JP5566578B2 - Salt production equipment - Google Patents

Salt production equipment Download PDF

Info

Publication number
JP5566578B2
JP5566578B2 JP2008107214A JP2008107214A JP5566578B2 JP 5566578 B2 JP5566578 B2 JP 5566578B2 JP 2008107214 A JP2008107214 A JP 2008107214A JP 2008107214 A JP2008107214 A JP 2008107214A JP 5566578 B2 JP5566578 B2 JP 5566578B2
Authority
JP
Japan
Prior art keywords
main processing
processing container
salt
sub
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008107214A
Other languages
Japanese (ja)
Other versions
JP2009256136A (en
Inventor
雅幸 右近
Original Assignee
株式会社弁天
博多港管理株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社弁天, 博多港管理株式会社 filed Critical 株式会社弁天
Priority to JP2008107214A priority Critical patent/JP5566578B2/en
Publication of JP2009256136A publication Critical patent/JP2009256136A/en
Application granted granted Critical
Publication of JP5566578B2 publication Critical patent/JP5566578B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は、海洋から採取した海水を原料とする食塩製造技術に関する。   The present invention relates to a salt production technique using seawater collected from the ocean as a raw material.

天然海水を加熱濃縮して食塩を製造する工程においては、食用に適さない硫酸カルシウムが生じるため、これを除去する必要がある。硫酸カルシウムは、水に溶け難く、水中で沈殿する性質があるため、従来の製塩工程においては、濃縮釜内にて塩分濃度が12〜15%になるまで煮詰めた海水を沈殿除去槽へ移し、沈静状態に保って硫酸カルシウムを沈殿させた後、当該硫酸カルシウムを沈殿除去槽の下端に設けられたドレインパイプから排出、除去する技術が提案されている(例えば、特許文献1参照。)。   In the process of heating and concentrating natural seawater to produce sodium chloride, calcium sulfate that is not edible is produced, so it is necessary to remove it. Since calcium sulfate is difficult to dissolve in water and has the property of precipitating in water, in the conventional salt making process, the seawater boiled until the salt concentration becomes 12 to 15% in the concentration kettle is transferred to the precipitation removing tank. A technique has been proposed in which calcium sulfate is precipitated in a calm state and then discharged and removed from a drain pipe provided at the lower end of the precipitation removing tank (see, for example, Patent Document 1).

特開2001−213620号公報JP 2001-213620 A

特許文献1記載の製塩方法においては、濃縮釜で煮詰めた海水の全量を沈殿除去槽へ移送しなければならないので、移送作業に長時間を要している。また、沈殿除去槽において硫酸カルシウムを除去する際に、沈殿した塩の一部が流出することがあるため、歩留まりの悪化の原因となっている。   In the salt production method described in Patent Document 1, since the entire amount of seawater boiled in a concentration kettle has to be transferred to a precipitation removing tank, a long time is required for the transfer operation. Further, when calcium sulfate is removed in the precipitation removing tank, a part of the precipitated salt may flow out, which causes the yield to deteriorate.

また、特許文献1記載の製塩方法は、沈殿除去槽にて硫酸カルシウムが除去された後の濃縮海水(上澄み)を、さらに蒸発結晶釜へ移送して食塩を得る構成であるため、少なくとも、濃縮釜、沈殿除去槽及び蒸発結晶釜と、これらの装置間で濃縮塩水などを移送するための多数の配管が必要であり、製塩設備の複雑化を招いている。
In addition, the salt production method described in Patent Document 1 is a configuration in which concentrated seawater (supernatant) from which calcium sulfate has been removed in a precipitation removal tank is further transferred to an evaporation crystal kettle to obtain salt, so that at least concentration is performed. kettle, a sedimentation removal tank及beauty evaporation crystallization kettle, and the like requires a large number of pipes for transporting concentrated salt water between these devices has led to complication of salt production facility.

本発明が解決しようとする課題は、製塩設備の簡素化、製塩工程の効率化を図ることのできる製塩技術を提供することにある。   The problem to be solved by the present invention is to provide a salt production technique capable of simplifying the salt production facility and improving the efficiency of the salt production process.

本発明の製塩設備は、天然海水などの原料塩水を収容する主処理容器と、前記主処理容器内の収容物を加熱する加熱手段と、前記主処理容器内の収容物を撹拌する撹拌機構と、前記主処理容器内に生成される濃縮塩水中の沈殿物を排出するため当該主処理容器の底部に設けられた第一排液経路と、前記主処理容器内に生成される結晶塩を含む飽和塩水を排出するため当該主処理容器の底部に設けられた第二排液経路と、前記第一排液経路に連通し当該主処理容器内の底部から上方へ突出した状態で設けられた上端に開口部を有する筒状の集液部と、を有する濃縮装置と、
前記主処理容器から前記第一排液経路を経由して排出される前記沈殿物を含む濃縮塩水を収容する副処理容器と、前記副処理容器内の濃縮塩水中に形成される再沈殿物を排出するため当該副処理容器の底部に設けられた排出経路と、を有する分離装置と、を備えたことを特徴とする。
The salt production facility of the present invention includes a main processing container for storing raw salt water such as natural seawater, a heating means for heating the contents in the main processing container, and a stirring mechanism for stirring the contents in the main processing container. A first drainage path provided at the bottom of the main processing container for discharging the sediment in the concentrated salt water generated in the main processing container, and a crystalline salt generated in the main processing container A second drainage path provided at the bottom of the main processing container for discharging saturated salt water, and an upper end provided in a state of projecting upward from the bottom in the main processing container in communication with the first drainage path A concentrating device having a cylindrical liquid collection part having an opening in
A sub-treatment container containing concentrated salt water containing the precipitate discharged from the main treatment container via the first drainage path; and a re-precipitate formed in the concentrated salt water in the sub-treatment container. A separator having a discharge path provided at the bottom of the sub-processing container for discharging.

このような構成とすれば、濃縮装置の主処理容器内で原料塩水を加熱して生成された濃縮塩水中に生じた硫酸カルシウムなどの沈殿物を、第一排液経路を経由して、分離装置の副処理容器に移送することができる。このとき、沈殿物は、主処理容器内の底部から上方へ突出した筒状の集液部内を経由して排出されるため、主処理容器内の底部に析出した結晶塩が沈殿物と共に流出するのを抑制することができる。また、主処理容器内の沈殿物を副処理容器に移送し終えた後の上澄み濃縮塩水はそのまま主処理容器内に残すので、主処理容器内の収容物の全量を他の処理容器へ移送する場合に比べ、移送時間を短縮することができる。   With such a configuration, precipitates such as calcium sulfate generated in the concentrated salt water generated by heating the raw salt water in the main treatment container of the concentrator are separated via the first drainage path. It can be transferred to the secondary processing vessel of the apparatus. At this time, since the precipitate is discharged through the cylindrical liquid collection portion protruding upward from the bottom portion in the main processing container, the crystalline salt deposited on the bottom portion in the main processing container flows out together with the precipitate. Can be suppressed. In addition, since the supernatant concentrated brine after the sediment in the main processing container has been transferred to the sub-processing container remains in the main processing container, the entire amount of the contents in the main processing container is transferred to another processing container. Compared to the case, the transfer time can be shortened.

副処理容器内への移送完了後、静置すると、当該副処理容器内の底部に硫酸カルシウムなどの再沈殿物層が形成され、その上方に上澄み濃縮塩水が形成されるため、再沈殿物は副処理容器の底部の排出経路を経由して選択的に排出することができる。また、当該副処理容器内に残った濃縮塩水(上澄み液)は前記主処理容器内へ戻して、再び加熱濃縮工程に供することができる。   When it is left to stand after completion of transfer to the sub-treatment container, a reprecipitation layer such as calcium sulfate is formed at the bottom of the sub-treatment container, and a supernatant concentrated brine is formed above it. It can be selectively discharged via the discharge path at the bottom of the sub-processing container. Moreover, the concentrated salt water (supernatant liquid) remaining in the sub-treatment container can be returned to the main treatment container and again subjected to the heating and concentration step.

このように、本発明の製塩設備は、濃縮装置の主処理容器において原料塩水の濃縮、硫酸カルシウムなどの沈殿を行い、分離装置の副処理容器において硫酸カルシウムなどの再沈殿及び排出除去を行うため、主処理容器内の収容物全量を副処理容器へ移送する必要がなくなり、製塩工程の効率化を図ることができる。また、副処理容器内に残った濃縮塩水(上澄み液)は主処理容器内へ戻して、再び加熱濃縮工程に供するので、主処理容器及び副処理容器の二つの反応容器で製塩作業を進めることが可能となり、製塩設備を簡素化することができる。   As described above, the salt production facility of the present invention performs concentration of raw salt water and precipitation of calcium sulfate in the main treatment container of the concentration apparatus, and reprecipitation and discharge removal of calcium sulfate and the like in the sub-treatment container of the separation apparatus. In addition, it is not necessary to transfer the entire amount in the main processing container to the sub-processing container, and the efficiency of the salt making process can be improved. In addition, since the concentrated salt water (supernatant) remaining in the sub-treatment container is returned to the main treatment container and again used for the heating and concentration step, the salt production operation should be carried out in the two reaction vessels, the main treatment container and the sub-treatment container. This makes it possible to simplify the salt production facility.

ここで、前記副処理容器内の濃縮塩水中に形成される再沈殿物と上澄み濃縮塩水との境界に出し入れ可能に配置される隔離部材を備えることが望ましい。このような構成とすれば、副処理容器内に形成された上澄み濃縮塩水と再沈殿物との再混合を防ぐことができるので、副処理容器内の再沈殿物を効率的に排出することができる。   Here, it is desirable to provide a separating member disposed so as to be able to be taken in and out at the boundary between the re-precipitate formed in the concentrated brine in the sub-treatment container and the supernatant concentrated brine. With such a configuration, remixing of the supernatant concentrated brine formed in the sub-treatment container and the re-precipitate can be prevented, so that the re-precipitate in the sub-treatment container can be efficiently discharged. it can.

この場合、前記隔離部材の嵩比重を、前記沈殿物の比重より小さく、前記濃縮塩水の比重より大とすることが望ましい。このような構成とすれば、再沈殿物と上澄み濃縮塩水とが分離した状態にある副処理容器内に隔離部材を静かに装入すれば、前述した比重差により、隔離部材は上澄み濃縮塩水中を沈下し、上澄み濃縮塩水と再沈殿物との境界に止まるので、配置作業が容易となる。   In this case, it is desirable that the bulk density of the separating member is smaller than the specific gravity of the precipitate and larger than the specific gravity of the concentrated salt water. With such a configuration, if the separating member is gently inserted into the sub-treatment container in which the re-precipitate and the supernatant concentrated brine are separated, the separating member is separated from the supernatant concentrated saline by the above-described specific gravity difference. Is settled and stops at the boundary between the supernatant concentrated brine and the re-precipitate, so that the arrangement work is facilitated.

一方、前記隔離部材の嵩比重を前記上澄み濃縮塩水の比重より小さくし、前記副処理容器内の濃縮塩水中に形成される再沈殿物と上澄み濃縮塩水との境界まで前記隔離部材を沈下させるための重錘を当該隔離部材に着脱可能に装着することもできる。このような構成とすれば、重錘無し状態の前記隔離部材を前記副処理容器内に装入して上澄み濃縮塩水に浮かべた後、適切な質量の重錘を前記隔離部材に装着することにより、再沈殿物と上澄み濃縮塩水との境界まで当該隔離部材を沈下させることができる。従って、上澄み濃縮塩水の比重が変動した場合も前記重錘の質量を増減することにより、隔離部材を再沈殿物と上澄み濃縮塩水との境界に正確に配置することができる。   On the other hand, the bulk density of the isolation member is made smaller than the specific gravity of the supernatant concentrated brine, and the isolation member is submerged to the boundary between the re-precipitate formed in the concentrated brine in the sub-treatment container and the supernatant concentrated brine. Can be detachably attached to the isolation member. With such a configuration, by inserting the isolation member without a weight into the sub-treatment container and floating on the supernatant concentrated salt water, a weight with an appropriate mass is attached to the isolation member. The isolation member can be sunk to the boundary between the re-precipitate and the supernatant concentrated brine. Therefore, even when the specific gravity of the supernatant concentrated brine varies, the isolation member can be accurately arranged at the boundary between the re-precipitate and the supernatant concentrated brine by increasing or decreasing the mass of the weight.

ここで、前記集液部に貫通孔を設けることが望ましい。このような構成とすれば、硫酸カルシウムなどの沈殿物は、前記集液部の貫通孔を通して排出された後、副処理容器内へ移送されるため、移送時間をさらに短縮化することができる。なお、処理容器内の底部付近に析出した塩は貫通孔に流入する際に速やかにブリッジを形成するため、その後の貫通孔への塩の流入を抑制することができる。   Here, it is desirable to provide a through hole in the liquid collection part. With such a configuration, the precipitate such as calcium sulfate is discharged through the through hole of the liquid collecting part and then transferred into the sub-processing container, so that the transfer time can be further shortened. In addition, since the salt deposited near the bottom in the processing container quickly forms a bridge when flowing into the through-hole, it is possible to suppress subsequent inflow of salt into the through-hole.

前記主処理容器内の底面における前記第二排液経路の開口部の周縁形状を楕円形若しくは長円形とすることが望ましい。このような構成とすれば、処理容器内に析出した結晶塩を飽和塩水とともに前記第二排液経路から排出する際に、開口部に結晶塩のブリッジが形成されるのを回避することができるため、排液作業の効率化に有効である。   It is desirable that the peripheral shape of the opening of the second drainage path on the bottom surface in the main processing container is an ellipse or an oval. With such a configuration, when the crystal salt precipitated in the processing vessel is discharged from the second drainage path together with the saturated salt water, it is possible to avoid the formation of a crystal salt bridge in the opening. Therefore, it is effective for improving the efficiency of the drainage work.

一方、本発明に係る製塩設備を使用する製塩方法は、海水などの原料塩水中の水分を減少させて形成した濃縮塩水を主処理容器内で静置して沈殿物を生成させる一次沈静工程と、前記主処理容器内に生成された沈殿物を副処理容器内へ移送して静置する二次沈静工程と、前記副処理容器内に生成された再沈殿物を排出する分離工程と、前記分離工程において前記副処理容器内に残した濃縮塩水を前記主処理容器内へ移送する工程と、を備え、前記分離工程において、前記副処理容器内の再沈殿物と上澄み濃縮塩水との境界に隔離部材を配置した状態で前記再沈殿物を排出することを特徴とする。
On the other hand, the salt production method using the salt production facility according to the present invention includes a primary calming step in which concentrated salt water formed by reducing moisture in raw salt water such as seawater is left in a main processing vessel to generate a precipitate. A secondary calming step of transferring the precipitate generated in the main processing vessel into the sub-processing vessel and allowing it to stand; a separation step of discharging the re-precipitate generated in the sub-processing vessel; and And a step of transferring the concentrated salt water left in the sub-treatment vessel in the separation step into the main treatment vessel, and in the separation step, at the boundary between the re-precipitate in the sub-treatment vessel and the supernatant concentrated salt water. The re-precipitate is discharged in a state where the separating member is arranged.

このような構成とすれば、主処理容器において原料塩水の濃縮及び硫酸カルシウムなどの沈殿物の除去を行い、副処理容器において硫酸カルシウムなどの再沈殿物の除去を行うことができる。従って、主副二つの処理容器で製塩作業を行うことが可能となり、製塩設備の簡素化を図ることができ、主処理容器の収容物の全量を副処理容器へ移送する必要もなくなり、製塩工程の効率化を図ることができる。   With such a configuration, it is possible to concentrate the raw salt water and remove precipitates such as calcium sulfate in the main processing vessel, and to remove reprecipitates such as calcium sulfate in the sub-treatment vessel. Therefore, it is possible to perform salt making operations in the two main and sub processing containers, the simplification of salt making equipment can be achieved, and it is not necessary to transfer the entire amount of the contents of the main processing container to the sub processing container, and the salt making process Can be made more efficient.

また、前記分離工程において、前記副処理容器内に生成された再沈殿物とその上澄みである濃縮塩水との境界に隔離部材を配置した状態で前記再沈殿物を排出することにより、副処理容器内に形成された上澄み濃縮塩水と再沈殿物との再混合を防ぐことができるので、副処理容器内の再沈殿物を効率的に排出することができる。この場合、隔離部材の嵩比重を上澄み濃縮塩水の比重より大きく、再沈殿物の比重より小さく設定したり、隔離部材に着脱可能な重錘を装着したりすることができる。
Further, in the above separation process, the Rukoto to discharge the re precipitate in a state in which the placing the isolation member in the boundary of the re-precipitates produced sub-processing vessel and concentrated salt water is the supernatant, the sub-process Since remixing of the supernatant concentrated brine formed in the container and the reprecipitate can be prevented, the reprecipitate in the sub-treatment container can be efficiently discharged. In this case, the bulk specific gravity of the separating member can be set larger than the specific gravity of the supernatant concentrated salt water and smaller than the specific gravity of the re-precipitate, or a removable weight can be attached to the separating member.

本発明により、製塩設備の簡素化、製塩工程の効率化を図ることのできる製塩技術を提供することができる。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a salt production technique capable of simplifying a salt production facility and improving the efficiency of a salt production process.

以下、図面に基づいて、本発明の実施の形態について説明する。図1は本発明の実施の形態である製塩設備を構成する濃縮装置を示す一部省略垂直断面図、図2は図1の一部拡大図、図3は図1のA−A線における一部省略断面図である。また、図4は本発明の実施の形態である製塩設備を構成する分離装置を示す一部省略垂直断面図、図5及び図6は図4に示す分離装置内の状態を示す一部省略垂直断面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 is a partially omitted vertical sectional view showing a concentrating device constituting a salt production facility according to an embodiment of the present invention, FIG. 2 is a partially enlarged view of FIG. 1, and FIG. FIG. FIG. 4 is a partially omitted vertical sectional view showing a separation device constituting a salt production facility according to an embodiment of the present invention, and FIGS. 5 and 6 are partially omitted vertical views showing a state in the separation device shown in FIG. It is sectional drawing.

本実施形態の製塩設備は、図1に示す濃縮装置10xと、図4に示す分離装置10yと、を備えている。図1に示すように、濃縮装置10xは、天然海水などの原料塩水を収容可能であって、その後の製塩作業を行うための主処理容器11と、主処理容器11内の収容物の加熱手段である水蒸気を通すためのジャケット16と、主処理容器11内の収容物を撹拌する撹拌機構12と、主処理容器11内の収容物を排出するため主処理容器11の底部11bに設けられた第一排液経路24及び第二排液経路25と、を有している。   The salt production facility of the present embodiment includes a concentration device 10x shown in FIG. 1 and a separation device 10y shown in FIG. As shown in FIG. 1, the concentrating device 10 x can store raw salt water such as natural seawater, and a main processing container 11 for performing a subsequent salt making operation, and heating means for the stored material in the main processing container 11. A jacket 16 for passing water vapor, a stirring mechanism 12 for stirring the contents in the main processing container 11, and a bottom 11b of the main processing container 11 for discharging the contents in the main processing container 11. The first drainage path 24 and the second drainage path 25 are provided.

第一排液経路24及び第二排液流路25には、それぞれ開閉弁24a,25aが設けられている。また、図示していないが、主処理容器11内で発生する水蒸気を排出するための吸引ポンプ及び凝縮器と、主処理容器11と凝縮器とを連通する排気管と、凝縮器と吸引ポンプとを連通する吸引管と、が設けられている。   The first drainage path 24 and the second drainage flow path 25 are provided with on-off valves 24a and 25a, respectively. Although not shown, a suction pump and a condenser for discharging water vapor generated in the main processing container 11, an exhaust pipe communicating the main processing container 11 and the condenser, a condenser and a suction pump, And a suction tube communicating with each other.

主処理容器11は、中央部11cが円筒形状で、その天井部11a及び底部11bがそれぞれ滑らかな凸曲面状をした気密性容器であり、設置面G上に立設された複数の支柱15により、中央部11cの軸心(図示せず)が鉛直方向をなす状態で固定されている。図1に示すように、撹拌機構12は、主処理容器11内の前記軸心位置に配置されたシャフト12aと、その下端部に取り付けられたプロペラ状の撹拌翼12bと、シャフト12aを回転駆動するため主処理容器11の天井部11aに配置されたモータ(図示せず)及び減速機14と、を備えている。モータ(図示せず)の回転は減速機14を介してシャフト12aに伝達され、シャフト12aの回転に伴って撹拌翼12bが底部11bの内面に沿って回転する。   The main processing container 11 is an airtight container in which the central part 11c has a cylindrical shape, and the ceiling part 11a and the bottom part 11b each have a smooth convex curved shape. The main processing container 11 includes a plurality of support columns 15 that are erected on the installation surface G. The shaft center (not shown) of the central portion 11c is fixed in a vertical direction. As shown in FIG. 1, the agitation mechanism 12 rotates and drives a shaft 12a disposed at the axial position in the main processing vessel 11, a propeller-like agitation blade 12b attached to the lower end portion thereof, and the shaft 12a. Therefore, a motor (not shown) and a speed reducer 14 disposed on the ceiling portion 11a of the main processing container 11 are provided. The rotation of the motor (not shown) is transmitted to the shaft 12a via the speed reducer 14, and the stirring blade 12b rotates along the inner surface of the bottom portion 11b as the shaft 12a rotates.

主処理容器11の底部11bの下面に沿って設けられたジャケット16内へ水蒸気を供給するための給気チューブ(図示せず)と、ジャケット16内を循環した水蒸気を排出するための排気チューブ(図示せず)とが、ジャケット16の下面に接続されている。また、ジャケット16内に溜まった水分などを排出するため、その下面にドレイン(図示せず)が設けられている。   An air supply tube (not shown) for supplying water vapor into a jacket 16 provided along the lower surface of the bottom portion 11b of the main processing container 11, and an exhaust tube (for discharging water vapor circulated in the jacket 16) (Not shown) is connected to the lower surface of the jacket 16. In addition, a drain (not shown) is provided on the lower surface of the jacket 16 in order to discharge moisture accumulated in the jacket 16.

また、図1〜図3に示すように、主処理容器11内の底部11bには、第一排液経路24に連通し且つ主処理容器11内の上方に向かって突出した円筒状の集液部26が設けられている。集液部26の上端には開口部26aが設けられ、集液部26と主処理容器11内の底部11bとの境界付近には、複数の貫通孔26bが円周方向に沿って等間隔に設けられている。さらに、図3に示すように、主処理容器11内の底部11bに開口する第二排液経路25の開口部25bの周縁形状は楕円形をなしている。   As shown in FIGS. 1 to 3, the bottom 11 b in the main processing container 11 communicates with the first drainage path 24 and protrudes upward in the main processing container 11. A portion 26 is provided. An opening 26a is provided at the upper end of the liquid collection part 26, and a plurality of through holes 26b are arranged at equal intervals along the circumferential direction in the vicinity of the boundary between the liquid collection part 26 and the bottom part 11b in the main processing container 11. Is provided. Further, as shown in FIG. 3, the peripheral shape of the opening 25b of the second drainage path 25 that opens to the bottom 11b in the main processing container 11 is elliptical.

一方、図4に示すように、分離装置10yは、第一排液経路24を経由して主処理容器11から移送された収容物(硫酸カルシウムの沈殿物など)を収容可能であって、円筒状の本体部60a及びその下方に連設された緩やかな勾配で浅い漏斗形状の底部60bとを有する副処理容器60と、底部60b下端の開口部60cと連通する排出経路27と、を備えている。排出経路27には開閉弁27aが設けられている。   On the other hand, as shown in FIG. 4, the separation device 10 y can accommodate a material (such as a calcium sulfate precipitate) transferred from the main processing container 11 via the first drainage path 24, and has a cylindrical shape. A sub-processing container 60 having a shallow main body portion 60a and a bottom portion 60b having a shallow slope and connected to the lower portion thereof, and a discharge path 27 communicating with the opening 60c at the lower end of the bottom portion 60b. Yes. The discharge path 27 is provided with an on-off valve 27a.

次に、図1〜図6及び図7〜図9に基づいて、濃縮装置10x及び分離装置10yを備えた製塩設備による製塩方法について説明する。図7及び図8は濃縮装置内の状態を示す垂直断面図、図9は濃縮装置内の飽和塩水と結晶塩を排出する状態を示す垂直断面図である。   Next, based on FIGS. 1-6 and FIGS. 7-9, the salt production method by the salt production equipment provided with the concentration apparatus 10x and the separation apparatus 10y is demonstrated. 7 and 8 are vertical sectional views showing a state in the concentrating device, and FIG. 9 is a vertical sectional view showing a state in which the saturated salt water and the crystalline salt are discharged in the concentrating device.

主処理容器11内に収容した天然海水(図示せず)に、当該天然海水より塩分濃度の高い塩水(図示せず)を添加することにより、塩分濃度18〜22質量%の高濃度海水を形成する(濃化工程)。そして、撹拌翼12bを回転させながら、主処理容器11のジャケット16へ高温水蒸気を供給することによって高濃度海水を加熱して水分を蒸発させる(加熱工程)。これにより、主処理容器11内の高濃度海水の水分は徐々に減少していく(一次濃縮工程の開始)。   By adding salt water (not shown) having a salinity higher than that of natural seawater to natural seawater (not shown) stored in the main processing vessel 11, high-concentration seawater having a salt concentration of 18 to 22% by mass is formed. (Concentration step). Then, high-temperature seawater is heated by supplying high-temperature steam to the jacket 16 of the main processing vessel 11 while rotating the stirring blade 12b to evaporate the water (heating process). Thereby, the water | moisture content of the high concentration seawater in the main processing container 11 reduces gradually (start of a primary concentration process).

前記加熱工程において、主処理容器11は気密状態に保たれているため、加熱された高濃度海水から発生する水蒸気は、吸引ポンプ(図示せず)により排気管(図示せず)を経由して排出される。主処理容器11から排出された水蒸気は凝縮器(図示せず)に集められ、その内部で液化した後、所定の場所へ排出される。   In the heating step, since the main processing vessel 11 is kept in an airtight state, water vapor generated from the heated high-concentration seawater passes through an exhaust pipe (not shown) by a suction pump (not shown). Discharged. The water vapor discharged from the main processing vessel 11 is collected in a condenser (not shown), liquefied inside, and then discharged to a predetermined place.

前記加熱工程の水分蒸発により高濃度海水の水分が減少したら、吸引ポンプ(図示せず)による吸引を停止し、前記減少した水分と略同量の天然海水を主処理容器11内へ補給し(補給工程)、その後、前記加熱工程を再開する。加熱工程の再開により、主処理容器11内の高濃度海水中の水分が所定量まで減少したら、前記と同様の手順で天然海水を補給する。このような加熱工程と補給工程とを複数回反復すると、高濃度海水は徐々に濃縮されていき、さらに塩分濃度の高い濃縮塩水30が形成されるとともに、当該濃縮塩水30中に硫酸カルシウム40が析出する(一次濃縮工程の終了)。   When the moisture in the high-concentration seawater decreases due to the evaporation of water in the heating step, the suction by a suction pump (not shown) is stopped, and the natural seawater of approximately the same amount as the decreased water is replenished into the main processing vessel 11 ( Replenishment step), and then restart the heating step. When the water in the high-concentration seawater in the main processing container 11 is reduced to a predetermined amount by resuming the heating process, natural seawater is replenished in the same procedure as described above. When such a heating step and a replenishment step are repeated a plurality of times, the high-concentration seawater is gradually concentrated, and a concentrated salt water 30 having a higher salinity is formed, and calcium sulfate 40 is contained in the concentrated salt water 30. Precipitate (end of primary concentration step).

前記一次濃縮工程により、主処理容器11内に濃縮塩水30が形成されたら、撹拌翼12bの回転及び吸引ポンプ(図示せず)を停止するとともに、ジャケット16への水蒸気供給を停止し、その状態で静置すると(一次静置工程)、図1に示すように、主処理容器11内に、硫酸カルシウム40などの沈殿物40aと、その上澄みである濃縮塩水30とが出現する。なお、一次静置工程中に、ジャケット16内へ冷水を供給して高濃度塩水を冷却すれば、硫酸カルシウム40などの沈殿速度を速めることができる。   When the concentrated salt water 30 is formed in the main processing vessel 11 by the primary concentration step, the rotation of the stirring blade 12b and the suction pump (not shown) are stopped, and the supply of water vapor to the jacket 16 is stopped. 1 (primary standing step), a precipitate 40a such as calcium sulfate 40 and concentrated salt water 30 as the supernatant appear in the main processing vessel 11 as shown in FIG. In addition, if cold water is supplied into the jacket 16 and the high-concentration salt water is cooled during the primary standing step, the precipitation rate of the calcium sulfate 40 and the like can be increased.

図1に示す状態となった後、主処理容器11の底部に接続された第一排液経路24の開閉弁24aを開けば、主処理容器11内の硫酸カルシウム40の沈殿物40aが排液経路24を経由して排出され(精製工程)、図4に示すように、分離装置10yの副処理容器60内へ移送される。この場合、図2に示すように、主処理容器11内の底部11b上面には、結晶塩Sが析出していることがあるが、結晶塩Sの上方に沈殿した硫酸カルシウム40は、底部11bより高い位置にある集液部26の開口部26aに流入するので、硫酸カルシウム40とともに結晶塩Sが流出するのを抑制することができる。   After the state shown in FIG. 1 is reached, if the on-off valve 24a of the first drainage path 24 connected to the bottom of the main processing container 11 is opened, the precipitate 40a of the calcium sulfate 40 in the main processing container 11 is drained. It is discharged via the path 24 (purification step) and transferred into the sub-processing container 60 of the separation device 10y as shown in FIG. In this case, as shown in FIG. 2, the crystalline salt S may be deposited on the upper surface of the bottom portion 11b in the main processing vessel 11, but the calcium sulfate 40 precipitated above the crystalline salt S is separated from the bottom portion 11b. Since it flows in into the opening part 26a of the liquid collection part 26 in a higher position, it can suppress that the crystalline salt S flows out with the calcium sulfate 40. FIG.

また、集液部26の底部11b寄りの部分には、その周方向に沿って複数の貫通孔26bが90度間隔で設けられているため、底部11b付近に沈殿した硫酸カルシウム40は、これらの貫通孔26bを経由して効率良く排出される。なお、主処理容器11内の底部11b付近に析出した結晶塩Sの一部は、開閉弁24aを開いた直後、貫通孔26bに流入するが、流入中に速やかにブリッジを形成するため、その後の貫通孔26bへの結晶塩Sの流入を抑制することができる。   In addition, since a plurality of through holes 26b are provided at intervals of 90 degrees along the circumferential direction in the portion near the bottom portion 11b of the liquid collection portion 26, the calcium sulfate 40 precipitated in the vicinity of the bottom portion 11b It is efficiently discharged via the through hole 26b. A part of the crystalline salt S deposited near the bottom 11b in the main processing vessel 11 flows into the through hole 26b immediately after opening the on-off valve 24a, but since a bridge is quickly formed during the inflow, Inflow of the crystalline salt S into the through-hole 26b of can be suppressed.

このように、前記一次濃縮工程において主処理容器11内に析出、沈殿した硫酸カルシウム40のほぼ全量が、第一排液経路24を経由して、分離装置10yの副処理容器60内へ移送される。副処理容器60内への硫酸カルシウム40の移送完了後、静置すると(二次静置工程)、図4に示すように、副処理容器60内に、硫酸カルシウム40の再沈殿物40bと、その上澄みである濃縮塩水30とが現れる。   Thus, almost the entire amount of calcium sulfate 40 precipitated and precipitated in the main processing container 11 in the primary concentration step is transferred into the sub-processing container 60 of the separation device 10y via the first drainage path 24. The When the calcium sulfate 40 is completely transferred into the sub-processing vessel 60 and left standing (secondary standing step), as shown in FIG. 4, the re-precipitate 40b of the calcium sulfate 40 in the sub-processing vessel 60, The concentrated salt water 30 which is the supernatant appears.

二次静置工程より副処理容器60内において、硫酸カルシウム40の再沈殿物40bと濃縮塩水30とが明確に分離したら、図5に示すように、副処理容器60内の濃縮塩水30中へ非透水性シート状の隔離部材61を装入する。隔離部材61の嵩比重は、硫酸カルシウム40の再沈殿物40bの比重より小さく、濃縮塩水30の比重より大であるため、再沈殿物40bと上澄み濃縮塩水30とが分離した状態にある副処理容器60内に隔離部材61を静かに装入すると、前述した比重差により、隔離部材61は上澄み濃縮塩水30中を沈下していき、図5に示しように、上澄み濃縮塩水30と再沈殿物40bとの境界に止まるので、隔離部材61の配置作業は容易である。   When the re-precipitate 40b of calcium sulfate 40 and the concentrated salt water 30 are clearly separated in the sub-treatment container 60 from the secondary standing step, as shown in FIG. 5, the concentrated salt water 30 in the sub-treatment container 60 is entered. A non-water-permeable sheet-like isolation member 61 is inserted. Since the bulk specific gravity of the separating member 61 is smaller than the specific gravity of the re-precipitate 40b of the calcium sulfate 40 and larger than the specific gravity of the concentrated salt water 30, the sub-treatment in which the re-precipitate 40b and the supernatant concentrated brine 30 are separated. When the separating member 61 is gently inserted into the container 60, the separating member 61 sinks in the supernatant concentrated brine 30 due to the above-described difference in specific gravity, and as shown in FIG. Since it stops at the boundary with 40b, the arrangement | positioning operation | work of the isolation member 61 is easy.

上澄み濃縮塩水30と再沈殿物40bとの境界に隔離部材61が静止した後、副処理容器60下方の開閉弁27aを開くと、図6に示すように、再沈殿物40bが排出経路27から徐々に排出され、所定場所へ移送される。このように、副処理容器60内に隔離部材61を配置すれば、副処理容器60内に形成された上澄み濃縮塩水30と再沈殿物40bとの再混合を防ぐことができるので、副処理容器60内の再沈殿物40bを効率的に排出することができる。   After the isolation member 61 is stationary at the boundary between the supernatant concentrated brine 30 and the re-precipitate 40b, when the on-off valve 27a below the sub-treatment container 60 is opened, the re-precipitate 40b is removed from the discharge path 27 as shown in FIG. It is gradually discharged and transferred to a predetermined place. Thus, if the separating member 61 is arranged in the sub-processing container 60, the re-mixing of the supernatant concentrated brine 30 and the re-precipitate 40b formed in the sub-processing container 60 can be prevented. The re-precipitate 40b in 60 can be discharged efficiently.

副処理容器60内の硫酸カルシウム40の再沈殿物40bの排出が完了したら、一旦開閉弁27aを閉め、隔離部材61を副処理容器60内から取り出し、排出経路27の下流側を、図7に示す送液管28に連通させる。そして、開閉弁27aを開くと、副処理容器60内の濃縮塩水30が、濃縮装置10xの主処理容器11内へ移送され、前記精製工程において主処理容器11内に残留していた濃縮塩水30(図1参照)と混じり合う。   When the discharge of the calcium sulfate 40 re-precipitate 40b in the sub-treatment container 60 is completed, the on-off valve 27a is once closed, the isolation member 61 is taken out from the sub-treatment container 60, and the downstream side of the discharge path 27 is shown in FIG. The liquid supply pipe 28 shown in FIG. When the on-off valve 27a is opened, the concentrated salt water 30 in the sub-processing container 60 is transferred into the main processing container 11 of the concentration apparatus 10x, and the concentrated salt water 30 remaining in the main processing container 11 in the purification step. (See Fig. 1).

この後、主処理容器11を気密状態とし、モータ及び吸引ポンプ(いずれも図示せず)を作動させ、ジャケット16へ高温水蒸気を供給して主処理容器11内の濃縮塩水30を加熱することにより、濃縮塩水30中の水分を蒸発させる(二次濃縮工程)。二次濃縮工程において濃縮塩水30から所定量の水分が蒸発すると、図8に示すように、体積が減少するとともに主処理容器11内に結晶塩Sが沈殿し、その上澄みとして飽和塩水50が生成される。   Thereafter, the main processing vessel 11 is brought into an airtight state, a motor and a suction pump (both not shown) are operated, high temperature steam is supplied to the jacket 16 to heat the concentrated salt water 30 in the main processing vessel 11. The water in the concentrated brine 30 is evaporated (secondary concentration step). When a predetermined amount of water evaporates from the concentrated salt water 30 in the secondary concentration step, as shown in FIG. 8, the volume decreases and crystal salt S precipitates in the main processing vessel 11, and a saturated salt water 50 is generated as the supernatant. Is done.

二次濃縮工程が完了したら、図9に示すように、シャフト12aを介して撹拌翼12bを回転させ、主処理容器11内の飽和塩水50と結晶塩Sとを十分に撹拌する。この撹拌により、飽和塩水50と結晶塩Sとが十分に混じり合った状態になったら、底部11bに設けられた第二排液経路25の開閉弁25aを開いて、飽和塩水50と塩粒子Sとの混合流体を主処理容器11から排出し、所定の遠心分離装置(図示せず)へ送り込む。   When the secondary concentration step is completed, as shown in FIG. 9, the stirring blade 12b is rotated through the shaft 12a, and the saturated salt water 50 and the crystalline salt S in the main processing vessel 11 are sufficiently stirred. When the saturated salt water 50 and the crystalline salt S are sufficiently mixed by this stirring, the opening / closing valve 25a of the second drainage path 25 provided in the bottom portion 11b is opened, and the saturated salt water 50 and the salt particles S are opened. The mixed fluid is discharged from the main processing container 11 and sent to a predetermined centrifugal separator (not shown).

図3に示すように、主処理容器11内の底部11bに開口している、第二排液経路25の開口部25bが楕円形であるため、結晶塩Sが集まってブリッジが形成されるのを抑制することができる。従って、飽和塩水50と結晶塩Sとの混合流体は主処理容器11からスムーズに排出され、遠心分離装置(図示せず)へ送り込まれる。そして、前記遠心分離装置において結晶塩Sから飽和塩水50を分離除去すると、製品である食塩(結晶塩Sの集合体)が得られる。   As shown in FIG. 3, since the opening 25b of the second drainage path 25 that opens to the bottom 11b in the main processing vessel 11 is elliptical, the crystalline salt S gathers to form a bridge. Can be suppressed. Therefore, the mixed fluid of the saturated salt water 50 and the crystalline salt S is smoothly discharged from the main processing vessel 11 and sent to a centrifugal separator (not shown). Then, when the saturated salt water 50 is separated and removed from the crystalline salt S in the centrifugal separator, the product salt (aggregate of the crystalline salt S) is obtained.

本実施形態の製塩設備においては、濃縮装置10xの主処理容器11内で加熱、濃縮して形成された濃縮塩水30を静置して形成された硫酸カルシウム40の沈殿物40aを、第一排液経路24を経由して、分離装置10yの副処理容器60に移送することができる。このとき、硫酸カルシウム40の沈殿物40aは、主処理容器11内の底部11bから上方に向かって突出状に開口した円筒状の集液部26に流入して排出されるため、主処理容器11内の底部11b付近に析出した結晶塩Sが硫酸カルシウム40の沈殿物40aと共に流出するのを抑制することができる。   In the salt production facility of the present embodiment, the precipitate 40a of the calcium sulfate 40 formed by leaving the concentrated salt water 30 formed by heating and concentrating in the main processing container 11 of the concentration apparatus 10x is first discharged. It can be transferred to the sub-processing container 60 of the separation device 10y via the liquid path 24. At this time, the precipitate 40a of the calcium sulfate 40 flows into and discharges from the bottom 11b of the main processing container 11 into the cylindrical liquid collecting section 26 that protrudes upward, and thus is discharged. It is possible to suppress the crystal salt S precipitated in the vicinity of the inner bottom portion 11b from flowing out together with the precipitate 40a of the calcium sulfate 40.

また、主処理容器11内の硫酸カルシウム40の沈殿物40aを副処理容器60へ移送した後の濃縮塩水30(上澄み液)は主処理容器11内に残すため、主処理容器11内の全量を移送して他の処理を行う場合に比べ、移送時間を短縮することができる。   Moreover, since the concentrated salt water 30 (supernatant liquid) after transferring the precipitate 40a of the calcium sulfate 40 in the main processing container 11 to the sub-processing container 60 remains in the main processing container 11, the total amount in the main processing container 11 is reduced. The transfer time can be shortened compared to the case where the transfer is performed for other processing.

さらに、副処理容器60内に形成される硫酸カルシウム40の再沈殿物40bとその上澄みの濃縮塩水30との間に隔離部材61を配置した状態で、排出経路27の開閉弁27aを開くので、濃縮塩水30と硫酸カルシウム40の再沈殿物40bとの再混合を防ぐことができる。硫酸カルシウム40の再沈殿物40bを排出した後、副処理容器60内に残った濃縮塩水30は主処理容器11内へ戻して、再び濃縮工程に供することができる。   Further, since the opening / closing valve 27a of the discharge path 27 is opened with the isolation member 61 disposed between the reprecipitate 40b of the calcium sulfate 40 formed in the sub-treatment container 60 and the concentrated salt water 30 of the supernatant, Remixing of the concentrated brine 30 and the calcium sulfate 40 reprecipitate 40b can be prevented. After discharging the re-precipitate 40b of the calcium sulfate 40, the concentrated salt water 30 remaining in the sub-treatment vessel 60 can be returned to the main treatment vessel 11 and again subjected to the concentration step.

このように、濃縮装置10xにおいて原料遠視の濃縮、硫酸カルシウム40の沈殿を行い、分離装置10yにおいて硫酸カルシウム40の再沈殿、除去を行うことにより、主処理容器11内の収容物全量を副処理容器60へ移送する手間を省くことができるため、製塩工程の効率化を図ることができる。また、濃縮装置10x及び分離装置10yの二つの装置によって飽和塩水50及び結晶塩Sを形成することができるため、製塩設備の簡素化を図ることができる。   In this way, the concentration of the raw material in the concentrator 10x and the precipitation of the calcium sulfate 40 are performed, and the calcium sulfate 40 is reprecipitated and removed in the separation device 10y, so that the entire amount in the main processing container 11 is subprocessed. Since the trouble of transferring to the container 60 can be saved, the efficiency of the salt making process can be improved. In addition, since the saturated salt water 50 and the crystalline salt S can be formed by the two devices of the concentration device 10x and the separation device 10y, the salt production facility can be simplified.

また、濃縮装置10xの主処理容器11内の硫酸カルシウム40の沈殿物40aは、集液部26の開口部26aだけでなく、複数の貫通孔26bを通して副処理容器60内へ移送されるため、移送時間をさらに短縮化することができる。なお、主処理容器11内の底部11b付近に析出した結晶塩Sは貫通孔26bに流入する際に速やかにブリッジを形成するため、その後の貫通孔26bへの結晶塩Sの流入を抑制することができる。   Further, since the precipitate 40a of the calcium sulfate 40 in the main processing container 11 of the concentration apparatus 10x is transferred into the sub-processing container 60 through the plurality of through holes 26b as well as the opening 26a of the liquid collection part 26, The transfer time can be further shortened. In addition, since the crystalline salt S deposited near the bottom 11b in the main processing vessel 11 quickly forms a bridge when flowing into the through hole 26b, the subsequent inflow of the crystalline salt S into the through hole 26b is suppressed. Can do.

また、主処理容器11内の底部11に開口する第二排液経路25の開口部25bの周縁形状を楕円形としたことにより、主処理容器11内に析出した結晶塩Sが飽和塩水50とともに第二排液経路25から排出される際に、結晶塩Sのブリッジが開口部25bに形成されるのを回避することができるため、排液作業の効率化に有効である。   In addition, since the peripheral shape of the opening 25b of the second drainage path 25 that opens to the bottom 11 in the main processing vessel 11 is an ellipse, the crystalline salt S precipitated in the main processing vessel 11 together with the saturated brine 50 Since it is possible to avoid the formation of the bridge of the crystal salt S in the opening 25b when being discharged from the second drainage path 25, the drainage operation is effective.

次に、図10,図11及び図12に基づいて、分離装置に関するその他の実施の形態について説明する。図10,図11及び図12はその他の実施の形態である分離装置を示す一部省略垂直断面図である。なお、図10〜図12において、図1〜図9と同符号を付している部分は、前述した分離装置10の構成部分と同じ構造、機能を有する部分であり、説明を省略する。   Next, based on FIG. 10, FIG. 11 and FIG. 12, other embodiments relating to the separation device will be described. 10, FIG. 11 and FIG. 12 are partially omitted vertical sectional views showing a separating apparatus according to another embodiment. 10 to 12, the parts denoted by the same reference numerals as those in FIGS. 1 to 9 are parts having the same structure and function as the constituent parts of the separation device 10 described above, and description thereof is omitted.

図10に示すように、分離装置10vで使用する隔離部材65は、副処理容器60内の上澄み濃縮塩水30の水面全体を覆う形状のフロート部65aと、フロート部65a上面の中央に立設された支持ポール65bと、重錘66を着脱可能に保持するため支持ポール65bの上方に設けられた重錘装着部65dと、その下方に設けられた被検知体65cと、を備えている。フロート部65aの嵩比重は上澄み濃縮塩水30の比重より小さく、重錘66を装着しない状態で上澄み濃縮塩水30に浮くように設定されている。また、支持ポール65bが軸方向に下降して被検知体65cが所定位置に達したとき、それを検知して開閉弁27bを閉止するセンサ67が設けられている。   As shown in FIG. 10, the separating member 65 used in the separation device 10v is erected at the center of the float 65a having a shape covering the entire surface of the supernatant concentrated brine 30 in the sub-treatment container 60 and the upper surface of the float 65a. A support pole 65b; a weight mounting portion 65d provided above the support pole 65b to hold the weight 66 in a detachable manner; and a detected body 65c provided below the support pole 65b. The bulk specific gravity of the float part 65a is smaller than the specific gravity of the supernatant concentrated brine 30 and is set to float on the supernatant concentrated brine 30 without the weight 66 attached. Further, a sensor 67 is provided for detecting when the support pole 65b is lowered in the axial direction and the detected body 65c reaches a predetermined position, and closes the on-off valve 27b.

図10に示すように、分離装置10vの副処理容器60内へ硫酸カルシウム40を移送して静置すると(二次静置工程)、前述と同様、副処理容器60内に硫酸カルシウム40の再沈殿物40bと、その上澄みである濃縮塩水30とが現れる。この工程において副処理容器60内で硫酸カルシウム40の再沈殿物40bと濃縮塩水30とが明確に分離したら、重錘66無し状態の隔離部材65を副処理容器60内に装入してフロート部65aを上澄み濃縮塩水30の水面に浮かべる。   As shown in FIG. 10, when calcium sulfate 40 is transferred into the sub-treatment container 60 of the separation apparatus 10v and allowed to stand (secondary standing step), the calcium sulfate 40 is re-introduced into the sub-treatment container 60 as described above. The precipitate 40b and the concentrated salt water 30 which is the supernatant appear. In this step, when the re-precipitate 40b of calcium sulfate 40 and the concentrated salt water 30 are clearly separated in the sub-treatment container 60, the separating member 65 without the weight 66 is charged into the sub-treatment container 60 and the float portion 65a floats on the surface of the supernatant concentrated brine 30.

そして、図11に示すように、副処理容器60の上面開口部から突出した支持ポール65b上方の重錘装着部65dに適切な質量の重錘66を装着することにより、当該隔離部材65のフロート部65aを再沈殿物40bと上澄み濃縮塩水30との境界まで沈下させる。このとき、フロート部65aの沈下距離は、支持ポール65bに設けられた目盛り(図示せず)によって目視確認することができる。   Then, as shown in FIG. 11, by attaching a weight 66 of an appropriate mass to the weight mounting portion 65d above the support pole 65b protruding from the upper surface opening of the sub-processing container 60, the float of the isolation member 65 is floated. The part 65a is submerged to the boundary between the re-precipitate 40b and the supernatant concentrated brine 30. At this time, the settlement distance of the float portion 65a can be visually confirmed by a scale (not shown) provided on the support pole 65b.

隔離部材65のフロート部65aが、上澄み濃縮塩水30と再沈殿物40bとの境界に静止した後、副処理容器60下方の開閉弁27bを開くと、図11に示すように、再沈殿物40bが排出経路27から徐々に排出される。このとき、再沈殿物40bの減少に伴って隔離部材65のフロート部65a及び支持ポール65bも下降するため、支持ポール65bの目盛り(図示せず)を目視確認することにより再沈殿物40bの排出状況を把握することができる。このように、副処理容器60内に隔離部材65を配置すれば、副処理容器60内に形成された上澄み濃縮塩水30と再沈殿物40bとの再混合を防ぐことができるので、副処理容器60内の再沈殿物40bを効率的に排出することができる。   After the float part 65a of the separating member 65 is stationary at the boundary between the supernatant concentrated brine 30 and the re-precipitate 40b, when the on-off valve 27b below the sub-treatment container 60 is opened, as shown in FIG. 11, the re-precipitate 40b Are gradually discharged from the discharge path 27. At this time, the float 65a and the support pole 65b of the separating member 65 are also lowered as the re-precipitate 40b decreases, so that the re-precipitate 40b is discharged by visually confirming the scale (not shown) of the support pole 65b. The situation can be grasped. Thus, if the separating member 65 is arranged in the sub-processing container 60, the re-mixing of the supernatant concentrated brine 30 and the re-precipitate 40b formed in the sub-processing container 60 can be prevented. The re-precipitate 40b in 60 can be discharged efficiently.

本実施形態の分離装置10vの場合、再沈殿物40bの排出作業が進行し、支持ポール65bの被検知体65cが所定位置まで下降すると、センサ67がそれを検知して開閉弁27bを自動閉止するので、再沈殿物40bの排出完了後、上澄み濃縮塩水30が誤って排出されるのを防止することができる。再沈殿物40bの排出完了後、支持ポール65bの重錘装着部65dから重錘66を離脱させれば、フロート部65aが上澄み濃縮塩水30の水面に浮上するので、副処理容器60内から隔離部材65を容易に取り出すことができる。   In the case of the separation apparatus 10v of this embodiment, when the discharge operation of the re-precipitate 40b proceeds and the detected body 65c of the support pole 65b is lowered to a predetermined position, the sensor 67 detects it and automatically closes the on-off valve 27b. Therefore, it is possible to prevent the supernatant concentrated brine 30 from being erroneously discharged after the completion of the discharge of the re-precipitate 40b. If the weight 66 is removed from the weight mounting portion 65d of the support pole 65b after the discharge of the re-precipitate 40b is completed, the float portion 65a floats on the surface of the supernatant concentrated brine 30 and is thus isolated from the sub-treatment container 60. The member 65 can be easily taken out.

隔離部材65を副処理容器60内から取り出した後、排出経路27の下流側を、図7に示す送液管28に連通させ、開閉弁27bを開くと、副処理容器60内の濃縮塩水30が、濃縮装置10xの主処理容器11内へ移送され、前記精製工程において主処理容器11内に残留していた濃縮塩水30(図1参照)と混じり合う。この後の工程は、図7〜9に基づいて説明した通りである。   After the separating member 65 is taken out from the sub-processing container 60, the downstream side of the discharge path 27 is communicated with the liquid feeding pipe 28 shown in FIG. However, it is transferred into the main processing container 11 of the concentration apparatus 10x and mixed with the concentrated salt water 30 (see FIG. 1) remaining in the main processing container 11 in the purification step. The subsequent steps are as described based on FIGS.

このように、隔離部材65においては、支持ポール65bの重錘装着部65dに対し重錘66が着脱可能であるため、上澄み濃縮塩水30の比重が変動した場合も重錘66の質量を増減することにより、隔離部材65の本体部65aを再沈殿物40bと上澄み濃縮塩水30との境界に正確に配置することができる。   As described above, in the isolation member 65, the weight 66 can be attached to and detached from the weight mounting portion 65d of the support pole 65b. Therefore, even when the specific gravity of the supernatant concentrated brine 30 varies, the mass of the weight 66 is increased or decreased. By this, the main-body part 65a of the isolation member 65 can be correctly arrange | positioned in the boundary of the re-precipitate 40b and the supernatant concentrated brine 30.

次に、図12に示す分離装置10zは、第一排液経路24を経由して主処理容器11(図1参照)から移送された収容物(硫酸カルシウムなどの沈殿物)を収容可能であって円筒状の本体部70a及びその下方に連設された漏斗状の凝集沈殿部70bを有する副処理容器70と、凝集沈殿部70b下端の開口部70cと連通する排出経路77と、を備えている。排出経路77には開閉弁77aが設けられている。   Next, the separation device 10z shown in FIG. 12 is capable of accommodating the contents (precipitate such as calcium sulfate) transferred from the main processing container 11 (see FIG. 1) via the first drainage path 24. A cylindrical main body 70a and a sub-treatment container 70 having a funnel-shaped coagulation sedimentation portion 70b continuously provided therebelow, and a discharge path 77 communicating with the opening 70c at the lower end of the coagulation sedimentation portion 70b. Yes. The discharge path 77 is provided with an on-off valve 77a.

第一排液経路24を経由して、硫酸カルシウムの沈殿物などを副処理容器70内へ移送した後、静置すると(二次静置工程)、副処理容器70内に硫酸カルシウム40の再沈殿物40cと上澄み濃縮塩水30とに分離するので、副処理容器70下方の開閉弁77aを開くと排出経路77から再沈殿物40cが排出され、所定場所へ移送される。副処理容器70の下部に漏斗状の凝集沈殿部70bが設けられているため、再沈殿物40c中の硫酸カルシウム40はスムーズに開口部70cへ流入し、排出経路27から効率良く排出することができる。   When calcium sulfate precipitates or the like are transferred into the sub-treatment container 70 via the first drainage path 24 and then left to stand (secondary standing step), the calcium sulfate 40 is re-stored in the sub-treatment container 70. Since the precipitate 40c and the supernatant concentrated brine 30 are separated, the re-precipitate 40c is discharged from the discharge path 77 and transferred to a predetermined place when the on-off valve 77a below the sub-treatment container 70 is opened. Since the funnel-shaped coagulation sedimentation part 70b is provided in the lower part of the sub-processing container 70, the calcium sulfate 40 in the reprecipitate 40c can smoothly flow into the opening 70c and be efficiently discharged from the discharge path 27. it can.

本発明に係る製塩設備及び製塩方法は、天然海水などの原料塩水から食塩を製造する製塩産業の分野において広く利用することができる。   The salt production equipment and the salt production method according to the present invention can be widely used in the field of salt production industry for producing salt from raw salt water such as natural seawater.

本発明の実施の形態である製塩設備を構成する濃縮装置を示す一部省略垂直断面図である。It is a partially abbreviated vertical sectional view showing a concentrating device that constitutes a salt production facility according to an embodiment of the present invention. 図1の一部拡大図である。FIG. 2 is a partially enlarged view of FIG. 1. 図1のA−A線における一部省略断面図である。FIG. 2 is a partially omitted cross-sectional view taken along line AA in FIG. 1. 本発明の実施の形態である製塩設備を構成する分離装置を示す一部省略垂直断面図である。It is a partially omitted vertical sectional view showing a separation device constituting the salt production facility according to the embodiment of the present invention. 図4に示す分離装置内の状態を示す一部省略垂直断面図である。FIG. 5 is a partially omitted vertical sectional view showing a state in the separation apparatus shown in FIG. 4. 図4に示す分離装置内の状態を示す一部省略垂直断面図である。FIG. 5 is a partially omitted vertical sectional view showing a state in the separation apparatus shown in FIG. 4. 濃縮装置内の状態を示す垂直断面図である。It is a vertical sectional view showing a state in the concentrator. 濃縮装置内の状態を示す垂直断面図である。It is a vertical sectional view showing a state in the concentrator. 濃縮装置から飽和塩水と結晶塩を排出する状態を示す垂直断面図である。It is a vertical sectional view showing a state in which saturated brine and crystalline salt are discharged from the concentrator. その他の実施形態である分離装置を示す一部省略垂直断面図である。It is a partially omitted vertical sectional view showing a separation device according to another embodiment. その他の実施形態である分離装置を示す一部省略垂直断面図である。It is a partially omitted vertical sectional view showing a separation device according to another embodiment. その他の実施の形態である分離装置を示す一部省略垂直断面図である。It is a partially omitted vertical sectional view showing a separation device according to another embodiment.

符号の説明Explanation of symbols

10x 濃縮装置
10v,10y,10z 分離装置
11 主処理容器
11a 天井部
11b,60b 底部
11c 中央部
12 撹拌機構
12a シャフト
12b 撹拌翼
14 減速機
15 支柱
16 ジャケット
23 吸引パイプ
24 第一排液流路
25 第二排液経路
24a,25a,27a,27b,77a 開閉弁
28 送液管
26 集液部
26a,60c,70c 開口部
26b 貫通孔
27,77 排出経路
30 濃縮塩水
40 硫酸カルシウム
40a 沈殿物
40b,40c 再沈殿物
50 飽和塩水
60,70 副処理容器
60a,70a 本体部
61,65 隔離部材
65a フロート部
65b 支持ポール
65c 被検知体
65d 重錘装着部
66 重錘
67 センサ
70b 凝集沈殿部
G 設置面
S 結晶塩
10x Concentrator 10v, 10y, 10z Separator 11 Main processing vessel 11a Ceiling 11b, 60b Bottom 11c Center 12 Stirring mechanism 12a Shaft 12b Stirring blade 14 Reducer 15 Strut 16 Jacket 23 Suction pipe 24 First drainage flow path 25 Second drainage path 24a, 25a, 27a, 27b, 77a On-off valve 28 Liquid supply pipe 26 Liquid collection part 26a, 60c, 70c Opening part 26b Through hole 27, 77 Discharge path 30 Concentrated salt water 40 Calcium sulfate 40a Precipitate 40b, 40c Reprecipitate 50 Saturated salt water 60, 70 Sub-treatment container 60a, 70a Main body 61, 65 Separating member 65a Float 65b Support pole 65c Detected object 65d Weight mounting part 66 Weight 67 Sensor 70b Aggregation sedimentation part G Installation surface S crystal salt

Claims (6)

天然海水などの原料塩水を収容する主処理容器と、前記主処理容器内の収容物を加熱する加熱手段と、前記主処理容器内の収容物を撹拌する撹拌機構と、前記主処理容器内に生成される濃縮塩水中の沈殿物を排出するため当該主処理容器の底部に設けられた第一排液経路と、前記主処理容器内に生成される結晶塩を含む飽和塩水を排出するため当該主処理容器の底部に設けられた第二排液経路と、前記第一排液経路に連通し当該主処理容器内の底部から上方へ突出した状態で設けられた上端に開口部を有する筒状の集液部と、を有する濃縮装置と、
前記主処理容器から前記第一排液経路を経由して排出される前記沈殿物を含む濃縮塩水を収容する副処理容器と、前記副処理容器内の濃縮塩水中に形成される再沈殿物を排出するため当該副処理容器の底部に設けられた排出経路と、を有する分離装置と、を備えたことを特徴とする製塩設備。
A main processing container for storing raw salt water such as natural seawater, a heating means for heating the contents in the main processing container, a stirring mechanism for stirring the contents in the main processing container, and the main processing container A first drainage path provided at the bottom of the main processing container for discharging the precipitate in the generated concentrated salt water, and a saturated salt water containing crystalline salt generated in the main processing container A second drainage path provided at the bottom of the main processing container, and a cylindrical shape having an opening at the upper end provided in a state of projecting upward from the bottom in the main processing container in communication with the first drainage path A concentrating device comprising:
A sub-treatment container containing concentrated salt water containing the precipitate discharged from the main treatment container via the first drainage path; and a re-precipitate formed in the concentrated salt water in the sub-treatment container. A salt production facility, comprising: a separation device having a discharge path provided at a bottom portion of the sub-processing container for discharging.
前記副処理容器内の濃縮塩水中に形成される再沈殿物と上澄み濃縮塩水との境界に出し入れ可能に配置される隔離部材を備えた請求項1記載の製塩設備。   The salt production equipment of Claim 1 provided with the isolation | separation member arrange | positioned so that withdrawing / inserting into the boundary of the reprecipitation formed in the concentrated salt water in the said sub-treatment container, and a supernatant concentrated salt water. 前記隔離部材の嵩比重を、前記沈殿物の比重より小さく、前記上澄み濃縮塩水の比重より大とした請求項2記載の製塩設備。   The salt making facility according to claim 2, wherein the bulk density of the separating member is smaller than the specific gravity of the precipitate and larger than the specific gravity of the supernatant concentrated brine. 前記隔離部材の嵩比重が前記上澄み濃縮塩水より小さく、前記副処理容器内の濃縮塩水中に形成される再沈殿物と上澄み濃縮塩水との境界まで前記隔離部材を沈下させるための重錘を当該隔離部材に着脱可能に装着した請求項2記載の製塩設備。   The bulk density of the isolation member is smaller than the supernatant concentrated brine, and a weight for sinking the isolation member to the boundary between the re-precipitate formed in the concentrated brine in the sub-treatment container and the supernatant concentrated brine is The salt making equipment according to claim 2, which is detachably attached to the isolation member. 前記集液部に貫通孔を設けた請求項1〜4のいずれかに記載の製塩設備。   The salt making equipment according to any one of claims 1 to 4, wherein a through hole is provided in the liquid collection part. 前記主処理容器内の底面における前記第二排液経路の開口部の周縁形状を楕円形若しくは長円形とした請求項1〜5のいずれかに記載の製塩設備。   The salt making facility according to any one of claims 1 to 5, wherein a peripheral shape of an opening of the second drainage path on a bottom surface in the main processing container is an ellipse or an oval.
JP2008107214A 2008-04-16 2008-04-16 Salt production equipment Expired - Fee Related JP5566578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008107214A JP5566578B2 (en) 2008-04-16 2008-04-16 Salt production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008107214A JP5566578B2 (en) 2008-04-16 2008-04-16 Salt production equipment

Publications (2)

Publication Number Publication Date
JP2009256136A JP2009256136A (en) 2009-11-05
JP5566578B2 true JP5566578B2 (en) 2014-08-06

Family

ID=41384072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008107214A Expired - Fee Related JP5566578B2 (en) 2008-04-16 2008-04-16 Salt production equipment

Country Status (1)

Country Link
JP (1) JP5566578B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012116721A (en) * 2010-12-02 2012-06-21 Benten:Kk Salt production apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3647396A (en) * 1969-02-25 1972-03-07 Int Salt Co Production of high-purity salt
JP3376543B2 (en) * 2000-01-26 2003-02-10 加寿彦 浜田 Salt production method and its apparatus
JP2001347101A (en) * 2000-06-09 2001-12-18 Vision:Kk Evaporation boiler and apparatus provided therewith for manufacturing natural salt
JP2004035343A (en) * 2002-07-04 2004-02-05 Kimura Chem Plants Co Ltd Method and apparatus for manufacturing salt
JP3754953B2 (en) * 2002-11-20 2006-03-15 木村化工機株式会社 Salt making method and salt making apparatus
EP1876404A4 (en) * 2005-04-25 2012-08-01 Maekawa Seisakusho Kk Process for producing slush fluid and apparatus therefor

Also Published As

Publication number Publication date
JP2009256136A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
CN108128961A (en) Brine waste zero emission method and system
JP4743627B2 (en) Water or sludge treatment equipment containing ions in liquid
JP5495403B2 (en) Concentration plant, concentrated water production power plant, concentration method, and operation method of concentrated water production plant
KR101845457B1 (en) Waste water treatment system
JP2010284643A (en) Method and apparatus for dehydrating algae without using continuous flow membrane
CN208008627U (en) Brine waste zero emission system
JP5740345B2 (en) Method and apparatus for separating and collecting eggshell and eggshell membrane
CN109592815A (en) The processing system of reverse osmosis concentrated water with high permanent hardness
CN209259906U (en) A kind of greasy filth separation system
JP5566578B2 (en) Salt production equipment
JP6072320B2 (en) Vertical filter concentrator, concentrating equipment and method using the vertical filter concentrator
CN214734600U (en) Water purification machine reverse osmosis concentrated water recycling device
CN107635633A (en) From the degasser and method of liquid stripping gas
JP5324117B2 (en) Water treatment facility having a diffuser and a membrane concentrator equipped with the diffuser
CN102765741A (en) Separating and purifying device and method of white mud/carbide slag-gypsum process desulphurization gypsum slurry
TW201010785A (en) Treatment apparatus and treatment bag
JP2001113285A (en) Calcium removing apparatus
CN107572553B (en) A kind of transformation pot
KR100955695B1 (en) Method of manufacturing salt
CN209797628U (en) device for eliminating permanent hardness and temporary hardness of reverse osmosis concentrated water
CN108033619A (en) A kind of intelligence water comprehensive processing technique
JP2005074248A (en) Method and device for collecting and transferring crystal
US10046302B2 (en) Apparatus for manufacturing potassium compound and method of recovering potassium compound from brine
JP2013126619A (en) Water treatment apparatus
CN209081582U (en) Pretreatment system is concentrated in high-salt wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140618

R150 Certificate of patent or registration of utility model

Ref document number: 5566578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees