JP5566588B2 - Unvulcanized rubber extruder - Google Patents

Unvulcanized rubber extruder Download PDF

Info

Publication number
JP5566588B2
JP5566588B2 JP2008259731A JP2008259731A JP5566588B2 JP 5566588 B2 JP5566588 B2 JP 5566588B2 JP 2008259731 A JP2008259731 A JP 2008259731A JP 2008259731 A JP2008259731 A JP 2008259731A JP 5566588 B2 JP5566588 B2 JP 5566588B2
Authority
JP
Japan
Prior art keywords
unvulcanized rubber
partition wall
flow path
base
extruder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008259731A
Other languages
Japanese (ja)
Other versions
JP2009202569A (en
Inventor
和也 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2008259731A priority Critical patent/JP5566588B2/en
Publication of JP2009202569A publication Critical patent/JP2009202569A/en
Application granted granted Critical
Publication of JP5566588B2 publication Critical patent/JP5566588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、少なくとも2種類以上の未加硫ゴムからなる未加硫ゴム部材を押出成型する未加硫ゴム押出機に関する。   The present invention relates to an unvulcanized rubber extruder for extruding an unvulcanized rubber member made of at least two types of unvulcanized rubber.

二輪車用空気入りタイヤのトレッドは、直進時、及びコーナリング時において、路面に対する接触位置が各々異なり、二輪車用空気入りタイヤでは直進時に求められる性能とコーナリング時に求められる性能とが異なっているのが一般的である。
そこで、直進時、及びコーナリング時の性能を各々高めるために、幅方向に異なるゴム種を用いた二輪車用空気入りタイヤ用のトレッドが開発されている。
The tread of a pneumatic tire for a motorcycle has different contact positions with respect to the road surface during straight traveling and cornering, and the performance required for straight traveling and the performance required for cornering of a motorcycle pneumatic tire are generally different. Is.
Therefore, in order to improve the performance during straight traveling and cornering, treads for pneumatic tires for two-wheeled vehicles using different rubber types in the width direction have been developed.

この種の二輪車用空気入りタイヤのトレッドとして、タイヤ幅方向中央部分に配置される第1のゴム、第1のゴムの両側に配置される第2のゴム、第2のゴムの両側に配置される第3のゴム、トレッド端に配置される第4のゴムからなる7分割トレッドがあり、中央側は耐摩耗性が重視され、両側ではグリップが重視されている。
このような4種のゴムがタイヤ幅方向に配置されるトレッドは、4種類のゴムを押し出し可能な多層押出機(例えば、特許文献1参照。)を用いて製造される。
As a tread of this type of pneumatic tire for a motorcycle, the first rubber disposed in the center portion in the tire width direction, the second rubber disposed on both sides of the first rubber, and the both sides of the second rubber are disposed. There is a seven-part tread composed of a third rubber and a fourth rubber disposed at the end of the tread. The center side emphasizes wear resistance, and both sides emphasize grip.
Such a tread in which four types of rubber are arranged in the tire width direction is manufactured using a multilayer extruder (see, for example, Patent Document 1) that can extrude four types of rubber.

多層押出機のヘッド本体には、未加硫ゴムが押し出される未加硫ゴム押出口が縦に4個並んでおり、例えば、上側から順番に、第4のゴム、第1のゴム、第2のゴム、第3のゴムが押出されるようになっている。
ヘッド本体の未加硫ゴム押出口側には、これら複数種類のゴムを口金側へ導くための複数の流路を形成した流路形成金具が取り付けられている。なお、流路形成金具の未加硫ゴム押出側の端面に、未加硫ゴムを所定の押出断面形状として帯状に押し出すための口金が取り付けられている。
In the head body of the multilayer extruder, four unvulcanized rubber extrusion ports from which unvulcanized rubber is extruded are arranged vertically. For example, the fourth rubber, the first rubber, and the second rubber are sequentially arranged from the upper side. The rubber and the third rubber are extruded.
On the unvulcanized rubber extrusion port side of the head main body, a flow path forming bracket in which a plurality of flow paths for guiding the plurality of types of rubber to the base side are formed. A base for extruding the unvulcanized rubber in a strip shape with a predetermined extruded cross-sectional shape is attached to the end face of the flow path forming metal fitting on the unvulcanized rubber extrusion side.

また、未加硫のトレッドは、口金から帯状となって連続的に押出されてコンベアで搬送された後に巻き取るため、幅方向を水平にして口金から押し出される。
即ち、押出機のヘッド本体では未加硫ゴム押出口が縦方向に配列されているが、口金からは複数種類の未加硫ゴムが横方向に並んだ未加硫のトレッドが押し出されることになる。
特開平06−210699号
In addition, the unvulcanized tread is extruded from the die with the width direction being horizontal in order to be rolled up after being continuously extruded from the die in a band shape and conveyed by a conveyor.
That is, in the head body of the extruder, the unvulcanized rubber extrusion ports are arranged in the vertical direction, but an unvulcanized tread in which a plurality of types of unvulcanized rubber are arranged in the lateral direction is extruded from the die. Become.
Japanese Patent Laid-Open No. 06-210699

ところで、トレッドに複数のゴム種を用いる場合、車体の傾きに対応したゴムを路面に接地させる必要があるため、ゴムの位置、即ち、ゴムの境界位置を正確に位置決めする必要がある。ゴムの境界位置が異なると、必要とされるゴムが路面に接地せず、設計通りのタイヤ性能を発揮できなくなる。   By the way, when a plurality of rubber types are used for the tread, it is necessary to ground the rubber corresponding to the inclination of the vehicle body on the road surface, and therefore it is necessary to accurately position the rubber, that is, the rubber boundary position. If the rubber boundary position is different, the required rubber will not contact the road surface and the tire performance as designed cannot be achieved.

しかしながら、従来例では以下のような問題があった。
押出機、及び周辺機器の関係で、流路形成金具の大きさ、より具体的には、ゴム押出方向の寸法にも制約があるため、流路形成金具内のゴムの流路の寸法を長く確保することができず、口金の手前でゴムの流路を急激に曲げなければならない場合がある。
However, the conventional example has the following problems.
Due to the relationship between the extruder and peripheral devices, there are restrictions on the size of the flow path forming bracket, more specifically, the size in the rubber extrusion direction. In some cases, the rubber flow path must be bent sharply before the base.

例えば、互いに隣接する2つの流路が、口金の直前(口金と対向する位置)において、口金から押し出される未加硫ゴムの押出方向と同方向であれば、図12(A)に示すように、2つの未加硫ゴムA,Bの境界は2つの流路の中間に直線状に形成されて問題となることは無いが、互いに隣接する2つの流路が、口金の直前において、口金から押し出される未加硫ゴムの押出方向と交差する方向、特には、口金の未加硫ゴム押出側から見て(口金の正面から見て)互いに接近する方向になると、図12(B)に示すように、一方の未加硫ゴムAと他方の未加硫ゴムBの境界が2つの流路の中間にて直線状に形成されず、一方の未加硫ゴムAの一部分が、他方の未加硫ゴムB側へ大きく回り込んで、境界線が大きく曲ってしまう問題が生じる。   For example, as shown in FIG. 12A, if two adjacent channels are in the same direction as the extrusion direction of unvulcanized rubber extruded from the base immediately before the base (position facing the base). The boundary between the two unvulcanized rubbers A and B is linearly formed in the middle of the two flow paths, so that there is no problem, but the two flow paths adjacent to each other are formed from the base immediately before the base. FIG. 12B shows a direction crossing the extrusion direction of the unvulcanized rubber to be extruded, in particular, a direction approaching each other when viewed from the unvulcanized rubber extrusion side of the base (as viewed from the front of the base). Thus, the boundary between one unvulcanized rubber A and the other unvulcanized rubber B is not formed in a straight line in the middle of the two flow paths, and a part of one unvulcanized rubber A is not There is a problem that the boundary line is greatly bent due to a large wrap around the vulcanized rubber B side.

本発明は、上記事実を考慮し、複数の未加硫ゴムからなる未加硫ゴム部材を押出成型する際に、互いに隣接する2つの未加硫ゴムの境界が、一方の未加硫ゴム側へ回り込むことを抑えることができる未加硫ゴム押出機を提供することが目的である。   In consideration of the above facts, the present invention provides a boundary between two unvulcanized rubbers adjacent to each other when one unvulcanized rubber member made of a plurality of unvulcanized rubbers is extruded. An object of the present invention is to provide an unvulcanized rubber extruder that can suppress wraparound.

請求項1に記載の発明は、口金の開口部から複数種類の未加硫ゴムからなる帯状の未加硫ゴム部材を押出成型するための未加硫ゴム押出機であって、未加硫ゴムを押し出す複数の押出機本体と、前記押出機本体の未加硫ゴム排出側に連結され、前記押出機本体から押し出された未加硫ゴムを排出する未加硫ゴム押出口を複数備えた押出ヘッド本体と、前記押出ヘッド本体の未加硫ゴム排出側に連結され、前記未加硫ゴム押出口から押出された前記未加硫ゴムを前記口金に向けて導く流路を複数備えた流路形成金型と、を有し、前記流路形成金型の口金側には、互いに隣接する流路の間に仕切り壁が形成され、前記流路は、前記口金と対向する部分において、前記口金から押出される前記未加硫ゴムの押出方向とは交差する方向に延び、前記仕切り壁は、前記流路の前記口金から押出される前記未加硫ゴムの押出方向とは交差する方向に延びた前記流路の壁面に、前記未加硫ゴムの幅方向と交差する方向に形成され、前記仕切り壁の流路出口側の端部には、切欠が形成されている。 The invention according to claim 1 is an unvulcanized rubber extruder for extruding a band-shaped unvulcanized rubber member made of a plurality of types of unvulcanized rubber from an opening of a die, and comprising an unvulcanized rubber Extruder having a plurality of extruder main bodies for extruding and an unvulcanized rubber extrusion port connected to the unvulcanized rubber discharge side of the extruder main body and discharging unvulcanized rubber extruded from the extruder main body A flow path comprising a head body and a plurality of flow paths that are connected to the unvulcanized rubber discharge side of the extrusion head body and guide the unvulcanized rubber extruded from the unvulcanized rubber extrusion port toward the base. A partition wall is formed between the adjacent channels on the side of the die of the flow channel forming die, and the flow channel is formed at the portion facing the die. Extending in a direction crossing the extrusion direction of the unvulcanized rubber extruded from the In the direction intersecting with the width direction of the unvulcanized rubber, the wall wall extends in a direction intersecting with the direction of extrusion of the unvulcanized rubber extruded from the die of the channel. A notch is formed at the end of the partition wall on the channel outlet side.

次に、請求項1に記載の未加硫ゴム押出機の作用を説明する。
請求項1に記載の未加硫ゴム押出機は、複数の押出機本体を備えているため、押出機本体毎に異なる未加硫ゴムを押し出すことができる。
複数の押出機本体の未加硫ゴム排出部を互いに連結するように押出ヘッド本体が設けられており、押出ヘッド本体に設けられた未加硫ゴム押出口からは各々異なる未加硫ゴムを押し出すことができる。
Next, the operation of the unvulcanized rubber extruder according to claim 1 will be described.
Since the unvulcanized rubber extruder according to claim 1 includes a plurality of extruder main bodies, different unvulcanized rubber can be extruded for each extruder main body.
An extrusion head main body is provided so as to connect the unvulcanized rubber discharge portions of a plurality of extruder main bodies to each other, and different unvulcanized rubber is extruded from unvulcanized rubber extrusion ports provided in the extrusion head main body. be able to.

押出ヘッド本体から押し出された未加硫ゴムは、流路形成金型に形成された流路を通り口金へ向かう。
口金からは、流路を通った未加硫ゴムが排出されるが、流路形成金型の口金側には、互いに隣接する流路の間に、口金から押出される未加硫ゴムの押出方向に沿って延びる仕切り壁が形成されているため、仕切り壁の両側の未加硫ゴムは、仕切り壁の近傍において、未加硫ゴムの押出方向に沿って延びる仕切り壁に沿って流れることになり、仕切り壁の口金側において、仕切り壁の未加硫ゴムの押出側の延長線上に、両側の未加硫ゴムの境界線が明確に形成されるように未加硫ゴム部材を押し出すことができる。
これにより、互いに隣接する2つの未加硫ゴムの境界が、一方の未加硫ゴム側へ回り込むことを抑えた帯状の未加硫ゴム部材を効率的に押出成型することができる。
また、流路が、口金と対向する部分において、口金から押出される未加硫ゴムの押出方向とは交差する方向に延びているため、未加硫ゴムは、口金の直前において、口金から押出される未加硫ゴムの押出方向とは交差する方向に流れることになる。
互いに隣接する二つの未加硫ゴムの流れが、口金の直前において、口金から押出される未加硫ゴムの押出方向とは交差する方向に流れていると、口金から押し出される際に、未加硫ゴムの流れの向きが急激に変化することになり、二つの未加硫ゴムの境界線が2つの流路の中間位置から大きくずれ易い。
請求項1に記載の未加硫ゴム押出機では、仕切り壁が、未加硫ゴムの流れの向きが急激に変化する部分に形成されているため、発明の効果が顕著に表れる。
さらに、仕切り壁の流路出口側の端部に切欠を形成することで、開口の上流側で互いに隣接する一方の未加硫ゴムと他方の未加硫ゴムとが接合し、一方の未加硫ゴムと他方の未加硫ゴムとをより確実に接合することができる。
The unvulcanized rubber extruded from the extrusion head body passes through the flow path formed in the flow path forming mold and travels toward the die.
The unvulcanized rubber that has passed through the flow path is discharged from the base, but on the base side of the flow path forming mold, unvulcanized rubber extruded from the base between the adjacent flow paths. Since the partition wall extending along the direction is formed, the unvulcanized rubber on both sides of the partition wall flows along the partition wall extending along the extrusion direction of the unvulcanized rubber in the vicinity of the partition wall. The unvulcanized rubber member can be extruded on the base side of the partition wall so that the uncured rubber boundary line on both sides is clearly formed on the extension line of the unvulcanized rubber extrusion side of the partition wall. it can.
As a result, it is possible to efficiently extrude a belt-shaped unvulcanized rubber member in which the boundary between two unvulcanized rubbers adjacent to each other is prevented from wrapping around one unvulcanized rubber side.
Further, since the flow path extends in a direction opposite to the extrusion direction of the unvulcanized rubber extruded from the die at a portion facing the die, the unvulcanized rubber is extruded from the die immediately before the die. It flows in a direction crossing the extrusion direction of the unvulcanized rubber.
If the flow of two unvulcanized rubbers adjacent to each other flows in a direction that intersects the extrusion direction of the unvulcanized rubber extruded from the base immediately before the base, The direction of the flow of the vulcanized rubber changes abruptly, and the boundary line between the two unvulcanized rubbers tends to deviate greatly from the intermediate position between the two flow paths.
In the unvulcanized rubber extruder according to the first aspect, since the partition wall is formed at a portion where the flow direction of the unvulcanized rubber changes abruptly, the effect of the invention is remarkably exhibited.
Furthermore, by forming a notch at the end of the partition wall on the channel outlet side, one unvulcanized rubber and the other unvulcanized rubber adjacent to each other are joined on the upstream side of the opening, and one unvulcanized rubber is joined. The vulcanized rubber and the other unvulcanized rubber can be bonded more reliably.

請求項2に記載の発明は、請求項2に記載の未加硫ゴム押出機において、前記仕切り壁は、前記口金と対向する部分において互いに隣接する一方の流路を流れる未加硫ゴムの流れ方向と、他方の流路を流れる未加硫ゴムの流れ方向とが互いに向き合っている部位に形成されている、ことを特徴としている。 According to a second aspect of the present invention, in the unvulcanized rubber extruder according to the second aspect, the partition wall is a flow of the unvulcanized rubber flowing through one of the flow paths adjacent to each other at a portion facing the base. The direction and the flow direction of the unvulcanized rubber flowing through the other flow path are formed at portions facing each other.

次に、請求項2に記載の未加硫ゴム押出機の作用を説明する。
口金と対向する部分において、互いに隣接する一方の流路を流れる未加硫ゴムの流れ方向と、他方の流路を流れる未加硫ゴムの流れ方向とが互いに向き合っている部位では、未加硫ゴムの圧力変動等によって未加硫ゴムの境界位置が最も変位し易い部位であるため、ここに仕切り壁を設けることが発明の効果を最大限に発揮できるため最も良い。
Next, the operation of the unvulcanized rubber extruder according to claim 2 will be described .
In the portion facing the base, at the portion where the flow direction of the unvulcanized rubber flowing through one of the flow paths adjacent to each other and the flow direction of the unvulcanized rubber flowing through the other flow path face each other, Since the boundary position of the unvulcanized rubber is the most easily displaced due to rubber pressure fluctuation or the like, it is best to provide a partition wall here because the effect of the invention can be maximized.

請求項3に記載の発明は、請求項1または請求項2に記載の未加硫ゴム押出機において、前記仕切り壁と前記口金との間隔が0.5mm以下である、ことを特徴としている。 According to a third aspect of the present invention, in the unvulcanized rubber extruder according to the first or second aspect, an interval between the partition wall and the base is 0.5 mm or less.

次に、請求項3に記載の未加硫ゴム押出機の作用を説明する。
仕切り壁と口金との間隔を0.5mm以下とすることで、互いに隣接する2つの未加硫ゴムの境界が、一方の未加硫ゴム側へ大きく回り込むことを抑えることができる。
Next, the operation of the unvulcanized rubber extruder according to claim 3 will be described .
By setting the distance between the partition wall and the base to be 0.5 mm or less, it is possible to prevent the boundary between two unvulcanized rubbers adjacent to each other from greatly turning toward one unvulcanized rubber side.

請求項4に記載の発明は、請求項1または請求項2に記載の未加硫ゴム押出機において、前記仕切り壁と前記口金とが接触している、ことを特徴としている。 According to a fourth aspect of the present invention, in the unvulcanized rubber extruder according to the first or second aspect, the partition wall and the base are in contact with each other.

次に、請求項4に記載の未加硫ゴム押出機の作用を説明する。
仕切り壁と口金とを接触させることで、互いに隣接する2つの未加硫ゴムの境界が、一方の未加硫ゴム側へ大きく回り込むことを確実に抑えることができる。
Next, the operation of the unvulcanized rubber extruder according to claim 4 will be described .
By bringing the partition wall and the base into contact with each other, it is possible to reliably suppress the boundary between two unvulcanized rubbers adjacent to each other from greatly turning toward one unvulcanized rubber side.

請求項5に記載の発明は、請求項1〜請求項4の何れか1項に記載の未加硫ゴム押出機において、前記仕切り壁は、口金側が薄く、口金側よりも前記未加硫ゴムの流れ方向上流側が厚く形成されている、ことを特徴としている。 According to a fifth aspect of the present invention, in the unvulcanized rubber extruder according to any one of the first to fourth aspects, the partition wall is thinner on the base side and the unvulcanized rubber than on the base side. It is characterized in that the upstream side in the flow direction is formed thick.

次に、請求項5に記載の未加硫ゴム押出機の作用を説明する。
仕切り壁の厚さを上流側で厚く、口金側で薄く形成することで、帯状の未加硫ゴム部材の形状(いわゆるコンター)に影響を与えず、かつ、仕切り壁の強度を確保することが出来る。
Next, the operation of the unvulcanized rubber extruder according to claim 5 will be described .
By forming the partition wall thick on the upstream side and thin on the base side, the shape of the belt-shaped unvulcanized rubber member (so-called contour) is not affected, and the strength of the partition wall can be secured. I can do it.

請求項6に記載の発明は、請求項5に記載の未加硫ゴム押出機において、前記仕切り壁は、口金側の厚さが0.1〜0.5mmの範囲内に設定されている、ことを特徴としている。 The invention according to claim 6 is the unvulcanized rubber extruder according to claim 5 , wherein the partition wall is set to a thickness of 0.1 to 0.5 mm on the base side. It is characterized by that.

次に、請求項6に記載の未加硫ゴム押出機の作用を説明する。
仕切り壁の口金側の厚さが0.5mmを超えると帯状の未加硫ゴム部材の形状に影響を与え、仕切り壁の口金側の厚さが0.1mm未満では仕切り壁が変形もしくは欠ける懸念があるため、仕切り壁の口金側の厚さを0.1〜0.5mmの範囲内に設定することが好ましい。
Next, the operation of the unvulcanized rubber extruder according to claim 6 will be described .
If the thickness of the partition wall on the base side exceeds 0.5 mm, the shape of the strip-shaped unvulcanized rubber member will be affected. If the thickness of the partition wall on the base side is less than 0.1 mm, the partition wall may be deformed or chipped. Therefore, it is preferable to set the thickness of the partition wall on the base side within a range of 0.1 to 0.5 mm.

請求項7に記載の発明は、請求項1〜請求項6の何れか1項に記載の未加硫ゴム押出機において、複数の前記未加硫ゴム押出口は縦方向に配列され、複数の前記流路の出口側は横方向に配列されている、ことを特徴としている。 The invention described in claim 7 is the unvulcanized rubber extruder according to any one of claims 1 to 6, a plurality of the unvulcanized rubber extruding ports are arranged in a vertical direction, a plurality of The outlet side of the flow path is arranged in the lateral direction.

次に、請求項7に記載の未加硫ゴム押出機の作用を説明する。
請求項7に記載の未加硫ゴム押出機では、押出機本体から複数の未加硫ゴムが縦方向に並んで押し出されるが、流路の出口側では複数の未加硫ゴムが横方向に並んで押し出される。
Next, the operation of the unvulcanized rubber extruder according to claim 7 will be described .
In the unvulcanized rubber extruder according to claim 7, a plurality of unvulcanized rubbers are extruded from the extruder body in a longitudinal direction, and a plurality of unvulcanized rubbers are laterally extruded on the outlet side of the flow path. Extruded side by side.

縦方向に配列された複数の未加硫ゴム押出口から押し出された各々の未加硫ゴムを、出口側を横方向に配列した複数の流路を通して横方向に並ぶように限られたスペースの中で流れの向きを変える場合、口金の直前において互いに隣接する2つの未加硫ゴムの流れ方向が互いに対向する向きになる場合があり、このような構成とした場合に、本発明の効果を特に発揮できる。   Each of the unvulcanized rubber extruded from the plurality of unvulcanized rubber extrusion ports arranged in the vertical direction has a limited space so as to be arranged in the horizontal direction through the plurality of channels arranged on the outlet side in the horizontal direction. When the flow direction is changed, the flow directions of the two unvulcanized rubbers adjacent to each other immediately before the die may be opposite to each other. In such a configuration, the effect of the present invention is achieved. Especially can be demonstrated.

請求項8に記載の発明は、請求項1〜請求項7の何れか1項に記載の未加硫ゴム押出機において、前記仕切り壁の長手方向端部は、前記流路形成金型の内の前記仕切り壁が形成されている部分とは異なる他の部位に連結されている、ことを特徴としている。 The invention according to claim 8 is the unvulcanized rubber extruder according to any one of claims 1 to 7 , wherein the longitudinal end portion of the partition wall is formed in the flow path forming mold. It is connected to the other site | part different from the part in which the said partition wall is formed.

次に、請求項8に記載の未加硫ゴム押出機の作用を説明する。
仕切り壁の長手方向端部を、流路形成金型の内の仕切り壁が形成されている部分とは異なる他の部位に連結することで、仕切り壁を補強でき、仕切り壁の変形を抑えることができる。
Next, the operation of the unvulcanized rubber extruder according to claim 8 will be described .
By connecting the end of the partition wall in the longitudinal direction to another part of the flow path forming mold different from the part where the partition wall is formed, the partition wall can be reinforced and deformation of the partition wall can be suppressed. Can do.

請求項9に記載の発明は、請求項1〜請求項8の何れか1項に記載の未加硫ゴム押出機において、前記帯状の未加硫ゴム部材は、二輪車用空気入りタイヤのトレッドに用いられる、ことを特徴としている。 The invention according to claim 9 is the unvulcanized rubber extruder according to any one of claims 1 to 8 , wherein the belt-shaped unvulcanized rubber member is used in a tread of a pneumatic tire for a motorcycle. It is characterized by being used.

次に、請求項9に記載の未加硫ゴム押出機の作用を説明する。
請求項9に記載の未加硫ゴム押出機では、二輪車用空気入りタイヤのトレッドに用いられる帯状の未加硫ゴム部材が押出成型される。
Next, the operation of the unvulcanized rubber extruder according to claim 9 will be described .
In the unvulcanized rubber extruder according to claim 9, a strip-shaped unvulcanized rubber member used for a tread of a pneumatic tire for a motorcycle is extruded.

以上説明したように、本発明の未加硫ゴム押出機は、複数の未加硫ゴムからなる未加硫ゴム部材を押出成型する際に、互いに隣接する2つの未加硫ゴムの境界が、一方の未加硫ゴム側へ回り込むことを抑えることができる、という優れた効果を有する。   As described above, when the unvulcanized rubber extruder of the present invention extrudes an unvulcanized rubber member composed of a plurality of unvulcanized rubbers, the boundary between two unvulcanized rubbers adjacent to each other is It has the outstanding effect that it can suppress going around to one unvulcanized rubber side.

本発明を説明する前に未加硫ゴム押出機の参考例を図面にしたがって説明する。
図1に示すように、未加硫ゴム押出機10は4基の押出機本体12、14、16、18と、押出機本体12、14、16、18の先端部を連結するように設けられる押出ヘッド20とを有している。
各押出機本体12、14、16、18は、各々未加硫ゴム供給用ホッパ(図示省略)を備え、4種類の互いに配合組成が異なる未加硫ゴムA、B、C、Dが未加硫ゴム供給用ホッパから各押出機本体12、14、16、18に連続して供給され、各押出機本体12、14、16、18内部で回転駆動されるスクリュウ(図示省略)により練り合わされ、自己発熱して可塑度を低めて流動性を増しながら押出ヘッド20に向け導き出される。なお、各押出機本体12、14、16、18の構成は、従来品と同様の構成である。
Before describing the present invention, a reference example of an unvulcanized rubber extruder will be described with reference to the drawings.
As shown in FIG. 1, the unvulcanized rubber extruder 10 is provided so as to connect the four extruder main bodies 12, 14, 16, 18 and the distal ends of the extruder main bodies 12, 14, 16, 18. And an extrusion head 20.
Each extruder body 12, 14, 16, 18 is provided with an unvulcanized rubber supply hopper (not shown), and four types of unvulcanized rubbers A, B, C, and D having different compounding compositions are not added. It is continuously supplied from the vulcanized rubber supply hopper to each extruder main body 12, 14, 16, 18 and kneaded by a screw (not shown) that is rotationally driven inside each extruder main body 12, 14, 16, 18; It is guided toward the extrusion head 20 while self-heating to lower the plasticity and increase the fluidity. In addition, the structure of each extruder main body 12, 14, 16, 18 is the same structure as a conventional product.

ここで、未加硫ゴム押出機10の構成を詳細に説明する前に、この未加硫ゴム押出機10で押出成型される帯状未加硫ゴム部材19を図2の断面図に基づき説明する。
図2の断面図に示すように、この帯状未加硫ゴム部材19は、二輪車用空気入りタイヤのトレッドとなるものであり、トレッドのセンター部分を形成するための未加硫ゴムB、トレッドのセンター部分のトレッド幅方向外側部分を形成するための未加硫ゴムC、未加硫ゴムCのトレッド幅方向外側部分を形成するための未加硫ゴムD、及びトレッドの端部を形成するための未加硫ゴムAの4種類の未加硫ゴムより構成されており、水平方向に幅広に押出成型される。なお、図2に示す帯状未加硫ゴム部材19において、下面がベルト側、上面が踏面側となる。
Here, before describing the configuration of the unvulcanized rubber extruder 10 in detail, the strip-shaped unvulcanized rubber member 19 extruded by the unvulcanized rubber extruder 10 will be described based on the cross-sectional view of FIG. .
As shown in the cross-sectional view of FIG. 2, the belt-shaped unvulcanized rubber member 19 serves as a tread for a pneumatic tire for a motorcycle, and includes an unvulcanized rubber B and a tread for forming a center portion of the tread. To form an unvulcanized rubber C for forming the outer portion of the center portion in the tread width direction, an unvulcanized rubber D for forming an outer portion of the unvulcanized rubber C in the tread width direction, and an end portion of the tread. The unvulcanized rubber A is composed of four types of unvulcanized rubber, and is extruded and widened in the horizontal direction. In addition, in the strip | belt-shaped unvulcanized rubber member 19 shown in FIG. 2, a lower surface becomes a belt side and an upper surface becomes a tread surface side.

図2の断面図に示すように、帯状未加硫ゴム部材19の未加硫ゴムB、未加硫ゴムC、及び未加硫ゴムDは横長の略4角形、未加硫ゴムAは略三角形を呈しており、各未加硫ゴム部材の境界線は、本参考例では厚み方向に延びる略直線状とされている。 As shown in the cross-sectional view of FIG. 2, the unvulcanized rubber B, the unvulcanized rubber C, and the unvulcanized rubber D of the strip-shaped unvulcanized rubber member 19 are horizontally long and substantially rectangular, and the unvulcanized rubber A is approximately. In this reference example , the boundary line of each unvulcanized rubber member has a substantially straight shape extending in the thickness direction.

次に、未加硫ゴム押出機10を詳細に説明する。
図3(B)に示すように押出ヘッド20は、未加硫ゴムA、B、C、D(図3では図示せず)の押出方向前方に位置する鋼製の押出口金(以下口金という)21を備え、前述した各押出機本体12、14、16、18の押出し出口から口金21に向かう未加硫ゴムA、B、C,Dの流路22a、22b、22c、22dをヘッド本体25に有し、流路22a、22b、22c、22dと口金21との間には未加硫ゴムA、B、C、Dそれぞれが所定断面形状をもつ帯状未加硫ゴム部材19を形成するための未加硫ゴム部材形成手段24を、ヘッド本体25に着脱自在に収容している。なお、流路22a、22b、22c、22dの下流側端部が本発明の未加硫ゴム押出出口に相当する。
なお、図2(B)に示すように、口金21には、帯状未加硫ゴム部材19の押出外輪郭形状のうちトレッド踏面側を形成する役を果たす切欠部21aが形成されている。即ち、切欠部21aは、未加硫ゴムA、B、C,Dが押し出される開口部の一部を形成している。なお、未加硫ゴムA、B、C,Dが押し出される開口部は、この切欠部21a(前記一部)と、後述するダイホルダ30の端縁30a(図11参照)とで構成される。
Next, the unvulcanized rubber extruder 10 will be described in detail.
As shown in FIG. 3 (B), the extrusion head 20 is a steel extrusion base (hereinafter referred to as a base) located in front of the unvulcanized rubber A, B, C, D (not shown in FIG. 3) in the extrusion direction. ) 21 and the flow paths 22a, 22b, 22c, and 22d of the unvulcanized rubber A, B, C, and D from the extrusion outlets of the respective extruder main bodies 12, 14, 16, and 18 to the base 21 are provided as head bodies. 25, between the flow paths 22a, 22b, 22c, 22d and the base 21, the unvulcanized rubber A, B, C, D each has a strip-shaped unvulcanized rubber member 19 having a predetermined cross-sectional shape. For this purpose, an unvulcanized rubber member forming means 24 is detachably accommodated in the head body 25. The downstream ends of the flow paths 22a, 22b, 22c, and 22d correspond to the unvulcanized rubber extrusion outlet of the present invention.
As shown in FIG. 2 (B), the base 21 is formed with a notch 21a that serves to form the tread tread surface side of the outer contour shape of the strip-shaped unvulcanized rubber member 19. That is, the notch 21a forms a part of an opening through which the unvulcanized rubber A, B, C, D is extruded. The opening through which the unvulcanized rubbers A, B, C, and D are pushed out includes the notch 21a (the part) and an edge 30a (see FIG. 11) of the die holder 30 described later.

図3(A),(B)に示すように、未加硫ゴム部材形成手段24は、ヘッド本体25の流路22a、22b、22c、22dの終端(排出口)と接続される鋼製の流路形成金型32と、口金21と、口金21と対をなして帯状未加硫ゴム部材19の押出外輪郭形状のうち底部を別途形成する役を果たすと共に、口金21を固定するための鋼製のダイホルダ30を有し、口金21は、ダイホルダ30によって流路形成金型32の未加硫ゴム押出側の端面に固定されている。
なお、帯状未加硫ゴム部材19は口金21より図3(B)の矢印F方向に押出される。
As shown in FIGS. 3 (A) and 3 (B), the unvulcanized rubber member forming means 24 is made of steel and connected to the terminal ends (discharge ports) of the flow paths 22a, 22b, 22c, and 22d of the head body 25. A pair of the flow path forming die 32, the base 21, and the base 21 serves to separately form the bottom of the extruded outer contour shape of the band-shaped unvulcanized rubber member 19, and to fix the base 21 The die holder 30 is made of steel, and the die 21 is fixed to the end surface of the flow path forming mold 32 on the unvulcanized rubber extrusion side by the die holder 30.
The band-shaped unvulcanized rubber member 19 is extruded from the base 21 in the direction of arrow F in FIG.

(流路形成金型)
流路形成金型32は、上側に配置される上金型34、下側に配置される下金型36、上金型34と下金型36との間に配置される中金型38の3つの金型から構成されている。
図3(A)は、流路形成金型32、及びダイホルダ30を裏面(押出機側)から見た裏面図であり、上側には幅方向中央を境にして左右側に第1流路38Aが開口し、その下側には幅方向中央に第2流路38Bが開口し、その下側には幅方向中央を境にして左右に第3流路38Cが開口し、一番下には幅方向中央を境にして左右に第4流路38Dが開口している。
(Flow path forming mold)
The flow path forming mold 32 includes an upper mold 34 disposed on the upper side, a lower mold 36 disposed on the lower side, and a middle mold 38 disposed between the upper mold 34 and the lower mold 36. It consists of three molds.
FIG. 3A is a back view of the flow path forming mold 32 and the die holder 30 as viewed from the back surface (extruder side), and the first flow path 38A is formed on the left and right sides with the center in the width direction as a boundary on the upper side. The second flow path 38B opens at the center in the width direction below the lower side, the third flow path 38C opens at the left and right with the center in the width direction as the boundary, and at the bottom. The fourth flow path 38D is opened to the left and right with the width direction center as a boundary.

図4は、押出機本体12、14、16、18の先端に設けられたヘッド本体25の正面図であり、流路22a、22b、22c、22dの開口(未加硫ゴム押出口)は、横長形状とされ、縦方向に配列されている。なお、流路22aのみ、幅方向に2分割されている。
なお、これら押出機本体12、14、16、18の流路22a、22b、22c、22dは、図3(A)に示すように、流路形成金型32、及びバックダイ26を裏面に対して2点鎖線で示すように対応し、未加硫ゴムAの流れる流路22aは第1流路38Aの入口に、未加硫ゴムBが曲れる流路22bは第2流路38Bの入口に、未加硫ゴムCの流れる流路22cは第3流路38Cの入口に、未加硫ゴムDの流れる流路22dは第4流路38Dの入口に夫々対向している。
FIG. 4 is a front view of the head main body 25 provided at the tip of the extruder main bodies 12, 14, 16, 18 and the openings (unvulcanized rubber extrusion ports) of the flow paths 22a, 22b, 22c, 22d are as follows. It has a horizontally long shape and is arranged in the vertical direction. Only the flow path 22a is divided into two in the width direction.
In addition, the flow paths 22a, 22b, 22c, and 22d of these extruder main bodies 12, 14, 16, and 18 are connected to the back surface of the flow path forming mold 32 and the back die 26 as shown in FIG. The flow path 22a through which the unvulcanized rubber A flows corresponds to the inlet of the first flow path 38A, and the flow path 22b where the unvulcanized rubber B bends corresponds to the inlet of the second flow path 38B. In addition, the flow path 22c through which the unvulcanized rubber C flows faces the inlet of the third flow path 38C, and the flow path 22d through which the unvulcanized rubber D flows faces the inlet of the fourth flow path 38D.

また、図5(A)は、流路形成金型32、及びダイホルダ30を表面(ゴムの排出側)から見た正面図であり、中央には未加硫ゴムBが流れる第2流路38B、その両側には未加硫ゴムCが流れる第3流路38C、その外側には未加硫ゴムDが流れる第4流路38D、その外側には未加硫ゴムAが流れる第1流路38Aが開口しており、各々の流路が横方向に配列されている。   FIG. 5A is a front view of the flow path forming mold 32 and the die holder 30 as viewed from the surface (rubber discharge side), and a second flow path 38B through which unvulcanized rubber B flows in the center. A third flow path 38C through which the unvulcanized rubber C flows on both sides, a fourth flow path 38D through which the unvulcanized rubber D flows, and a first flow path through which the unvulcanized rubber A flows. 38A is opened and each flow path is arranged in the horizontal direction.

図6(A)の断面図(図5(A)のA−A線断面図)で示すように、未加硫ゴムAが流れる第1流路38Aは、口金21へ向けて斜め下方に傾斜して口金側で下方に屈曲しており、口金21と対向する部分においては口金21と平行(ゴム押出方向とは交差する方向)に形成されている。   As shown in the cross-sectional view of FIG. 6A (the cross-sectional view taken along the line AA in FIG. 5A), the first flow path 38A through which the unvulcanized rubber A flows is inclined obliquely downward toward the base 21. Then, it is bent downward on the base side, and is formed parallel to the base 21 (a direction intersecting the rubber extrusion direction) at a portion facing the base 21.

図6(B)の断面図(図5(A)のB−B線断面図)で示すように、未加硫ゴムDが流れる第4流路38Dは、口金21へ向けて斜め上方に傾斜して口金側で上方に屈曲しており、口金21と対向する部分においては口金21と平行(ゴム押出方向とは交差する方向)に形成されている。   As shown in the sectional view of FIG. 6B (the sectional view taken along the line BB of FIG. 5A), the fourth flow path 38D through which the unvulcanized rubber D flows is inclined obliquely upward toward the base 21. Then, it is bent upward on the base side, and is formed parallel to the base 21 (a direction crossing the rubber extrusion direction) at a portion facing the base 21.

図6(C)の断面図(図5(A)のC−C線断面図)で示すように、未加硫ゴムCが流れる第3流路38Cは、口金21へ向けて水平に延びて口金側で上方に屈曲しており、口金21と対向する部分においては口金21と平行(ゴム押出方向とは交差する方向)に形成されている。   As shown in the cross-sectional view of FIG. 6C (the cross-sectional view taken along the line CC in FIG. 5A), the third flow path 38C through which the unvulcanized rubber C flows extends horizontally toward the base 21. It is bent upward on the base side, and is formed parallel to the base 21 (a direction intersecting the rubber extrusion direction) at a portion facing the base 21.

図6(D)の断面図(図5(A)のD−D線断面図)で示すように、未加硫ゴムBが流れる第2流路38Bは、口金21へ向けて斜め下方に傾斜すると共に徐々に流路の幅が狭く形成されて口金側で下方に屈曲しており、口金21と対向する部分においては口金21と平行(ゴム押出方向とは交差する方向)に形成されている。   As shown in the sectional view of FIG. 6D (the sectional view taken along the line DD in FIG. 5A), the second flow path 38B through which the unvulcanized rubber B flows is inclined obliquely downward toward the base 21. At the same time, the width of the flow path is gradually narrowed and bent downward on the base side, and the part facing the base 21 is formed parallel to the base 21 (direction intersecting the rubber extrusion direction). .

なお、図5(A)、及び図6において、符号38Aaは第1流路38Aの口金21と平行に形成されている部分の第1流路側壁面を示し、符号38Baは第2流路38Bの口金21と平行に形成されている部分の第2流路側壁面を示し、符号38Caは第3流路38Cの口金21と平行に形成されている部分の第3流路側壁面部分を示し、符号38Daは第4流路38Dの口金21と平行に形成されている部分の第4流路側壁面を示している。   In FIG. 5A and FIG. 6, reference numeral 38Aa indicates a first flow path side wall surface of the first flow path 38A formed in parallel with the base 21, and reference numeral 38Ba indicates the second flow path 38B. A portion of the second flow path side wall surface that is formed in parallel with the base 21 is shown. Reference numeral 38Ca denotes a portion of the third flow path side wall surface that is formed in parallel with the base 21 of the third flow path 38C. Shows the fourth channel side wall surface of the portion of the fourth channel 38D formed in parallel with the base 21.

図5(A)、及び図9に示すように、流路形成金型32の中金型38には、第1流路側壁面38Aaと第4流路側壁面38Daとの間(図7(A)に示すように、口金21と対向する部分において互いに隣接する一方の流路を流れる未加硫ゴムAの流れ方向と、他方の流路を流れる未加硫ゴムDの流れ方向とが互いに向き合っている部位)に第1の仕切り壁40が形成され、第2流路側壁面38Baと第3流路側壁面38Caとの間((図7(B)に示すように、口金21と対向する部分において互いに隣接する一方の流路を流れる未加硫ゴムCの流れ方向と、他方の流路を流れる未加硫ゴムBの流れ方向とが互いに向き合っている部位)に第2の仕切り壁42が形成されている。なお、第1の仕切り壁40、及び第2流路側壁面38Baは、口金側から見て長手方向が直線状に形成されている。
図5(A)において符号44で示す2点鎖線は、第3流路側壁面38Caと第4流路側壁面38Daとの境界であるが、実際には第3流路側壁面38Caと第4流路側壁面38Daとが連続的に形成されているため境界44は見えない。
As shown in FIG. 5A and FIG. 9, the middle mold 38 of the flow path forming mold 32 is provided between the first flow path side wall surface 38Aa and the fourth flow path side wall surface 38Da (FIG. 7A). As shown in FIG. 2, the flow direction of the unvulcanized rubber A flowing through one of the flow paths adjacent to each other in the portion facing the base 21 and the flow direction of the unvulcanized rubber D flowing through the other flow path face each other. A first partition wall 40 is formed between the second flow path side wall surface 38Ba and the third flow path side wall surface 38Ca (as shown in FIG. The second partition wall 42 is formed at a portion where the flow direction of the unvulcanized rubber C flowing in one adjacent flow path and the flow direction of the unvulcanized rubber B flowing in the other flow path face each other. The first partition wall 40 and the second flow path side wall surface 38Ba are Longitudinal direction is formed in a linear shape as viewed from the cap side.
5A is a boundary between the third flow path side wall surface 38Ca and the fourth flow path side wall surface 38Da, but actually the third flow path side wall surface 38Ca and the fourth flow path side wall surface. 38 Da is formed continuously, so the boundary 44 cannot be seen.

図7に示すように、第1の仕切り壁40は、流路側壁面側(基部側)が厚く、口金側が薄く形成されており、帯状未加硫ゴム部材19(図7では図示せず)の押出方向(矢印F方向)へ向けて延びている。第1の仕切り壁40は、材質が鋼の場合、口金側の厚さを0.1〜0.5mmの範囲内とすることが好ましい。第1の仕切り壁40の口金側の厚さが0.5mmよりも厚くなると、未加硫ゴムAと未加硫ゴムDの境界部分において未加硫ゴムの圧力が局所的に低くなり、加硫ゴムAと未加硫ゴムDとが圧着不足となったり、押出した帯状未加硫ゴム部材19の表面において、未加硫ゴムAと未加硫ゴムDの境界部分に凹みが生じ易く、所望の断面形状が得られない場合がある。
また、第1の仕切り壁40の口金側の厚さが0.1mm未満になると、第1の仕切り壁40が変形もしくは欠ける懸念がある。
なお、本参考例の第1の仕切り壁40は、基部の厚さが5mm、高さが10mmに設定されている。
As shown in FIG. 7, the first partition wall 40 is formed such that the channel side wall surface side (base side) is thick and the base side is thin, and the band-shaped unvulcanized rubber member 19 (not shown in FIG. 7) is formed. It extends toward the extrusion direction (arrow F direction). When the material of the first partition wall 40 is steel, the thickness on the base side is preferably within a range of 0.1 to 0.5 mm. If the thickness of the first partition wall 40 on the base side is thicker than 0.5 mm, the pressure of the unvulcanized rubber is locally reduced at the boundary between the unvulcanized rubber A and the unvulcanized rubber D, The vulcanized rubber A and the unvulcanized rubber D are insufficiently pressure-bonded, or the surface of the extruded strip-shaped unvulcanized rubber member 19 is likely to be depressed at the boundary between the unvulcanized rubber A and the unvulcanized rubber D. A desired cross-sectional shape may not be obtained.
Further, if the thickness of the first partition wall 40 on the base side is less than 0.1 mm, the first partition wall 40 may be deformed or missing.
The first partition wall 40 of the present reference example has a base thickness of 5 mm and a height of 10 mm.

なお、本参考例の第1の仕切り壁40、及び第2の仕切り壁42は、共にその高さが長手方向に一定に形成されている。また、本参考例の第1の仕切り壁40は、先端(矢印F方向側の端部:流路出口側の端部)を口金21の裏面に接触させている。第2の仕切り壁42の断面形状も第1の仕切り壁40の断面形状と同様であり、第2の仕切り壁42の先端も口金21の裏面に接触させている。
なお、本参考例では、第1の仕切り壁40の長手方向端部、及び第2の仕切り壁42の長手方向端部は、図9に示すように、中金型38の剛性の高い部位(少なくとも第1の仕切り壁40、及び第2の仕切り壁42よりも剛性の高い厚肉部分)46、48,50に連結されており、第1の仕切り壁40、及び第2の仕切り壁42が補強されることとなり、第1の仕切り壁40、及び第2の仕切り壁42の変形が抑えられるので好ましい形態である。なお、第1の仕切り壁40、及び第2の仕切り壁42を補強できるのであれば、第1の仕切り壁40、及び第2の仕切り壁42の長手方向端部は、第1の仕切り壁40、及び第2の仕切り壁42と同等の剛性を有する部分や、第1の仕切り壁40、及び第2の仕切り壁42よりも剛性の低い部分に連結しても良い。
Note that the first partition wall 40 and the second partition wall 42 of the present reference example are both formed with a constant height in the longitudinal direction. Further, the first partition wall 40 of the present reference example has a tip (an end on the arrow F direction side: an end on the flow path outlet side) in contact with the back surface of the base 21. The cross-sectional shape of the second partition wall 42 is the same as the cross-sectional shape of the first partition wall 40, and the tip of the second partition wall 42 is also in contact with the back surface of the base 21.
In this reference example , the longitudinal end portion of the first partition wall 40 and the longitudinal end portion of the second partition wall 42 are portions having high rigidity of the middle mold 38 (see FIG. 9). (A thick portion having a rigidity higher than that of at least the first partition wall 40 and the second partition wall 42) 46, 48, and 50, and the first partition wall 40 and the second partition wall 42 are connected to each other. This is a preferable mode because the first partition wall 40 and the second partition wall 42 are prevented from being deformed. In addition, if the 1st partition wall 40 and the 2nd partition wall 42 can be reinforced, the longitudinal direction edge part of the 1st partition wall 40 and the 2nd partition wall 42 will be the 1st partition wall 40. The first partition wall 40 and the second partition wall 42 may be connected to a portion having rigidity equal to that of the second partition wall 42, or to a portion having lower rigidity than the first partition wall 40 and the second partition wall 42.

なお、図8(A)は上金型34の正面図、図8(B)は上金型34の裏面図、図8(C)は上金型34の側面図であり、符号39Aは第1流路38Aを形成するための溝である。
図9(A)は中金型38の正面図、図9(B)は中金型38の裏面図、図9(C)は中金型38の側面図であり、符号39Bは第2流路38Bを形成するための溝であり、符号39Cは第3流路38Cを形成するための溝である。
8A is a front view of the upper mold 34, FIG. 8B is a rear view of the upper mold 34, and FIG. 8C is a side view of the upper mold 34. This is a groove for forming one flow path 38A.
9A is a front view of the middle mold 38, FIG. 9B is a rear view of the middle mold 38, FIG. 9C is a side view of the middle mold 38, and reference numeral 39B is the second flow. It is a groove | channel for forming the path | route 38B, and the code | symbol 39C is a groove | channel for forming the 3rd flow path 38C.

また、図10(A)は下金型36の正面図、図10(B)は下金型36の裏面図、図10(C)は下金型36の側面図であり、符号40Cは第3流路38Cを形成するための溝であり、符号39Dは第4流路38Dを形成するための溝である。   10A is a front view of the lower mold 36, FIG. 10B is a back view of the lower mold 36, and FIG. 10C is a side view of the lower mold 36. It is a groove | channel for forming 3 flow path 38C, and code | symbol 39D is a groove | channel for forming 4th flow path 38D.

(作用)
次に、未加硫ゴム押出機10の作用を説明する。
先ず、未加硫ゴムA、B、C、Dが各押出機本体12、14、16、18から押出ヘッド20に向け送り出されると、図6に示すように、未加硫ゴムAは流路22aを介して第1流路38Aへ流れ込み、未加硫ゴムBは流路22bを介して第2流路38Bへ流れ込み、未加硫ゴムCは流路22cを介して第3流路38Cへ流れ込み、未加硫ゴムDは流路22dを介して第4流路38Dへ流れ込む。
(Function)
Next, the operation of the unvulcanized rubber extruder 10 will be described.
First, when the unvulcanized rubbers A, B, C, and D are fed from the extruder main bodies 12, 14, 16, and 18 toward the extrusion head 20, as shown in FIG. The unvulcanized rubber B flows into the second flow path 38B through the flow path 22b, and the unvulcanized rubber C flows into the third flow path 38C through the flow path 22c. The unvulcanized rubber D flows into the fourth flow path 38D via the flow path 22d.

そして未加硫ゴムAは、第1流路38Aの内部を流れて口金21から矢印F方向へ押し出され、未加硫ゴムBは、第2流路38Bの内部を流れて口金21から矢印F方向へ押し出され、未加硫ゴムCは、第3流路38Cの内部を流れて口金21から矢印F方向へ押し出され、未加硫ゴムDは、第4流路38Dの内部を流れて口金21から矢印F方向へ押し出される。なお、未加硫ゴムA、未加硫ゴムB、未加硫ゴムC、及び未加硫ゴムDは、口金21から押し出される際に互いに隣接する部分が圧着され、図2に示す断面形状の帯状未加硫ゴム部材19が連続的に得られる。   The unvulcanized rubber A flows through the first flow path 38A and is pushed out of the base 21 in the direction of arrow F, and the unvulcanized rubber B flows through the second flow path 38B and flows from the base 21 to the arrow F. The unvulcanized rubber C is pushed out in the direction, flows in the third flow path 38C and is pushed out from the base 21 in the direction of arrow F, and the unvulcanized rubber D flows in the fourth flow path 38D through the base. 21 is pushed in the direction of arrow F. The unvulcanized rubber A, the unvulcanized rubber B, the unvulcanized rubber C, and the unvulcanized rubber D have their cross-sectional shapes shown in FIG. A strip-shaped unvulcanized rubber member 19 is continuously obtained.

図7(B)に示すように、センターの未加硫ゴムBは、口金21と対向する第2流路側壁面38Ba位置にて流れ方向が口金21と平行となってから向きを変えて帯状未加硫ゴム部材19の押出方向(矢印F方向)へ向かい、センターの未加硫ゴムBに隣接する未加硫ゴムCも、口金21と対向する第3流路側壁面38Ca位置にて流れ方向が口金21と平行となってから向きを変えて帯状未加硫ゴム部材19の押出方向(矢印F方向)へ向かう(図11も参照。なお、図11、その他の図において、符号90は、未加硫ゴムが図面裏側から表側へ向けて流れていることを示しており、符号92は、未加硫ゴムが図面表側から裏側へ向けて流れていることを示している。)。   As shown in FIG. 7 (B), the unvulcanized rubber B at the center changes its direction after the flow direction becomes parallel to the base 21 at the position of the second flow path side wall surface 38Ba facing the base 21. The direction of flow of the unvulcanized rubber C adjacent to the center unvulcanized rubber B toward the extrusion direction of the vulcanized rubber member 19 (arrow F direction) is also at the position of the third channel side wall surface 38Ca facing the base 21. After being parallel to the base 21, the direction is changed and the strip-shaped unvulcanized rubber member 19 is directed in the direction of extruding (direction of arrow F) (see also FIG. 11. The vulcanized rubber flows from the back side of the drawing toward the front side, and the reference numeral 92 indicates that the unvulcanized rubber flows from the front side of the drawing toward the back side.

未加硫ゴムB、及び未加硫ゴムCは、押出方向へ向かう直前においては、流路側壁面部分に沿って互いに対向する向きに流れているものの、第2流路側壁面38Baと第3流路側壁面38Caとの間に第2の仕切り壁42が配置されているため、口金21の上流側において、未加硫ゴムBと未加硫ゴムCとは互いに接触することはなく矢印で図示する様に押出方向(矢印F方向)へ向きが変わるため、未加硫ゴムBと未加硫ゴムCとの境界線SL1が、第2の仕切り壁42の未加硫ゴム押出方向の延長線上に連続的に形成されることになり、図2に示すように、一方の未加硫ゴムの一部分が他方の未加硫ゴム側へ大きく回り込むことがなく、第2の仕切り壁42の長手方向と同様に、境界線SL1を略直線状とすることができる。   The unvulcanized rubber B and the unvulcanized rubber C are flowing in directions facing each other along the channel side wall surface immediately before going in the extrusion direction, but the second channel side wall surface 38Ba and the third channel side Since the second partition wall 42 is disposed between the wall surface 38Ca and the unvulcanized rubber B and the unvulcanized rubber C are not in contact with each other on the upstream side of the base 21, as shown by the arrows. Since the direction changes to the extrusion direction (arrow F direction), the boundary line SL1 between the unvulcanized rubber B and the unvulcanized rubber C continues on the extension line of the second partition wall 42 in the unvulcanized rubber extrusion direction. As shown in FIG. 2, a part of one unvulcanized rubber does not wrap around to the other unvulcanized rubber side, and is the same as the longitudinal direction of the second partition wall 42 as shown in FIG. In addition, the boundary line SL1 can be substantially linear.

また、図7(A)に示すように、未加硫ゴムAは、口金21と対向する第1流路側壁面38Aa位置にて流れ方向が口金21と平行となってから向きを変えて帯状未加硫ゴム部材19の押出方向(矢印F方向)へ向かい、未加硫ゴムAに隣接する未加硫ゴムDも、口金21と対向する第4流路側壁面38Da位置にて流れ方向が口金21と平行となってから向きを変えて帯状未加硫ゴム部材19の押出方向(矢印F方向)へ向かう。   In addition, as shown in FIG. 7A, the unvulcanized rubber A is not strip-shaped when the direction of flow is parallel to the base 21 at the position of the first flow path side wall surface 38Aa facing the base 21. The unvulcanized rubber D adjacent to the unvulcanized rubber A toward the extrusion direction (arrow F direction) of the vulcanized rubber member 19 also flows in the direction of the base 21 at the position of the fourth flow passage side wall surface 38Da facing the base 21. The direction of the belt-shaped unvulcanized rubber member 19 is changed in the direction of the arrow F in the direction of arrow F.

未加硫ゴムA、及び未加硫ゴムDは、押出方向へ向かう直前においては、流路側壁面部分に沿って互いに対向する向きに流れているものの、第1流路側壁面38Aaと第4流路側壁面38Daとの間に第1の仕切り壁40が配置されているため、口金21の上流側において、未加硫ゴムAと未加硫ゴムDとは互いに接触することなく矢印で図示する様に押出方向(矢印F方向)へ向きが変わるため、未加硫ゴムAと未加硫ゴムDとの境界線SL2が、第1の仕切り壁40の未加硫ゴム押出方向の延長線上に連続的に形成されることになり、図2に示すように、一方の未加硫ゴムの一部分が他方の未加硫ゴム側へ大きく回り込むことがなく、第1の仕切り壁40の長手方向と同様に、境界線SL2を略直線状とすることができる。   The unvulcanized rubber A and the unvulcanized rubber D are flowing in directions facing each other along the channel side wall surface portion immediately before going in the extrusion direction, but the first channel side wall surface 38Aa and the fourth channel side Since the first partition wall 40 is disposed between the wall surface 38Da and the upstream side of the base 21, the unvulcanized rubber A and the unvulcanized rubber D do not come into contact with each other as shown by arrows. Since the direction changes in the extrusion direction (arrow F direction), the boundary line SL2 between the unvulcanized rubber A and the unvulcanized rubber D is continuously on the extension line of the first partition wall 40 in the unvulcanized rubber extrusion direction. As shown in FIG. 2, a part of one unvulcanized rubber does not greatly wrap around to the other unvulcanized rubber side, and is the same as the longitudinal direction of the first partition wall 40. The boundary line SL2 can be substantially linear.

なお、口金21の直前の流路側壁面部分(未加硫ゴムC,Dの流れが押出方向(矢印F方向)へ変わる直前)では、未加硫ゴムCの流れる方向(点線の矢印で図示)と未加硫ゴムDの流れる方向(点線の矢印で図示)が略同方向となっているので、未加硫ゴムCと未
加硫ゴムDの各々の吐出圧が同じであれば、第3流路38Cと第4流路38Dの中間位置にて未加硫ゴムCと未加硫ゴムDの境界(図2の符号SL3)が略直線状に形成されるようになるため、口金21の直前において、第3流路38Cと第4流路38Dの間に仕切り壁を設けなくても良い。
In addition, in the channel side wall surface portion immediately before the base 21 (immediately before the flow of the unvulcanized rubber C, D changes in the extrusion direction (arrow F direction)), the flow direction of the unvulcanized rubber C (illustrated by a dotted arrow) And the direction in which the unvulcanized rubber D flows (illustrated by dotted arrows) are substantially the same direction, so that if the discharge pressures of the unvulcanized rubber C and the unvulcanized rubber D are the same, the third Since the boundary between the unvulcanized rubber C and the unvulcanized rubber D (reference numeral SL3 in FIG. 2) is formed in a substantially straight line at an intermediate position between the flow path 38C and the fourth flow path 38D, Immediately before, it is not necessary to provide a partition wall between the third flow path 38C and the fourth flow path 38D.

なお、未加硫ゴムCの吐出圧と未加硫ゴムDの吐出圧を変更することで、未加硫ゴムCと未加硫ゴムDの境界位置を幅方向にずらすことができ、これにより、未加硫ゴムCと未加硫ゴムDの境界位置が異なる帯状未加硫ゴム部材19を種々成型することが出来る。例えば、未加硫ゴムCの吐出圧を未加硫ゴムDの吐出圧よりも高めれば、未加硫ゴムCと未加硫ゴムDの境界位置を帯状未加硫ゴム部材19の幅方向外側に変位させることが出来る。   The boundary position between the unvulcanized rubber C and the unvulcanized rubber D can be shifted in the width direction by changing the discharge pressure of the unvulcanized rubber C and the discharge pressure of the unvulcanized rubber D. Various strip-shaped unvulcanized rubber members 19 having different boundary positions between the unvulcanized rubber C and the unvulcanized rubber D can be molded. For example, if the discharge pressure of the unvulcanized rubber C is made higher than the discharge pressure of the unvulcanized rubber D, the boundary position between the unvulcanized rubber C and the unvulcanized rubber D is set to the outside in the width direction of the belt-shaped unvulcanized rubber member 19. Can be displaced.

[その他の参考例
なお、第1の仕切り壁40の先端、及び第2の仕切り壁42の先端が口金21の裏面から離れると、仕切り壁を挟んで互いに隣接する未加硫ゴムの境界が正規の位置からずれてしまう。仕切り壁先端と口金21との間隔は、0.5mm以下が好ましく、仕切り壁先端を口金21に接触させることが最も好ましい。
[Other reference examples ]
In addition, when the front-end | tip of the 1st partition wall 40 and the front-end | tip of the 2nd partition wall 42 leave | separate from the back surface of the nozzle | cap | die 21, the boundary of the unvulcanized rubber which mutually adjoins across the partition wall will shift | deviate from a regular position. End up. The distance between the partition wall tip and the base 21 is preferably 0.5 mm or less, and most preferably the partition wall tip is brought into contact with the base 21.

上記参考例では、二輪車用空気入りタイヤのトレッドとなる帯状未加硫ゴム部材を押出成型する例を示したが、未加硫ゴム押出機は、流路、口金21等を変更してトレッド以外の帯状未加硫ゴム部材を押出成型することも可能である。 In the above reference example , an example of extruding a band-shaped unvulcanized rubber member that becomes a tread of a pneumatic tire for a motorcycle has been shown. However, the unvulcanized rubber extruder changes the flow path, the base 21 and the like other than the tread. It is also possible to extrude the belt-shaped unvulcanized rubber member.

[実施形態]
上記参考例の中金型38においては、第2の仕切り壁42が一定の高さに形成されていたが、図13に示す本実施形態では、第2の仕切り壁42は、流路出口側(矢印F方向側)の端部に、矢印D方向側の端部から2点鎖線で示す口金21の切欠部21aに向けて切欠52が形成されており、開口部と対向する部分(口金21を正面視して開口部から見える部分)の第2の仕切り壁42の高さが他の部分(口金21の裏面部分)よりも低く形成されている。
[Embodiment]
In the middle mold 38 of the above reference example , the second partition wall 42 is formed at a certain height. However, in the present embodiment shown in FIG. 13, the second partition wall 42 is provided on the channel outlet side. A notch 52 is formed at the end of (arrow F direction side) from the end of arrow D direction toward the notch 21a of the base 21 indicated by a two-dot chain line, and the portion facing the opening (base 21) The height of the second partition wall 42 in the portion seen from the opening when viewed from the front is lower than the other portion (the back portion of the base 21).

これにより、図14に示すように、未加硫ゴムBと未加硫ゴムCは、開口部の上流側(図面下側)において、未加硫ゴムBと未加硫ゴムCとが矢印B’及び矢印C’で示すような流れによって接合するので、未加硫ゴムBと未加硫ゴムCとがより確実に接合される。
なお、ここでは第2の仕切り壁42に切欠52を形成したが、第1の仕切り壁40に切欠を形成しても良い。
Thereby, as shown in FIG. 14, the unvulcanized rubber B and the unvulcanized rubber C have an arrow B on the upstream side (the lower side in the drawing) of the opening. Since joining is performed by a flow as indicated by “and arrow C”, the unvulcanized rubber B and the unvulcanized rubber C are more reliably joined.
Here, the notch 52 is formed in the second partition wall 42, but the notch may be formed in the first partition wall 40.

未加硫ゴム押出機の概略構成を示す側面図である。It is a side view which shows schematic structure of an unvulcanized rubber extruder. (A)は未加硫ゴム押出機により押出成型された未加硫ゴム部材の断面図であり、(B)は口金の正面図である。(A) is sectional drawing of the unvulcanized rubber member extrusion-molded with the unvulcanized rubber extruder, (B) is a front view of a nozzle | cap | die. (A)は未加硫ゴム部材形成手段の押出機本体側から見た裏面図であり、(B)は押出ヘッドの要部を示す断面図である。(A) is the reverse view seen from the extruder main body side of the unvulcanized rubber member formation means, (B) is sectional drawing which shows the principal part of an extrusion head. ヘッド本体の正面図である。It is a front view of a head body. (A)は未加硫ゴム部材形成手段の未加硫ゴム押出側から見た正面図であり、(B)は押出ヘッドの要部を示す断面図である。(A) is the front view seen from the unvulcanized rubber extrusion side of an unvulcanized rubber member formation means, (B) is sectional drawing which shows the principal part of an extrusion head. (A)は図5に示す押出ヘッドのA−A線断面図であり、(B)は図5に示す押出ヘッドのB−B線断面図であり、(C)は図5に示す押出ヘッドのC−C線断面図であり、(D)は図5に示す押出ヘッドのD−D線断面図である。(A) is the sectional view on the AA line of the extrusion head shown in FIG. 5, (B) is sectional drawing on the BB line of the extrusion head shown in FIG. 5, (C) is the extrusion head shown in FIG. FIG. 6D is a cross-sectional view taken along the line C-C of FIG. 5, and (D) is a cross-sectional view taken along the line D-D of the extrusion head shown in FIG. 5. 図5に示す第1の仕切り壁のE−E線断面図であり、(B)は図5に示す第2の仕切り壁のF−F線断面図である。It is the EE sectional view taken on the line of the 1st partition wall shown in FIG. 5, (B) is the FF sectional view taken on the line of the 2nd partition wall shown in FIG. (A)は上金型の正面図であり、(B)は上金型の裏面図であり、(C)は上金型の側面図である。(A) is a front view of the upper mold, (B) is a back view of the upper mold, and (C) is a side view of the upper mold. (A)は中金型の正面図であり、(B)は中金型の裏面図であり、(C)は中金型の側面図である。(A) is a front view of a middle mold, (B) is a back view of the middle mold, and (C) is a side view of the middle mold. (A)は下金型の正面図であり、(B)は下金型の裏面図であり、(C)は下金型の側面図である。(A) is a front view of a lower mold, (B) is a back view of the lower mold, and (C) is a side view of the lower mold. 図5示す押出ヘッドの一部を拡大した拡大正面図である。It is the enlarged front view which expanded a part of extrusion head shown in FIG. (A)はゴムの境界が適正である未加硫ゴム部材の断面図であり、(B)はゴムの境界が不適正である未加硫ゴム部材の断面図である。(A) is sectional drawing of the unvulcanized rubber member in which the boundary of rubber is appropriate, (B) is sectional drawing of the unvulcanized rubber member in which the boundary of rubber is inappropriate. 実施形態に係る中金型の要部の斜視図である。It is a perspective view of the principal part of the inside metal mold concerning an embodiment . 図13に示す中金型のG−G線断面図である。It is a GG sectional view taken on the line of the middle mold shown in FIG.

符号の説明Explanation of symbols

10 未加硫ゴム押出機
A 未加硫ゴム
B 未加硫ゴム
C 未加硫ゴム
D 未加硫ゴム
12 押出機本体
14 押出機本体
16 押出機本体
18 押出ヘッド
19 帯状未加硫ゴム部材
21 口金
22a 流路(本発明の未加硫ゴム押出口)
22b 流路(本発明の未加硫ゴム押出口)
22c 流路(本発明の未加硫ゴム押出口)
22d 流路(本発明の未加硫ゴム押出口)
25 押出ヘッド本体
32 流路形成金型
38A 第1流路(本発明の流路)
38B 第2流路(本発明の流路)
38C 第3流路(本発明の流路)
38D 第4流路(本発明の流路)
40 第1の仕切り壁
42 第2の仕切り壁
46 仕切り壁よりも剛性の高い部位(仕切り壁が形成されている部分とは異 なる他の部位)
48 仕切り壁よりも剛性の高い部位(仕切り壁が形成されている部分とは異 なる他の部位)
50 仕切り壁よりも剛性の高い部位(仕切り壁が形成されている部分とは異 なる他の部位)
52 切欠
DESCRIPTION OF SYMBOLS 10 Unvulcanized rubber extruder A Unvulcanized rubber B Unvulcanized rubber C Unvulcanized rubber D Unvulcanized rubber 12 Extruder main body 14 Extruder main body 16 Extruder main body 18 Extrusion head 19 Band-shaped unvulcanized rubber member 21 Base 22a Flow path (unvulcanized rubber extrusion port of the present invention)
22b Flow path (unvulcanized rubber extrusion port of the present invention)
22c flow path (unvulcanized rubber extrusion port of the present invention)
22d channel (unvulcanized rubber extrusion port of the present invention)
25 Extrusion head body 32 Flow path forming mold 38A First flow path (flow path of the present invention)
38B 2nd flow path (flow path of the present invention)
38C 3rd flow path (flow path of the present invention)
38D 4th flow path (flow path of the present invention)
40 1st partition wall 42 2nd partition wall 46 A part higher in rigidity than the partition wall (another part different from the part where the partition wall is formed)
48 Parts with higher rigidity than the partition wall (other parts different from the part where the partition wall is formed)
50 Parts with higher rigidity than the partition wall (other parts different from the part where the partition wall is formed)
52 Notch

Claims (9)

口金の開口部から複数種類の未加硫ゴムからなる帯状の未加硫ゴム部材を押出成型するための未加硫ゴム押出機であって、
未加硫ゴムを押し出す複数の押出機本体と、
前記押出機本体の未加硫ゴム排出側に連結され、前記押出機本体から押し出された未加硫ゴムを排出する未加硫ゴム押出口を複数備えた押出ヘッド本体と、
前記押出ヘッド本体の未加硫ゴム排出側に連結され、前記未加硫ゴム押出口から押出された前記未加硫ゴムを前記口金に向けて導く流路を複数備えた流路形成金型と、を有し、
前記流路形成金型の口金側には、互いに隣接する流路の間に仕切り壁が形成され、
前記流路は、前記口金と対向する部分において、前記口金から押出される前記未加硫ゴムの押出方向とは交差する方向に延び、
前記仕切り壁は、前記流路の前記口金から押出される前記未加硫ゴムの押出方向とは交差する方向に延びた前記流路の壁面に、前記未加硫ゴムの幅方向と交差する方向に形成され、
前記仕切り壁の流路出口側の端部には、切欠が形成されている、未加硫ゴム押出機。
An unvulcanized rubber extruder for extruding a strip-shaped unvulcanized rubber member made of a plurality of types of unvulcanized rubber from an opening of a die,
A plurality of extruder bodies for extruding unvulcanized rubber;
An extrusion head body connected to the unvulcanized rubber discharge side of the extruder body, and having an unvulcanized rubber extrusion port for discharging unvulcanized rubber extruded from the extruder body; and
A flow path forming mold that is connected to the unvulcanized rubber discharge side of the extrusion head body and includes a plurality of flow paths that guide the unvulcanized rubber extruded from the unvulcanized rubber extrusion port toward the base. Have
On the base side of the flow path forming mold, a partition wall is formed between the flow paths adjacent to each other,
The flow path extends in a direction crossing the extrusion direction of the unvulcanized rubber extruded from the base at a portion facing the base.
The partition wall extends in a direction intersecting a width direction of the unvulcanized rubber on a wall surface of the flow path extending in a direction intersecting with an extrusion direction of the unvulcanized rubber extruded from the die of the flow path. Formed into
An unvulcanized rubber extruder, in which a notch is formed at an end of the partition wall on the channel outlet side.
前記仕切り壁は、前記口金と対向する部分において互いに隣接する一方の流路を流れる未加硫ゴムの流れ方向と、他方の流路を流れる未加硫ゴムの流れ方向とが互いに向き合っている部位に形成されている、請求項1に記載の未加硫ゴム押出機。   The partition wall is a portion where the flow direction of the unvulcanized rubber flowing through one of the adjacent flow paths and the flow direction of the unvulcanized rubber flowing through the other flow path face each other at a portion facing the base. The unvulcanized rubber extruder according to claim 1, wherein the unvulcanized rubber extruder is formed. 前記仕切り壁と前記口金との間隔が0.5mm以下である、請求項1または請求項2に記載の未加硫ゴム押出機。   The unvulcanized rubber extruder according to claim 1 or 2, wherein an interval between the partition wall and the die is 0.5 mm or less. 前記仕切り壁と前記口金とが接触している、請求項1または請求項2に記載の未加硫ゴム押出機。   The unvulcanized rubber extruder according to claim 1 or 2, wherein the partition wall and the base are in contact with each other. 前記仕切り壁は、口金側が薄く、口金側よりも前記未加硫ゴムの流れ方向上流側が厚く形成されている、請求項1〜請求項4の何れか1項に記載の未加硫ゴム押出機。   The unvulcanized rubber extruder according to any one of claims 1 to 4, wherein the partition wall is formed so that the base side is thin and the upstream side in the flow direction of the unvulcanized rubber is thicker than the base side. . 前記仕切り壁は、口金側の厚さが0.1〜0.5mmの範囲内に設定されている、請求項5に記載の未加硫ゴム押出機。   The unvulcanized rubber extruder according to claim 5, wherein the partition wall has a thickness on the base side set in a range of 0.1 to 0.5 mm. 複数の前記未加硫ゴム押出口は縦方向に配列され、複数の前記流路の出口側は横方向に配列されている、請求項1〜請求項6の何れか1項に記載の未加硫ゴム押出機。   The unvulcanized rubber according to any one of claims 1 to 6, wherein the plurality of unvulcanized rubber extrusion ports are arranged in a vertical direction, and the outlet sides of the plurality of flow paths are arranged in a horizontal direction. Rubber rubber extruder. 前記仕切り壁の長手方向端部は、前記流路形成金型の内の前記仕切り壁が形成されている部分とは異なる他の部位に連結されている、請求項1〜請求項7の何れか1項に記載の未加硫ゴム押出機。   The longitudinal direction edge part of the said partition wall is connected with the other site | part different from the part in which the said partition wall is formed in the said flow-path formation metal mold | die. The unvulcanized rubber extruder according to item 1. 前記帯状の未加硫ゴム部材は、二輪車用空気入りタイヤのトレッドに用いられる、請求項1〜請求項8の何れか1項に記載の未加硫ゴム押出機。   The unvulcanized rubber extruder according to any one of claims 1 to 8, wherein the belt-shaped unvulcanized rubber member is used for a tread of a pneumatic tire for a motorcycle.
JP2008259731A 2008-01-29 2008-10-06 Unvulcanized rubber extruder Active JP5566588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008259731A JP5566588B2 (en) 2008-01-29 2008-10-06 Unvulcanized rubber extruder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008017894 2008-01-29
JP2008017894 2008-01-29
JP2008259731A JP5566588B2 (en) 2008-01-29 2008-10-06 Unvulcanized rubber extruder

Publications (2)

Publication Number Publication Date
JP2009202569A JP2009202569A (en) 2009-09-10
JP5566588B2 true JP5566588B2 (en) 2014-08-06

Family

ID=41145306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008259731A Active JP5566588B2 (en) 2008-01-29 2008-10-06 Unvulcanized rubber extruder

Country Status (1)

Country Link
JP (1) JP5566588B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016217596A1 (en) * 2016-09-15 2018-03-15 Continental Reifen Deutschland Gmbh Extruder apparatus
FR3068281B1 (en) * 2017-06-30 2021-01-22 Michelin & Cie PROCESS FOR EXTRUSION OF A COMPLEX PROFILE INCLUDING AN EDGE GUM AT THE BOTTOM OF THE Furrow
FR3068279B1 (en) * 2017-06-30 2020-07-31 Michelin & Cie EXTRUSION HEAD OF A COMPLEX PROFILE INCLUDING AN EDGE GUM AT THE BOTTOM OF THE Furrow
FR3071760B1 (en) * 2017-10-04 2021-01-22 Michelin & Cie EXTRUSION HEAD OF A COMPLEX PROFILE INCLUDING AN INSERT IN A HIGHLY ELASTIC MIXTURE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3417452A1 (en) * 1984-05-11 1985-11-14 Continental Gummi-Werke Ag, 3000 Hannover DEVICE FOR PRODUCING FLAT PROFILE STRINGS COMPOSED OF TWO OR MORE LAYERS FROM PLASTIC RUBBER OR PLASTIC MIXTURES
US4556382A (en) * 1984-10-11 1985-12-03 The Firestone Tire & Rubber Company Die assembly for tire tread extrudate
DE3521643C1 (en) * 1985-06-15 1986-07-03 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Hinged extrusion head for the production of rubber or plastic flat profiles
JP4611551B2 (en) * 2001-03-12 2011-01-12 株式会社ブリヂストン Unvulcanized rubber extrusion apparatus and unvulcanized rubber extrusion method

Also Published As

Publication number Publication date
JP2009202569A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
US8523551B2 (en) Unvulcanized rubber extruder and process for producing unvulcanized rubber
JP5566588B2 (en) Unvulcanized rubber extruder
ITMI970764A1 (en) METHOD AND EXTRUSION APPARATUS TO REALIZE TREAD BANDS FOR VEHICLE TIRES
JP4786288B2 (en) Double flow path for extruder head
US7258827B2 (en) Method for extruding unvulcanized rubber
US10596740B2 (en) Co-extrusion head for co-extruding complex rubber profile section for manufacturing a tire
KR101405064B1 (en) Multi tread and multi tread extrusion preformer die
US20020157747A1 (en) Tire, device for extruding unvulcanized tread rubber for the tire, and method of extruding unvulcanized tread rubber for the tire
BRPI0904007A2 (en) Pneumatic Tread Extruder Splice Bar
JP2011194854A (en) Method of manufacturing belt-like rubber
CN111263692B (en) Extrusion head for complex profiled elements formed by juxtaposed profiled elements
JP2014180785A (en) Apparatus and method for rubber molding
JP2006082277A (en) Rubber strip manufacturing apparatus
JP2000318016A (en) Rubber extruding apparatus
US20200101655A1 (en) Method for the co-extrusion of a complex rubber profiled element intended for the manufacture of tires
JP2013043317A (en) Rubber extrusion molding apparatus
JP4851876B2 (en) Rubber extrusion method and rubber extrusion apparatus
KR20090043257A (en) Tread extruding die for tire static electricity prevention
JP2012081716A (en) Rubber extruder
US20020134481A1 (en) Radial tire having a wrapped body ply with two rows of reinforcement cords
JP4915784B2 (en) Rubber molding apparatus and rubber member molding method
JP2002264200A (en) Unvulcanized tread rubber extruder for tire and unvulcanized tread rubber extrusion method for tire
JP2004160677A (en) Method for producing tread rubber member
JPH01242226A (en) Cap structure for profile extrusion molding
JP6838496B2 (en) Rubber extrusion manufacturing equipment and methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140618

R150 Certificate of patent or registration of utility model

Ref document number: 5566588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250