JP5568426B2 - Thin film laminate inspection method - Google Patents

Thin film laminate inspection method Download PDF

Info

Publication number
JP5568426B2
JP5568426B2 JP2010214668A JP2010214668A JP5568426B2 JP 5568426 B2 JP5568426 B2 JP 5568426B2 JP 2010214668 A JP2010214668 A JP 2010214668A JP 2010214668 A JP2010214668 A JP 2010214668A JP 5568426 B2 JP5568426 B2 JP 5568426B2
Authority
JP
Japan
Prior art keywords
ray
phase
rays
reflected
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010214668A
Other languages
Japanese (ja)
Other versions
JP2012068180A (en
Inventor
和浩 上田
明男 米山
英 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010214668A priority Critical patent/JP5568426B2/en
Publication of JP2012068180A publication Critical patent/JP2012068180A/en
Application granted granted Critical
Publication of JP5568426B2 publication Critical patent/JP5568426B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、基板上に1層以上積層された薄膜積層体の各層の膜厚を非破壊的に計測、検査する方法において、微小領域にX線を入射し薄膜積層体微小領域からの反射X線の位相情報を測定するX線反射率測定法に関する。   The present invention relates to a method for nondestructively measuring and inspecting the film thickness of each layer of a thin film laminate that is laminated on a substrate by one or more layers. The present invention relates to an X-ray reflectometry method for measuring line phase information.

半導体デバイス、磁気デバイスの分野では、素子の高機能化、高性能化のため、形成される膜は極薄膜化されるとともに、積層数も増加している。また、現在の半導体や磁気デバイスのような電子デバイスでは、積層膜界面での電子散乱を制御するため、積層膜界面のラフネス制御も検討されている。   In the field of semiconductor devices and magnetic devices, the formed films are made extremely thin and the number of stacked layers is increasing in order to increase the functionality and performance of elements. In addition, in current electronic devices such as semiconductors and magnetic devices, roughness control at the laminated film interface is also being studied in order to control electron scattering at the laminated film interface.

従来、積層膜の膜厚を評価する方法として、エリプソメトリー法、蛍光X線法が用いられている。エリプソメトリー法は平らな表面の薄膜試料に偏光を入射させ、反射光の偏光状態の変化を測定し、試料薄膜の厚さと屈折率を知る方法である。しかし、この方法は光を用いるため、光に対して透明な試料でなければ測定できないことが問題となる。蛍光X線法は試料で発生した蛍光X線を測定し、その強度から膜厚を推定する方法である。この方法の場合、蛍光X線を発生した元素の総量が分かるだけで、膜厚を直接測定する方法でないこと、同じ元素が含まれる薄膜が複数積層されている場合に、膜厚を分離解析することができないことが問題となる。また、エリプソメトリー法、蛍光X線法とも積層膜界面の情報を得ることはできない。   Conventionally, ellipsometry and fluorescent X-ray methods have been used as methods for evaluating the film thickness of a laminated film. The ellipsometry method is a method in which polarized light is incident on a thin film sample having a flat surface, the change in the polarization state of reflected light is measured, and the thickness and refractive index of the sample thin film are known. However, since this method uses light, there is a problem in that measurement is only possible for a sample that is transparent to light. The fluorescent X-ray method is a method of measuring a fluorescent X-ray generated in a sample and estimating a film thickness from the intensity. In the case of this method, the total amount of elements that generate fluorescent X-rays is known, and it is not a method for directly measuring the film thickness, and when a plurality of thin films containing the same element are laminated, the film thickness is analyzed separately. The inability to do so is a problem. In addition, neither the ellipsometry method nor the fluorescent X-ray method can obtain information on the interface of the laminated film.

デバイスの断面TEM観察は、非常に高い空間分解能で、積層膜の膜厚を測定することが可能である。また界面幅も推定できる。しかし、TEM観察のためには試料を100nm以下の薄片化する必要があり、破壊解析となる。また、観察時に表面に垂直に電子線を入射し断面を観察する必要があり、この角度合わせ精度が0.1゜より大きいため、膜厚の測定精度は0.2nm程度が限界である。   The cross-sectional TEM observation of the device can measure the film thickness of the laminated film with very high spatial resolution. The interface width can also be estimated. However, for TEM observation, it is necessary to slice the sample to 100 nm or less, which is a fracture analysis. Further, it is necessary to observe a cross section by irradiating an electron beam perpendicularly to the surface at the time of observation. Since this angle alignment accuracy is larger than 0.1 °, the film thickness measurement accuracy is limited to about 0.2 nm.

非破壊で、積層薄膜の膜厚と界面幅を測定する方法として、X線反射率法がある。反射強度を測定するX線反射率法には2種類の方法があり、1つは単色のX線を試料表面すれすれに入射し、入射角を変えながら、反射率を測定する方法、他方は白色X線を試料に入射し、反射率の波長依存性を測定する方法である。どちらの方法も試料表面、界面で反射して来たX線の干渉から膜厚を解析する方法である。また表面や界面での反射には界面幅が影響するため、X線反射率プロファイルを詳細に解析することで積層膜の各界面の幅も得ることができる。反射率の解析に用いられる理論曲線は、非特許文献1の漸化式に、非特許文献2の界面凹凸の効果を入れた式が利用されている。また、フーリエ変換解析では、非特許文献3の方法が良く用いられる。また、新しい反射率解析方法としてWavelet法やエントロピー最大化法(MEM)、反射率測定法としてはX線差分反射率法や、 X線位相反射率法(特許文献1)等が検討されている。   As a method for measuring the film thickness and interface width of a laminated thin film in a nondestructive manner, there is an X-ray reflectivity method. There are two types of X-ray reflectivity methods for measuring the reflection intensity. One is a method in which monochromatic X-rays are incident on the surface of the sample and the reflectance is measured while changing the incident angle, and the other is white. In this method, X-rays are incident on a sample and the wavelength dependence of the reflectance is measured. Both methods analyze the film thickness from the interference of X-rays reflected from the sample surface and interface. In addition, since the interface width affects the reflection at the surface and the interface, the width of each interface of the laminated film can be obtained by analyzing the X-ray reflectance profile in detail. As the theoretical curve used for the analysis of the reflectance, a formula obtained by adding the effect of the interface irregularity of Non-Patent Document 2 to the recurrence formula of Non-Patent Document 1 is used. In Fourier transform analysis, the method of Non-Patent Document 3 is often used. Wavelet method and entropy maximization method (MEM) are studied as new reflectance analysis methods, and X-ray differential reflectance method and X-ray phase reflectance method (Patent Document 1) are being studied as reflectance measurement methods. .

特開2009-168618号公報JP 2009-168618

Parratt [ Phys. Rev., 95, pp359 (1954) ]Parratt [Phys. Rev., 95, pp359 (1954)] Sinha etc [ Phys. Rev. B, 38, pp2297 (1988) ]Sinha etc [Phys. Rev. B, 38, pp2297 (1988)] 桜井ら[ Jpn. J. Appl. Phys. 31, L113 (1992) ]Sakurai et al. [Jpn. J. Appl. Phys. 31, L113 (1992)]

半導体/磁気デバイスの分野では、素子の高機能化、高性能化に伴い、極薄多層膜化以外にも、微細化も進められている。X線反射率法は積層体の各層の膜厚と界面幅を評価できる優れた方法であるが、試料の微小領域の膜厚と界面幅を評価することは不得意である。X線反射率法は試料表面すれすれにX線を入射する必要があるため、入射X線の照射領域は照射X線の大きさの10〜100倍の領域に広がる。このため、1mm以下の領域のX線反射率の測定には10μm以下のビームサイズが必要となる。またX線反射率法では、試料と照射X線の位置関係のずれをビームサイズの1/10以下に抑えるように調整する必要がある。10μm以下のX線ビームに対しても試料表面を1μm以下の精度で合わせることはできるが、入射角を変えながら、照射位置とX線と試料表面の位置関係を1μm以下の精度で維持することは困難である。これら課題のため、X線反射率法では、微小領域の膜厚を計測することは困難である。   In the field of semiconductor / magnetic devices, miniaturization is being promoted in addition to ultra-thin multi-layered films as elements have higher functions and higher performance. The X-ray reflectivity method is an excellent method capable of evaluating the film thickness and interface width of each layer of the laminate, but is not good at evaluating the film thickness and interface width of a micro area of the sample. Since the X-ray reflectivity method requires that X-rays be incident on the sample surface, the irradiation area of incident X-rays extends to an area 10 to 100 times the size of the irradiation X-rays. For this reason, a beam size of 10 μm or less is required for measuring the X-ray reflectivity in a region of 1 mm or less. Further, in the X-ray reflectivity method, it is necessary to adjust the positional relationship between the sample and the irradiated X-ray to be suppressed to 1/10 or less of the beam size. Although the sample surface can be aligned with an accuracy of 1 μm or less even for an X-ray beam of 10 μm or less, the positional relationship between the irradiation position, X-rays, and the sample surface must be maintained with an accuracy of 1 μm or less while changing the incident angle. It is difficult. Because of these problems, it is difficult to measure the film thickness of a minute region by the X-ray reflectivity method.

そこで、本発明は、10μm以下に集光した入射X線を積層体試料に照射し、反射されたX線の位相情報を測定することで、積層体試料を回転することなく、微小領域の膜厚を計測、検査することが可能なX線反射率法を提供する事にある。   Therefore, the present invention irradiates the laminated sample with incident X-rays condensed to 10 μm or less, and measures the phase information of the reflected X-rays, so that the film of a minute region can be obtained without rotating the laminated sample. The object is to provide an X-ray reflectivity method capable of measuring and inspecting the thickness.

上記の課題を解決するための本発明の一例としては、入射X線を上流側X線レンズの上半分に入射し、集光する1次X線と透過する0次光に振幅分割し、集光X線の焦点位置に配置した試料で鏡面反射させ、連続する反射角の反射X線を物体波とし、0次光を参照波と下流側X線レンズで干渉させ、その干渉縞を2次元検出器で測定する、0次光の光路に配置した位相板を用いて、参照波の位相を変調し、連続する反射角の反射X線の位相を測定し、その入射角のちがいによる反射X線の位相変化から膜厚を計測することを特徴とする。   As an example of the present invention for solving the above-described problems, incident X-rays are incident on the upper half of the upstream X-ray lens, and are amplitude-divided into primary X-rays to be collected and zero-order light to be transmitted. The sample placed at the focal point of the light X-ray is specularly reflected, and the reflected X-rays with continuous reflection angles are made object waves, and the zero-order light is interfered with the reference wave and the downstream X-ray lens, and the interference fringes are two-dimensional. The phase of the reference wave is modulated using the phase plate placed in the optical path of the 0th order light measured by the detector, the phase of the reflected X-rays at successive reflection angles is measured, and the reflected X due to the difference in the incident angle The film thickness is measured from the phase change of the line.

本発明によれば、X線集光レンズにより10μm以下に集光したX線を積層体上に入射し、反射したX線のX線位相反射率を計測することにより、積層体微小領域の各層膜厚を入射角固定で検査することが可能となる。   According to the present invention, the X-rays condensed to 10 μm or less by the X-ray condenser lens are incident on the laminated body, and the X-ray phase reflectivity of the reflected X-rays is measured, whereby each layer of the laminated body microregion The film thickness can be inspected with the incident angle fixed.

本発明の実施例Examples of the present invention 本発明の別の実施例Another embodiment of the present invention 本発明の更に別の実施例Still another embodiment of the present invention 本発明をさらに別の実施例Another embodiment of the present invention 本発明に用いる透過型ラウエレンズTransmission type Laue lens used in the present invention 本発明に用いるフレネルゾーンプレートFresnel zone plate used in the present invention

上記目的を達成する本発明の特長は、X線レンズを振幅分割ビームスプリッターと集光光学系として用いることにある。X線レンズで屈折されたX線は、焦点位置に集光するような角度分布がある。X線レンズの一部のみにX線が照射されるようにすることで、入射X線の角度分布を制御する。焦点位置に配置した薄膜積層体に集光X線を照射すると鏡面反射され、入射X線の角度分布に応じた反射X線が得られる。X線レンズで屈折されずに透過したX線を参照波、薄膜積層体で反射されたX線を物体波として薄膜積層体下流に配置したX線レンズで重ね合わせる。   The feature of the present invention that achieves the above object is that an X-ray lens is used as an amplitude division beam splitter and a condensing optical system. The X-ray refracted by the X-ray lens has an angular distribution that is condensed at the focal position. The angle distribution of incident X-rays is controlled by irradiating only a part of the X-ray lens with X-rays. When the thin film stack disposed at the focal position is irradiated with condensed X-rays, it is specularly reflected, and reflected X-rays corresponding to the angular distribution of incident X-rays are obtained. The X-rays that are transmitted without being refracted by the X-ray lens are superimposed as a reference wave, and the X-rays reflected by the thin film stack are superposed by an X-ray lens arranged downstream of the thin film stack.

重ね合わせたX線は干渉し、光路差と薄膜積層体中で生じた位相差を反映した干渉縞を生じる。次に参照波の光路に配置した位相板を利用し、参照波の位相を0から2πまで変化させて干渉縞を測定する。。その縞の間隔、および位置のズレから物体波の位相を解析する。   The superimposed X-rays interfere with each other, producing interference fringes reflecting the optical path difference and the phase difference generated in the thin film stack. Next, using the phase plate arranged in the optical path of the reference wave, the phase of the reference wave is changed from 0 to 2π to measure the interference fringes. . The phase of the object wave is analyzed from the interval between the fringes and the positional deviation.

また、入射X線の一部がX線レンズに照射されるようにすることで、入射X線を波面分割する。X線レンズに照射されたX線は屈折され焦点位置に集光するが、X線レンズに照射される領域を制限することで、入射X線の角度分布を制御する。焦点位置に配置した薄膜積層体に集光X線を照射すると鏡面反射され、入射X線の角度分布に応じた反射X線が得られる。
X線レンズを通過しなかったX線を参照波、薄膜積層体で反射されたX線を物体波として薄膜積層体下流に配置したX線カメラ上で重ね合わせる。重ね合わせたX線は干渉し、光路差と薄膜積層体中で生じた位相差を反映した干渉縞が得られる、また参照波の光路に配置した位相板を利用し、参照波の位相を0から2πまで変化させて干渉縞を測定する。。その縞の間隔、および位置のズレから物体波の位相を解析する。
Further, the incident X-ray is divided into wavefronts by irradiating the X-ray lens with a part of the incident X-ray. The X-ray irradiated to the X-ray lens is refracted and condensed at the focal position, but the angle distribution of the incident X-ray is controlled by limiting the region irradiated to the X-ray lens. When the thin film stack disposed at the focal position is irradiated with condensed X-rays, it is specularly reflected, and reflected X-rays corresponding to the angular distribution of incident X-rays are obtained.
The X-rays that have not passed through the X-ray lens are superimposed on an X-ray camera arranged as a reference wave and the X-rays reflected by the thin film stack as an object wave on the downstream side of the thin film stack. The superimposed X-rays interfere to obtain interference fringes reflecting the optical path difference and the phase difference generated in the thin film stack, and the phase of the reference wave is set to 0 using a phase plate arranged in the optical path of the reference wave. The interference fringes are measured while changing from 2 to 2π. . The phase of the object wave is analyzed from the interval between the fringes and the positional deviation.

次に、膜厚解析方法に関して示す。膜厚が薄い場合、X線の入射角θが全反射臨界角より大きい条件とすることで、物体波に基板で反射したX線と積層膜表面で反射したX線が含まれることになる。この場合、基板部分で反射した領域の干渉縞と積層膜部分で反射した領域の干渉縞のずれ量を計測する。試料表面で反射されたX線と基板で反射されたX線の光路差Δは、入射角をθ、積層膜の膜厚をdとすると、式1で表すことができる。
Δ=2d sinθ (数1)
検出器上で物体波の位相差が2nπとなっている場所を位置Zとし、その入射角を入射角θ1とすると式2となる。θとZの相関関係は、事前に決める必要がある。
2nπ=4π(d/λ) sinθ1 (数2)
次に、位相差2(n+1)πとなっている、検出器上の位置Z2を求め、その入射角を入射角θ2とすると式3となる
2(n+1)π=4π(d/λ)sinθ2 (数3)
式3から式2を引くと、式4が得られる。
2π=4π(d/λ)(sinθ1ーsinθ2)
d≒λ/{2Δθcos(θav)} (数4)
式4のθavは測定した2つの入射角の平均値であり、Δθは2つの入射角の差である。
Next, a film thickness analysis method will be described. When the film thickness is small, the X-ray reflected by the substrate and the X-ray reflected by the surface of the laminated film are included in the object wave by setting the incident angle θ of the X-ray to be larger than the total reflection critical angle. In this case, the amount of deviation between the interference fringes in the region reflected by the substrate portion and the interference fringes in the region reflected by the laminated film portion is measured. The optical path difference Δ between the X-ray reflected from the sample surface and the X-ray reflected from the substrate can be expressed by Equation 1 where the incident angle is θ and the film thickness of the laminated film is d.
Δ = 2d sinθ (Equation 1)
Where the phase difference between the object beam on the detector is in the 2nπ the position Z 1, the formula 2 when the incident angle and the incident angle theta 1. The correlation between θ and Z must be determined in advance.
2nπ = 4π (d / λ) sinθ 1 (Equation 2)
Next, a position Z 2 on the detector having a phase difference of 2 (n + 1) π is obtained, and assuming that the incident angle is the incident angle θ 2 , 2 (n + 1) π = 4π (d / Λ) sinθ 2 (Equation 3)
Subtracting Equation 2 from Equation 3 yields Equation 4.
2π = 4π (d / λ) (sinθ 1 −sinθ 2 )
d ≒ λ / {2Δθcos (θ av )} (Equation 4)
In equation 4, θ av is the average value of the two incident angles measured, and Δθ is the difference between the two incident angles.

次に多層膜積層体の解析方法について示す。試料への入射角θを全反射臨界角より小さな角度から、1°程度まで変えて干渉縞を測定する。得られた干渉縞の基板部分で反射した領域の干渉縞と積層膜部分で反射した領域の干渉縞のずれ量を計測し、基板で反射したX線と積層膜部分で反射したX線の位相差を求める。これを測定入射角毎に実施し、積層膜部分の位相変化に入射角依存性を得る。積層膜で鏡面反射されたX線の反射率曲線はParratt [ Phys. Rev.、 95、 pp359 (1954)] が漸化式として提示している。積層体への入射角をθ、入射X線の波長をλ、積層体のj番目の層の膜厚をdj、屈折率をn = 1 - (δj + i・βj )=1-{λ/(4π)}2(ξ+i・η)とすると、
Rj = aj 4・[ ( Rj+1 + Fj、j+1 )/(Rj+1・Fj、j + 1) ] (数5)
γj 2 = q2 ー2(ξj - iηj ) (数6)
aj = exp[ -i ・γj・dj /4 ] (数7)
Fj、j+1 = { ( γj - γj+1 ) / ( γj + γj+1 ) } (数8)
を用いて計算できる。通常、X線反射率は強度で測定するため、|R12で求めることになるが、位相反射率計を用いた場合、反射X線の位相が求められることから、R1を計算することで実験値と比較できる。式3は、q2 >>ξ、q2 >>ηの領域ではγj≒qと近似でき、|Rj+1・Fj、j +1|<<1となるため、式9、式10と書くことができる。
Rj = aj 4・( Rj+1 + Fj、j+1 ) (数9)
R11 j=N+1[ { II1 k=j(ak 4) }・Fj、j+1 ] (数10)
Fj、j+1はフレネルの反射係数であり、反射波の振幅を表し、akが位相を表す。式9より、位相反射率R1は各界面で反射したX線の波の加算となっていることが分かる。入射角を変えて測定した位相情報を式9に当てはめることにより、各界面で反射されたX線の位相が求まり、ajを連立方程式で解くことができる。これにより、膜層の膜厚を得ることができる
以上のように、本発明の集光X線を入射光とした位相反射率法を用いることにより、入射角を変える事なく、薄膜積層体の微小領域の膜厚検査が可能となる。
Next, a method for analyzing a multilayer laminate will be described. Interference fringes are measured by changing the incident angle θ to the sample from an angle smaller than the total reflection critical angle to about 1 °. Measure the amount of deviation between the interference fringes of the area reflected by the substrate part of the obtained interference fringes and the interference fringe of the area reflected by the laminated film part, and the position of the X-rays reflected by the substrate and the laminated film part. Find the phase difference. This is performed for every measurement incident angle, and the incident angle dependence is obtained in the phase change of the laminated film portion. Parratt [Phys. Rev., 95, pp359 (1954)] presents the recursion formula for the reflectivity curve of the X-rays specularly reflected by the laminated film. The incident angle to the laminate is θ, the wavelength of the incident X-ray is λ, the film thickness of the j-th layer of the laminate is d j , and the refractive index is n = 1 − (δ j + i · β j ) = 1− If {λ / (4π)} 2 (ξ + i · η),
R j = a j 4 · [(R j + 1 + F j, j + 1 ) / (R j + 1 · F j, j + 1 )] (Equation 5)
γ j 2 = q 2 over 2 (ξ j - iη j) ( 6)
a j = exp [-i · γ j · d j / 4] (Equation 7)
F j, j + 1 = {(γ jj + 1 ) / (γ j + γ j + 1 )} (Equation 8)
Can be used to calculate. Usually, since the X-ray reflectivity is measured by intensity, | R 1 | 2 is obtained, but when a phase reflectometer is used, the phase of the reflected X-ray is obtained, so R 1 is calculated. This can be compared with the experimental value. Equation 3 can be approximated as γ j ≈q in the region of q 2 >> ξ and q 2 >> η, and | R j + 1 · F j, j +1 | << 1. 10 can be written.
R j = a j 4・ (R j + 1 + F j, j + 1 ) (Equation 9)
R 1 = Σ 1 j = N + 1 [{II 1 k = j (a k 4 )} · F j, j + 1 ] (Equation 10)
F j and j + 1 are Fresnel reflection coefficients, representing the amplitude of the reflected wave, and a k representing the phase. From Equation 9, it can be seen that the phase reflectivity R 1 is the sum of X-ray waves reflected at each interface. By applying the phase information measured by changing the incident angle to Equation 9, the phase of the X-ray reflected at each interface can be obtained, and a j can be solved by simultaneous equations. Thereby, the film thickness of the film layer can be obtained. As described above, by using the phase reflectance method using the condensed X-ray of the present invention as incident light, the incident angle of the thin film stack can be changed without changing the incident angle. It is possible to inspect the film thickness in a minute region.

上述の手法を実際に適用した例について以下詳細を説明する。
(実施例1)
本発明の実施例を図にしたがって説明する。図1に本発明の実施例を示す。本実施例では図6に示す透過型ラウエレンズを上流側X線レンズ3および下流側X線レンズ10として使用した。透過型ラウエレンズの大きさは約1mm角であり、波長0.1nmのX線に対する焦点距離は50mmであった。図6には2種類の透過型ラウエレンズを示した。右図は左図の透過型ラウエレンズの上半分だけで構成されている。本発明の実施においては、調整のし易さから左側の透過型ラウエレンズを利用した。
しかし、実際の測定では透過型ラウエレンズの上半分しか使用しないため、右図のような透過型ラウエレンズでも同様の効果を得ることができる。高輝度光科学研究センタの放射光実験施設(SPring−8)のアンジュレータ放射光源をX線源としたX線を単色器により0.1nmの波長のX線に単色化し、高次光除去ミラーで反射した後、スリットでz方向10μm、x方向10μmに成形した。センターストップ(図示せず)を用い、上流側X線レンズ3の中央部分のX線を除去し、OSA(Order Selecting Aperture: 図示せず)で1次回折光5以外の高次回折光6を除去した。次に下流側X線レンズ10を入れ、下流側X線レンズ10に1次回折光5が全面照射されるように2次元検出器12で確認しながら位置を調整し、記録データ1として記録した。
このとき、紙面に垂直な方向のX線幅は20μmに制限した。次にセンターストップ(図示せず)とOSA(図示せず)を除去し、上流側X線レンズ3の上半分にのみ入射X線1が照射されるように入射スリット2を、1次回折光5の集光角度幅は0.11〜0.57゜となるよう位置と幅を調整した。調整により、紙面の上下方向のスリット幅は400μmになった。
Details of an example in which the above-described method is actually applied will be described below.
(Example 1)
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of the present invention. In this example, the transmission type Laue lens shown in FIG. 6 was used as the upstream X-ray lens 3 and the downstream X-ray lens 10. The size of the transmissive Laue lens was about 1 mm square, and the focal length for X-rays with a wavelength of 0.1 nm was 50 mm. FIG. 6 shows two types of transmission type Laue lenses. The right figure is composed only of the upper half of the transmission type Laue lens shown in the left figure. In carrying out the present invention, the left-side transmissive Laue lens is used for ease of adjustment.
However, since only the upper half of the transmission type Laue lens is used in actual measurement, the same effect can be obtained even with the transmission type Laue lens as shown in the right figure. X-rays using the undulator radiation source of the Synchrotron Radiation Research Facility (SPring-8) at the High-intensity Photonics Research Center as an X-ray source are monochromatized into 0.1-nm wavelength X-rays by a monochromator and reflected by a high-order light removal mirror The slit was molded in the z direction to 10 μm and the x direction to 10 μm. Using a center stop (not shown), the X-ray at the center of the upstream X-ray lens 3 was removed, and higher-order diffracted light 6 other than the first-order diffracted light 5 was removed by OSA (Order Selecting Aperture: not shown). . Next, the downstream X-ray lens 10 was inserted, the position was adjusted while confirming with the two-dimensional detector 12 so that the entire surface of the downstream X-ray lens 10 was irradiated with the first-order diffracted light 5, and recording data 1 was recorded.
At this time, the X-ray width in the direction perpendicular to the paper surface was limited to 20 μm. Next, the center stop (not shown) and OSA (not shown) are removed, and the incident slit 2 is made to have the first-order diffracted light 5 so that the incident X-ray 1 is irradiated only to the upper half of the upstream X-ray lens 3. The position and width were adjusted so that the condensing angle width was 0.11 to 0.57 °. As a result of the adjustment, the slit width in the vertical direction on the paper surface became 400 μm.

この光学配置では焦点位置でのX線は0.1μm×25μm程度になった。次に高次回折除去スリット7を用いて高次回折光6を除去し、ナイフエッジ14を用いて上流側X線レンズ3で屈折されなかった0次光4を除去した。これにより下流側X線レンズ10の下側にのみ、X線が照射される(破線で図示)。この照射範囲を記録データ2として2次元検出器12で記録した。1次回折光5の集光角度幅が入射X線の試料への入射角度範囲となる。次にナイフエッジ14を除き、シリコン薄板上にシリコン酸化膜を10nm程度形成した試料8を焦点位置に配置した。試料で反射された反射X線9は下流X線レンズ10で屈折され0次光4と重ね合わせた。反射X線9と0次光4の重ね合わせが正確に合うように、事前に記録した記録データ1および記録データ2、1次回折光5、0次光4、反射X線9の位置が一致するように、試料8のスイベル2軸とZ軸(図示せず)を駆動し調整した。   In this optical arrangement, the X-ray at the focal position was about 0.1 μm × 25 μm. Next, the high-order diffraction light 6 was removed using the high-order diffraction removal slit 7, and the zero-order light 4 that was not refracted by the upstream X-ray lens 3 was removed using the knife edge 14. As a result, only the lower side of the downstream X-ray lens 10 is irradiated with X-rays (shown by broken lines). This irradiation range was recorded as recording data 2 by the two-dimensional detector 12. The condensing angle width of the first-order diffracted light 5 is an incident angle range of the incident X-ray to the sample. Next, the knife edge 14 was removed, and a sample 8 having a silicon oxide film of about 10 nm formed on a silicon thin plate was placed at the focal position. The reflected X-ray 9 reflected from the sample was refracted by the downstream X-ray lens 10 and superimposed with the zero-order light 4. The positions of the pre-recorded recording data 1 and recording data 2, the first-order diffracted light 5, the 0th-order light 4, and the reflected X-ray 9 are matched so that the overlapping of the reflected X-ray 9 and the 0th-order light 4 accurately matches. As described above, the swivel 2 axis and the Z axis (not shown) of the sample 8 were driven and adjusted.

また、測定領域に入射X線が照射されるようにXY軸(図示せず)を駆動し試料の測定位置とX線の照射位置を合わせた。調整時には反射X線9と0次光4の重ね合わせで得られる干渉縞がじゃまにため、ナイフエッジ14および試料8のZ軸(図示せず)を使用して、干渉縞が出ないようにするなどして、反射X線9と0次光4の重なり具合を確認し調整した。   Further, the measurement position of the sample and the X-ray irradiation position were matched by driving an XY axis (not shown) so that incident X-rays were irradiated to the measurement region. During adjustment, the interference fringes obtained by superimposing the reflected X-ray 9 and the zero-order light 4 are obstructed, so that the knife edges 14 and the Z axis (not shown) of the sample 8 are used so that no interference fringes appear. The overlap of the reflected X-ray 9 and the 0th-order light 4 was confirmed and adjusted.

調整終了後、ナイフエッジ14を除去すると、干渉X線11が得られ、この干渉X線11の強度分布を2次元検出器12で記録した。このとき、試料上のX線照射領域は50μm×25μmであった。   When the knife edge 14 is removed after the adjustment is completed, the interference X-ray 11 is obtained, and the intensity distribution of the interference X-ray 11 is recorded by the two-dimensional detector 12. At this time, the X-ray irradiation area on the sample was 50 μm × 25 μm.

次に参照波である0次光4の位相をシフトさせるため、位相板13を傾斜させて干渉縞を2次元検出器12で測定した。
本発明の光学系では参照波と物体波の光路差で生じる干渉縞はその周期が非常に短いため、分解能が数μmの2次元検出器12では検知できなかった。得られる干渉縞は試料で反射された物体波の入射角の違いによる位相差を反映している。位相板13で参照波の位相を変えて干渉縞を2次元検出器12で測定することにより、物体波の振幅の極値、および節の座標が得られた。記録データ2とナイフエッジ14で参照波を除いた反射X線9の検出器上の位置関係から原点座標が得た。この原点からの極値、および節の座標、焦点位置−下流X線レンズ10の距離から、入射角を求めた。式2〜式4に記録データから得たパラメータを適用すると積層膜の膜厚を求めることができる。実施例では、θ= 0.280゜、0.57゜に極値、0.423゜に節が測定された。極値と節の関係は位相がπだけずれているので、式4は次の式11ように修正される
π=4π(d/λ)(sinθ1ーsinθ2)
d≒λ/{4Δθcos(θav)} (数11)
極値の与えた入射角を用いて、膜厚を式4から求めると、d=9.88nmとなった。
更に、極値と節を与えた入射角を用いて式4から膜厚を求めると、d=10.2nm、 97.5nmとなり、これら得られた結果から、膜厚は99.4nmと求めることができた。
Next, in order to shift the phase of the 0th-order light 4 as the reference wave, the phase plate 13 was tilted and the interference fringes were measured by the two-dimensional detector 12.
In the optical system of the present invention, the interference fringes generated by the optical path difference between the reference wave and the object wave have a very short period, and therefore cannot be detected by the two-dimensional detector 12 having a resolution of several μm. The obtained interference fringes reflect the phase difference due to the difference in the incident angle of the object wave reflected by the sample. By measuring the interference fringes with the two-dimensional detector 12 while changing the phase of the reference wave with the phase plate 13, the extreme value of the amplitude of the object wave and the coordinates of the nodes were obtained. The origin coordinates were obtained from the positional relationship between the recorded data 2 and the reflected X-ray 9 on the detector excluding the reference wave at the knife edge 14. The incident angle was determined from the extreme value from the origin, the coordinates of the nodes, and the focal point position—the distance from the downstream X-ray lens 10. When the parameters obtained from the recording data are applied to Equations 2 to 4, the film thickness of the laminated film can be obtained. In the example, θ = 0.280 °, an extreme value at 0.57 °, and a node at 0.423 ° were measured. Since the relationship between the extreme value and the node is shifted in phase by π, Equation 4 is corrected to the following Equation 11: π = 4π (d / λ) (sinθ 1 −sinθ 2 )
d≈λ / {4Δθcos (θ av )} (Equation 11)
Using the incident angle given by the extreme value, the film thickness was determined from Equation 4 to be d = 9.88 nm.
Further, when the film thickness was obtained from Equation 4 using the incident angle giving the extreme value and the node, d = 10.2 nm and 97.5 nm were obtained, and from these results, the film thickness could be obtained as 99.4 nm. .

次に、試料の膜厚が厚い場合や、参照波と物体波の光路差で生じる干渉縞を検出する場合について図2したがって説明する。図2に示した実施例の特徴は、下流側X線レンズ10と2次元検出器12の間に拡大用X線レンズ15があることである。拡大用X線レンズ15は0.1nm の波長のX線に対する焦点距離が150mmとなる同心円状のフレネルゾーンプレート(図6)を使用した。   Next, a case where the thickness of the sample is thick or a case where an interference fringe caused by the optical path difference between the reference wave and the object wave is detected will be described with reference to FIG. A feature of the embodiment shown in FIG. 2 is that there is an magnifying X-ray lens 15 between the downstream X-ray lens 10 and the two-dimensional detector 12. The magnifying X-ray lens 15 used was a concentric Fresnel zone plate (FIG. 6) having a focal length of 150 mm for X-rays having a wavelength of 0.1 nm.

下流側X線レンズ10と拡大用X線レンズ15との間の距離を135mmにすると、拡大用X線レンズ15と2次元検出器12の間の距離は1350mmとなり、下流側X線レンズ10上の干渉縞は約10倍に拡大され2次元検出器12に投影された。本実施例では拡大用X線レンズ15により干渉縞が拡大されるが、拡大用X線レンズ15用のセンターストップやOSA(図示せず)の影響で、視野が制限された。
しかし、試料の膜厚が厚い場合の周期の短い干渉縞や参照波と物体波の光路差で生じる干渉縞は検出できた。
(実施例2)
次の実施例を図3に示す。図1に示した実施例で検出できない参照波と物体波の光路差で生じる干渉縞には、入射X線の集光角/発散角分布に関する情報が含まれている。この干渉縞を測定することで、測定する試料からの干渉縞の入射角を正確に求めることができる。そこで、図3に示した実施例では参照波の光路にくさび形位相板16を入れ、参照波の光路に傾斜を付け、集光角の異なる物体波と参照波の干渉で生じる干渉縞の間隔を広げるようにしてあることに特徴がある。実際には、くさび形位相板16を回転させて参照波の位相を変えて2次元検出器12で干渉縞を観察し、くさび形位相板16のくさびの角度異なる位相板に取り替え、干渉縞を観察することを繰り返し、最適な位相シフトを与える。本実施例の入射X線の角度範囲は0.11〜0.57゜であることから、50本程度の干渉縞が検出されるようにくさび形位相板16を調整した。
If the distance between the downstream X-ray lens 10 and the magnifying X-ray lens 15 is 135 mm, the distance between the magnifying X-ray lens 15 and the two-dimensional detector 12 is 1350 mm, which is above the downstream X-ray lens 10. The interference fringes were magnified about 10 times and projected onto the two-dimensional detector 12. In this embodiment, the interference fringes are magnified by the magnifying X-ray lens 15, but the field of view is limited due to the influence of the center stop for the magnifying X-ray lens 15 and OSA (not shown).
However, it was possible to detect interference fringes with a short cycle when the sample was thick and interference fringes caused by the optical path difference between the reference wave and the object wave.
(Example 2)
The following example is shown in FIG. The interference fringes generated by the optical path difference between the reference wave and the object wave that cannot be detected in the embodiment shown in FIG. 1 include information on the collection angle / divergence angle distribution of incident X-rays. By measuring this interference fringe, the incident angle of the interference fringe from the sample to be measured can be accurately obtained. Therefore, in the embodiment shown in FIG. 3, the wedge-shaped phase plate 16 is inserted in the optical path of the reference wave, the optical path of the reference wave is inclined, and the interval between the interference fringes generated by the interference between the object wave and the reference wave having different converging angles. It is characterized by the fact that it has been expanded. Actually, rotate the wedge-shaped phase plate 16 to change the phase of the reference wave, observe the interference fringes with the two-dimensional detector 12, replace the wedge-shaped phase plate 16 with a phase plate with a different wedge angle, and replace the interference fringes. Repeat the observation to give the optimum phase shift. Since the angle range of incident X-rays in this embodiment is 0.11 to 0.57 °, the wedge-shaped phase plate 16 is adjusted so that about 50 interference fringes are detected.

これまでの実施例では、図面上の上下方向には振幅分割でX線を分け、紙面に垂直な方向は入射スリットで20μmに制限してある。焦点位置でのX線は100nm×25μm程度に集光されるが、試料面上では斜入射により、50μm×25μmに広がる。本発明の主たる目的は、100nm 集光X線を用い、50μmの領域の膜厚を計測することであるが、紙面に垂直な方向であれば分解能を向上することができる。図1〜図3に示した実施例の上流側X線レンズ3と下流側X線レンズ10を図5に示した透過型ラウエレンズから、図6に示す同心円状のフレネルゾーンプレートに交換する。フレネルゾーンプレートを用いた光学系の場合、焦点でX線がクロスオーバーするため、下流側X線レンズ10上で干渉させるには、空間コヒーレンスが必要である。実験に用いたSPring-8放射光は鉛直方向の空間コヒーレンスが100μm程度である。そこで図1〜3の光学系を装置上面からみた形に配置換えをし、入射スリットで紙面に垂直な方向(鉛直方向)のX線幅を100μmに制限した。実験に用いたフレネルゾーンプレートは直径が1mm程度となっているため、入射スリットで紙面に垂直な方向のX線幅を100μmに制限すると、十分なN/Aが得られず、水平方向(図面上の上下方向)より集光サイズが大きくなった。本実施例での鉛直方向の集光サイズは1μm程度となった。しかし、本実施例を利用する事により、試料面上で50μm×1μmの領域の膜厚が測定可能となった。
(実施例3)
最後に波面分割を利用した本発明の実施例を図4に示す。本実施例では図6右に示す透過型ラウエレンズをX線集光レンズとして使用した。ラウエレンズの大きさは約1mm角であり、0.1nmの波長での焦点距離は50mmである。高輝度光科学研究センタの放射光実験施設(SPring−8)のアンジュレータ放射光源をX線源としたX線は鉛直方向の空間コヒーレンスが約100μmあるが、水平方向の空間コヒーレンスは10μm程度しかないため、波面分割は鉛直方向にする必要がある。図4は実験配置を水平方向から見た図に対応している。発生した放射光を単色器により0.1nmの波長のX線に単色化し、平板高次光除去ミラーで反射した後、入射スリット2で上下100μm、紙面に垂直方向を20μmに制限し、上流側X線レンズ3上部100μm部分にX線を照射し、1次回折光5の焦点位置と集光サイズをナイフエッジ14で測定した。次に上流側X線レンズ3の上50μmにのみ入射X線1が照射されるように上流側X線レンズ3を下げ、上流側X線レンズ3を通過しない、上下幅50μmの参照波16を得た。次に高次回折除去スリット7を用いて高次回折光6を除去し、ナイフエッジ14を用いて焦点位置を再度確認した。焦点位置にシリコン薄板上に測定する薄膜としてNiFeを100nm程度形成した試料8を配置した。試料で反射された1次回折光5は反射X線9となった。反射X線9と参照波16が重なる位置に2次元検出器12を移動し、干渉縞を測定した。本発明の実施例でも、参照波と物体波の光路差で生じる干渉縞はその周期が非常に短いため、分解能が数μmの2次元検出器12では検知できなかった。得られる干渉縞は試料で反射された物体波の入射角の違いによる位相差を反映しているため、位相板13で参照波の位相を変えて干渉縞を2次元検出器12で測定することにより、物体波の振幅の極値、および節の座標を得た。本実施例では入射角を1゜±0.03゜とすることで、試料上のX線照射領域が30μm×20μmとなり、θ= 0.988゜、1.016゜に極値、1.002゜、1.030゜に節が測定された。式2〜式4、式4を利用することで、測定した試料の膜厚が、102.3nmであることが解析できた。本実施例では、入射X線となる1次回折光5の集光角が0.06゜と狭いことが問題であるが、XFELのようなX線レーザーを光源とすると、上流側X線レンズ3を大きくでき、1次回折光5の集光角度範囲が拡大できる。また本実施例は、これまでの実施例と異なり、試料への入射角を自由に選択できることに特徴がある。図1〜3の実施例では、参照波と物体波の重ね合わせに下流X線レンズ10が必要なため、X線波長を決めると1種類の入射角度範囲しか選択できない。入射角度範囲を変えるには、入射X線のエネルギーを変えるか、上流側X線レンズ3と下流X線レンズ10の焦点距離の組み合わせを変える等、大幅に光学系を変更する必要がある。しかし、本実施例は入射角を変えても、反射X線9と参照波16が重なる位置に2次元検出器12を移動するだけで干渉縞が測定できる。このため、測定試料の膜厚を測定するのに最適な入射角を試料調整時に選択することが可能である。
In the embodiments so far, X-rays are divided by amplitude division in the vertical direction on the drawing, and the direction perpendicular to the paper surface is limited to 20 μm by the entrance slit. X-rays at the focal point are focused to about 100 nm × 25 μm, but spread to 50 μm × 25 μm by oblique incidence on the sample surface. The main object of the present invention is to measure the film thickness in the region of 50 μm using 100 nm focused X-ray, but the resolution can be improved if the direction is perpendicular to the paper surface. The upstream X-ray lens 3 and the downstream X-ray lens 10 of the embodiment shown in FIGS. 1 to 3 are replaced with the concentric Fresnel zone plate shown in FIG. 6 from the transmission type Laue lens shown in FIG. In the case of an optical system using a Fresnel zone plate, since X-rays cross over at the focal point, spatial coherence is required to cause interference on the downstream X-ray lens 10. The SPring-8 synchrotron used in the experiment has a vertical spatial coherence of about 100 μm. Therefore, the optical system shown in FIGS. 1 to 3 was rearranged as seen from the top of the apparatus, and the X-ray width in the direction perpendicular to the paper surface (vertical direction) was limited to 100 μm by the entrance slit. Since the Fresnel zone plate used in the experiment has a diameter of about 1 mm, if the X-ray width in the direction perpendicular to the paper surface is limited to 100 μm by the entrance slit, sufficient N / A cannot be obtained and the horizontal direction (drawing) The condensing size became larger than the upper vertical direction. In this example, the vertical light collection size was about 1 μm. However, by using this example, the film thickness in the region of 50 μm × 1 μm on the sample surface can be measured.
Example 3
Finally, an embodiment of the present invention using wavefront division is shown in FIG. In this example, the transmission type Laue lens shown in the right of FIG. 6 was used as an X-ray condenser lens. The size of the Laue lens is about 1 mm square, and the focal length at a wavelength of 0.1 nm is 50 mm. X-rays using the undulator radiation source of the Synchrotron Radiation Research Center (SPring-8) at the High-intensity Optical Science Research Center have a vertical spatial coherence of about 100 μm, but a horizontal spatial coherence of only about 10 μm. Therefore, the wavefront division needs to be in the vertical direction. FIG. 4 corresponds to a view of the experimental arrangement viewed from the horizontal direction. The generated synchrotron radiation is monochromatized into X-rays with a wavelength of 0.1 nm by a monochromator, reflected by a flat plate higher-order light removal mirror, then limited to 100 μm vertically by the entrance slit 2 and 20 μm perpendicular to the paper surface, and an upstream X-ray lens 3 The upper 100 μm portion was irradiated with X-rays, and the focal position and condensing size of the first-order diffracted light 5 were measured with the knife edge 14. Next, the upstream X-ray lens 3 is lowered so that the incident X-ray 1 is irradiated only to the upper 50 μm above the upstream X-ray lens 3, and the reference wave 16 having a vertical width of 50 μm that does not pass through the upstream X-ray lens 3 is applied. Obtained. Next, the high-order diffraction light 6 was removed using the high-order diffraction removal slit 7, and the focal position was confirmed again using the knife edge 14. Sample 8 in which NiFe was formed to a thickness of about 100 nm as a thin film to be measured on a silicon thin plate was placed at the focal position. The first-order diffracted light 5 reflected by the sample became reflected X-rays 9. The two-dimensional detector 12 was moved to a position where the reflected X-ray 9 and the reference wave 16 overlapped, and interference fringes were measured. Even in the embodiment of the present invention, since the period of the interference fringes generated by the optical path difference between the reference wave and the object wave is very short, it cannot be detected by the two-dimensional detector 12 having a resolution of several μm. Since the obtained interference fringes reflect the phase difference due to the difference in the incident angle of the object wave reflected from the sample, the phase of the reference wave is changed by the phase plate 13, and the interference fringes are measured by the two-dimensional detector 12. Thus, the extreme value of the amplitude of the object wave and the coordinates of the node were obtained. In this example, by setting the incident angle to 1 ° ± 0.03 °, the X-ray irradiation area on the sample becomes 30μm × 20μm, and the extreme values are measured at θ = 0.988 °, 1.016 °, and the nodes are measured at 1.002 °, 1.030 °. It was done. By using Formulas 2 to 4 and Formula 4, it was possible to analyze that the film thickness of the measured sample was 102.3 nm. In this embodiment, there is a problem that the condensing angle of the first-order diffracted light 5 that becomes incident X-rays is as narrow as 0.06 °. However, when an X-ray laser such as XFEL is used as a light source, the upstream X-ray lens 3 is enlarged. The focusing angle range of the first-order diffracted light 5 can be expanded. Also, this embodiment is characterized in that the incident angle to the sample can be freely selected, unlike the previous embodiments. In the embodiment shown in FIGS. 1 to 3, the downstream X-ray lens 10 is required to superimpose the reference wave and the object wave, and therefore only one type of incident angle range can be selected when the X-ray wavelength is determined. In order to change the incident angle range, it is necessary to change the optical system significantly, such as changing the energy of incident X-rays or changing the combination of the focal lengths of the upstream X-ray lens 3 and the downstream X-ray lens 10. However, in this embodiment, even if the incident angle is changed, the interference fringes can be measured only by moving the two-dimensional detector 12 to a position where the reflected X-ray 9 and the reference wave 16 overlap. For this reason, it is possible to select the optimum incident angle for measuring the film thickness of the measurement sample when adjusting the sample.

以上述べてきたように、本実施例を利用すれば、集光X線を利用し入射角固定で、微小領域のX線位相反射率が測定可能となり、反射X線の位相解析により、積層膜の膜厚を解析することが可能となる。   As described above, if this embodiment is used, it is possible to measure the X-ray phase reflectivity in a minute region by using the condensed X-ray and fixing the incident angle. It becomes possible to analyze the film thickness.

1:入射X線
2:入射スリット
3:上流側X線レンズ
4:0次光
5:1次回折光
6:高次回折光
7:高次回折除去スリット
8:試料
9:反射X線
10: 下流側X線レンズ
11:干渉X線
12:2次元検出器
13:位相板
14:ナイフエッジ
15:拡大用X線レンズ
16:くさび形位相板
17:参照波
1: Incident X-ray 2: Incident slit 3: Upstream X-ray lens 4: 0th-order light 5: 1st-order diffracted light 6: High-order diffracted light 7: High-order diffraction removal slit 8: Sample 9: Reflected X-ray
10: Downstream X-ray lens
11: Interference X-ray
12: Two-dimensional detector
13: Phase plate
14: Knife edge
15: X-ray lens for magnification
16: Wedge-shaped phase plate
17: Reference wave

Claims (7)

入射X線を上流側X線レンズの上半分に入射し、集光する1次X線と透過する0次光に振幅分割し、集光X線の焦点位置に配置した試料で鏡面反射させ、連続する反射角の反射X線を物体波とし、前記0次光を参照波と下流側X線レンズで干渉させ、干渉により生じた干渉縞を2次元検出器で測定する微小部位相反射率計であって前記0次光の光路に配置した位相板を用いて、前記参照波の位相を変調し、連続する前記反射角の反射X線の位相を測定し、その入射角のちがいによる前記反射X線の位相変化から膜厚を計測する微小部位相反射率計を利用した薄膜積層体検査方法。 Incident X-rays are incident on the upper half of the upstream X-ray lens, amplitude-divided into primary X-rays to be collected and zero-order light to be transmitted, and are specularly reflected by a sample placed at the focal position of the focused X-rays. the reflected X-ray successive reflection angle and the object wave, the so zero-order light interfere with the reference wave and the downstream side X-ray lens, microanalysis phase reflectometer for measuring interference fringes generated by interference in a two-dimensional detector a is, with a phase plate disposed in the optical path of the 0 order light, and modulating the phase of the reference wave, measures the phase of the reflected X-ray of the reflection angle to be continuous, the by difference in the incident angle A thin film laminate inspection method using a micro phase reflectometer that measures film thickness from the phase change of reflected X-rays. 請求項1記載の前記微小部位相反射率計は、前記2次元検出器と下流X線レンズの間に干渉縞を拡大するためのX線レンズを有することを特徴する薄膜積層体検査方法。   2. The method for inspecting a thin film laminate according to claim 1, wherein the micro phase reflectometer has an X-ray lens for enlarging interference fringes between the two-dimensional detector and the downstream X-ray lens. 請求項1記載の前記微小部位相反射率計は、前記位相板がくさび形をしていることを特徴とする特徴とする薄膜積層体検査方法。   2. The method for inspecting a thin film stack according to claim 1, wherein the phase plate has a wedge shape. 請求項1記載の上流X線レンズおよび下流X線レンズは同心円状のフレネルゾーンプレート、または透過型ラウエレンズであり、集光焦点位置でのX線ビームの半値幅が1nmから10μmの範囲であることを特徴とする薄膜積層体検査方法。   The upstream X-ray lens and the downstream X-ray lens according to claim 1 are concentric Fresnel zone plates or transmissive Laue lenses, and the half-value width of the X-ray beam at the focal point of focusing is in the range of 1 nm to 10 μm. A method for inspecting a thin film laminate. 入射X線を半分に上流側X線レンズを入れ、前記上流側X線レンズの上半分に入射し、集光する1次X線を物体波とし、前記上流側X線レンズと通過しなかったX線を参照波として、波面分割し、集光X線の焦点位置に配置した試料で鏡面反射させ、連続する反射角の反射X線と、前記参照波の重なる位置に2次元検出器を配置し、干渉縞を測定する微小部位相反射率計であって前記参照波の光路に配置した位相板を用いて、前記参照波の位相を変調し、連続する前記反射角の反射X線の位相を測定し、
その入射角のちがいによる前記反射X線の位相変化から膜厚を計測する微小部位相反射率計を利用した薄膜積層体検査方法。
Put upstream X-ray lens in half of the incident X-rays, incident on the upper half of the upstream side X-ray lens, the primary X-ray for focusing the object beam, has not passed through the said upstream side X-ray lens reference wave X-rays, and wavefront division, is specularly reflected by the sample placed at the focal position of the condensing X-ray, arranged a reflection X-ray reflection angle of successive, two-dimensional detector at a position overlapping the reference wave and, a small unit phase reflectometer for measuring the interference fringes, using a phase plate disposed in the optical path of the reference wave, modulates the phase of the reference wave, the reflected X-rays of the reflection angle successive Measure the phase,
Thin film stack inspection method using a micro-unit phase reflectometer to measure the film thickness from the phase change of the reflected X-ray due to difference in the incident angle.
請求項5記載の前記微小部位相反射率計は、前記位相板がくさび形をしていることを特徴とする特徴とする薄膜積層体検査方法。   6. The method for inspecting a thin film stack according to claim 5, wherein the phase plate has a wedge shape. 請求項5記載の上流X線レンズは同心円状のフレネルゾーンプレート、または透過型ラウエレンズであり、集光焦点位置でのX線ビームの半値幅が1nmから10μmの範囲であることを特徴とする薄膜積層体検査方法。   6. The thin film according to claim 5, wherein the upstream X-ray lens is a concentric Fresnel zone plate or a transmissive Laue lens, and the half-value width of the X-ray beam at the focal point of focusing is in the range of 1 nm to 10 μm. Laminate inspection method.
JP2010214668A 2010-09-27 2010-09-27 Thin film laminate inspection method Expired - Fee Related JP5568426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010214668A JP5568426B2 (en) 2010-09-27 2010-09-27 Thin film laminate inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010214668A JP5568426B2 (en) 2010-09-27 2010-09-27 Thin film laminate inspection method

Publications (2)

Publication Number Publication Date
JP2012068180A JP2012068180A (en) 2012-04-05
JP5568426B2 true JP5568426B2 (en) 2014-08-06

Family

ID=46165620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010214668A Expired - Fee Related JP5568426B2 (en) 2010-09-27 2010-09-27 Thin film laminate inspection method

Country Status (1)

Country Link
JP (1) JP5568426B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3548664B2 (en) * 1996-03-29 2004-07-28 株式会社日立製作所 Phase contrast X-ray imaging device
WO2006115114A1 (en) * 2005-04-20 2006-11-02 Kyoto Institute Of Technology Fresnel zone plate and x-ray microscope using the fresnel zone plate
JP5095422B2 (en) * 2008-01-16 2012-12-12 株式会社日立製作所 Method for measuring film thickness of thin film laminate

Also Published As

Publication number Publication date
JP2012068180A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
TWI634325B (en) Methods and apparatus for measuring semiconductor device overlay using x-ray metrology
US9753379B2 (en) Inspection apparatus and methods, methods of manufacturing devices
TWI251722B (en) Device inspection
JP6790248B2 (en) Infrared spectroreflector for high aspect ratio structure measurement
Sunday et al. Determining the shape and periodicity of nanostructures using small-angle x-ray scattering
JP5554563B2 (en) Order-selected overlay measurement
TWI298824B (en) Lithographic apparatus, device manufacturing method, and device manufactured thereby
CN107567584A (en) Method and apparatus for checking and measuring
TW201534863A (en) Methods and systems for measuring periodic structures using multi-angle X-ray reflectance scatterometry (XRS)
JP2009177134A (en) Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
TW201219747A (en) Self-referencing interferometer, alignment system, and lithographic apparatus
TWI631321B (en) Illumination source for an inspection apparatus, inspection apparatus and inspection method
WO2015146287A1 (en) Beam generation unit and small-angle x-ray scattering device
Nowak et al. Grazing angle X-ray fluorescence from periodic structures on silicon and silica surfaces
US20210124276A1 (en) Position sensor
US20230266233A1 (en) System for measuring thickness and physical properties of thin film using spatial light modulator
JP5095422B2 (en) Method for measuring film thickness of thin film laminate
Helfenstein et al. Coherent diffractive imaging methods for semiconductor manufacturing
JP5568426B2 (en) Thin film laminate inspection method
JP5699105B2 (en) Surface measurement method and apparatus
JP5548151B2 (en) Pattern shape inspection method and apparatus
De Caro et al. X-ray point-and line-projection microscopy and diffraction
JP2009109374A (en) X-ray wavefront sensor
KR20240068511A (en) Optical Constant Measurement Devices and Methods for EUV Specimens
Civita Measurements of phase changes in crystals using ptychographic x-ray imaging

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R151 Written notification of patent or utility model registration

Ref document number: 5568426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees