in the same manner as the mixed solution L1 except that a solution of 10 g of tin (IV) chloride pentahydrate in solution (A) dissolved in 40 mL of water was used. Table 1 also shows the component concentrations of the mixed solution L4.
Next, a sample S4 was obtained in the same manner as the sample S1 except that the mixed solution L4 was used.

(試料S5)
溶液(A)における塩化スズ(IV)5水和物15gを水50mLに溶解した溶液を用いた以外は、混合溶液L1の作製手順と同様にして、混合溶液L5を作製した。表1に混合溶液L5の成分濃度を併せて示す。
次いで、混合溶液L5を使用した以外は、試料S1の作製手順と同様にして、試料S5を得た。
(Sample S5)
A mixed solution L5 was prepared in the same manner as the mixed solution L1 except that a solution obtained by dissolving 15 g of tin (IV) chloride pentahydrate in the solution (A) in 50 mL of water was used. Table 1 also shows the component concentrations of the mixed solution L5.
Next, a sample S5 was obtained in the same manner as the sample S1 except that the mixed solution L5 was used.

(試料S6)
溶液(A)における塩化スズ(IV)5水和物15gを水40mLに溶解した溶液、及び溶液(C)におけるPAA6gを水20mLに溶解した溶液を用いた以外は、混合溶液L1の作製手順と同様にして、混合溶液L6を作製した。表1に混合溶液L6の成分濃度を併せて示す。
次いで、混合溶液L6を使用した以外は、試料S1の作製手順と同様にして、試料S6を得た。
(Sample S6)
The procedure for preparing the mixed solution L1 was the same as the solution (A) except that a solution of 15 g of tin (IV) chloride pentahydrate dissolved in 40 mL of water and a solution of 6 g of PAA in solution (C) dissolved in 20 mL of water were used. Similarly, the mixed solution L6 was produced. Table 1 also shows the component concentrations of the mixed solution L6.
Next, a sample S6 was obtained in the same manner as the sample S1 except that the mixed solution L6 was used.

(試料S7)
溶液(A)における塩化スズ(IV)5水和物15gを水40mLに溶解した溶液、及び溶液(C)におけるPAA10gを水35mLに溶解した溶液を用いた以外は、混合溶液L1の作製手順と同様にして、混合溶液L7を作製した。表1に混合溶液L7の成分濃度を併せて示す。
次いで、混合溶液L7を使用した以外は、試料S1の作製手順と同様にして、試料S7を得た。
(Sample S7)
The procedure for preparing the mixed solution L1 was the same as the solution (A) except that a solution of 15 g of tin (IV) chloride pentahydrate dissolved in 40 mL of water and a solution of 10 g of PAA in solution (C) dissolved in 35 mL of water were used. Similarly, a mixed solution L7 was produced. Table 1 also shows the component concentrations of the mixed solution L7.
Next, a sample S7 was obtained in the same manner as the sample S1 except that the mixed solution L7 was used.

比較例1
(試料R1)
ビーカーに水20mLを入れ、これに水ガラス15gを溶解して溶液(B)を得た。別のビーカーに水15mLを入れ、これにPAA3gを溶解して溶液(C)を得た。さらに、別のビーカーに水20mLを入れ、これに硝酸12gを溶解して溶液(D)を得た。溶液(B),(C)及び(D)を約25℃で撹拌しながら混合することで、Snを含まない混合溶液LR1を得た。
次いで、混合溶液LR1をポリエチレン製チューブ(内径12mm、長さ120mm)に小分けし、室温付近(約25℃)で一晩放置して完全にゲル化させゲル状体を得た。ゲル状体を取り出し、水中で3日の間放置して洗浄後(約25℃)、40℃で乾燥させて白色固体を得た。得られた白色固体を420℃で1時間、650℃で30分間焼成して、試料R1を得た。
Comparative Example 1
(Sample R1)
20 mL of water was put into a beaker, and 15 g of water glass was dissolved therein to obtain a solution (B). In another beaker, 15 mL of water was added, and 3 g of PAA was dissolved therein to obtain a solution (C). Furthermore, 20 mL of water was put into another beaker, and 12 g of nitric acid was dissolved therein to obtain a solution (D). The solutions (B), (C) and (D) were mixed with stirring at about 25 ° C. to obtain a mixed solution LR1 containing no Sn.
Next, the mixed solution LR1 was subdivided into polyethylene tubes (inner diameter: 12 mm, length: 120 mm) and left to stand overnight at about room temperature (about 25 ° C.) to completely gel, thereby obtaining a gel-like body. The gel-like body was taken out, allowed to stand in water for 3 days, washed (about 25 ° C.), and dried at 40 ° C. to obtain a white solid. The obtained white solid was baked at 420 ° C. for 1 hour and at 650 ° C. for 30 minutes to obtain Sample R1.

比較例2
(試料R2)
ビーカーに水10mLを入れ、これに塩化スズ(IV)5水和物2.7gを溶解して溶液(A)を得た。ビーカーに水20mLを入れ、これに水ガラス15gを溶解して溶液(B)を得た。さらに、別のビーカーに水20mLを入れ、これに硝酸12gを溶解して溶液(D)を得た。溶液(A),(B)及び(D)を約25℃で撹拌しながら混合することで、PAAを含まない混合溶液LR2を得た。
次いで、混合溶液LR2をポリエチレン製チューブ(内径12mm、長さ120mm)に小分けし、室温付近(約25℃)で一晩放置して完全にゲル化させゲル状体を得た。ゲル状体を取り出し、水中で3日の間放置して洗浄後(約25℃)、40℃で乾燥させて白色固体を得た。得られた白色固体を420℃で1時間、650℃で30分間焼成して、試料R2を得た。
Comparative Example 2
(Sample R2)
10 mL of water was put into a beaker, and 2.7 g of tin (IV) chloride pentahydrate was dissolved therein to obtain a solution (A). 20 mL of water was put into a beaker, and 15 g of water glass was dissolved therein to obtain a solution (B). Furthermore, 20 mL of water was put into another beaker, and 12 g of nitric acid was dissolved therein to obtain a solution (D). The solutions (A), (B) and (D) were mixed with stirring at about 25 ° C. to obtain a mixed solution LR2 containing no PAA.
Next, the mixed solution LR2 was subdivided into polyethylene tubes (inner diameter: 12 mm, length: 120 mm), and left overnight at about room temperature (about 25 ° C.) to completely gelate to obtain a gel-like body. The gel-like body was taken out, allowed to stand in water for 3 days, washed (about 25 ° C.), and dried at 40 ° C. to obtain a white solid. The obtained white solid was calcined at 420 ° C. for 1 hour and 650 ° C. for 30 minutes to obtain Sample R2.

(2)評価
「混合溶液のゲル化の進行」
混合溶液L1〜L7のゲル化の進行を評価した。混合溶液L1〜L7のいずれもがゲル化したが、PAA量が多い混合溶液L6,L7はゲル化時間が、2時間程度であり、他の混合溶液(10分程度)より長かった。
一方、試料R1,R2における、混合溶液LR1,LR2についてもゲル化の進行を評価したところ、2時間程度でゲル化した。
(2) Evaluation “Progress of gelation of mixed solution”
The progress of gelation of the mixed solutions L1 to L7 was evaluated. All of the mixed solutions L1 to L7 were gelled, but the mixed solutions L6 and L7 having a large amount of PAA had a gelation time of about 2 hours and were longer than the other mixed solutions (about 10 minutes).
On the other hand, when the progress of gelation was also evaluated for the mixed solutions LR1 and LR2 in the samples R1 and R2, they gelled in about 2 hours.

「試料の形態観察、硬度の評価」
試料S1,S2は、白色の固形物であった。試料S3〜S7は、灰色の固形物であった。試料S1〜S7の硬度はそれほど高くなく、力を加えると破砕した。
一方、試料R1は無色透明のガラス状、R2は白色固体であった。試料S1〜S7と比較して硬度が非常に高く、明らかに試料S1〜S7と形態が異なっていた。
"Sample observation and hardness evaluation"
Samples S1 and S2 were white solids. Samples S3-S7 were gray solids. The hardness of the samples S1 to S7 was not so high and was crushed when force was applied.
On the other hand, sample R1 was colorless and transparent glassy, and R2 was a white solid. The hardness was very high as compared with samples S1 to S7, and the form was clearly different from samples S1 to S7.

「XRD」
試料S2について、XRD(Bruker axs社製、型番:D8ADVANCE、測定条件:電圧40kV、電流40mA、線源CuKα)にて、結晶性を評価した結果を図1に示す。
図1において、非晶質シリカを示すシグナルのみであり、酸化スズSnO2のシグナルは確認されなかった。
"XRD"
FIG. 1 shows the results of evaluating the crystallinity of the sample S2 by XRD (manufactured by Bruker axs, model number: D8ADVANCE, measurement conditions: voltage 40 kV, current 40 mA, radiation source CuKα).
In FIG. 1, only the signal indicating amorphous silica was observed, and the signal of tin oxide SnO 2 was not confirmed.

次いで、実施例および比較例である試料S1、S2及びR1、R2について詳細な評価を行った。   Subsequently, detailed evaluation was performed about sample S1, S2 and R1, R2 which are an Example and a comparative example.

「表面積の評価」
表面積は比表面積細孔分布測定装置(ベックマン・コールター社製、型番:SA3100Plus)を用いて測定した。
S1、S2及びR1、R2と共に、比較のため、SnO2(和光純薬株式会社)粉末の表面積測定も行った。結果を表2に示す。
"Evaluation of surface area"
The surface area was measured using a specific surface area pore distribution measuring device (manufactured by Beckman Coulter, model number: SA3100Plus).
Along with S1, S2 and R1, R2, the surface area of SnO 2 (Wako Pure Chemical Industries) powder was also measured for comparison. The results are shown in Table 2.

「複合酸化物中の元素含有量の評価」
複合酸化物試料中のSn原子、Si原子、Na原子の原子比(元素含有量)を蛍光X線測定装置(日本電子社製、型番:JSX-3201)を用いて測定した。試料S1、S2及びR1、R2についての評価結果を表3に示す。
"Evaluation of element content in composite oxide"
The atomic ratio (element content) of Sn atoms, Si atoms, and Na atoms in the composite oxide sample was measured using a fluorescent X-ray measurement apparatus (manufactured by JEOL Ltd., model number: JSX-3201). Table 3 shows the evaluation results for the samples S1, S2 and R1, R2.

「水素製造触媒活性の評価」
固定床流通式触媒評価装置(ラウンドサイエンス社製)にて、水素生成能力を評価した。
20wt%エタノール水溶液を用い、蒸発器にエタノール水溶液とN2をそれぞれ0.5mL/min、200mL/minで供給することで作製した原料ガスを、内径15mmの石英製反応管に充填させた水素製造触媒(試料S2)1gに対して供給し、出口ガスとしての水素を始めとするガス濃度を評価装置に内蔵された熱伝導度検出器(TCD)にて測定した。反応温度は400℃、500℃及び600℃である。結果を表4に示す。なお、触媒は、粒径1〜3mmに分級して使用した。また、比較のため、SnO2粉末試料を同様の評価を行った。結果を表5に示す。
"Evaluation of catalytic activity for hydrogen production"
The hydrogen generation ability was evaluated using a fixed bed flow type catalyst evaluation device (manufactured by Round Science).
Hydrogen production using a 20 wt% aqueous ethanol solution and filling the raw material gas produced by supplying the ethanol aqueous solution and N 2 to the evaporator at 0.5 mL / min and 200 mL / min, respectively, in a quartz reaction tube having an inner diameter of 15 mm It supplied with respect to 1 g of catalysts (sample S2), and measured the gas density | concentration including hydrogen as an exit gas with the thermal conductivity detector (TCD) incorporated in the evaluation apparatus. The reaction temperatures are 400 ° C, 500 ° C and 600 ° C. The results are shown in Table 4. In addition, the catalyst was used after classifying to a particle size of 1 to 3 mm. For comparison, the SnO 2 powder sample was similarly evaluated. The results are shown in Table 5.

「水素製造触媒活性評価後の炭素析出の評価」
水素製造触媒活性評価後の試料S1,S2について、目視にて炭素析出の有無の確認を行ったが、試料S1,S2共炭素の析出は確認されなかった。
"Evaluation of carbon deposition after evaluation of hydrogen production catalyst activity"
About sample S1, S2 after hydrogen production catalyst activity evaluation, the presence or absence of carbon precipitation was confirmed visually, but precipitation of sample S1, S2 co-carbon was not confirmed.

「水素製造触媒活性評価前後での試料中のSnの評価」
600℃の触媒反応前後の試料S2について、九州シンクロトロン光研究センターにおいて、BL11を使用して、エックス線吸収端構造(Sn L(III)-edgeXANES、透過法)を評価した。
その結果、触媒反応前後ともSn(IV)であり、600℃の触媒反応前後でSn周辺の構造が変化していないことが示唆された。図2に水素製造触媒活性評価前後のS2及びSnO2のXANESスペクトルを示す。
"Evaluation of Sn in samples before and after hydrogen production catalytic activity evaluation"
The X-ray absorption edge structure (Sn L (III) -edgeXANES, transmission method) was evaluated using BL11 at the Kyushu Synchrotron Light Research Center for the sample S2 before and after the catalytic reaction at 600 ° C.
As a result, Sn (IV) was observed before and after the catalytic reaction, suggesting that the structure around Sn did not change before and after the catalytic reaction at 600 ° C. FIG. 2 shows XANES spectra of S2 and SnO 2 before and after evaluating the hydrogen production catalyst activity.

実施例2
(1)水素製造触媒の合成
(試料C1)
ビーカーに水10mLを入れ、これに酢酸コバルト4水和物0.5gを溶解して溶液(A)を得た。別のビーカーに水30mLを入れ、これに水ガラス15gを溶解して溶液(B)を得た。さらに、別のビーカーに水30mLを入れ、これにPAA3.5gを溶解して溶液(C)を得た。溶液(A),(B)及び(C)を約25℃で撹拌しながら混合することで、混合溶液LC1を得た。表6に混合溶液LC1の成分濃度を示す。
次いで、混合溶液をポリエチレン製チューブ(内径12mm、長さ120mm)に小分けし、室温付近(約25℃)で一晩放置して完全にゲル化させゲル状体を得た。得られたゲル状体を取り出し、水中で3日間放置して洗浄後(約25℃)、50℃で乾燥させて紫色固体を得た。得られた紫色固体を420℃で1時間、650℃で30分間焼成して、水素製造触媒である試料C1を得た。
Example 2
(1) Synthesis of hydrogen production catalyst (sample C1)
10 mL of water was put into a beaker, and 0.5 g of cobalt acetate tetrahydrate was dissolved therein to obtain a solution (A). 30 mL of water was put into another beaker, and 15 g of water glass was dissolved therein to obtain a solution (B). Furthermore, 30 mL of water was put into another beaker, and 3.5 g of PAA was dissolved therein to obtain a solution (C). The solutions (A), (B) and (C) were mixed with stirring at about 25 ° C. to obtain a mixed solution LC1. Table 6 shows the component concentrations of the mixed solution LC1.
Next, the mixed solution was subdivided into polyethylene tubes (inner diameter 12 mm, length 120 mm) and left to stand overnight at about room temperature (about 25 ° C.) to completely gelate to obtain a gel-like body. The obtained gel was taken out, washed by standing in water for 3 days (about 25 ° C.), and dried at 50 ° C. to obtain a purple solid. The obtained purple solid was calcined at 420 ° C. for 1 hour and at 650 ° C. for 30 minutes to obtain a sample C1 which is a hydrogen production catalyst.

(試料C2)
溶液(A)における酢酸コバルト4水和物1.0gを20mLに溶解した溶液、及びPAA3.5gを水20mLに溶解した溶液を用いた以外は、混合溶液LC1の作製手順と同様にして、混合溶液LC2を作製した。表6に混合溶液LC2の成分濃度を示す。
次いで、混合溶液LC2を使用した以外は、試料C1の作製手順と同様にして、試料C2を得た。
(Sample C2)
Mixing was performed in the same manner as in the preparation of the mixed solution LC1, except that a solution of 1.0 g of cobalt acetate tetrahydrate in solution (A) dissolved in 20 mL and a solution of 3.5 g of PAA dissolved in 20 mL of water were used. Solution LC2 was made. Table 6 shows the component concentrations of the mixed solution LC2.
Next, Sample C2 was obtained in the same manner as Sample C1 except that the mixed solution LC2 was used.

(2)評価
「混合溶液のゲル化の進行」
試料C1、C2における、混合溶液LC1、LC2のゲル化の進行を評価した。どちらも、数十分程度でゲル化した。
(2) Evaluation “Progress of gelation of mixed solution”
The progress of gelation of the mixed solutions LC1 and LC2 in the samples C1 and C2 was evaluated. Both gelled in tens of minutes.

「試料の形態観察、硬度の評価」
混合溶液LC1,LC2は紫色懸濁溶液であるが、ゲル化が進行するにつれて濁りが濃くなった。試料C1、C2の硬度はそれほど高くなく、力を加えると破砕した。
"Sample observation and hardness evaluation"
The mixed solutions LC1 and LC2 were purple suspension solutions, but became more turbid as the gelation progressed. Samples C1 and C2 were not so hard and were crushed when force was applied.

「XRD」
試料C1について、XRD(Bruker axs社製、型番:D8ADVANCE、測定条件:電圧40kV、電流40mA、線源 CuKα)にて、結晶性を評価した。評価結果を図3に示す。
C1は非晶質シリカを示すシグナルのみであり、酸化コバルト(CoO,Co34)のシグナルは確認されなかった。
"XRD"
The crystallinity of the sample C1 was evaluated by XRD (manufactured by Bruker axs, model number: D8ADVANCE, measurement conditions: voltage 40 kV, current 40 mA, radiation source CuKα). The evaluation results are shown in FIG.
C1 was only a signal indicating amorphous silica, and no signal of cobalt oxide (CoO, Co 3 O 4 ) was confirmed.

「表面積の評価」
表面積は比表面積細孔分布測定装置(ベックマン・コールター社製、型番:SA3100Plus)を用いて測定した。結果を表7に示す。
"Evaluation of surface area"
The surface area was measured using a specific surface area pore distribution measuring device (manufactured by Beckman Coulter, model number: SA3100Plus). The results are shown in Table 7.

「複合酸化物中の元素含有量の評価」
複合酸化物試料中のCo原子、Si原子、Na原子の原子比(元素含有量)を蛍光X線測定装置(日本電子社製、型番:JSX-3201)を用いて測定した。試料C1、C2についての評価結果を表8に示す。
"Evaluation of element content in composite oxide"
The atomic ratio (element content) of Co atoms, Si atoms, and Na atoms in the composite oxide sample was measured using a fluorescent X-ray measurement apparatus (manufactured by JEOL Ltd., model number: JSX-3201). Table 8 shows the evaluation results for the samples C1 and C2.

「水素製造触媒活性の評価」
固定床流通式触媒評価装置(ラウンドサイエンス社製)にて、水素生成能力を評価した。20wt%エタノール水溶液を用い、蒸発器にエタノール水溶液とN2をそれぞれ0.5mL/min、200mL/minで供給することで作製した原料ガスを、内径15mmの石英製反応管に充填させた水素製造触媒(試料C1)0.5gに対して供給し、出口ガスとしての水素を始めとするガス濃度を評価装置に内蔵された熱伝導度検出器(TCD)にて測定した。反応温度は400℃、500℃及び600℃である。結果を表9に示す。尚、触媒は分級せずに、評価試験に用いた。
"Evaluation of catalytic activity for hydrogen production"
The hydrogen generation ability was evaluated using a fixed bed flow type catalyst evaluation device (manufactured by Round Science). Hydrogen production using a 20 wt% aqueous ethanol solution and filling the raw material gas produced by supplying the ethanol aqueous solution and N 2 to the evaporator at 0.5 mL / min and 200 mL / min, respectively, in a quartz reaction tube having an inner diameter of 15 mm It supplied with respect to 0.5 g of catalysts (sample C1), and measured the gas density | concentration including hydrogen as an exit gas with the thermal conductivity detector (TCD) incorporated in the evaluation apparatus. The reaction temperatures are 400 ° C, 500 ° C and 600 ° C. The results are shown in Table 9. The catalyst was used for evaluation tests without being classified.

「水素製造触媒活性評価後の炭素析出の評価」
水素製造触媒活性評価後の試料C1,C2について、目視にて炭素析出の有無の確認を行ったが、試料C1,C2共に炭素の析出は確認されなかった。
"Evaluation of carbon deposition after evaluation of hydrogen production catalyst activity"
About sample C1, C2 after hydrogen production catalyst activity evaluation, the presence or absence of carbon precipitation was confirmed visually, but carbon precipitation was not confirmed by sample C1, C2.

「水素製造触媒活性評価前後での試料中のCoの評価」
600℃の触媒反応前後の試料C1について、九州シンクロトロン光研究センターにて、BL15を使用して、エックス線吸収端構造(CoK-edgeXANES、透過法)を評価した。
その結果、触媒反応前後ともCo(II)であり、600℃の触媒反応前後でCo周辺の構造が変化していないことが示唆された。図4に、水素製造触媒活性評価前後のC1と参照物質として酢酸コバルトと共にXANESスペクトルを示す。
"Evaluation of Co in samples before and after hydrogen production catalytic activity evaluation"
The X-ray absorption edge structure (CoK-edgeXANES, transmission method) was evaluated using BL15 at the Kyushu Synchrotron Light Research Center for the sample C1 before and after the catalytic reaction at 600 ° C.
As a result, it was suggested that Co (II) was present before and after the catalytic reaction, and that the structure around Co was not changed before and after the catalytic reaction at 600 ° C. FIG. 4 shows the XANES spectrum together with C1 before and after the hydrogen production catalyst activity evaluation and cobalt acetate as a reference substance.

実施例3
(1)水素製造触媒(試料Z1)の合成
ビーカーに水40mLを入れ、これに塩化亜鉛2gを溶解して溶液(A)を得た。別の
ビーカーに水60mLを入れ、これに水ガラス30gを溶解して溶液(B)を得た。さらに、別のビーカーに水60mLを入れ、これにPAA6gを溶解して溶液(C)を得た。
溶液(A)、(B)及び(C)を約25℃で撹拌しながら混合することで、混合溶液LZ1を得た。表10にLZ1の成分濃度を示す。
次いで、混合溶液をポリエチレン製トレイ(縦50mm、横44mm、高さ13.3mm)に小分けし、40℃乾燥機中で一晩放置して完全にゲル化させゲル状体を得た。得られたゲル状体を取り出し、水中で3日間放置して洗浄後(約25℃)、40℃で乾燥させて白色固体を得た。得られた白色固体を650℃、1時間焼成して、水素製造触媒である試料Z1を得た。
Example 3
(1) Synthesis of hydrogen production catalyst (sample Z1) 40 mL of water was placed in a beaker, and 2 g of zinc chloride was dissolved therein to obtain a solution (A). In another beaker, 60 mL of water was added, and 30 g of water glass was dissolved therein to obtain a solution (B). Furthermore, 60 mL of water was put into another beaker, and 6 g of PAA was dissolved therein to obtain a solution (C).
The solutions (A), (B) and (C) were mixed with stirring at about 25 ° C. to obtain a mixed solution LZ1. Table 10 shows the component concentrations of LZ1.
Next, the mixed solution was subdivided into polyethylene trays (length 50 mm, width 44 mm, height 13.3 mm) and left to stand overnight in a dryer at 40 ° C. for complete gelation to obtain a gel-like body. The obtained gel-like body was taken out, allowed to stand in water for 3 days, washed (about 25 ° C.) and dried at 40 ° C. to obtain a white solid. The obtained white solid was calcined at 650 ° C. for 1 hour to obtain a sample Z1 which is a hydrogen production catalyst.

(2)評価
「XRD」
試料Z1について、XRD(Bruker axs社製、型番:D8ADVANCE、測定条件:電圧40kV、電流40mA、線源 CuKα)にて、結晶性を評価した。評価結果を図5に示す。
Z1は、非晶質シリカを示すシグナルに加えて、酸化亜鉛(ZnO)に由来するシグナルが若干ながら確認された。このことから、Z1において、Znは大部分が非晶質シリカと複合化して非晶質複合酸化物を形成しているが、一部がZnOとして存在していると示唆される。
(2) Evaluation “XRD”
The sample Z1 was evaluated for crystallinity by XRD (manufactured by Bruker axs, model number: D8ADVANCE, measurement conditions: voltage 40 kV, current 40 mA, radiation source CuKα). The evaluation results are shown in FIG.
Z1 was confirmed to have a slight signal derived from zinc oxide (ZnO) in addition to the signal indicating amorphous silica. This suggests that in Z1, most of Zn is complexed with amorphous silica to form an amorphous complex oxide, but part of it is present as ZnO.

「表面積の評価」
試料Z1について、表面積は比表面積細孔分布測定装置(ベックマン・コールター社製、型番:SA3100Plus)を用いて測定した。結果を表11に示す。
"Evaluation of surface area"
About the sample Z1, the surface area was measured using the specific surface area pore distribution measuring apparatus (Beckman Coulter company make, model number: SA3100Plus). The results are shown in Table 11.

「複合酸化物中の元素含有量の評価」
複合酸化物試料(Z1)中のZn原子、Si原子の原子比(元素含有量)を蛍光X線測定装置(島津製作所製、型番:EDX-900HS)を用いて測定した。結果を表12に示す。
"Evaluation of element content in composite oxide"
The atomic ratio (element content) of Zn atoms and Si atoms in the complex oxide sample (Z1) was measured using a fluorescent X-ray measurement apparatus (manufactured by Shimadzu Corporation, model number: EDX-900HS). The results are shown in Table 12.

「水素製造触媒活性の評価」
固定床流通式触媒評価装置(ラウンドサイエンス社製)にて、水素生成能力を評価した。
20wt%エタノール水溶液を用い、蒸発器にエタノール水溶液とN2をそれぞれ0.18mL/min、203mL/minで供給することで作製した原料ガスを、内径15mmの石英製反応管に充填させた水素製造触媒(試料Z1)1gに対して供給し、出口ガスとしての水素を始めとするガス濃度を評価装置に内蔵された熱伝導度検出器(TCD)にて測定した。反応温度は400℃、500℃及び600℃である。なお、触媒は、粒径1〜3mmに分級して使用した。結果を表13に示す。
"Evaluation of catalytic activity for hydrogen production"
The hydrogen generation ability was evaluated using a fixed bed flow type catalyst evaluation device (manufactured by Round Science).
Hydrogen production using a 20 wt% aqueous ethanol solution and filling the raw material gas produced by supplying the ethanol aqueous solution and N 2 at 0.18 mL / min and 203 mL / min to the evaporator in a quartz reaction tube with an inner diameter of 15 mm, respectively. It supplied with respect to 1 g of catalysts (sample Z1), and measured the gas density | concentration including hydrogen as an exit gas with the thermal conductivity detector (TCD) incorporated in the evaluation apparatus. The reaction temperatures are 400 ° C, 500 ° C and 600 ° C. In addition, the catalyst was used after classifying to a particle size of 1 to 3 mm. The results are shown in Table 13.

「水素製造触媒活性評価後の炭素析出の評価」
水素製造触媒活性評価後の試料Z1について、目視にて炭素析出の有無の確認を行ったが、炭素の析出は確認されなかった。
"Evaluation of carbon deposition after evaluation of hydrogen production catalyst activity"
About the sample Z1 after hydrogen production catalyst activity evaluation, the presence or absence of carbon deposition was confirmed visually, but carbon deposition was not confirmed.

実施例4
(1)水素製造触媒(試料F1)の合成
ビーカーに水40mLを入れ、これに塩化鉄(II)六水和物2gを溶解して溶液(A)を得た。別のビーカーに水60mLを入れ、これに水ガラス30gを溶解して溶液(B)を得た。さらに、別のビーカーに水60mLを入れ、これにPAA6gを溶解して溶液(C)を得た。
溶液(A)、(B)及び(C)を約25℃で撹拌しながら混合することで、混合溶液LF1を得た。表14にLF1の成分濃度を示す
次いで、混合溶液をポリエチレン製トレイ(縦50mm、横44mm、高さ13.3mm)に小分けし、40℃乾燥機中で一晩放置して完全にゲル状体を得た。得られたゲル状体を取り出し、水中で3日間放置して洗浄後(約25℃)、40℃で乾燥させて薄黄緑固体を得た。
得られた薄黄緑固体を650℃、2時間焼成して、水素製造触媒である試料F1を得た。
Example 4
(1) Synthesis of hydrogen production catalyst (sample F1) 40 mL of water was placed in a beaker, and 2 g of iron (II) chloride hexahydrate was dissolved therein to obtain a solution (A). In another beaker, 60 mL of water was added, and 30 g of water glass was dissolved therein to obtain a solution (B). Furthermore, 60 mL of water was put into another beaker, and 6 g of PAA was dissolved therein to obtain a solution (C).
The solutions (A), (B) and (C) were mixed with stirring at about 25 ° C. to obtain a mixed solution LF1. Table 14 shows the component concentrations of LF1. Next, the mixed solution was divided into polyethylene trays (length 50 mm, width 44 mm, height 13.3 mm) and left in a dryer at 40 ° C. overnight to completely form a gel. Got. The obtained gel-like body was taken out, allowed to stand in water for 3 days, washed (about 25 ° C.), and dried at 40 ° C. to obtain a pale yellowish green solid.
The obtained pale yellowish green solid was calcined at 650 ° C. for 2 hours to obtain a sample F1 which is a hydrogen production catalyst.

「XRD」
試料F1について、XRD(Bruker axs社製、型番:D8ADVANCE、測定条件:電圧40kV、電流40mA、線源 CuKα)にて、結晶性を評価した。評価結果を図6に示す。
F1は非晶質シリカを示すシグナルのみであり、酸化鉄(FeO,Fe23)のシグナルは確認されなかった。
"XRD"
The crystallinity of the sample F1 was evaluated by XRD (manufactured by Bruker axs, model number: D8ADVANCE, measurement conditions: voltage 40 kV, current 40 mA, radiation source CuKα). The evaluation results are shown in FIG.
F1 was only a signal indicating amorphous silica, and no signal of iron oxide (FeO, Fe 2 O 3 ) was confirmed.

「表面積の評価」
試料F1について、表面積は比表面積細孔分布測定装置(ベックマン・コールター社製、型番:SA3100Plus)を用いて測定した。結果を表15に示す。
"Evaluation of surface area"
About the sample F1, the surface area was measured using the specific surface area pore distribution measuring apparatus (the Beckman Coulter company make, model number: SA3100Plus). The results are shown in Table 15.

「複合酸化物中の元素含有量の評価」
複合酸化物試料(F1)中のFe原子、Si原子の原子比(元素含有量)を蛍光X線測定装置島津製作所製、型番:EDX-900HS)を用いて測定した。結果を表16に示す。
"Evaluation of element content in composite oxide"
The atomic ratio (element content) of Fe atoms and Si atoms in the composite oxide sample (F1) was measured using a fluorescent X-ray measuring apparatus manufactured by Shimadzu Corporation, model number: EDX-900HS. The results are shown in Table 16.

「水素製造触媒活性の評価」
試料Z1の代わりに試料F1を使用したこと以外は、実施例3における水素製造触媒活性の評価の同一の装置、同一の方法にて、試料F1の水素生成能力を評価した。
結果を表17に示す。
"Evaluation of catalytic activity for hydrogen production"
Except for using the sample F1 instead of the sample Z1, the hydrogen production ability of the sample F1 was evaluated using the same apparatus and the same method for evaluating the hydrogen production catalyst activity in Example 3.
The results are shown in Table 17.

「水素製造触媒活性評価後の炭素析出の評価」
水素製造触媒活性評価後の試料F1について、目視にて炭素析出の有無の確認を行ったが、炭素の析出は確認されなかった。
"Evaluation of carbon deposition after evaluation of hydrogen production catalyst activity"
About the sample F1 after hydrogen production catalyst activity evaluation, although the presence or absence of carbon precipitation was confirmed visually, carbon precipitation was not confirmed.

本発明によると、アルコールなどを原料として、効率よく水素を製造するための水素製造触媒を製造することができるため、工業的に有望である。   According to the present invention, a hydrogen production catalyst for efficiently producing hydrogen can be produced using alcohol or the like as a raw material, which is industrially promising.

Claims (13)

触媒活性成分としての金属酸化物MOx(但し、Mは、スズ、コバルト、銅、マンガン、チタン、亜鉛、鉄、バナジウムより選ばれた1種または2種以上の金属元素であり、xは0<x≦3である。)の前駆体(A)、ケイ酸アルカリ金属塩(B)及び水溶性高分子(C)を含む混合溶液をゲル化させてゲル状体を形成し、該ゲル状体を乾燥した後、該乾燥したゲル状体を焼成することを特徴とする、非晶質シリカと金属酸化物との非晶質複合酸化物からなるエタノール水蒸気改質用水素製造触媒の製造方法。 Metal oxide MOx as a catalytically active component (where M is one or more metal elements selected from tin, cobalt, copper, manganese, titanium, zinc, iron, vanadium, and x is 0 < x ≦ 3.) A gel-like body is formed by gelling a mixed solution containing a precursor (A), an alkali metal silicate (B) and a water-soluble polymer (C), and the gel-like body A method for producing a hydrogen production catalyst for ethanol steam reforming comprising an amorphous composite oxide of amorphous silica and a metal oxide, wherein the dried gel-like body is calcined after drying. 属元素Mが、スズ、コバルト、亜鉛、鉄より選ばれた1種または2種以上である請求項1記載のエタノール水蒸気改質用水素製造触媒の製造方法。 Metallic element M, tin, cobalt, zinc, one or more in the production method according to claim 1, wherein ethanol steam reforming hydrogen production catalyst selected Ri by iron. 金属元素Mが、スズである請求項2記載のエタノール水蒸気改質用水素製造触媒の製造方法。 The method for producing a hydrogen production catalyst for ethanol steam reforming according to claim 2, wherein the metal element M is tin. ケイ酸アルカリ金属塩(B)が、水ガラスである請求項1から3のいずれかに記載のエタノール水蒸気改質用水素製造触媒の製造方法。 The method for producing a hydrogen production catalyst for ethanol steam reforming according to any one of claims 1 to 3, wherein the alkali metal silicate (B) is water glass. 水溶性高分子(C)が、ケイ酸アルカリ金属塩(B)と分相する水溶性高分子である請求項1から4のいずれかに記載のエタノール水蒸気改質用水素製造触媒の製造方法。 The method for producing a hydrogen production catalyst for ethanol steam reforming according to any one of claims 1 to 4, wherein the water-soluble polymer (C) is a water-soluble polymer phase-separated with the alkali metal silicate (B). 水溶性高分子(C)が、ポリアクリル酸である請求項5記載のエタノール水蒸気改質用水素製造触媒の製造方法。 The method for producing a hydrogen production catalyst for ethanol steam reforming according to claim 5, wherein the water-soluble polymer (C) is polyacrylic acid. 前記混合溶液における、金属酸化物MOxの前駆体(A)の濃度が0.01〜2.0mol/L(金属元素M原子濃度換算)、ケイ酸アルカリ金属塩(B)の濃度が0.05〜3.0mol/L(Si原子濃度換算)である請求項1から6のいずれかに記載のエタノール水蒸気改質用水素製造触媒の製造方法。 In the mixed solution, the concentration of the precursor (A) of the metal oxide MOx is 0.01 to 2.0 mol / L (in terms of metal element M atom concentration), and the concentration of the alkali metal silicate (B) is 0.05. It is -3.0 mol / L (Si atom concentration conversion), The manufacturing method of the hydrogen production catalyst for ethanol steam reforming in any one of Claim 1 to 6. 前記混合溶液における、水溶性高分子(C)の濃度が0.5〜10重量%である請求項1から7のいずれかに記載のエタノール水蒸気改質用水素製造触媒の製造方法。 The method for producing a hydrogen production catalyst for ethanol steam reforming according to any one of claims 1 to 7, wherein the concentration of the water-soluble polymer (C) in the mixed solution is 0.5 to 10 wt%. ゲル状体の乾燥を行う前に、ゲル状体の水洗を行う請求項1から8のいずれかに記載のエタノール水蒸気改質用水素製造触媒の製造方法。 The method for producing a hydrogen production catalyst for ethanol steam reforming according to any one of claims 1 to 8, wherein the gel is washed with water before the gel is dried. 焼成温度が、400〜800℃である請求項1から9のいずれかに記載のエタノール水蒸気改質用水素製造触媒の製造方法。 The method for producing a hydrogen production catalyst for ethanol steam reforming according to any one of claims 1 to 9, wherein the calcination temperature is 400 to 800 ° C. 請求項1から10のいずれかに記載の製造方法で製造されてなることを特徴とするエタノール水蒸気改質用水素製造触媒。 A hydrogen production catalyst for ethanol steam reforming, which is produced by the production method according to claim 1. BET比表面積が、35m2/g以上である請求項11記載のエタノール水蒸気改質用水素製造触媒。 The hydrogen production catalyst for ethanol steam reforming according to claim 11, wherein the BET specific surface area is 35 m 2 / g or more. 前記非晶質複合酸化物中の金属元素MとSiとの原子比M/Siが、0.01/1〜1.2/1である請求項11または12記載のエタノール水蒸気改質用水素製造触媒。 The hydrogen production for ethanol steam reforming according to claim 11 or 12, wherein the atomic ratio M / Si between the metal element M and Si in the amorphous composite oxide is 0.01 / 1 to 1.2 / 1. catalyst.
JP2010179614A 2009-08-10 2010-08-10 Method for producing hydrogen production catalyst for ethanol steam reforming and hydrogen production catalyst for ethanol steam reforming Expired - Fee Related JP5569734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010179614A JP5569734B2 (en) 2009-08-10 2010-08-10 Method for producing hydrogen production catalyst for ethanol steam reforming and hydrogen production catalyst for ethanol steam reforming

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009185973 2009-08-10
JP2009185973 2009-08-10
JP2010179614A JP5569734B2 (en) 2009-08-10 2010-08-10 Method for producing hydrogen production catalyst for ethanol steam reforming and hydrogen production catalyst for ethanol steam reforming

Publications (2)

Publication Number Publication Date
JP2011056499A JP2011056499A (en) 2011-03-24
JP5569734B2 true JP5569734B2 (en) 2014-08-13

Family

ID=43944771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010179614A Expired - Fee Related JP5569734B2 (en) 2009-08-10 2010-08-10 Method for producing hydrogen production catalyst for ethanol steam reforming and hydrogen production catalyst for ethanol steam reforming

Country Status (1)

Country Link
JP (1) JP5569734B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318367A (en) * 2017-12-29 2018-07-24 中核四0四有限公司 In a kind of MOX pellets oxygen metallic atom than analysis method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5867808B2 (en) * 2011-11-08 2016-02-24 佐賀県 Composite oxide type ethanol reforming catalyst and method for reforming ethanol
JP7250276B2 (en) * 2019-04-23 2023-04-03 時空化学株式会社 METHOD FOR MANUFACTURING METAL OXIDE CATALYST AND METHOD FOR REMOVING VOC

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176545A (en) * 1986-01-31 1987-08-03 Idemitsu Kosan Co Ltd Catalyst for reforming methanol
US7045106B2 (en) * 2001-04-17 2006-05-16 Tokuyama Corporation Method for producing inorganic porous material
JP4187086B2 (en) * 2002-02-28 2008-11-26 日産自動車株式会社 Methanol reforming catalyst and apparatus and fuel cell power generator
JP4481043B2 (en) * 2004-03-10 2010-06-16 株式会社トクヤマ Ni / SiO2 catalyst and method for producing the same
JP2008043884A (en) * 2006-08-17 2008-02-28 National Institute Of Advanced Industrial & Technology Catalyst for steam-reforming methanol

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318367A (en) * 2017-12-29 2018-07-24 中核四0四有限公司 In a kind of MOX pellets oxygen metallic atom than analysis method
CN108318367B (en) * 2017-12-29 2020-05-22 中核四0四有限公司 Analysis method for oxygen-metal atomic ratio in MOX (metal oxide x) pellet

Also Published As

Publication number Publication date
JP2011056499A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
Rokicińska et al. Co3O4-pillared montmorillonite catalysts synthesized by hydrogel-assisted route for total oxidation of toluene
ES2700900B2 (en) DRY REFORM CATALYST USING A METALLIC OXIDE SUPPORT AND PROCEDURE TO PREPARE SYNTHESIS GAS USING THE SAME
RU2603136C2 (en) Catalysts
JP2022531797A (en) A dehydrogenation catalyst for organic hydrogen storage raw materials and its carrier, a hydrogen storage alloy, and a method for supplying high-purity hydrogen gas.
US20140106260A1 (en) Core-shell nanoparticulate compositions and methods
JP4098508B2 (en) Method for producing catalyst for reacting hydrocarbon and water vapor, and method for producing hydrogen from hydrocarbon using the catalyst
Rochard et al. Au/Co promoted CeO 2 catalysts for formaldehyde total oxidation at ambient temperature: role of oxygen vacancies
JP2021130100A (en) Ammonia decomposition catalyst
Jiang et al. Establishing high-performance Au/cobalt oxide interfaces for low-temperature benzene combustion
JP5569734B2 (en) Method for producing hydrogen production catalyst for ethanol steam reforming and hydrogen production catalyst for ethanol steam reforming
Sohrabi et al. Synthesis, characterization, and catalytic activity of Ni/CeMnO2 catalysts promoted by copper, cobalt, potassium and iron for ethanol steam reforming
JP2008036451A (en) Catalyst support and catalyst for methane reformation and method for preparing the same
EP3110549B1 (en) Methods of preparing metal / metal oxide materials from nanostructured substrates and uses thereof
Han et al. Fabrication of homogeneous and highly dispersed CoMn catalysts for outstanding low temperature catalytic oxidation performance
CN103803578B (en) Original position mesopore molecular sieve mixing metal and uses thereof
Wang et al. Surface and catalytic properties of doped tin oxide nanoparticles
US10807071B2 (en) Mesoporous metal doped cerium oxide catalyst
JP5015057B2 (en) Catalyst for synthesis of chlorine and method for producing the same, and method for synthesizing chlorine using the catalyst
WO2017094688A1 (en) Steam reforming catalyst for hydrocarbons
Khan et al. Synthesis of cobalt loaded double perovskite Sr2TiFeO6‐δ (STF) as a stable catalyst for enhanced hydrogen production via methane decomposition
JP5105709B2 (en) Water gas shift reaction catalyst
JP4657645B2 (en) Water gas shift reaction catalyst and method for producing the catalyst.
Aboutaleba et al. The catalytic performance of Fe2O3-CeO2 nanocomposite in ethanol conversion
KR102230978B1 (en) Catalyst for oxychlorination process of carbonate hydrogen, method for producing same, and method for producing oxychloro compound using same
JP5867808B2 (en) Composite oxide type ethanol reforming catalyst and method for reforming ethanol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140611

R150 Certificate of patent or registration of utility model

Ref document number: 5569734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees