JP5569336B2 - High purity organometallic compound analysis treatment liquid, trace impurity analysis method using the treatment liquid, and high purity organometallic compound subjected to the analysis method - Google Patents

High purity organometallic compound analysis treatment liquid, trace impurity analysis method using the treatment liquid, and high purity organometallic compound subjected to the analysis method Download PDF

Info

Publication number
JP5569336B2
JP5569336B2 JP2010242884A JP2010242884A JP5569336B2 JP 5569336 B2 JP5569336 B2 JP 5569336B2 JP 2010242884 A JP2010242884 A JP 2010242884A JP 2010242884 A JP2010242884 A JP 2010242884A JP 5569336 B2 JP5569336 B2 JP 5569336B2
Authority
JP
Japan
Prior art keywords
organometallic compound
analysis
purity
trace impurities
purity organometallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010242884A
Other languages
Japanese (ja)
Other versions
JP2012093320A (en
Inventor
英治 山中
ちひろ 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2010242884A priority Critical patent/JP5569336B2/en
Publication of JP2012093320A publication Critical patent/JP2012093320A/en
Application granted granted Critical
Publication of JP5569336B2 publication Critical patent/JP5569336B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

本発明は、高純度有機金属化合物の分析用処理液及び当該処理液を用いた微量分解不純物の分析方法に関する。更に、本発明は、当該分析方法を経て合格品(高純度品)とされた高純度有機金属化合物にも関する。高純度有機金属化合物は、例えば、化合物半導体MO−CVD材料等として有用な化合物である。   The present invention relates to a treatment liquid for analyzing a high-purity organometallic compound and a method for analyzing trace decomposition impurities using the treatment liquid. Furthermore, the present invention also relates to a high-purity organometallic compound that has been accepted (high-purity product) through the analysis method. The high-purity organometallic compound is a compound useful as, for example, a compound semiconductor MO-CVD material.

従来、高純度有機金属化合物は高マトリックス成分を含有するため、その分析用液の調製や分析方法は極めて困難で煩雑なものであり、ガスクロマトグラフィーやICP−AES(発光分析)法を用いて過去に様々な検討がなされている(例えば、特許文献1〜2参照)。最近、ICP−DRC(ダイナミックリアクションセル)−MS法により分析する方法が開示されている(例えば、非特許文献1参照)。   Conventionally, since a high-purity organometallic compound contains a high matrix component, the preparation and analysis method of the analytical solution is extremely difficult and complicated, and gas chromatography or ICP-AES (luminescence analysis) method is used. Various studies have been made in the past (see, for example, Patent Documents 1 and 2). Recently, a method of analysis by ICP-DRC (dynamic reaction cell) -MS method has been disclosed (for example, see Non-Patent Document 1).

特開昭60−20136号公報JP-A-60-20136 特開平5−10939号公報Japanese Patent Laid-Open No. 5-10939

「ICP−DRC−MS法による高マトリックスサンプル中の微量成分の測定方法の基礎的検討,第66回分析化学討論会講演要旨集,1005ページ,2005年.“Fundamental study on measurement method of trace components in high matrix samples by ICP-DRC-MS method, Abstracts of the 66th Annual Meeting of Analytical Chemistry, page 1005, 2005.

しかしながら、非特許文献1記載のICP−DRC−MS法においても、一般的な金属化合物中の少量の微量成分の分析を行ったことのみが開示されているに留まり、具体的に化合物半導体MO−CVD材料の分析用処理液及びその調製方法、並びにそれを用いた分析方法については何ら開示されていなかった。そのため、工業的規模で製造されている高純度有機金属化合物中の微量不純物の具体的な分析方法の提案が求められていた。   However, the ICP-DRC-MS method described in Non-Patent Document 1 only discloses that a small amount of a trace component in a general metal compound is analyzed. Specifically, the compound semiconductor MO- There has been no disclosure of a treatment liquid for CVD material analysis, a method for preparing the same, and an analysis method using the same. Therefore, a proposal for a specific analysis method for trace impurities in high-purity organometallic compounds produced on an industrial scale has been demanded.

一方、高純度有機金属化合物については、当該化合物に含まれる不純物含量に注目され品質が厳格に管理されているものの、分析用処理液の取得から、高精度の分析手法を経て合格品(即ち、高純度品)が決定された、いわゆる品質が保証された具体的な高純度有機金属化合物については何ら開示されていなかった。   On the other hand, for high-purity organometallic compounds, although the quality is strictly controlled by paying attention to the impurity content contained in the compound, from the acquisition of the analysis treatment liquid, it passes the high-accuracy analysis technique (ie, No specific high-purity organometallic compound for which so-called quality is guaranteed, for which a high-purity product has been determined, has not been disclosed.

本発明の課題は、即ち、高純度有機金属化合物の微量分解不純物を分析するに当たり、その使用に適した高純度有機金属化合物の分析用処理液を提供することを課題とする。   An object of the present invention is to provide a treatment liquid for analyzing a high-purity organometallic compound suitable for use in analyzing trace decomposition impurities of the high-purity organometallic compound.

本発明の課題は、又、当該処理液を用いた高純度有機金属化合物中の微量不純物の分析方法を提供することも課題とする。   Another object of the present invention is to provide a method for analyzing trace impurities in a high-purity organometallic compound using the treatment liquid.

更に、本発明の課題は、高精度な分析方法を経て合格品(高純度品)とされた高純度有機金属化合物を提供することをも課題とする。   Furthermore, the subject of this invention also makes it a subject to provide the high purity organometallic compound made into the acceptable product (high purity product) through the highly accurate analysis method.

本発明の課題は、高純度有機金属化合物を無機酸水溶液と有機溶媒とで分解処理した後、酸性水溶液を用いて金属濃度を0.001〜1質量%とした高純度有機金属化合物の分析用処理液によって解決される。   An object of the present invention is to analyze a high-purity organometallic compound by decomposing a high-purity organometallic compound with an inorganic acid aqueous solution and an organic solvent and then using an acidic aqueous solution to adjust the metal concentration to 0.001 to 1% by mass. Solved by treatment liquid.

本発明の課題は、又、当該分析処理液を用いて、標準添加法によりICP質量分析する高純度有機金属化合物中の微量不純物の分析方法によっても解決される。   The problems of the present invention can also be solved by a method for analyzing trace impurities in a high-purity organometallic compound, which is subjected to ICP mass spectrometry by a standard addition method using the analysis treatment liquid.

更に、本発明の課題は、本発明の高純度有機金属化合物は、全微量不純物の合計値が1質量ppm以下であり、スズが0.2質量ppm以下で、且つ水銀が0.2質量ppm以下である高純度有機金属化合物によって解決され、特に、高純度有機金属化合物を無機酸水溶液と有機溶媒とで分解処理し、酸性水溶液を用いて金属濃度が0.001〜1質量%である高純度有機金属化合物の分析用処理液を得た後、標準添加法によりICP質量分析することを経て、全微量不純物の合計値が1質量ppm以下であり、スズが0.2質量ppm以下で、且つ水銀が0.2質量ppm以下であることにより合格品とされ高純度有機金属化合物によって解決される。   Furthermore, the problem of the present invention is that the high-purity organometallic compound of the present invention has a total value of all trace impurities of 1 mass ppm or less, tin of 0.2 mass ppm or less, and mercury of 0.2 mass ppm. It is solved by the following high-purity organometallic compound, in particular, a high-purity organometallic compound is decomposed with an inorganic acid aqueous solution and an organic solvent, and the metal concentration is 0.001 to 1% by mass using an acidic aqueous solution. After obtaining a treatment liquid for analysis of a pure organometallic compound, through ICP mass spectrometry by the standard addition method, the total value of all trace impurities is 1 mass ppm or less, tin is 0.2 mass ppm or less, Moreover, it is considered as an acceptable product when mercury is 0.2 mass ppm or less, and is solved by a high-purity organometallic compound.

本発明により、高純度有機金属化合物の微量分解不純物を分析するに当たり、その使用に適した高純度有機金属化合物の分析用処理液を提供することができる。又、当該処理液を用いた高純度有機金属化合物中の微量不純物の分析方法を提供することもできる。更に、本発明により、特定の分析を経ることで、前記微量不純物を含んでいないことが確実に保証されうる極めて信頼性の高い高純度有機金属化合物を提供することもできる。   According to the present invention, it is possible to provide a treatment liquid for analyzing a high-purity organometallic compound suitable for use in analyzing trace decomposition impurities of the high-purity organometallic compound. It is also possible to provide a method for analyzing trace impurities in a high-purity organometallic compound using the treatment liquid. Furthermore, according to the present invention, it is possible to provide a highly reliable high-purity organometallic compound that can be reliably guaranteed not to contain the trace impurities through a specific analysis.

(高純度有機金属化合物の分析用処理液)
本発明の高純度有機金属化合物の分析用処理液は、高純度有機金属化合物を無機酸水溶液と有機溶媒とで分解処理した後、酸性水溶液を用いて金属濃度を0.001〜1質量%にすることによって調製される。
(Treatment solution for analysis of high-purity organometallic compounds)
The treatment liquid for analysis of the high purity organometallic compound of the present invention decomposes the high purity organometallic compound with an inorganic acid aqueous solution and an organic solvent, and then uses an acidic aqueous solution to adjust the metal concentration to 0.001 to 1% by mass. To be prepared.

本発明の高純度有機金属化合物とは、金属と炭素とが直接化学結合している化合物(例えば、アルキル金属等)のみならず、酸素やリン等のヘテロ原子を介してできる広義の有機金属化合物(例えば、金属−アセチルアセトナト錯体等)を含み、純度が99.99%以上である、例えば、トリメチルガリウム、トリエチルガリウム等の有機ガリウム化合物;トリメチルアルミニウム、トリエチルアルミニウム等の有機アルミニウム化合物;トリメチルインジウム等の有機インジウム化合物;ジメチル亜鉛、ジエチル亜鉛等の有機亜鉛化合物;ジエチルマグネシウム、ビス(シクロペンタジエニル)マグネシウム、ビス(メチルシクロペンタジエニル)マグネシウム等の有機マグネシウム化合物が好適に適用される。   The high-purity organometallic compound of the present invention is not only a compound in which a metal and carbon are directly chemically bonded (for example, an alkyl metal), but also a broad sense organometallic compound formed through a hetero atom such as oxygen or phosphorus. (For example, metal-acetylacetonato complex) and the purity is 99.99% or more, for example, organic gallium compounds such as trimethylgallium and triethylgallium; organoaluminum compounds such as trimethylaluminum and triethylaluminum; trimethylindium Organoindium compounds such as dimethylzinc and diethylzinc; organomagnesium compounds such as diethylmagnesium, bis (cyclopentadienyl) magnesium and bis (methylcyclopentadienyl) magnesium are preferably used.

本発明の分解処理液(高純度有機金属化合物の分析用処理液)の調製においては、高純度有機金属化合物を無機酸水溶液と有機溶媒とで分解処理する必要がある。前記無機酸としては、当該有機金属化合物が分解して金属無機酸塩となるものならば特に限定されず、例えば、塩酸、硫酸、硝酸、リン酸等が挙げられるが、好ましくは塩酸、硝酸が使用される。なお、これらの無機酸は単独又は二種以上を混合して使用することもでき、上記無機酸を使用することで微量不純物の分析誤差が少なくなる。   In the preparation of the decomposition treatment liquid of the present invention (analysis treatment liquid for a high-purity organometallic compound), it is necessary to decompose the high-purity organometallic compound with an inorganic acid aqueous solution and an organic solvent. The inorganic acid is not particularly limited as long as the organometallic compound is decomposed into a metal inorganic acid salt, and examples thereof include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and the like. Preferably, hydrochloric acid and nitric acid are used. used. These inorganic acids can be used alone or in combination of two or more, and the use of the inorganic acid reduces analysis errors of trace impurities.

前記無機酸水溶液の濃度は、前記金属無機酸塩が水に溶解するものであれば、無機酸水溶液の濃度は特に限定されず、その使用量は適宜調節する。   The concentration of the inorganic acid aqueous solution is not particularly limited as long as the metal inorganic acid salt is soluble in water, and the amount of the inorganic acid aqueous solution is appropriately adjusted.

前記有機溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、シクロヘプタン、シクロオクタン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン(各種異性体を含む)等の芳香族炭化水素類が使用されるが、好ましくは芳香族炭化水素類、更に好ましくはトルエン、キシレンが使用される。なお、これらの有機溶媒は単独又は二種以上を混合して使用しても良い。   Examples of the organic solvent include aliphatic hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, cycloheptane, and cyclooctane; aromatic hydrocarbons such as benzene, toluene, and xylene (including various isomers). Are preferably used, but aromatic hydrocarbons, more preferably toluene and xylene are used. In addition, you may use these organic solvents individually or in mixture of 2 or more types.

前記有機溶媒の使用量は、高純度有機金属化合物を実質的に溶解させる量ならば特に制限されず、有機溶媒の種類により適宜決定する。   The amount of the organic solvent used is not particularly limited as long as it is an amount capable of substantially dissolving the high-purity organometallic compound, and is appropriately determined depending on the type of the organic solvent.

本発明の分解処理温度は特に制限されず、通常は室温で行うが、反応熱により溶液の温度上昇が確認される場合もある。   The decomposition treatment temperature of the present invention is not particularly limited and is usually carried out at room temperature. However, the temperature of the solution may be confirmed by reaction heat.

前記の分解処理により得られた高純度有機金属化合物の分析用処理液は、酸性水溶液を用いて金属濃度を0.001〜1質量%とするが、工業的規模においては、好ましくは0.005〜0.5質量%、更に好ましくは0.01〜0.25質量%とする。当該濃度範囲とすることで分析誤差が少なくなる。なお、この濃度に希釈しても工業的には特段大きな容量とはならないため好適に使用できる。   The processing solution for analysis of the high-purity organometallic compound obtained by the above decomposition treatment uses an acidic aqueous solution to adjust the metal concentration to 0.001 to 1% by mass, but preferably 0.005 on an industrial scale. -0.5 mass%, More preferably, it is 0.01-0.25 mass%. By setting the concentration range, analysis error is reduced. In addition, even if diluted to this concentration, it does not become a particularly large capacity industrially, so it can be suitably used.

前記酸性水溶液としては、分解処理によって得られた金属無機酸塩を析出させずに希釈させるものならば特に限定されず、例えば、塩酸、硫酸、硝酸、リン酸等が挙げられるが、好ましくは塩酸、硝酸が使用される。なお、前記分解の際に使用した無機酸水溶液と同一であっても異なっていても良く、単独又は二種以上を混合して使用しても良く、上記無機酸を使用することで微量不純物の分析誤差が少なくなる。   The acidic aqueous solution is not particularly limited as long as it can be diluted without precipitating the metal inorganic acid salt obtained by the decomposition treatment, and examples thereof include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, etc. Nitric acid is used. In addition, it may be the same as or different from the inorganic acid aqueous solution used at the time of the decomposition, and may be used alone or in combination of two or more. Analysis error is reduced.

前記酸性水溶液の濃度は、金属塩等を析出させない均一な希釈液(金属濃度が0.001〜1質量%である)となる濃度、量であれば特に制限されない。   The concentration of the acidic aqueous solution is not particularly limited as long as it is a concentration and amount that form a uniform diluting solution (metal concentration is 0.001 to 1% by mass) that does not precipitate a metal salt or the like.

本発明の高純度有機金属化合物の分析用処理液の最良の形態は、高純度有機金属化合物を希塩酸(5〜37%)と芳香族炭化水素で分解処理した後、硝酸(60〜80%)を加えて最終的な金属濃度を0.001〜1質量%、好ましくは0.005〜0.5質量%、更に好ましくは0.01〜0.25質量%としたものである。   The best mode of the treatment liquid for analyzing high-purity organometallic compound of the present invention is to decompose high-purity organometallic compound with dilute hydrochloric acid (5-37%) and aromatic hydrocarbon, and then nitric acid (60-80%) To give a final metal concentration of 0.001 to 1% by mass, preferably 0.005 to 0.5% by mass, and more preferably 0.01 to 0.25% by mass.

以上の操作により、高純度有機金属化合物の微量分解不純物を分析するのに適した高純度有機金属化合物の分析用処理液を製造することができる。当該処理液は、高純度有機金属化合物中の微量不純物の分析用液体として極めて有用である。   By the above operation, it is possible to produce a treatment liquid for analyzing a high purity organometallic compound suitable for analyzing trace decomposition impurities of the high purity organometallic compound. The treatment liquid is extremely useful as a liquid for analyzing trace impurities in high-purity organometallic compounds.

(高純度有機金属化合物中の微量不純物の分析)
本発明の高純度有機金属化合物中の微量不純物の分析は、前記の高純度有機金属化合物の分析用処理液を用いて、標準添加法によりICP質量分析することによって行われる。
(Analysis of trace impurities in high-purity organometallic compounds)
The analysis of trace impurities in the high-purity organometallic compound of the present invention is performed by ICP mass spectrometry by the standard addition method using the above-described treatment liquid for high-purity organometallic compound analysis.

標準添加法とは、共存物質の影響を受ける系や検量線が直線にならないような場合、未知試料に一定量の既知濃度の標準物質を添加して検量線の系列を作成し、この関係線から未知試料の濃度を定量する方法をいう。   In the standard addition method, if the system affected by the coexisting substance or the calibration curve does not become a straight line, a standard curve of a known concentration is added to an unknown sample to create a calibration curve series. A method for quantifying the concentration of an unknown sample.

本発明においては、酸性水溶液のブランク(例えば、1%酸性水溶液)及び濃度の異なる複数の既知の標準試料(濃度は適宜調整するが、例えば、質量ppbオーダー)を準備し、順次分析対象物(高純度有機金属化合物の分析用処理液)に加えて関係式を導き微量不純物を定量する方法が好適に使用される。   In the present invention, a blank of an acidic aqueous solution (for example, a 1% acidic aqueous solution) and a plurality of known standard samples having different concentrations (the concentration is adjusted as appropriate, for example, on the order of mass ppb) are prepared, and sequentially analyzed ( In addition to a high-purity organometallic compound analysis treatment solution, a method of deriving a relational expression and quantifying trace impurities is preferably used.

本発明におけるICP質量分析は、一般的なICP質量分析装置で行うことができ、ナトリウム、カリウム、アルミニウム、カルシウム、カドミウム、クロム、銅、鉄、コバルト、ニッケル、マグネシウム、マンガン、亜鉛等の従来分析されていた微量不純物の以外にも、スズ、水銀、ガリウム、銀、ホウ素、ベリリウム、バリウム、ストロンチウム、トリウム、ウラン、タングステン、リチウムを定量分析することができ、特にスズ、水銀の定量分析を精度良く行うことが可能である。なお、ICP質量分析に必要な条件については、分析対象物により適宜調節する。   ICP mass spectrometry in the present invention can be performed with a general ICP mass spectrometer, and conventional analysis of sodium, potassium, aluminum, calcium, cadmium, chromium, copper, iron, cobalt, nickel, magnesium, manganese, zinc, etc. In addition to the trace impurities that have been reported, tin, mercury, gallium, silver, boron, beryllium, barium, barium, strontium, thorium, uranium, tungsten, and lithium can be quantitatively analyzed. It can be done well. In addition, about conditions required for ICP mass spectrometry, it adjusts suitably with an analysis target object.

(前記の分析工程を経て合格品とされた高純度有機金属化合物)
本発明の高純度有機金属化合物は、全微量不純物の合計値が1質量ppm以下であり、スズが0.2質量ppm以下で、且つ水銀が0.2質量ppm以下である高純度有機金属化合物である。
(High-purity organometallic compound that has been accepted through the above analysis process)
The high purity organometallic compound of the present invention is a high purity organometallic compound in which the total value of all trace impurities is 1 mass ppm or less, tin is 0.2 mass ppm or less, and mercury is 0.2 mass ppm or less. It is.

更に詳しく言えば、高純度有機金属化合物を無機酸水溶液と有機溶媒とで分解処理し、酸性水溶液を用いて金属濃度が0.001〜1質量%である高純度有機金属化合物の分析用処理液を得た後、標準添加法によりICP質量分析することを経て、全微量不純物の合計値が1質量ppm以下であり、スズが0.2質量ppm以下で、且つ水銀が0.2質量ppm以下であることにより合格品とされた高純度有機金属化合物である。   More specifically, a high-purity organometallic compound is decomposed with an inorganic acid aqueous solution and an organic solvent, and an analytical solution for analyzing a high-purity organometallic compound having a metal concentration of 0.001 to 1% by mass using an acidic aqueous solution. The total value of all trace impurities is 1 mass ppm or less, tin is 0.2 mass ppm or less, and mercury is 0.2 mass ppm or less. This is a high-purity organometallic compound that has been accepted.

従って、本発明の分析方法で得られた高純度有機金属化合物は、前記微量不純物を含んでいないことが確実に保証されうる極めて信頼性の高い高純度有機金属化合物である。   Therefore, the high-purity organometallic compound obtained by the analysis method of the present invention is an extremely reliable high-purity organometallic compound that can reliably ensure that the trace impurities are not included.

次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。なお、使用した分析装置は以下の通りである。
分析装置;ICP質量分析装置 ELAN(登録商標) DRC II
(パーキンエルマージャパン社製)
Next, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited thereto. The analyzers used are as follows.
ICP mass spectrometer ELAN (registered trademark) DRC II
(Perkin Elmer Japan)

なお、ICP質量分析における分析条件は以下の通りである。
(分析条件設定)
設定パラメータ:プラズマ出力1600、ネブライザーガス流量0.9
補助ガス流量1.2(標準)、プラズマガス流量17(標準)
最適化パラメータ:レンズ電圧
試料導入系:マイクロフロータイプ導入系(PFA−20)
The analysis conditions in ICP mass spectrometry are as follows.
(Analysis condition setting)
Setting parameters: Plasma output 1600, nebulizer gas flow rate 0.9
Auxiliary gas flow rate 1.2 (standard), plasma gas flow rate 17 (standard)
Optimization parameter: Lens voltage Sample introduction system: Microflow type introduction system (PFA-20)

又、分析精度の指標となる回収率は下記の式で算出した。   The recovery rate, which is an index of analysis accuracy, was calculated by the following formula.

Figure 0005569336
Figure 0005569336

実施例1−1(高純度トリメチルインジウムの分析用処理液の調製)
アルゴン雰囲気にて、高純度トリメチルインジウム(宇部興産株式会社製)5gをm−キシレン10mlに溶解させた溶液と30%塩酸12mlを混合し、60℃で1時間攪拌させた。攪拌終了後、分液して高純度トリメチルインジウムの分析用処理液(水層)を得た。
Example 1-1 (Preparation of treatment liquid for analysis of high purity trimethylindium)
In an argon atmosphere, a solution obtained by dissolving 5 g of high-purity trimethylindium (manufactured by Ube Industries Co., Ltd.) in 10 ml of m-xylene and 12 ml of 30% hydrochloric acid were mixed and stirred at 60 ° C. for 1 hour. After stirring, the solution was separated to obtain a high purity trimethylindium analysis treatment solution (aqueous layer).

実施例1−2(高純度トリメチルインジウム中の微量不純物の分析) Example 1-2 (Analysis of Trace Impurities in High Purity Trimethylindium)

(標準添加法による定量のための検量線の作成)
実施例1−1で得られた分析用処理液400μlと70%硝酸200μlとを混合した。次いで、前記混合液に、各種汎用混合標準液(XSTC−13(SPEX社製))を超純水で希釈し、70%硝酸を加えて1%硝酸溶液となるように調製した希釈混合標準液及びスズ標準液(202−16311(WAKO社製))を各々100μl加えた後、更に超純水を添加して全量を20gとした(0.5質量ppb標準添加試料)。同様な操作により1.0質量ppb標準添加試料も調製した。又、70%硝酸200μlと超純水とを混合して全量を20gとしたものをブランク試料とした。
上記の3試料のICP質量分析により得られた値を用いて標準添加法による定量のための検量線(以下、単に検量線と称することもある)を作成した。ここで、検量線の精度は標準添加試料の数に依存し、多くの標準添加試料を用いることでより高精度の検量線を作成できるが、一般的には3〜5つの標準添加試料を用いることで微量不純物の正確な分析が十分可能な検量線を作成できる。
なお、空試験試料(分解処理物が入っていない)も同様な方法で調製して、空試験用検量線も作成した。
(微量不純物の分析)
実施例1−1で得られた分析用処理液400μlと70%硝酸200μlとを混合した。これに、超純水を添加して全量を20gとして測定用試料を調製した(分析用処理液のインジウム濃度;0.12質量%)。当該試料をICP質量分析した後、検量線を用いて微量不純物の値を算出した(測定値A)。なお、分析用処理液の希釈倍率(C)は12、分析試料の希釈倍率(D)は50とし、これにより前記回収率の算出と微量不純物の定量を行った。
(Preparation of calibration curve for quantification by standard addition method)
400 μl of the analytical treatment solution obtained in Example 1-1 and 200 μl of 70% nitric acid were mixed. Subsequently, various general-purpose mixed standard solutions (XSTC-13 (manufactured by SPEX)) are diluted with ultrapure water to the mixed solution, and 70% nitric acid is added to prepare a diluted mixed standard solution to be a 1% nitric acid solution. And 100 μl each of tin standard solution (202-16163 (manufactured by WAKO)) was added, and ultrapure water was further added to make the total amount 20 g (0.5 mass ppb standard added sample). A 1.0 mass ppb standard addition sample was also prepared in the same manner. A blank sample was prepared by mixing 200 μl of 70% nitric acid and ultrapure water to a total amount of 20 g.
A calibration curve for quantification by the standard addition method (hereinafter sometimes simply referred to as a calibration curve) was prepared using the values obtained by ICP mass spectrometry of the above three samples. Here, the accuracy of the calibration curve depends on the number of standard addition samples, and a higher accuracy calibration curve can be created by using many standard addition samples, but generally 3 to 5 standard addition samples are used. Therefore, it is possible to create a calibration curve that allows sufficient analysis of trace impurities.
A blank test sample (containing no decomposition product) was prepared in the same manner, and a calibration curve for blank test was also prepared.
(Analysis of trace impurities)
400 μl of the analytical treatment solution obtained in Example 1-1 and 200 μl of 70% nitric acid were mixed. To this, ultrapure water was added to prepare a measurement sample with a total amount of 20 g (indium concentration of analysis treatment solution; 0.12% by mass). After the sample was subjected to ICP mass spectrometry, the value of trace impurities was calculated using a calibration curve (measurement value A). In addition, the dilution rate (C) of the analytical treatment solution was 12, and the dilution rate (D) of the analysis sample was 50, whereby the recovery rate was calculated and the trace impurities were quantified.

その結果、各金属の回収率はほぼ100%と高い値を示し、当該分析は高い精度であることが分かる。又、全微量不純物の合計値は1質量ppm以下であった(純度99.9999%以上)。又、スズは0.1質量ppm以下、水銀は0.06質量ppm以下であり、今まで正確な微量不純物として定量分析が困難であったスズ及び水銀が精度良く定量できた。   As a result, the recovery rate of each metal shows a high value of almost 100%, which indicates that the analysis is highly accurate. Moreover, the total value of all trace impurities was 1 mass ppm or less (purity 99.9999% or more). Moreover, tin was 0.1 mass ppm or less, and mercury was 0.06 mass ppm or less, so that tin and mercury, which had been difficult to quantitatively analyze as accurate trace impurities so far, could be quantified with high accuracy.

実施例2(高純度トリメチルガリウム中の微量不純物の分析)
実施例1において高純度有機金属化合物を高純度トリメチルガリウム(宇部興産株式会社製)変えたこと以外は、実施例1と同様に分析用処理液を得、次いで実施例2と同様に微量不純物の分析を行った(分析用処理液のガリウム濃度;0.20質量%)。
その結果、回収率はほぼ100%と高い値を示し、当該分析は高い精度であることが分かる。又、全微量不純物の合計値は1質量ppm以下であった(純度99.9999%以上)。又、スズは0.05質量ppm以下、水銀は0.03質量ppm以下であり、今まで正確な微量不純物として定量分析が困難であったスズ及び水銀が精度良く定量できた。
Example 2 (Analysis of trace impurities in high-purity trimethylgallium)
A treatment liquid for analysis was obtained in the same manner as in Example 1 except that the high-purity organometallic compound was changed to high-purity trimethylgallium (manufactured by Ube Industries, Ltd.) in Example 1, and then trace impurities were obtained in the same manner as in Example 2. Analysis was performed (gallium concentration in the analysis processing solution; 0.20% by mass).
As a result, the recovery rate is as high as almost 100%, and it can be seen that the analysis is highly accurate. Moreover, the total value of all trace impurities was 1 mass ppm or less (purity 99.9999% or more). Further, tin was 0.05 mass ppm or less, and mercury was 0.03 mass ppm or less, so that tin and mercury, which had been difficult to quantitatively analyze as accurate trace impurities so far, could be quantified with high accuracy.

実施例3(高純度トリエチルガリウム中の微量不純物の分析)
実施例1において高純度有機金属化合物を高純度トリエチルガリウム(宇部興産株式会社製)変えたこと以外は、実施例1と同様に分析用処理液を得、次いで実施例2と同様に微量不純物の分析を行った(分析用処理液のガリウム濃度;0.15質量%)。
その結果、回収率はほぼ100%と高い値を示し、当該分析は高い精度であることが分かる。又、全微量不純物の合計値は1質量ppm以下であった(純度99.9999%以上)。又、スズは0.05質量ppm以下、水銀は0.03質量ppm以下であり、今まで正確な微量不純物として定量分析が困難であったスズ及び水銀が精度良く定量できた。
Example 3 (Analysis of trace impurities in high-purity triethylgallium)
A treatment liquid for analysis was obtained in the same manner as in Example 1 except that the high-purity organometallic compound in Example 1 was changed to high-purity triethylgallium (manufactured by Ube Industries, Ltd.), and then trace impurities were obtained in the same manner as in Example 2. Analysis was performed (gallium concentration in the analysis processing solution; 0.15% by mass).
As a result, the recovery rate is as high as almost 100%, and it can be seen that the analysis is highly accurate. Moreover, the total value of all trace impurities was 1 mass ppm or less (purity 99.9999% or more). Further, tin was 0.05 mass ppm or less, and mercury was 0.03 mass ppm or less, so that tin and mercury, which had been difficult to quantitatively analyze as accurate trace impurities so far, could be quantified with high accuracy.

実施例4(高純度トリメチルアルミニウム中の微量不純物の分析)
実施例1において高純度有機金属化合物を高純度トリメチルアルミニウム(宇部興産株式会社製)変えたこと以外は、実施例1と同様に分析用処理液を得、次いで実施例2と同様に微量不純物の分析を行った(分析用処理液のアルミニウム濃度;0.12質量%)。
その結果、回収率はほぼ100%と高い値を示し、当該分析は高い精度であることが分かる。又、全微量不純物の合計値は1質量ppm以下であった(純度99.9999%以上)。又、スズは0.03質量ppm以下、水銀は0.11質量ppm以下であり、今まで正確な微量不純物として定量分析が困難であったスズ及び水銀が精度良く定量できた。
Example 4 (Analysis of trace impurities in high-purity trimethylaluminum)
In Example 1, except that the high-purity organometallic compound was changed to high-purity trimethylaluminum (manufactured by Ube Industries Co., Ltd.), a treatment solution for analysis was obtained in the same manner as in Example 1, and then trace impurities were obtained in the same manner as in Example 2. Analysis was performed (aluminum concentration of the treatment liquid for analysis; 0.12% by mass).
As a result, the recovery rate is as high as almost 100%, and it can be seen that the analysis is highly accurate. Moreover, the total value of all trace impurities was 1 mass ppm or less (purity 99.9999% or more). Moreover, tin was 0.03 mass ppm or less, and mercury was 0.11 mass ppm or less, so that tin and mercury, which had been difficult to quantitatively analyze as accurate trace impurities until now, could be accurately quantified.

実施例5(高純度トリエチルアルミニウム中の微量不純物の分析)
実施例1において高純度有機金属化合物を高純度トリエチルアルミニウム(宇部興産株式会社製)変えたこと以外は、実施例1と同様に分析用処理液を得、次いで実施例2と同様に微量不純物の分析を行った(分析用処理液のアルミニウム濃度;0.08質量%)。
その結果、回収率はほぼ100%と高い値を示し、当該分析は高い精度であることが分かる。又、全微量不純物の合計値は1質量ppm以下であった(純度99.9999%以上)。又、スズは0.03質量ppm以下、水銀は0.11質量ppm以下であり、今まで正確な微量不純物として定量分析が困難であったスズ及び水銀が精度良く定量できた。
Example 5 (Analysis of trace impurities in high-purity triethylaluminum)
A treatment liquid for analysis was obtained in the same manner as in Example 1 except that the high-purity organometallic compound was changed to high-purity triethylaluminum (manufactured by Ube Industries Ltd.) in Example 1, and then trace impurities were obtained in the same manner as in Example 2. Analysis was performed (aluminum concentration in the treatment solution for analysis; 0.08% by mass).
As a result, the recovery rate is as high as almost 100%, and it can be seen that the analysis is highly accurate. Moreover, the total value of all trace impurities was 1 mass ppm or less (purity 99.9999% or more). Moreover, tin was 0.03 mass ppm or less, and mercury was 0.11 mass ppm or less, so that tin and mercury, which had been difficult to quantitatively analyze as accurate trace impurities until now, could be accurately quantified.

実施例6(高純度ビス(シクロペンタジエニル)マグネシウム中の微量不純物の分析)
実施例1において高純度有機金属化合物を高純度ビス(シクロペンタジエニル)マグネシウム(宇部興産株式会社製)変えたこと以外は、実施例1と同様に分析用処理液を得、次いで実施例2と同様に微量不純物の分析を行った(分析用処理液のマグネシウム濃度;0.02質量%)。
その結果、回収率はほぼ100%と高い値を示し、当該分析は高い精度であることが分かる。又、全微量不純物の合計値は1質量ppm以下であった(純度99.999%以上)。又、スズは0.15質量ppm以下、水銀は0.08質量ppm以下であり、今まで正確な微量不純物として定量分析が困難であったスズ及び水銀が精度良く定量できた。
Example 6 (Analysis of Trace Impurities in High Purity Bis (cyclopentadienyl) magnesium)
A treatment liquid for analysis was obtained in the same manner as in Example 1 except that the high-purity organometallic compound in Example 1 was changed to high-purity bis (cyclopentadienyl) magnesium (manufactured by Ube Industries, Ltd.). In the same manner as described above, trace impurities were analyzed (magnesium concentration in the analytical treatment solution; 0.02 mass%).
As a result, the recovery rate is as high as almost 100%, and it can be seen that the analysis is highly accurate. Moreover, the total value of all trace impurities was 1 mass ppm or less (purity 99.999% or more). Moreover, tin was 0.15 mass ppm or less, and mercury was 0.08 mass ppm or less, so that tin and mercury, which had been difficult to quantitatively analyze as accurate trace impurities until now, could be accurately quantified.

実施例7(高純度ジメチル亜鉛中の微量不純物の分析)
実施例1において高純度有機金属化合物を高純度ジメチル亜鉛(宇部興産株式会社製)変えたこと以外は、実施例1と同様に分析用処理液を得、次いで実施例2と同様に微量不純物の分析を行った(分析用処理液の亜鉛濃度;0.23質量%)。
その結果、回収率はほぼ100%と高い値を示し、当該分析は高い精度であることが分かる。又、全微量不純物の合計値は1質量ppm以下であった(純度99.9999%以上)。又、スズは0.05質量ppm以下、水銀は0.03質量ppm以下であり、今まで正確な微量不純物として定量分析が困難であったスズ及び水銀が精度良く定量できた。
Example 7 (Analysis of trace impurities in high purity dimethyl zinc)
In Example 1, except that the high-purity organometallic compound was changed to high-purity dimethylzinc (manufactured by Ube Industries, Ltd.), a treatment solution for analysis was obtained in the same manner as in Example 1, and then trace impurities were obtained in the same manner as in Example 2. Analysis was performed (zinc concentration in the analysis processing solution; 0.23 mass%).
As a result, the recovery rate is as high as almost 100%, and it can be seen that the analysis is highly accurate. Moreover, the total value of all trace impurities was 1 mass ppm or less (purity 99.9999% or more). Further, tin was 0.05 mass ppm or less, and mercury was 0.03 mass ppm or less, so that tin and mercury, which had been difficult to quantitatively analyze as accurate trace impurities so far, could be quantified with high accuracy.

実施例8(高純度ジエチル亜鉛中の微量不純物の分析)
実施例1において高純度有機金属化合物を高純度ジエチル亜鉛(宇部興産株式会社製)変えたこと以外は、実施例1と同様に分析用処理液を得、次いで実施例2と同様に微量不純物の分析を行った(分析用処理液の亜鉛濃度;0.18質量%)。
その結果、回収率はほぼ100%と高い値を示し、当該分析は高い精度であることが分かる。又、全微量不純物の合計値は1質量ppm以下であった(純度99.9999%以上)。又、スズは0.05質量ppm以下、水銀は0.03質量ppm以下であり、今まで正確な微量不純物として定量分析が困難であったスズ及び水銀が精度良く定量できた。
Example 8 (Analysis of trace impurities in high purity diethyl zinc)
In Example 1, except that the high-purity organometallic compound was changed to high-purity diethyl zinc (manufactured by Ube Industries, Ltd.), a treatment solution for analysis was obtained in the same manner as in Example 1. Analysis was performed (zinc concentration of analysis processing solution; 0.18% by mass).
As a result, the recovery rate is as high as almost 100%, and it can be seen that the analysis is highly accurate. Moreover, the total value of all trace impurities was 1 mass ppm or less (purity 99.9999% or more). Further, tin was 0.05 mass ppm or less, and mercury was 0.03 mass ppm or less, so that tin and mercury, which had been difficult to quantitatively analyze as accurate trace impurities so far, could be quantified with high accuracy.

本発明により、高純度有機金属化合物の微量不純物を分析するに当たり、その使用に適した高純度有機金属化合物の分析用処理液を提供することができる。又、当該処理液を用いた高純度有機金属化合物中の微量不純物の分析方法を提供することもできる。更に、本発明により、高精度の分析を経ることで、前記微量不純物を含んでいないことが確実に保証されうる極めて信頼性の高い高純度有機金属化合物を提供することもできる。   According to the present invention, when analyzing trace impurities of a high-purity organometallic compound, a treatment liquid for analyzing a high-purity organometallic compound suitable for use can be provided. It is also possible to provide a method for analyzing trace impurities in a high-purity organometallic compound using the treatment liquid. Furthermore, according to the present invention, it is possible to provide a highly reliable high-purity organometallic compound that can be reliably guaranteed not to contain the trace impurities through high-precision analysis.

Claims (4)

高純度有機金属化合物を無機酸水溶液と有機溶媒とで分解処理した後、酸性水溶液を用いて金属濃度を0.001〜1質量%とした高純度有機金属化合物の分析用処理液を調製した後、  After the high-purity organometallic compound is decomposed with an inorganic acid aqueous solution and an organic solvent, an analytical treatment solution for the high-purity organometallic compound is prepared using an acidic aqueous solution with a metal concentration of 0.001 to 1% by mass. ,
得られた分析処理液、及び分解処理液に濃度の異なる複数の既知の標準液を加えた標準試料を調製し、当該試料のICP質量分析により得られた値を用いて、標準添加法による定量のための検量線を作成し、  Prepare a standard sample obtained by adding a plurality of known standard solutions having different concentrations to the obtained analytical treatment solution and decomposition treatment solution, and use the values obtained by ICP mass spectrometry of the sample to perform quantification by the standard addition method Create a calibration curve for
前記検量線を用いて、測定用試料中の微量不純物を定量することを特徴とする、  Using the calibration curve, quantifying trace impurities in the measurement sample,
高純度有機金属化合物中の微量不純物の分析方法。  Method for analyzing trace impurities in high purity organometallic compounds.
高純度有機金属化合物が、有機インジウム化合物、有機ガリウム化合物、有機アルミニウム化合物、有機亜鉛化合物及び有機マグネシウム化合物からなる群より選ばれる少なくとも1種の高純度有機金属化合物である請求項記載の高純度有機金属化合物中の微量不純物の分析方法。 High purity organometallic compounds, organic indium compounds, organic gallium compounds, organic aluminum compounds, high purity according to claim 1, wherein at least one high purity organometallic compound selected from the group consisting of organozinc compounds and organomagnesium compounds Method for analyzing trace impurities in organometallic compounds. 測定用試料が、分析処理液を無機酸水溶液により希釈したものである請求項1〜2のいずれか1項に記載の高純度有機金属化合物中の微量不純物の分析方法。  The method for analyzing trace impurities in a high-purity organometallic compound according to any one of claims 1 to 2, wherein the measurement sample is a sample obtained by diluting the analytical treatment liquid with an inorganic acid aqueous solution. 微量不純物がスズ及び水銀を含む請求項1〜3のいずれか1項に記載の高純度有機金属化合物中の微量不純物の分析方法。  The method for analyzing trace impurities in a high-purity organometallic compound according to any one of claims 1 to 3, wherein the trace impurities contain tin and mercury.
JP2010242884A 2010-10-29 2010-10-29 High purity organometallic compound analysis treatment liquid, trace impurity analysis method using the treatment liquid, and high purity organometallic compound subjected to the analysis method Expired - Fee Related JP5569336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010242884A JP5569336B2 (en) 2010-10-29 2010-10-29 High purity organometallic compound analysis treatment liquid, trace impurity analysis method using the treatment liquid, and high purity organometallic compound subjected to the analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010242884A JP5569336B2 (en) 2010-10-29 2010-10-29 High purity organometallic compound analysis treatment liquid, trace impurity analysis method using the treatment liquid, and high purity organometallic compound subjected to the analysis method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014090699A Division JP5862701B2 (en) 2014-04-24 2014-04-24 Method to make high purity organometallic compound acceptable

Publications (2)

Publication Number Publication Date
JP2012093320A JP2012093320A (en) 2012-05-17
JP5569336B2 true JP5569336B2 (en) 2014-08-13

Family

ID=46386793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010242884A Expired - Fee Related JP5569336B2 (en) 2010-10-29 2010-10-29 High purity organometallic compound analysis treatment liquid, trace impurity analysis method using the treatment liquid, and high purity organometallic compound subjected to the analysis method

Country Status (1)

Country Link
JP (1) JP5569336B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014209119A (en) * 2014-04-24 2014-11-06 宇部興産株式会社 Treating liquid for analysis of high purity organometallic compound and analysis method of trace impurity using the treating liquid, and high purity organometallic compound through the analysis

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4688935A (en) * 1983-06-24 1987-08-25 Morton Thiokol, Inc. Plasma spectroscopic analysis of organometallic compounds
JP2805716B2 (en) * 1991-07-04 1998-09-30 信越化学工業株式会社 Analysis of impurities in organometallic compounds
JP3889148B2 (en) * 1998-03-18 2007-03-07 大陽日酸株式会社 Detector of organometallic compounds
JP2002181797A (en) * 2000-12-11 2002-06-26 Osaka Oxygen Ind Ltd Analytical method for impurities in organometallic compound
JP3804798B2 (en) * 2002-09-19 2006-08-02 信越化学工業株式会社 Evaporation supply device for liquid organometallic compounds
JP5114755B2 (en) * 2009-02-09 2013-01-09 新日鐵住金株式会社 Quantitative analysis of organometallics using high frequency inductively coupled plasma optical emission spectrometry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014209119A (en) * 2014-04-24 2014-11-06 宇部興産株式会社 Treating liquid for analysis of high purity organometallic compound and analysis method of trace impurity using the treating liquid, and high purity organometallic compound through the analysis

Also Published As

Publication number Publication date
JP2012093320A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
Stüeken et al. Selenium isotope analysis of organic-rich shales: advances in sample preparation and isobaric interference correction
CN101334365B (en) Determination method for chloride ion content of temper rolling liquor for steel plate rolling
Canisius et al. The Mechanism of 1, 4‐and 1, 6‐Cuprate Additions: The First Determination of Activation Parameters
CN102955015A (en) Method for determining total nitrogen content in nitrate-nitrogen-containing compound fertilizer through post-distillation titration method
CN101571478B (en) Method for analyzing and detecting potassium and sodium impurity elements in vanadium carbide
CN107664638B (en) Method for measuring tungsten content in steel
JP5569336B2 (en) High purity organometallic compound analysis treatment liquid, trace impurity analysis method using the treatment liquid, and high purity organometallic compound subjected to the analysis method
JP5862701B2 (en) Method to make high purity organometallic compound acceptable
Gupta et al. Manganese (II) selective PVC based membrane sensor using a Schiff base
CN110361441B (en) Method for detecting trace impurity elements in tungsten carbide powder
CN102830154A (en) Method for determining content of phosphor in ferrotungsten
Takahashi et al. Elucidation of molybdosilicate complexes in the molybdate yellow method by ESI-MS
CN104164681A (en) Novel electrolytic tank in-production aluminum inventory method
JP2011208953A (en) Method for color development and quantification of phosphate ion
CN101710075A (en) Method for measuring microelement in sodium aluminate solution
Uysal et al. Rapid direct spectrophotometric determination of zirconium (IV) in alloys with 2, 2/, 3, 4-tetrahydroxy-3/-sulpho-5/-carboxyazobenzene reagent
Reddy et al. Extractive spectrophotometric determination of cobalt (II) in synthetic and pharmaceutical samples using cyanex 923
Furness et al. Polarographic determination of ethylenediamine-tetra-acetic acid
Hu et al. XAS investigation on the coordination structure and extraction mechanism of zinc (II) in ammoniacal solution
CN108613936B (en) Method for rapidly analyzing nickel in copper-nickel sulfide ore
CN104655610B (en) The analysis method and assay method of vanadyl oxalate oxalate ion concentration
JP2020515487A (en) Process for producing highly pure iridium(III) chloride hydrate
JP2015145820A (en) Quantitative method for lipid-soluble phosphorus compound
Curtis et al. Equilibrium Constants for 2, 3-Dihydroxypyridine and its Complex with Iron (III) in 1 M Hydrochloric Acid
Fang et al. A Green Digestion Method for Minor Elemental Analysis of Egg Samples by ICP-MS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R150 Certificate of patent or registration of utility model

Ref document number: 5569336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees