JP5567547B2 - Power generator and vertical axis power generator using the same - Google Patents

Power generator and vertical axis power generator using the same Download PDF

Info

Publication number
JP5567547B2
JP5567547B2 JP2011285252A JP2011285252A JP5567547B2 JP 5567547 B2 JP5567547 B2 JP 5567547B2 JP 2011285252 A JP2011285252 A JP 2011285252A JP 2011285252 A JP2011285252 A JP 2011285252A JP 5567547 B2 JP5567547 B2 JP 5567547B2
Authority
JP
Japan
Prior art keywords
blade portion
orthogonal
vertical axis
blade
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011285252A
Other languages
Japanese (ja)
Other versions
JP2013133769A (en
Inventor
榮展 松田
修 小林
栄美子 小林
Original Assignee
修 小林
栄美子 小林
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 修 小林, 栄美子 小林 filed Critical 修 小林
Priority to JP2011285252A priority Critical patent/JP5567547B2/en
Publication of JP2013133769A publication Critical patent/JP2013133769A/en
Application granted granted Critical
Publication of JP5567547B2 publication Critical patent/JP5567547B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Description

本発明は、流体の流体圧を羽根が受けて垂直軸を回転させる動力発生装置及びこれを用いた垂直軸発電装置に関する。   The present invention relates to a power generation device that rotates a vertical shaft by receiving a fluid pressure of a fluid and a vertical shaft power generation device using the power generation device.

近年、地球温暖化に伴う異常気象や環境破壊が進行しており、温室効果ガスの排出削減を図るべく環境にやさしい再生可能な自然エネルギーを有効利用するニーズが高まっている。このため、化石燃料を用いないエネルギーの開発の一環として様々な風力発電装置が開発され実用化されている。   In recent years, abnormal weather and environmental destruction associated with global warming have progressed, and there is an increasing need for effective use of environmentally friendly renewable natural energy in order to reduce greenhouse gas emissions. For this reason, various wind power generators have been developed and put into practical use as part of the development of energy that does not use fossil fuels.

風力発電用の風車には回転軸の方向によって直交軸型風車と垂直軸型風車がある。これらのうちでも、発電効率が高く大型化が容易である直交軸型風車がすでに数多く開発され実用化されている。これは、風車の回転軸が直交軸となる装置であり、発電機などの重量物を風車と一体に支柱の上部に設ける必要があり、設置作業やメンテナンス作業に困難を伴う。また、風車の回転面を常に風向き合わせて配置する必要がある。   Wind turbines for wind power generation include an orthogonal axis type wind turbine and a vertical axis type wind turbine depending on the direction of the rotation axis. Among these, many orthogonal axis type wind turbines having high power generation efficiency and easy to increase in size have already been developed and put into practical use. This is a device in which the rotation axis of the windmill is an orthogonal axis, and it is necessary to provide a heavy object such as a generator integrally with the windmill on the upper part of the support column, which causes difficulty in installation work and maintenance work. In addition, it is necessary to always arrange the rotating surfaces of the windmills so that they face each other.

これに対して、垂直軸型風車は、風車の回転軸が設置面に垂直であり、発電機などの重量物を地上に設置することができるので、設置作業やメンテナンス作業が容易であり、季節や時間帯により風向きが変化しやすい我が国では、いずれの方向から風が吹いても風向きに対する依存性がない。よって、垂直軸型風車が向いているにも関わらず従来95%以上の割合で普及しているのは直交軸型風車を用いた風力発電装置であった。
この理由としては、垂直軸型風車が風向きに依存しない構造であるが、風車の追い風(順風)になる羽根と向かい風(逆風)になる羽根が存在するため空気力学的損失が大きく、風車の起動時に大きなトルクが必要となるため、風速1m/sec程度の低風速域で起動し難い。また、風車が起動しても空気力学的損失が大きく(風力エネルギーの約60%)有効な発電効率が得られないなどが考えられる。
On the other hand, in the vertical axis type windmill, the rotation axis of the windmill is perpendicular to the installation surface, and heavy objects such as generators can be installed on the ground, so installation work and maintenance work are easy. In Japan, where the wind direction is likely to change depending on the time of day, there is no dependence on the wind direction regardless of the direction of the wind. Therefore, although a vertical axis type wind turbine is suitable, a wind power generator using an orthogonal axis type wind turbine has been widely used at a rate of 95% or more.
The reason for this is that the vertical axis wind turbine has a structure that does not depend on the wind direction. Since a large torque is sometimes required, it is difficult to start in a low wind speed range of about 1 m / sec. In addition, even if the windmill is started, there is a large aerodynamic loss (about 60% of wind energy), and effective power generation efficiency cannot be obtained.

この垂直軸風車の空気力学的損失による影響を低減するため、垂直軸の上端に組み付けられた円盤上で連結棒に左右対称に風受け板を90度に捩じった状態で取り付けられた風車が提案されている。これにより円盤上で起立している風受け板が追い風を受け止めると円盤が回転し、向かい風になると水平に倒れて反対側の風受け板が起立して風を受け止めて回転する動作を繰り返す(特許文献1)。
また、垂直軸に対して直交方向に支持する支持部材に軸線回りに仮想水平面に対して0度より大きく90度より小さい範囲で回転可能に組み付けられた可動羽根部と、仮想水平面に対して0度より大きく15度より小さい俯角を有して支持部材に固定された固定羽根部が設けられている。可動羽根部は、風下に向うときは可動羽根部が流体圧を受けて開くことで垂直軸を回転させ、風上に向うときには流体の抗力を受けて閉じて抵抗を受けないようになっている(特許文献2参照)。
In order to reduce the influence of the aerodynamic loss of the vertical axis wind turbine, the wind turbine is mounted on the disk assembled on the upper end of the vertical axis in a state where the wind receiving plate is twisted 90 degrees symmetrically to the connecting rod. Has been proposed. As a result, when the wind receiving plate standing on the disk receives the tailwind, the disk rotates, and when it becomes the opposite wind, it falls horizontally and the opposite wind receiving plate stands up and receives the wind and rotates repeatedly (patent) Reference 1).
In addition, a movable blade portion that is assembled to a support member that is supported in a direction orthogonal to the vertical axis so as to be rotatable around the axis in a range larger than 0 degree and smaller than 90 degrees with respect to the virtual horizontal plane, and 0 with respect to the virtual horizontal plane A fixed blade portion fixed to the support member with a depression angle larger than 15 degrees and smaller than 15 degrees is provided. When moving toward the lee, the movable blade is opened by receiving fluid pressure to rotate the vertical axis, and when moving toward the wind, the movable blade is closed by receiving the drag of the fluid so as not to receive resistance. (See Patent Document 2).

特開2009−275641号公報JP 2009-275641 A 特開2011−94574号公報JP 2011-94574 A

上述した垂直軸風車の構成では、風受け板が円盤上で若しくは可動羽根部が固定羽根部に対して0度から90度程度の開き角で開閉するようになっているため、風車が風下に向かうときに風圧を受けとめる羽根部の面積が限られており、十分なトルクが得られないおそれがある。また、連結棒に90度に捩じって組み付けられた風受け板が連結棒ごと一体となって回転するため、円盤上に起立する風受け板で受ける風量が少ないと回転し難い。風車が回転して固定羽根部が風上に向う際には、抵抗を受けやすい構造になっている。   In the configuration of the vertical axis wind turbine described above, the wind turbine is opened and closed at an opening angle of about 0 to 90 degrees with respect to the stationary blade portion on the disk or the movable blade portion with respect to the fixed blade portion. The area of the blade portion that receives the wind pressure when heading is limited, and there is a possibility that sufficient torque cannot be obtained. In addition, since the wind receiving plate assembled by twisting the connecting rod by 90 degrees rotates together with the connecting rod, it is difficult to rotate if the amount of air received by the wind receiving plate standing on the disk is small. When a windmill rotates and a fixed blade | wing part faces windward, it has a structure which is easy to receive resistance.

本発明の目的は、流体圧を受ける回転羽根の面積が広くとれ、流体力学的損失が少なく、少ない流量でも回転し、十分な回転トルクが得られる動力発生装置及びこれを用いて小型軽量化することが可能で可搬性、組立性、メンテナンス性が良く、流体の流れ方向にかかわらずわずかな流量でも発電する発電効率の良い垂直軸発電装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a power generator that can take a large area of a rotary blade that receives fluid pressure, has little hydrodynamic loss, rotates even at a small flow rate, and obtains sufficient rotational torque, and is reduced in size and weight using the power generator. An object of the present invention is to provide a vertical axis power generation device that is capable of generating power even at a small flow rate regardless of the flow direction of fluid, having good portability, ease of assembly and maintainability.

上記課題を解決するために、本発明に係る動力発生装置は、以下の構成を備える。
即ち、設置面に対して垂直方向に回転可能に軸支された垂直軸と、前記垂直軸に直交して組み付けられた単数又は複数の直交軸と、当該直交軸に沿って配置した中心骨から外側に向って枝骨が複数箇所で枝分かれした骨格部にシート材が一体化された形状をした第1羽根部及び第2羽根部が前記直交軸を中心に前記中心骨側に設けられたヒンジ部により各々揺動可能に両側に備えられ前記垂直軸と1体に回転する回転羽根と、前記第1羽根部及び第2羽根部が、流体の流れ方向下流側に向う回転位置で流体を受けて前記直交軸回りの開き角度が所定範囲まで増大する向きに上下に開き、流体の流れ方向上流側に向う回転位置で流体圧を受けると当該開き角度が所定範囲まで縮小するように前記回転羽根の開閉角度を規制する前記直交軸を中心に複数設けられた角度規制部と、を具備したことを特徴とする。
上記構成によれば、垂直軸に直交する直交軸の両側に設けられた第1羽根部と第2羽根部が流体の流れ方向下流側に向う回転位置で流体圧を受けて上下に開き直交軸回りの開き角が所定範囲まで増大し、流体の流れ方向上流側に向う回転位置で流体圧を受けると当該開き角が所定範囲まで減少するように角度規制されて揺動する。角度規制部は直交軸を 中心に複数設けられているので強風時や突風時でも破損し難いまた、前記第1羽根部と第2羽根部は枝分かれした骨格部にシート材が一体化した形状をしているため軽量で、わずかな流体圧でも開閉が可能である。これにより、回転羽根が流体の向きや流体抵抗の影響を受け難いので流体学的損失が少なく、わずかな流体圧を受けて垂直軸と一体となって効率よく回転し、動力を発生させることができる。
In order to solve the above problems, a power generation device according to the present invention has the following configuration.
That is, from a vertical axis pivotally supported so as to be rotatable in a vertical direction with respect to the installation surface, one or a plurality of orthogonal axes assembled perpendicular to the vertical axis, and a central bone arranged along the orthogonal axis A hinge in which a first blade portion and a second blade portion having a shape in which a sheet material is integrated with a skeleton portion in which a branch bone branches at a plurality of positions toward the outside are provided on the central bone side around the orthogonal axis Rotating blades which are provided on both sides so as to be swingable by the respective portions and rotate in one body with the vertical shaft, and the first blade portion and the second blade portion receive fluid at a rotational position toward the downstream side in the fluid flow direction. The rotating blades open up and down in a direction in which the opening angle around the orthogonal axis increases to a predetermined range, and when the fluid pressure is received at a rotational position toward the upstream side in the fluid flow direction, the opening angle is reduced to the predetermined range. around the orthogonal axis for restricting the opening angle of the A plurality of an angle regulating unit, by comprising the features.
According to the above configuration, the first blade portion and the second blade portion provided on both sides of the orthogonal axis orthogonal to the vertical axis receive the fluid pressure at the rotational position toward the downstream side in the fluid flow direction and open up and down. The opening angle of the rotation increases to a predetermined range, and when the fluid pressure is received at the rotational position toward the upstream side in the fluid flow direction, the angle is controlled so that the opening angle is decreased to the predetermined range and swings. Since a plurality of angle restricting portions are provided around the orthogonal axis, they are not easily damaged even in strong winds or gusts . Further, since the first blade portion and the second blade portion have a shape in which the sheet material is integrated with the branched skeleton portion, the first blade portion and the second blade portion are lightweight and can be opened and closed even with a slight fluid pressure. As a result, the rotating blades are not easily affected by the direction of the fluid and the fluid resistance, so there is little hydrological loss, and the rotating blades are efficiently rotated integrally with the vertical shaft under the slight fluid pressure to generate power. it can.

前記第1羽根部及び第2羽根部は、前記直交軸に沿って配置した中心骨から外側に向って枝骨が複数箇所で枝分かれした骨格部にシート材が一体化された羽根形状をしており、前記第1羽根部は前記直交軸に対して前記中心骨側に設けられた第1ヒンジ部により前記第2羽根部は前記直交軸に対して前記中心骨側に設けられた第2ヒンジ部により各々揺動可能に組み付けられていることが望ましい。
上記構成によれば、回転羽根の重量が軽量であるため、わずかな流体圧を受けて第1羽根部と第2羽根部の直交軸回りの開き角が増大し、流体抵抗を受けると直交軸回りの開き角が減少して、回転羽根を垂直軸と一体になって効率良く回転させることができる。
The first blade portion and the second blade portion have a blade shape in which a sheet material is integrated with a skeleton portion where branches are branched at a plurality of locations from the central bone arranged along the orthogonal axis toward the outside. And the first blade portion is provided on the central bone side with respect to the orthogonal axis, and the second blade portion is provided on the central bone side with respect to the orthogonal axis. It is desirable that each part is assembled so as to be swingable.
According to the above configuration, since the weight of the rotary blade is light, the opening angle of the first blade portion and the second blade portion around the orthogonal axis is increased by receiving a slight fluid pressure, and when receiving the fluid resistance, the orthogonal axis The opening angle of the rotation is reduced, and the rotating blade can be efficiently rotated integrally with the vertical shaft.

前記垂直軸の軸方向下方の回転角を0度とし軸方向上方の回転角を180度とすると、前記角度規制部材は、前記第1羽根部を前記直交軸回りに90度より大きく180度より小さい範囲で揺動させ、前記第2羽根部は前記直交軸回りに0度より大きく90度より小さい範囲で揺動させることが好ましい。
これにより、流体の流れ方向下流側に向う回転位置で第1羽根部と第2羽根部2とが流体圧を受けて180度に近い開き角まで開くので、広い面積で流体圧を受けて十分な回転力(トルク)を発生させることができる。また、流体の流れ方向上流側に向う回転位置で第1羽根部と第2羽根部2とが流体圧を受けて開き角が90度近くまで減少するので、流体抵抗の影響を低減して回転羽根に発生した回転力を維持することができる。
When the rotation angle below the vertical axis in the vertical direction is 0 degree and the rotation angle above the axial direction is 180 degrees, the angle restricting member causes the first blade portion to be larger than 90 degrees around the orthogonal axis and from 180 degrees. It is preferable that the second blade portion is swung in a small range, and the second blade portion is swung in a range larger than 0 degree and smaller than 90 degrees around the orthogonal axis.
As a result, the first blade portion and the second blade portion 2 receive the fluid pressure at the rotational position toward the downstream side in the fluid flow direction and open to an opening angle close to 180 degrees, so that the fluid pressure is sufficiently received over a wide area. Can generate a large rotational force (torque). In addition, since the first blade portion and the second blade portion 2 are subjected to fluid pressure at the rotational position toward the upstream side in the fluid flow direction and the opening angle is reduced to nearly 90 degrees, the effect of the fluid resistance is reduced. The rotational force generated in the blade can be maintained.

また、垂直軸発電装置においては、上述したいずれかの動力発生装置の垂直軸が発電機の回転子に接続されていることを特徴とする。
これにより、小型軽量化が可能であり、可搬性、組立性、メンテナンス性が良く、流体の流れ方向にかかわらずわずかな流量でも発電する発電効率の良い発電装置を提供することができる。
Further, the vertical axis power generator is characterized in that the vertical axis of any of the power generation devices described above is connected to the rotor of the generator.
Accordingly, it is possible to provide a power generation device that can be reduced in size and weight, has good portability, assembly property, and maintainability, and generates power even at a small flow rate regardless of the fluid flow direction.

本発明によれば、流体の流れ方向下流側に向う回転位置で流体圧を受ける回転羽根の面積が広くとれ、流体の流れ方向上流側に向う回転位置で流体抵抗を受け難く、流体の流れ方向にかかわらずわずかな流量でも回転し、十分な回転トルクが得られる動力発生装置及びこれを用いて効率の良く発電することができる小型でメンテナンス性が良い垂直軸発電装置を提供することができる。   According to the present invention, the area of the rotary blade that receives the fluid pressure at the rotational position toward the downstream side in the fluid flow direction can be increased, and the fluid resistance at the rotational position toward the upstream side in the fluid flow direction is less likely to be affected. Regardless of this, it is possible to provide a power generator capable of rotating with a small flow rate to obtain a sufficient rotational torque, and a small-sized vertical axis power generator capable of generating power efficiently using this and having good maintainability.

垂直軸発電装置の正面図である。It is a front view of a vertical axis power generator. 動力発生装置の回転動作を示す斜視図である。It is a perspective view showing rotation operation of a power generator. 動力発生装置の平面図である。It is a top view of a power generator. 回転羽根の開いた状態を示す正面図及び側面図である。It is the front view and side view which show the state which the rotary blade | wing opened. 第1羽根部と第2羽根部の開閉状態を示す説明図である。It is explanatory drawing which shows the open / close state of a 1st blade | wing part and a 2nd blade | wing part. 第1羽根部と第2羽根部の可動範囲の一例を示す説明図である。It is explanatory drawing which shows an example of the movable range of a 1st blade | wing part and a 2nd blade | wing part. 他例に係る回転羽根の骨格部の要部形態を示す正面図及び側面図である。It is the front view and side view which show the principal part form of the frame | skeleton part of the rotary blade which concerns on another example. 他例に係る回転羽根の骨格部の要部形態を示す斜視図である。It is a perspective view which shows the principal part form of the frame | skeleton part of the rotary blade which concerns on another example. 風車の収納状態及び回転羽根を取り外す場合の状態説明図である。It is a state explanatory drawing in the case of removing the accommodation state and rotary blade of a windmill. 他例に係る垂直軸発電装置の軸方向断面図である。It is an axial sectional view of a vertical axis power generator according to another example.

以下、図面を参照しながら、本発明に係る動力発生装置及び垂直軸発電装置の実施形態について詳細に説明する。以下では、動力発生装置の一例として風車、垂直軸発電装置の一例として小型で出力10kW前後の独立電源型の風力発電装置を例示して説明する。尚、流体圧は風圧を利用しているが、水圧等の流体圧を利用する場合には水車、水力発電装置等であってもよい。   Hereinafter, embodiments of a power generation device and a vertical axis power generation device according to the present invention will be described in detail with reference to the drawings. Hereinafter, a wind turbine will be described as an example of a power generation device, and an independent power source type wind power generation device having an output of around 10 kW will be described as an example of a vertical axis power generation device. In addition, although the wind pressure is utilized for the fluid pressure, when using fluid pressures, such as a water pressure, a water turbine, a hydroelectric generator, etc. may be sufficient.

図1に示すように、風力発電装置は、風車1(動力発生装置)の垂直軸2が発電機3の回転子(図示せず)に接続されている。或いは、垂直軸2は発電機3の回転子軸若しくはこれにカップリング等で接続されていてもよい。   As shown in FIG. 1, in the wind turbine generator, a vertical shaft 2 of a windmill 1 (power generator) is connected to a rotor (not shown) of a generator 3. Alternatively, the vertical shaft 2 may be connected to the rotor shaft of the generator 3 or a coupling to the rotor shaft.

風車1の構成について説明する。発電機3より設置面に対して垂直方向に延設された垂直軸2が回転可能に軸支されている。この垂直軸2には、いずれの方向から吹く風の圧力を受けて垂直軸2と一体となって回転する回転羽根4が組み付けられている。   The configuration of the windmill 1 will be described. A vertical shaft 2 extending in a direction perpendicular to the installation surface from the generator 3 is rotatably supported. The vertical shaft 2 is assembled with rotating blades 4 that rotate in unison with the vertical shaft 2 under the pressure of wind blowing from any direction.

以下、回転羽根4の構成について説明する。複数の直交軸5が垂直軸2に直交して一体に組み付けられている(図3参照)。各直交軸5の軸方向中央部に設けられた連結部5aに設けられた貫通孔5bを垂直軸2が貫通して組み付けられ当該垂直軸2に対して径方向にビス等で各々固定されている。本実施例では、図1に示すように垂直軸2の軸方向に等間隔で5か所に直交軸5が組み付けられている。図2に示すように隣り合う直交軸5どうしは、互いに直交配置となるように組み付けられている。直交軸5は単数でもよく、或いは5か所より少なくでも或いは5か所より多く設けてもよい。また、複数の直交軸5どうしは、直交する場合のほかに垂直軸2の周りに均等な角度配置で組み付けられているのが望ましい。   Hereinafter, the configuration of the rotary blade 4 will be described. A plurality of orthogonal shafts 5 are integrally assembled perpendicular to the vertical shaft 2 (see FIG. 3). A vertical shaft 2 passes through a through-hole 5b provided in a connecting portion 5a provided in the central portion of each orthogonal shaft 5 and is fixed to the vertical shaft 2 with screws or the like in the radial direction. Yes. In the present embodiment, as shown in FIG. 1, orthogonal shafts 5 are assembled at five locations at equal intervals in the axial direction of the vertical shaft 2. As shown in FIG. 2, adjacent orthogonal axes 5 are assembled so as to be orthogonal to each other. The number of orthogonal axes 5 may be singular, or may be less than five or more than five. Further, it is desirable that the plurality of orthogonal shafts 5 are assembled with an equal angular arrangement around the vertical axis 2 in addition to the case where they are orthogonal.

図4(A)(B)において、直交軸5の両側には一対の第1可動羽根部6及び第2可動羽根部7が当該直交軸5回りに揺動可能に設けられている。第1羽根部6及び第2羽根部7は、直交軸5側に沿って配置した中心骨8aから外側に向って枝骨8bが複数箇所で枝分かれした骨格部8にシート材12を重ね合わせて一体化した羽根形状をしている。尚、第1羽根部6と第2羽根部7は同じ大きさであるが、風圧を受けて開く開きやすさを考慮して例えば第1羽根部6は第2羽根部7より大きさが小さくてもよい。   4A and 4B, a pair of first movable blade portion 6 and second movable blade portion 7 are provided on both sides of the orthogonal shaft 5 so as to be swingable around the orthogonal shaft 5. The first blade portion 6 and the second blade portion 7 are formed by superposing the sheet material 12 on the skeleton portion 8 in which the branch bones 8b branch from the central bone 8a arranged along the orthogonal axis 5 side toward the outside. It has an integrated blade shape. Although the first blade portion 6 and the second blade portion 7 are the same size, the first blade portion 6 is smaller in size than the second blade portion 7 in consideration of easiness of opening by receiving wind pressure. May be.

本実施例では、第1可動羽根部6と第2可動羽根部7とが直交軸5回りに開いた状態で中心骨(背骨)8aから外側に向って枝骨8bが複数箇所に枝分かれした設けられたフィッシュボーン状の骨格部8を形成している。このフィッシュボーン状の骨格部8に撥水性を有する布製のシート材12を貼り合せて第1羽根部6及び第2羽根部7が形成されている。尚、骨格部8はフィッシュボーン状にかぎらず、これに類似する形態、例えば矢羽状や葉脈状など様々な形態を採用し得る。また、骨格部8は、樹脂材若しくは金属材が好適用いられ、シート材12は、布製のほかに樹脂製などのシート状、薄板状のものを含む。
また、小型の回転羽根4の場合、骨格部8及びシート材12を樹脂成形により一体成形することも可能である。或いは、骨格部8(中心骨8a、枝骨8bのいずれか若しくは双方)として金属材を用いたインサート成形或いは骨格部8として羽根と異なる樹脂材料を用いた二色成形により一体成形してもよい。
In the present embodiment, the first movable blade portion 6 and the second movable blade portion 7 are opened around the orthogonal axis 5 so that the branch bones 8b branch from the central bone (spine) 8a toward the outside. The fishbone-shaped skeleton portion 8 is formed. A first wing portion 6 and a second wing portion 7 are formed by bonding a water-repellent cloth sheet material 12 to the fishbone-shaped skeleton portion 8. The skeleton 8 is not limited to the fishbone shape, and various forms such as a feather shape or a leaf vein shape can be adopted. In addition, a resin material or a metal material is preferably used for the skeleton portion 8, and the sheet material 12 includes a sheet shape or a thin plate shape such as a resin material in addition to a cloth material.
Moreover, in the case of the small rotary blade 4, it is also possible to integrally mold the skeleton part 8 and the sheet material 12 by resin molding. Alternatively, it may be integrally formed by insert molding using a metal material as the skeleton part 8 (one or both of the central bone 8a and the branch bone 8b) or by two-color molding using a resin material different from the blade as the skeleton part 8. .

また、骨格部8の形態は、図4乃至図6に示すように、枝骨8bが均一な厚さとなっていたがこれに限定されるものではない、例えば、図7(A)(B)に示すように中心骨8aから遠ざかる先端側に向って枝骨8bが幅狭(c<d)でかつ板厚が薄く(a<b)なるようになっていても良いし、図8に示すように中心骨8aから遠ざかるにしたがって枝骨8bが先細り形状でかつ板厚が薄く(a<b)なるようになっていてもよい。このように、枝骨8bの先端側が幅狭若しくは先細り形状とすることにより、可撓性が増大し、回転羽根4の軽量化を図れるうえに、柔軟性が増してシート材12の撓みを利用して微風、弱風、涼風、強風など様々な風をとらえやすくなる。尚、図7及び図8において直交軸5に設けられる風受け板9は省略されている。   Further, as shown in FIGS. 4 to 6, the shape of the skeleton part 8 is such that the branch bone 8b has a uniform thickness, but is not limited to this, for example, FIGS. 7A and 7B. As shown in FIG. 8, the branch bone 8b may have a narrow width (c <d) and a thin plate thickness (a <b) toward the distal side away from the central bone 8a, as shown in FIG. In this manner, the branch bone 8b may be tapered and the plate thickness may be reduced (a <b) as the distance from the central bone 8a increases. Thus, by making the distal end side of the branch bone 8b narrow or tapered, the flexibility is increased, the weight of the rotary blade 4 can be reduced, and the flexibility is increased and the bending of the sheet material 12 is utilized. This makes it easier to capture various winds such as light breeze, light breeze, cool breeze and strong breeze. 7 and 8, the wind receiving plate 9 provided on the orthogonal shaft 5 is omitted.

また、図2に示すように、第1羽根部6は直交軸5に対して中心骨8a側に設けられた第1ヒンジ部6aにより揺動可能に組み付けられている。また、第2羽根部7は直交軸5に対して中心骨8a側に設けられた第2ヒンジ部7aにより揺動可能に組み付けられている。第1ヒンジ部6aと第2ヒンジ部7aは、直交軸5の軸方向に交互に配置されている。
上記構成によれば、回転羽根4の重量が軽量でわずかな風圧を受けて直交軸5回りの第1羽根部6と第2羽根部7の開き角が所定範囲まで増大し、風の抵抗を受けると直交軸回りの開き角が所定範囲まで減少して、回転羽根4を垂直軸2と一体になって効率良く回転させることができる。
In addition, as shown in FIG. 2, the first blade portion 6 is assembled so as to be swingable by a first hinge portion 6 a provided on the central bone 8 a side with respect to the orthogonal shaft 5. The second blade portion 7 is assembled so as to be swingable by a second hinge portion 7 a provided on the central bone 8 a side with respect to the orthogonal axis 5. The first hinge part 6 a and the second hinge part 7 a are alternately arranged in the axial direction of the orthogonal axis 5.
According to the above configuration, the rotating blade 4 is light in weight and receives a slight wind pressure, so that the opening angle of the first blade portion 6 and the second blade portion 7 around the orthogonal axis 5 is increased to a predetermined range, thereby reducing the wind resistance. When received, the opening angle around the orthogonal axis is reduced to a predetermined range, and the rotary blade 4 can be efficiently rotated integrally with the vertical axis 2.

図5(A)(B)に示すように、直交軸5には回転羽根4の開閉角度を規制する角度規制部10が設けられている。具体的には、第1羽根部6及び第2羽根部7が、風下側に向う回転位置で風圧を受けて直交軸5回りの開き角度が増大する向きに上下に開いた際に開き角を所定範囲に規制する開き側ストッパー10aと、風上に向う回転位置で風圧を受けると当該開き角度が減少するように閉じた際に開き角を所定範囲に規制する閉じ側ストッパー10bが設けられている。本実施例では、角度規制部10は直交軸5と同心状に設けられた円筒体10cの周方向にスリット10dが設けられており、スリット10dの回転方向両端部が開き側ストッパー10a及び閉じ側ストッパー10bとなっている。尚、角度規制部10はスリット形状に限らず、直交軸5回りに突起などのストッパーを突設してもよい。   As shown in FIGS. 5A and 5B, the orthogonal shaft 5 is provided with an angle restricting portion 10 that restricts the opening / closing angle of the rotary blade 4. Specifically, the opening angle is set when the first blade portion 6 and the second blade portion 7 are opened up and down in a direction in which the opening angle around the orthogonal axis 5 increases by receiving wind pressure at the rotational position toward the leeward side. An opening-side stopper 10a that restricts the opening angle to a predetermined range, and a closing-side stopper 10b that restricts the opening angle to a predetermined range when it is closed so as to decrease the opening angle when receiving wind pressure at a rotational position toward the windward are provided. Yes. In the present embodiment, the angle restricting portion 10 is provided with slits 10d in the circumferential direction of a cylindrical body 10c provided concentrically with the orthogonal shaft 5, and both ends in the rotational direction of the slit 10d are open side stoppers 10a and closed sides. It is a stopper 10b. The angle restricting portion 10 is not limited to the slit shape, and a stopper such as a protrusion may be provided around the orthogonal axis 5.

また、直交軸5にはアシストばね11が嵌め込まれていてもよい。このアシストばね11は捩じりコイルばね、形状記憶ばね等が用いられる。アシストばね11の一端は第1羽根部6に連結され、他端は第2羽根部7に連結されている。これにより、風圧を受けたとき及び抵抗を受けたときに回転羽根4が開閉する際の開閉動作をアシストすることにより、第1羽根部6と第2羽根部7の開閉動作が速くなり流体損失を減らすことができる。   Further, an assist spring 11 may be fitted into the orthogonal shaft 5. The assist spring 11 is a torsion coil spring, a shape memory spring, or the like. One end of the assist spring 11 is connected to the first blade portion 6, and the other end is connected to the second blade portion 7. As a result, the opening / closing operation of the first blade portion 6 and the second blade portion 7 is accelerated by assisting the opening / closing operation when the rotating blade 4 is opened / closed when receiving wind pressure and resistance, and fluid loss Can be reduced.

図5(A)は風下に向い回転位置で風圧を受けて第1羽根部6及び第2羽根部7が、直交軸5回りの開き角度が増大する向きに開いた際に開き側ストッパー10aに当接した状態を示す。また、図5(B)は、風上に向う回転位置で風圧を受けた第1羽根部6と第2羽根部7が直交軸5回りの開き角度が減少するように閉じた際に閉じ側ストッパー10bに当接した状態を示す。   FIG. 5A shows the opening side stopper 10a when the first blade portion 6 and the second blade portion 7 are opened in the direction in which the opening angle around the orthogonal axis 5 is increased by receiving wind pressure at the rotational position facing leeward. The contact state is shown. 5B shows the closed side when the first blade 6 and the second blade 7 that have received wind pressure at the rotational position toward the windward are closed so that the opening angle around the orthogonal axis 5 decreases. The state which contact | abutted to the stopper 10b is shown.

図6において、垂直軸2の軸方向下方の回転角を0度とし軸方向上方の回転角を180度とすると、角度規制部材10は、第1羽根部6を直交軸5回りに90度より大きく180度より小さい範囲で揺動させる。図6では、第1羽根部6は直交軸5回りに105度から165度のおよそ60度の範囲で揺動する。また、第2羽根部7は直交軸5回りに15度から75度のおよそ60度の範囲で揺動させる。
これにより、風下に向う回転位置で第1羽根部6と第2羽根部7とが風圧を受けて180度に近い開き角まで開くので、広い面積で風圧を受けて十分な回転力(トルク)を発生させることができる。また、風上に向かう回転位置で90度に近い位置まで閉じるので、風の抵抗を受け難くして回転羽根4を効率良く回転し続けることができる。
よって、風向きや風の抵抗の影響を受け難いのでわずかな風圧を受けて回転羽根4が回転し、風車を回転駆動することができる。
In FIG. 6, when the rotation angle below the vertical axis 2 is 0 degree and the rotation angle above the axial direction is 180 degrees, the angle restricting member 10 moves the first blade portion 6 around 90 degrees around the orthogonal axis 5. It is swung within a range of less than 180 degrees. In FIG. 6, the first blade portion 6 swings around the orthogonal axis 5 in the range of approximately 60 degrees from 105 degrees to 165 degrees. Further, the second blade portion 7 is swung around the orthogonal axis 5 in a range of approximately 60 degrees from 15 degrees to 75 degrees.
As a result, the first blade portion 6 and the second blade portion 7 receive wind pressure at the rotational position toward the leeward and open to an opening angle close to 180 degrees, so that sufficient rotational force (torque) is received by receiving wind pressure over a wide area. Can be generated. Moreover, since it closes to a position close to 90 degrees at the rotational position toward the windward, it is difficult to receive wind resistance and the rotating blade 4 can continue to rotate efficiently.
Therefore, since it is difficult to be influenced by the wind direction and wind resistance, the rotating blade 4 rotates by receiving a slight wind pressure, and the windmill can be driven to rotate.

尚、第1羽根部6と第2羽根部7との回転範囲は、上記範囲に限定されるものではなく、揺動範囲も必ずしも同じにする必要はない。具体的には角度規制部10のスリット10dの範囲を変更することで任意の揺動範囲に変更することができる。例えば、第2羽根部7を自重で垂下して0度位置から風の抵抗を受けて90度付近まで揺動するようにしても良い。第2羽根部7は90度位置まで揺動すると、風下に向う位置で羽根が開き難くなるためそれより小さい範囲で揺動するのが望ましい。また、第1羽根部6は90度より大きい仰角(例えば95度)から180度付近(例えば175度)の範囲で揺動するようにしてもよい。第1羽根部6も90度位置まで揺動すると、風下に向う位置で羽根が開き難くなるためそれより大きい範囲で揺動するのが望ましい。また、第1羽根部6と第2羽根部7に連結するアシストばね11を省略するようにしてもよい。   In addition, the rotation range of the 1st blade | wing part 6 and the 2nd blade | wing part 7 is not limited to the said range, and the rocking | fluctuation range does not necessarily need to be the same. Specifically, by changing the range of the slit 10d of the angle restricting portion 10, it can be changed to an arbitrary swinging range. For example, the second blade portion 7 may be suspended by its own weight and swung to about 90 degrees by receiving wind resistance from the 0 degree position. When the second blade portion 7 swings to the 90 degree position, it is difficult for the blade to open at a position facing the leeward side, so it is desirable to swing within a smaller range. Further, the first blade portion 6 may swing within a range from an elevation angle (for example, 95 degrees) greater than 90 degrees to around 180 degrees (for example, 175 degrees). When the first blade portion 6 is also swung to the 90 degree position, it is difficult for the blade to open at the position facing the leeward side, so it is desirable that the first blade portion 6 be swung within a larger range. Further, the assist spring 11 connected to the first blade portion 6 and the second blade portion 7 may be omitted.

図1に示すように、垂直軸2には軸方向に5箇所で直交軸5が回転可能に互いに交差して組み付けられている。よって、回転羽根4が開閉しても垂直軸方向に隣り合う直交軸5に設けられた回転羽根4どうしが開閉しても干渉することはない。従って、垂直軸方向に隣り合う直交軸5に設けられた第2羽根部7と第1羽根部6とは互いに重なり合うように直交軸5が垂直軸2に組み付けられている。
これにより、垂直軸2の軸方向に回転羽根4を互いに干渉することなく数多く組み付けることができ、垂直方向の高さを押さえつつ風の流れの向きにかかわらず回転効率や回転力を増大することができる。
As shown in FIG. 1, orthogonal shafts 5 are rotatably assembled to the vertical shaft 2 so as to intersect with each other at five points in the axial direction. Therefore, even if the rotating blades 4 are opened and closed, there is no interference even if the rotating blades 4 provided on the orthogonal shaft 5 adjacent in the vertical axis direction are opened and closed. Therefore, the orthogonal shaft 5 is assembled to the vertical shaft 2 so that the second blade portion 7 and the first blade portion 6 provided on the orthogonal shaft 5 adjacent in the vertical axis direction overlap each other.
As a result, a large number of rotating blades 4 can be assembled in the axial direction of the vertical shaft 2 without interfering with each other, and the rotational efficiency and rotational force can be increased regardless of the direction of wind flow while suppressing the vertical height. Can do.

また、垂直軸風力発電装置においては、風車1の垂直軸2に固定される直交軸5にシート状の回転羽根4が互いに重なり合うように組み付けられるので、回転羽根4の軸方向長さが20m以上の大型の風車1はもちろん、それより小型軽量化が可能であり、可搬性、組立性、メンテナンス性が良く、風向きにかかわらずわずかな流量でも発電する発電効率の良い垂直軸風力発電装置を提供することができる。   In the vertical axis wind power generator, since the sheet-like rotary blades 4 are assembled so as to overlap each other on the orthogonal shaft 5 fixed to the vertical shaft 2 of the windmill 1, the axial length of the rotary blades 4 is 20 m or more. A large-scale windmill 1 can be reduced in size and weight, and it is easy to carry, assemble, and maintain, and provides a vertical axis wind power generator with good power generation efficiency that generates power even with a small flow rate regardless of the wind direction. can do.

また、図9(A)に示すように垂直軸風力発電装置を使用しない場合には、各直交軸5と垂直軸2との固定(ビス止め等)を解除して、各直交軸5を連結部5aどうしが積み重なるように発電機3の本体上に重ねておくと置き場所を取らずに収納に便利である。この場合、直交軸5の両側に設けられた第1可動羽根6及び第2可動羽根7を当該直交軸5回りの開き角を減少させることにより、直交軸5どうしを垂直軸2に沿って重ね合わせて、回転羽根4をコンパクトに畳むことができる。   Further, as shown in FIG. 9 (A), when the vertical axis wind power generator is not used, the fixing (screwing or the like) between each orthogonal shaft 5 and the vertical shaft 2 is released, and each orthogonal shaft 5 is connected. If the portions 5a are stacked on the main body of the generator 3 so that the portions 5a are stacked, it is convenient for storage without taking a place. In this case, the first movable blade 6 and the second movable blade 7 provided on both sides of the orthogonal shaft 5 are overlapped with each other along the vertical axis 2 by reducing the opening angle around the orthogonal shaft 5. In addition, the rotary blade 4 can be folded in a compact manner.

また、図9(B)に示すように、垂直軸風力発電装置を移動する場合には、各直交軸5と垂直軸2との固定(ビス止め等)を解除して、垂直軸2の先端より貫通孔5bを引き抜いて直交軸5の連結部5aを各々取り外すことにより、回転羽根4を垂直軸2から取り外して発電機3とは別に搬送することができ、可搬性が向上するうえに再度垂直軸風力発電装置を組み立てるのに手間取ることもない。   Further, as shown in FIG. 9B, when moving the vertical axis wind power generator, the fixing (screwing etc.) between each orthogonal axis 5 and the vertical axis 2 is released and the tip of the vertical axis 2 is released. Further, by pulling out the through hole 5b and removing each of the connecting portions 5a of the orthogonal shaft 5, the rotating blade 4 can be detached from the vertical shaft 2 and transported separately from the generator 3, and the portability is improved again. There is no need to assemble a vertical axis wind power generator.

図10は他例に係る垂直軸発電装置の軸方向断面図である。上述した垂直軸発電装置は、比較的小型化に適した構造であったが、垂直軸2の高さが30mを超え回転羽根4の直径(直交軸5の長さ)が20mを超えるような大型の垂直軸発電装置の場合、流体圧による垂直軸2自体の振動が大きくなり設置強度が低下し回転むらなどによる損失が大きくなるおそれもある。このため、垂直軸2の構造を、固定軸(支柱)2aとその周囲に筒状の回転軸2bを同心状に配置した二重構造としてもよい。設置面には、固定軸2aを挿入する挿入孔13aが設けられたベース部(基礎)13が埋設されている。ベース部13上に発電機3の回転子軸孔3aを挿入孔13aに位置合わせして設置する。そして、発電機3の回転子軸孔3aを通じて挿入孔13aに固定軸2aを挿入固定する。また、固定軸2aと同心配置された回転軸2bは発電機3の回転子(図示せず)と回転可能に連結される。回転軸2bは発電機3に軸受3bによって回転可能に軸支されている。回転羽根4は前述した実施例と同様に各直交軸5を回転軸2bが挿通して径方向にビス等で固定されて組み付けられている。或いは回転軸2bの外周に突設された軸部に対して直交軸5が嵌合して各々組み付けられていてもよい。図10では回転軸2bの軸方向に等間隔で3か所に直交軸5が組み付けられている。尚、直交軸5は分割されており回転羽根4の大きさに合わせて互いに嵌め合わせて組み付けてもよい。
上記構成によれば、大型の回転羽根4を用いた大型の垂直軸発電装置を流体圧による軸ぶれや振動を抑えて設置強度を維持することができ、回転むらを抑えて損失を低減することができる。
FIG. 10 is a sectional view in the axial direction of a vertical axis power generator according to another example. The vertical axis power generator described above has a structure that is relatively suitable for downsizing, but the height of the vertical axis 2 exceeds 30 m and the diameter of the rotating blade 4 (the length of the orthogonal axis 5) exceeds 20 m. In the case of a large vertical shaft power generator, the vibration of the vertical shaft 2 itself due to the fluid pressure is increased, the installation strength is reduced, and the loss due to uneven rotation may be increased. For this reason, the structure of the vertical shaft 2 may be a double structure in which the fixed shaft (support) 2a and the cylindrical rotating shaft 2b are concentrically disposed around the fixed shaft 2a. A base portion (foundation) 13 provided with an insertion hole 13a for inserting the fixed shaft 2a is embedded in the installation surface. On the base portion 13, the rotor shaft hole 3a of the generator 3 is installed in alignment with the insertion hole 13a. Then, the fixed shaft 2 a is inserted and fixed in the insertion hole 13 a through the rotor shaft hole 3 a of the generator 3. Moreover, the rotating shaft 2b concentrically arranged with the fixed shaft 2a is rotatably connected to a rotor (not shown) of the generator 3. The rotating shaft 2b is rotatably supported on the generator 3 by a bearing 3b. The rotary blades 4 are assembled by being fixed with screws or the like in the radial direction through the respective orthogonal shafts 5 through the rotary shafts 2b as in the above-described embodiment. Alternatively, the orthogonal shaft 5 may be fitted and assembled to the shaft portion protruding from the outer periphery of the rotating shaft 2b. In FIG. 10, orthogonal shafts 5 are assembled at three locations at equal intervals in the axial direction of the rotating shaft 2b. The orthogonal shafts 5 are divided and may be fitted together and assembled according to the size of the rotary blades 4.
According to the above configuration, a large vertical shaft power generator using large rotating blades 4 can maintain installation strength by suppressing shaft shake and vibration due to fluid pressure, and can reduce loss by suppressing rotation unevenness. Can do.

以上説明したように、時事刻々変化する風の流れや水流、潮流などの垂直軸2回りに360度いずれの向きに流体の流れが変化(乱流等が発生)しても、回転羽根4が流体の向きや流体抵抗の影響を受け難いので流体力学的損失が少なく、わずかな流体圧を受けて回転羽根4が垂直軸2と一体となって効率よく回転し、動力を発生させることができる。   As described above, even if the flow of fluid changes in any direction of 360 degrees around the vertical axis 2 such as wind flow, water flow, and tidal current that changes every moment (turbulent flow etc.), the rotating blade 4 Since it is difficult to be affected by the direction of the fluid and the fluid resistance, there is little hydrodynamic loss, and the rotating blade 4 can be efficiently rotated integrally with the vertical shaft 2 by receiving a slight fluid pressure to generate power. .

尚、上述した動力発生装置は風車1を例示し、垂直軸発電装置は風力発電装置を例示して説明したが、流体が風以外のもの、例えば水等の流体であれば水車、水力発電装置或いは海水の流れを利用した潮流発電装置等に適用することも可能である。
更には、これら様々な流体圧(風圧、水圧、潮流等)を用いた発電装置を組み合わせたり、これらと他の再生可能な自然エネルギー、例えば太陽光発電とを適宜組み合わせた複合型の発電装置に用いてもよい。
The power generation device described above is exemplified by the wind turbine 1 and the vertical axis power generation device is exemplified by the wind power generation device. However, if the fluid is something other than wind, for example, a fluid such as water, the turbine, the hydroelectric power generation device. Alternatively, it can be applied to a tidal current power generation device using the flow of seawater.
Furthermore, it is possible to combine a power generation device using these various fluid pressures (wind pressure, water pressure, tidal current, etc.), or a combined power generation device appropriately combining these and other renewable natural energy such as solar power generation. It may be used.

1 風車
2 垂直軸
2a 固定軸(支柱)
2b 回転軸
3 発電機
3a 回転子軸孔
3b 軸受
4 回転羽根
5 直交軸
5a 連結部
5b 貫通孔
6 第1羽根部
6a 第1ヒンジ部
6b,7b 外周側端部
7 第2羽根部
7a 第2ヒンジ部
8 骨格部
8a 中心骨
8b 枝骨
9 風受け板
10 角度規制部
10a 開き側ストッパー
10b 閉じ側ストッパー
10c 円筒体
10d スリット
11 アシストばね
12 シート材
13 ベース部(基礎)
13a 挿入孔
1 windmill
2 Vertical axis 2a Fixed axis (support)
2b Rotating shaft
3 Generator
3a Rotor shaft hole 3b Bearing 4 Rotor blade
5 orthogonal shaft 5a connecting part 5b through hole
6 First blade
6a 1st hinge part
6b, 7b Outer peripheral side end
7 Second blade
7a Second hinge part
8 Skeleton
8a central bone
8b branch bone
9 Wind receiving plate
10 Angle control part
10a Opening side stopper
10b Close side stopper
10c cylinder
10d slit
11 Assist spring 12 Sheet material
13 Base (basic)
13a Insertion hole

Claims (3)

設置面に対して垂直方向に回転可能に軸支された垂直軸と、前記垂直軸に直交して組み付けられた単数又は複数の直交軸と、当該直交軸に沿って配置した中心骨から外側に向って枝骨が複数箇所で枝分かれした骨格部にシート材が一体化された形状をした第1羽根部及び第2羽根部が前記直交軸を中心に前記中心骨側に設けられたヒンジ部により各々揺動可能に両側に備えられ前記垂直軸と1体に回転する回転羽根と、前記第1羽根部及び第2羽根部が、流体の流れ方向下流側に向う回転位置で流体を受けて前記直交軸回りの開き角度が所定範囲まで増大する向きに上下に開き、流体の流れ方向上流側に向う回転位置で流体圧を受けると当該開き角度が所定範囲まで縮小するように前記回転羽根の開閉角度を規制する前記直交軸を中心に複数設けられた角度規制部と、を具備したことを特徴とする動力発生装置。  A vertical axis that is pivotally supported so as to be rotatable in a vertical direction with respect to the installation surface, one or a plurality of orthogonal axes assembled perpendicularly to the vertical axis, and an outer side from a central bone arranged along the orthogonal axis A first blade portion and a second blade portion having a shape in which a sheet material is integrated with a skeleton portion in which branch bones are branched at a plurality of locations, by hinge portions provided on the central bone side around the orthogonal axis. The rotating blades which are provided on both sides so as to be swingable and rotate in one body, and the first blade portion and the second blade portion receive fluid at a rotational position toward the downstream side in the fluid flow direction and receive the fluid. Opening and closing of the rotating blades so that the opening angle around the orthogonal axis opens up and down in a direction increasing to a predetermined range, and when the fluid pressure is received at the rotational position toward the upstream in the fluid flow direction, the opening angle is reduced to the predetermined range. Multiple around the orthogonal axis that regulates the angle Power generating device, wherein the vignetting angle regulating unit, by comprising a. 前記垂直軸の軸方向下方の回転角を0度とし軸方向上方の回転角を180度とすると、前記角度規制部は、前記第1羽根部を前記直交軸回りに90度より大きく180度より小さい範囲で揺動させ、前記第2羽根部は前記直交軸回りに0度より大きく90度より小さい範囲で揺動させる請求項1記載の動力発生装置。  When the rotation angle below the axial direction of the vertical axis is 0 degree and the rotation angle above the axial direction is 180 degrees, the angle restricting portion makes the first blade portion more than 90 degrees around the orthogonal axis and more than 180 degrees. 2. The power generation device according to claim 1, wherein the second blade portion is swung in a range greater than 0 degree and less than 90 degrees around the orthogonal axis. 請求項1又は請求項2記載の動力発生装置の垂直軸が発電機の回転子に接続されていることを特徴とする垂直軸発電装置。  The vertical axis | shaft generator of the power generator of Claim 1 or Claim 2 is connected to the rotor of a generator.
JP2011285252A 2011-12-27 2011-12-27 Power generator and vertical axis power generator using the same Expired - Fee Related JP5567547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011285252A JP5567547B2 (en) 2011-12-27 2011-12-27 Power generator and vertical axis power generator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011285252A JP5567547B2 (en) 2011-12-27 2011-12-27 Power generator and vertical axis power generator using the same

Publications (2)

Publication Number Publication Date
JP2013133769A JP2013133769A (en) 2013-07-08
JP5567547B2 true JP5567547B2 (en) 2014-08-06

Family

ID=48910639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011285252A Expired - Fee Related JP5567547B2 (en) 2011-12-27 2011-12-27 Power generator and vertical axis power generator using the same

Country Status (1)

Country Link
JP (1) JP5567547B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3203063A1 (en) * 2016-02-03 2017-08-09 Wilhelmus Helena Hendrikus Joosten Wind turbine, its use and a vane for use in the turbine
JP6463860B1 (en) * 2018-04-06 2019-02-06 智紀 米澤 Vertical axis wind power generator
JP7045102B1 (en) 2020-10-28 2022-03-31 正樹 長谷川 Wind turbine
CN116498486A (en) * 2023-02-17 2023-07-28 清新能源科技张家口有限公司 Sectional type cable support type wind driven generator blade

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455253A (en) * 1977-10-08 1979-05-02 Shiyousaku Yoshinaga Horizontal wind mill that has automatic folding wing
JPS5742177U (en) * 1980-08-14 1982-03-08

Also Published As

Publication number Publication date
JP2013133769A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
Douak et al. Wind energy systems: Analysis of the self-starting physics of vertical axis wind turbine
US8480363B2 (en) Self-starting turbine with dual position vanes
US20130064663A1 (en) Morphing segmented wind turbine and related method
US8282350B2 (en) Method and apparatus for capturing wind to produce electrical power
JP5567547B2 (en) Power generator and vertical axis power generator using the same
DK2840256T3 (en) Wind turbine blade
AU2008222708B2 (en) Hubless windmill
CN103620214A (en) Propeller windmill for comapact electricity generating machine
RU2267647C1 (en) Wind motor with &#34;banana&#34; blades and method of control of rotational frequency of wind-power turbine
CN110770435B (en) Sail device
JP2009293607A (en) Sail-shaped wind mill
KR101087223B1 (en) Butterfly type wing for a wind power generator
JP4533991B1 (en) Small propeller windmill
JP2008255977A (en) Wind power generator
KR101198580B1 (en) Blade for wind power apparatus and system
JP4361063B2 (en) Wind power generator
US8133026B2 (en) Fixed horizontal axis-mounted wind turbine blade with an independently rotating pressure cambered fin
JP6638952B2 (en) W turbine generator with wind tunnel
Beri et al. Computational analysis of vertical axis wind turbine with open-able airfoil
RU2362048C1 (en) Retyunsky&#39;s wind motor
Mir-Nasiri Conceptual Design and Center-point Force Dynamic Simulation of a New Horizontal Axis Semi-exposed Wind Turbine (HASWT)
JP2005233143A (en) Vertical blade vertical shaft wind mill
TWM383046U (en) Improved structure of wind-powered electric generator
Ionescu et al. INNOVATIVE SOLUTIONS FOR SMALL SCALE VERTICAL AXIS WIND TURBINES USED IN HARBOURS AND SHORE AREAS.
El-Ghazali The influence of turbine geometry on the performance of c-section vertical axis wind turbine

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5567547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R150 Certificate of patent or registration of utility model

Ref document number: 5567547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees