JP5566094B2 - Tire molding shape simulation apparatus, simulation method, and program - Google Patents

Tire molding shape simulation apparatus, simulation method, and program Download PDF

Info

Publication number
JP5566094B2
JP5566094B2 JP2009289122A JP2009289122A JP5566094B2 JP 5566094 B2 JP5566094 B2 JP 5566094B2 JP 2009289122 A JP2009289122 A JP 2009289122A JP 2009289122 A JP2009289122 A JP 2009289122A JP 5566094 B2 JP5566094 B2 JP 5566094B2
Authority
JP
Japan
Prior art keywords
rubber ribbon
lamination
rubber
tire
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009289122A
Other languages
Japanese (ja)
Other versions
JP2011126483A (en
Inventor
浩二 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2009289122A priority Critical patent/JP5566094B2/en
Publication of JP2011126483A publication Critical patent/JP2011126483A/en
Application granted granted Critical
Publication of JP5566094B2 publication Critical patent/JP5566094B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、ゴムリボンを積層して成形するタイヤの成形形状をシミュレートするタイヤ成形形状のシミュレーション装置とシミュレーション方法、及び、プログラムに関する。   The present invention relates to a tire forming shape simulation apparatus, a simulation method, and a program for simulating a forming shape of a tire formed by laminating rubber ribbons.

空気入りタイヤ等の各種のタイヤは、未加硫ゴム等からなる各タイヤ構成部材を被成形体に順次配置して未加硫のタイヤを成形した後、加硫成型して製造される。このタイヤの成形時に、従来、未加硫ゴムからなるゴムリボンを被成形体に螺旋状に巻き付けて積層し、トレッドゴム等のタイヤ構成部材を成形することが行われている(特許文献1、2参照)。   Various types of tires such as pneumatic tires are manufactured by sequentially arranging tire constituent members made of unvulcanized rubber or the like on a molded body to form an unvulcanized tire, and then vulcanizing and molding the tire. At the time of molding the tire, conventionally, a rubber ribbon made of unvulcanized rubber is spirally wound around a molded body and laminated to form a tire constituent member such as tread rubber (Patent Documents 1 and 2). reference).

また、ゴムリボンを積層して成形するタイヤでは、シミュレーション装置によりゴムリボンを積層したタイヤの成形形状をシミュレートして、ゴムリボンの積層状態を確認することがある。ところが、このような従来のシミュレーション装置では、ゴムリボンを周方向に対して一定角度(通常は0°)で積層した状態で、タイヤ幅方向の1つの断面図を算出するのが一般的である。そのため、ゴムリボンの積層状態も、一定の積層の仕方で、かつ、周方向の一箇所の断面形状でしか確認できず、周方向に沿って積層の偏りや積層厚さのバラツキが発生するときに、それらを判断するのが困難である。従って、従来は、タイヤの生産開始前に、実際にゴムリボンを複数のパターンで積層してタイヤを試作し、各ゴムリボンの積層状態を確認して積層に伴う問題の発生を把握する必要があり、積層状態の確認に、多大な手間や時間を要して試作工数が増加する傾向がある。   Moreover, in the tire which laminates | stacks and shape | molds a rubber ribbon, the shaping | molding shape of the tire which laminated | stacked the rubber ribbon was simulated with a simulation apparatus, and the lamination | stacking state of a rubber ribbon may be confirmed. However, in such a conventional simulation apparatus, it is common to calculate one cross-sectional view in the tire width direction in a state where rubber ribbons are laminated at a constant angle (usually 0 °) with respect to the circumferential direction. Therefore, the lamination state of the rubber ribbon can be confirmed only in a certain lamination manner and in a cross-sectional shape at one place in the circumferential direction, and when the deviation of the lamination and the variation in the lamination thickness occur along the circumferential direction. Difficult to judge them. Therefore, conventionally, before starting production of tires, it is necessary to actually laminate tires with a plurality of patterns and prototype tires, check the lamination state of each rubber ribbon, and grasp the occurrence of problems with lamination, It takes a lot of time and effort to confirm the lamination state, and there is a tendency for the number of prototypes to increase.

特開2004−358738号公報JP 2004-35838 A 特開2005−246845号公報JP 2005-246845 A

本発明は、このような従来の問題に鑑みなされたものであって、その目的は、ゴムリボンの積層によるタイヤの周方向全体の成形形状をシミュレーションにより取得し、実際にゴムリボンを積層することなく積層状態を簡単に確認できるようにすることである。   The present invention has been made in view of such a conventional problem, and the object thereof is to obtain a molding shape of the entire tire circumferential direction by laminating rubber ribbons by simulation and laminating without actually laminating rubber ribbons. It is to make it easy to check the status.

本発明は、ゴムリボンを積層して成形するタイヤの成形形状を、タイヤ成形モデルを用いてシミュレートするタイヤ成形形状のシミュレーション装置であって、タイヤ成形モデルの周方向の基準位置で、周方向に連続して複数周配置するゴムリボンの配置位置を設定する手段と、タイヤ成形モデルのゴムリボンの積層面を基準位置で切り開いて展開し、展開積層面を取得する手段と、ゴムリボンの設定された配置位置に基づき、展開積層面上のゴムリボンの積層位置を決定する手段と、ゴムリボンの積層位置と予め設定されたゴムリボンの厚さに基づき、展開積層面上のゴムリボンの積層厚さを算出する手段と、を備え、ゴムリボンの積層位置を決定する手段が、展開積層面の両切り開き端にゴムリボンの各配置位置に合わせてゴムリボンの端部位置を設定する手段と、両切り開き端の対応するゴムリボンの端部位置同士をつないで展開積層面上のゴムリボンの積層位置を算出する手段と、を有し、ゴムリボンの積層厚さを算出する手段が、展開積層面に積層されたゴムリボンの重なりの数だけ、展開積層面の法線方向にゴムリボンの厚さ分の値を積み上げて、展開積層面の全体に亘って、ゴムリボンの積層厚さを算出する手段を有することを特徴とする。
また、本発明は、コンピュータにより、本タイヤ成形形状のシミュレーション装置の各手段を実現するためのプログラムである。
更に、本発明は、ゴムリボンを積層して成形するタイヤの成形形状を、タイヤ成形モデルを用いてシミュレートするシミュレーション装置におけるタイヤ成形形状のシミュレーション方法であって、タイヤ成形モデルの周方向の基準位置で、周方向に連続して複数周配置するゴムリボンの配置位置を設定する工程と、タイヤ成形モデルのゴムリボンの積層面を基準位置で切り開いて展開し、展開積層面を取得する工程と、ゴムリボンの設定された配置位置に基づき、展開積層面上のゴムリボンの積層位置を決定する工程と、ゴムリボンの積層位置と予め設定されたゴムリボンの厚さに基づき、展開積層面上のゴムリボンの積層厚さを算出する工程と、を有し、ゴムリボンの積層位置を決定する工程が、展開積層面の両切り開き端にゴムリボンの各配置位置に合わせてゴムリボンの端部位置を設定する工程と、両切り開き端の対応するゴムリボンの端部位置同士をつないで展開積層面上のゴムリボンの積層位置を算出する工程と、を有し、ゴムリボンの積層厚さを算出する工程が、展開積層面に積層されたゴムリボンの重なりの数だけ、展開積層面の法線方向にゴムリボンの厚さ分の値を積み上げて、展開積層面の全体に亘って、ゴムリボンの積層厚さを算出する工程を有することを特徴とする。
The present invention relates to a tire molding shape simulation apparatus for simulating a tire molding shape formed by laminating rubber ribbons using a tire molding model, in a circumferential direction at a reference position in the circumferential direction of the tire molding model. Means for setting the placement position of rubber ribbons that are continuously arranged around the circumference, means for cutting and unfolding the laminated surface of the rubber ribbon of the tire molding model at the reference position, obtaining the developed laminated surface, and the set placement position of the rubber ribbon A means for determining a lamination position of the rubber ribbon on the development lamination surface, a means for calculating the lamination thickness of the rubber ribbon on the development lamination surface based on the lamination position of the rubber ribbon and a predetermined thickness of the rubber ribbon, the provided, means for determining a stacking position of the rubber ribbon, rubber ribbon to suit each position of the rubber ribbon on both cut open end of the deployment stacking surface Comprising means for setting the part position, and means for calculating the stacking position of the rubber ribbon on the development layer surfaces connecting the end position between the corresponding rubber ribbon in both cut open end and calculates a lamination thickness of the rubber ribbon The means stacks the value of the thickness of the rubber ribbon in the normal direction of the developed laminated surface by the number of overlaps of the rubber ribbon laminated on the developed laminated surface, and the laminated thickness of the rubber ribbon over the entire developed laminated surface. It has the means to calculate.
In addition, the present invention is a program for realizing each means of the tire molding shape simulation apparatus by a computer.
Furthermore, the present invention relates to a tire molding shape simulation method in a simulation apparatus for simulating a molding shape of a tire formed by laminating rubber ribbons using a tire molding model, and a circumferential reference position of the tire molding model The step of setting the arrangement position of the rubber ribbon that is continuously arranged in the circumferential direction, the step of opening the laminated surface of the rubber ribbon of the tire molding model at the reference position and developing it, the step of obtaining the developed laminated surface, The step of determining the lamination position of the rubber ribbon on the development lamination surface based on the set arrangement position, and the lamination thickness of the rubber ribbon on the development lamination surface based on the lamination position of the rubber ribbon and the preset thickness of the rubber ribbon. includes a step of calculating, the step of determining a stacking position of the rubber ribbon, rubber ribbon on both cut open end of the deployment stacking surface A step of setting the end position of the rubber ribbon in accordance with each arrangement position, and a step of calculating the position of the rubber ribbon on the development lamination surface by connecting the end positions of the corresponding rubber ribbons of the two open ends. The process of calculating the laminated thickness of the rubber ribbon accumulates the value of the thickness of the rubber ribbon in the normal direction of the developed laminated surface by the number of overlapping rubber ribbons laminated on the developed laminated surface. And a step of calculating the laminated thickness of the rubber ribbon.

本発明によれば、ゴムリボンの積層によるタイヤの周方向全体の成形形状をシミュレーションにより取得でき、実際にゴムリボンを積層することなく積層状態を簡単に確認できる。   According to the present invention, the entire shape of the tire in the circumferential direction by lamination of rubber ribbons can be obtained by simulation, and the lamination state can be easily confirmed without actually laminating rubber ribbons.

本実施形態のタイヤ成形形状のシミュレーション装置の概略構成を示す機能ブロック図である。It is a functional block diagram which shows schematic structure of the simulation apparatus of the tire shaping | molding shape of this embodiment. 本実施形態のタイヤ成形モデルを模式的に示す図である。It is a figure showing typically the tire fabrication model of this embodiment. 本実施形態のタイヤ成形形状のシミュレーション処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the simulation process of the tire shaping | molding shape of this embodiment. ゴムリボンの配置位置の設定について説明するための図である。It is a figure for demonstrating the setting of the arrangement position of a rubber ribbon. タイヤ成形モデルの展開積層面を示す概略平面図である。It is a schematic plan view which shows the expansion | deployment lamination | stacking surface of a tire shaping | molding model. 図5の展開積層面にゴムリボンを積層した状態を模式的に示す図である。It is a figure which shows typically the state which laminated | stacked the rubber ribbon on the expansion | deployment lamination | stacking surface of FIG. 展開積層面上のゴムリボンの積層厚さを示す図である。It is a figure which shows the lamination | stacking thickness of the rubber ribbon on an expansion | deployment lamination | stacking surface.

以下、本発明のタイヤ成形形状のシミュレーション装置とシミュレーション方法の一実施形態について、図面を参照して説明する。
本実施形態のタイヤ成形形状のシミュレーション装置(以下、シミュレーション装置という)は、ゴムリボンを積層して成形するタイヤの成形形状をシミュレートするシミュレータであり、タイヤ成形モデルを用いてタイヤ成形形状を算出してシミュレートする。なお、ゴムリボンは、タイヤ成形時に被成形体に積層される、所定断面形状のリボン状に形成された未加硫ゴムからなるゴム部材(ゴムストリップ)である。また、タイヤ成形モデルは、成形中のタイヤをモデル化した仮想上のモデルである。
Hereinafter, an embodiment of a simulation apparatus and a simulation method for a tire molding shape according to the present invention will be described with reference to the drawings.
A tire molding shape simulation apparatus (hereinafter, referred to as a simulation apparatus) according to the present embodiment is a simulator that simulates the molding shape of a tire formed by laminating rubber ribbons, and calculates the tire molding shape using a tire molding model. To simulate. The rubber ribbon is a rubber member (rubber strip) made of unvulcanized rubber formed in a ribbon shape having a predetermined cross-sectional shape, which is laminated on a molded body at the time of tire molding. The tire molding model is a virtual model in which the tire being molded is modeled.

図1は、本実施形態のシミュレーション装置の概略構成を示す機能ブロック図である。
このシミュレーション装置1は、例えばCPU(Central Processing Unit)と、シミュレーション処理のための各種プログラムを格納するROM(Read Only Memory)と、CPUが直接アクセスするデータを一時的に格納するRAM(Random Access Memory)等を備えたコンピュータから構成されている。また、シミュレーション装置1は、CPUによりROMに格納されたプログラムを実行することで得られる機能実現手段として、シミュレーションに関する処理を実行する後述する各手段(機能部)を有する。
FIG. 1 is a functional block diagram showing a schematic configuration of the simulation apparatus of the present embodiment.
The simulation apparatus 1 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory) that stores various programs for simulation processing, and a RAM (Random Access Memory) that temporarily stores data directly accessed by the CPU. It is comprised from the computer provided with etc. Moreover, the simulation apparatus 1 has each means (functional part) mentioned later which performs the process regarding simulation as a function implementation | achievement means obtained by executing the program stored in ROM by CPU.

具体的には、シミュレーション装置1は、図示のように、タイヤ成形形状をシミュレートするシミュレート部10と、入出力部2と、記憶部3とを有し、それらがバス15を介して互いに接続されている。入出力部2は、外部機器と接続してデータを入出力するインターフェースであり、ユーザがデータや指令の入力や操作に使用するキーボードやマウス等の入力装置4と、ユーザに対してシミュレーションに関する各種の情報を表示する表示装置5が接続されている。記憶部3は、シミュレーションに関する各種データ、例えば、シミュレーションの設定条件、タイヤ成形モデル、ゴムリボンの寸法や形状、及び、シミュレーション結果等を記憶する。   Specifically, as shown in the figure, the simulation apparatus 1 includes a simulation unit 10 that simulates a tire molding shape, an input / output unit 2, and a storage unit 3, which are connected to each other via a bus 15. It is connected. The input / output unit 2 is an interface for inputting / outputting data by connecting to an external device. The input device 4 such as a keyboard and a mouse used for inputting and operating data and commands by the user, and various simulation-related items for the user. A display device 5 for displaying the information is connected. The storage unit 3 stores various data related to simulation, for example, simulation setting conditions, tire molding models, rubber ribbon dimensions and shapes, simulation results, and the like.

シミュレーション装置1は、入力装置4を介して、ユーザからシミュレーションに関する上記した各データが予め入力されて、それらを記憶部3に記憶し、シミュレート部10が記憶部3から各データを読み出して使用する。シミュレート部10は、各データに基づき、タイヤ成形形状をシミュレートして、その結果を記憶部3に記憶するとともに、表示装置5に出力して所定形式で表示させる。また、シミュレート部10は、ゴムリボンの配置位置設定部11と、展開積層面取得部12と、ゴムリボンの積層位置決定部13と、積層厚さ算出部14とを有し、これら各部(手段)により、タイヤ成形モデルを用いて各シミュレーション処理を実行する。   The simulation apparatus 1 receives the above-described data related to the simulation from the user via the input device 4 in advance and stores them in the storage unit 3. The simulation unit 10 reads out the data from the storage unit 3 and uses them. To do. The simulation unit 10 simulates the tire molding shape based on each data, stores the result in the storage unit 3, and outputs it to the display device 5 to display it in a predetermined format. The simulating unit 10 includes a rubber ribbon arrangement position setting unit 11, a development lamination surface acquisition unit 12, a rubber ribbon lamination position determination unit 13, and a lamination thickness calculation unit 14. Thus, each simulation process is executed using the tire molding model.

図2は、タイヤ成形モデルを模式的に示す図であり、その軸芯を含む面で切断した幅方向断面図を例として示している。
タイヤ成形モデル20は、図示のように、一対のビードコア21間に亘ってトロイダル状に延びるカーカス22、カーカス22の外周側のベルト23、及び、外面や部材間のゴム等、複数のタイヤ構成部材のデータからなる。また、データ中には、各タイヤ構成部材の配置位置、形状、寸法、他のタイヤ構成部材との関係、及び、成形や配置の順序が含まれ、これらから、成形の各段階のタイヤに対応するタイヤ成形モデル20が構築される。これにより、タイヤ成形モデル20は、内外面や全体の形状、寸法、及び、内部構造が設定される。
FIG. 2 is a diagram schematically showing a tire molding model, and shows a cross-sectional view in the width direction taken along a plane including the shaft core as an example.
The tire molding model 20 includes a plurality of tire constituent members such as a carcass 22 extending in a toroidal shape between a pair of bead cores 21, a belt 23 on the outer peripheral side of the carcass 22, and rubber between outer surfaces and members, as illustrated. It consists of data. In addition, the data includes the location, shape, and dimensions of each tire component, the relationship with other tire components, and the order of molding and placement. From these, it corresponds to the tire at each stage of molding. A tire molding model 20 is constructed. Thereby, as for the tire shaping | molding model 20, the inner / outer surface and the whole shape, dimension, and internal structure are set.

本実施形態では、次にトレッドゴムを配置する段階のタイヤ成形モデル20を用い、その外周面である凹凸を有する積層面24に対し、ゴムリボンRを積層してトレッドゴムを成形したときのタイヤ成形形状(ゴムリボンRの積層形状)をシミュレートする。その際、ゴムリボンRを、タイヤ成形モデル20の周方向に巻き付けつつ幅方向に徐々に変位させて、積層面24に螺旋状に巻き付け、連続して複数周配置(図では一部のみ示す)して積層するときの形状を算出する。以下、この積層条件に基づき、シミュレーション装置1により、タイヤ成形形状をシミュレーションする処理の手順や流れ、及び、このシミュレーション装置1におけるタイヤ成形形状のシミュレーション方法について説明する。   In the present embodiment, the tire molding model 20 at the stage where the tread rubber is arranged next is used, and the tire molding when the tread rubber is molded by laminating the rubber ribbon R on the laminated surface 24 having the unevenness as the outer peripheral surface thereof. The shape (laminated shape of the rubber ribbon R) is simulated. At that time, the rubber ribbon R is gradually displaced in the width direction while being wound in the circumferential direction of the tire molding model 20, wound around the laminated surface 24 in a spiral manner, and continuously arranged around the circumference (only a part is shown in the figure). To calculate the shape when stacked. Hereinafter, based on this lamination condition, the procedure and flow of the process of simulating the tire molding shape by the simulation device 1 and the tire molding shape simulation method in the simulation device 1 will be described.

図3は、シミュレーション装置1によるタイヤ成形形状のシミュレーション処理の手順を示すフローチャートである。
このシミュレーション装置1では、図示のように、まず、ユーザの指定に基づき、シミュレート部10が、記憶部3から、成形するタイヤの予め記憶されたタイヤ成形モデル20を取得する(S101)。次に、ユーザから入力されたゴムリボンRの配置位置データに基づき、配置位置設定部11が、積層面24に対するゴムリボンRの配置位置を設定する(S102)。
FIG. 3 is a flowchart showing the procedure of the tire forming shape simulation process by the simulation apparatus 1.
In the simulation apparatus 1, as shown in the figure, first, based on a user's designation, the simulation unit 10 acquires a pre-stored tire molding model 20 of a tire to be molded from the storage unit 3 (S 101). Next, the arrangement position setting unit 11 sets the arrangement position of the rubber ribbon R with respect to the laminated surface 24 based on the arrangement position data of the rubber ribbon R input by the user (S102).

図4は、ゴムリボンRの配置位置の設定について説明するための図であり、図2のF範囲を拡大して概略形状を示している。
ここでは、ゴムリボンRの配置位置を、図示のように、タイヤ成形モデル20の所定の周方向位置に設定された周方向の基準位置Kで、ゴムリボンRの積層面24に対し設定する。即ち、この配置位置は、タイヤ成形モデル20の幅方向(図4の左右方向)断面において、積層面24に配置される各ゴムリボンRの位置であり、ユーザから、ゴムリボンRの各配置位置が幅方向に沿って複数入力される。これに基づき、配置位置設定部11は、タイヤ成形モデル20の周方向の基準位置Kで、周方向に連続して複数周配置するゴムリボンRの配置位置を設定する。
FIG. 4 is a diagram for explaining the setting of the arrangement position of the rubber ribbon R, and shows a schematic shape by enlarging the F range of FIG. 2.
Here, the arrangement position of the rubber ribbon R is set with respect to the laminated surface 24 of the rubber ribbon R at a circumferential reference position K set at a predetermined circumferential position of the tire molding model 20 as illustrated. That is, this arrangement position is the position of each rubber ribbon R arranged on the laminated surface 24 in the cross section of the tire molding model 20 in the width direction (left and right direction in FIG. 4). Multiple inputs are made along the direction. Based on this, the arrangement position setting unit 11 sets the arrangement position of the rubber ribbon R that is continuously arranged in the circumferential direction at the reference position K in the circumferential direction of the tire molding model 20.

その際、ゴムリボンRの配置位置とともに、タイヤ成形モデル20への巻き付けの順番も設定され、例えば、N巻目はゴムリボンR(N)、N+1巻目はゴムリボンR(N+1)、N+2巻目はゴムリボンR(N+2)と設定される。また、図示の例では、ゴムリボンRは、幅方向に沿って順に間隔を開けた位置に配置されて、互いに離れた配置位置が積層面24に設定される。続いて、シミュレーション装置1は、展開積層面取得部12により、タイヤ成形モデル20のゴムリボンRが積層される積層面24を上記した基準位置Kで切り開いて、円筒状の形状から平面状の形状に展開し、展開積層面を取得する(図3、S103)。   At this time, the winding order of the tire molding model 20 is set together with the arrangement position of the rubber ribbon R. For example, the Nth roll is a rubber ribbon R (N), the N + 1th roll is a rubber ribbon R (N + 1), and the N + 2th roll is a rubber ribbon. R (N + 2) is set. Further, in the illustrated example, the rubber ribbons R are arranged at positions spaced apart in order along the width direction, and the arrangement positions separated from each other are set on the laminated surface 24. Subsequently, the simulation apparatus 1 uses the developed laminated surface acquisition unit 12 to open the laminated surface 24 on which the rubber ribbon R of the tire molding model 20 is laminated at the reference position K described above, and change the shape from a cylindrical shape to a planar shape. Development is performed to acquire a developed laminated surface (S103 in FIG. 3).

図5は、タイヤ成形モデル20の展開積層面を示す概略平面図であり、タイヤ成形モデル20の周方向位置も、それぞれ基準位置Kからの角度A(°)で示す。
展開積層面取得部12は、タイヤ成形モデル20のゴムリボンRの積層面24を切り開いて、図示のように、平面視矩形状の展開積層面24Tに展開する。展開積層面24Tは、切り開かれた両側の切り開き端(図の上下端)がタイヤ成形モデル20の基準位置Kに対応し、それぞれ周方向位置が0°と360°となる。
FIG. 5 is a schematic plan view showing a developed laminated surface of the tire molding model 20, and the circumferential position of the tire molding model 20 is also indicated by an angle A (°) from the reference position K, respectively.
The developed laminated surface acquisition unit 12 cuts the laminated surface 24 of the rubber ribbon R of the tire molding model 20 and develops it on a developed laminated surface 24T having a rectangular shape in plan view as shown in the drawing. In the developed laminated surface 24T, the cut ends (upper and lower ends in the figure) on both sides corresponding to the cut-open side correspond to the reference position K of the tire molding model 20, and the circumferential positions are 0 ° and 360 °, respectively.

ゴムリボンRは、展開積層面24Tに対し、0°の基準位置Kに設定された配置位置から周方向に沿って360°の位置まで配置されて1周巻き付けられた後、連続して0°の基準位置Kに設定された次の配置位置から周方向に配置される。ゴムリボンRは、このように連続して周方向に順に複数周配置されて展開積層面24Tに積層される。従って、0°の位置から配置されるN巻目のゴムリボンR(N)は、360°の位置では、次のN+1巻目のゴムリボンR(N+1)の配置位置に配置される。同様に、ゴムリボンR(N+1)は、360°の位置で次のN+2巻目のゴムリボンR(N+2)の配置位置に配置される。ただし、最後に巻き付けられるゴムリボンR(N+2)は、周方向に沿って直線的に配置されて、360°の位置でも同じ配置位置に配置される。シミュレーション装置1は、このゴムリボンRの配置条件に基づき、積層位置決定部13により算出して、展開積層面24T上に配置されたゴムリボンRの積層位置を決定する。   The rubber ribbon R is disposed from the disposition position set at the reference position K of 0 ° to the position of 360 ° along the circumferential direction with respect to the development laminated surface 24T, wound once, and then continuously wound by 0 °. They are arranged in the circumferential direction from the next arrangement position set at the reference position K. In this way, the rubber ribbon R is continuously arranged in the circumferential direction in a plurality of circumferences and laminated on the development lamination surface 24T. Therefore, the N-th rubber ribbon R (N) arranged from the 0 ° position is arranged at the arrangement position of the next N + 1-th rubber ribbon R (N + 1) at the 360 ° position. Similarly, the rubber ribbon R (N + 1) is disposed at the position of the next N + 2 roll rubber ribbon R (N + 2) at a position of 360 °. However, the rubber ribbon R (N + 2) to be wound last is linearly arranged along the circumferential direction, and is arranged at the same arrangement position even at a position of 360 °. The simulation apparatus 1 calculates the lamination position of the rubber ribbon R arranged on the development lamination surface 24T by calculating by the lamination position determination unit 13 based on the arrangement condition of the rubber ribbon R.

積層位置決定部13は、まず、展開積層面24Tの両切り開き端(基準位置K)に、配置位置設定部11により設定されたゴムリボンRの各配置位置(図4参照)に合わせて、ゴムリボンRの端部位置を設定する。その際、0°の切り開き端では、ゴムリボンRの設定された配置位置に一致するように端部位置(図5参照)を設定する。一方、360°の切り開き端では、上記のように、次に巻き付けられるゴムリボンRに設定された配置位置に端部位置を設定し、最後に巻き付けられるゴムリボンR(N+2)のみ配置位置と同じ端部位置を設定する。これにより、展開積層面24Tの両切り開き端に、それぞれ展開されたゴムリボンR(N)、R(N+1)、R(N+2)の各端部位置(切り開き端位置)を設定する。   The lamination position determination unit 13 first matches the rubber ribbon R with the two cut ends (reference position K) of the developed lamination surface 24T according to the arrangement positions (see FIG. 4) of the rubber ribbon R set by the arrangement position setting unit 11. Set the end position of. At that time, the end position (see FIG. 5) is set so as to coincide with the set arrangement position of the rubber ribbon R at the 0 ° open end. On the other hand, at the 360 ° open end, as described above, the end position is set to the arrangement position set to the rubber ribbon R to be wound next, and only the rubber ribbon R (N + 2) to be wound last is the same end as the arrangement position. Set the position. Thereby, the end positions (cut end positions) of the developed rubber ribbons R (N), R (N + 1), and R (N + 2) are set at both cut ends of the spread laminated surface 24T.

次に、積層位置決定部13は、両切り開き端の対応するゴムリボンRの端部位置同士をつないで(図5の二点鎖線)、展開積層面24T上のゴムリボンRの積層位置を算出する。具体的には、展開積層面24Tに対して、タイヤ成形モデル20の幅方向に沿ってX座標を設定し、ゴムリボンRの各周方向位置(角度)におけるX座標を算出して、ゴムリボンRの周方向の全体に亘るX座標を取得する。その際、例えば、ゴムリボンR(N)では、角度AにおけるX座標をX(A)、0°でのX座標をX(N)、360°でのX座標(=ゴムリボンR(N+1)の0°でのX座標)をX(N+1)とすると、X(A)は次の式(数1)で算出される。   Next, the lamination position determination unit 13 connects the end positions of the corresponding rubber ribbons R at the two open ends (two-dot chain line in FIG. 5), and calculates the lamination position of the rubber ribbon R on the developed lamination surface 24T. Specifically, the X coordinate is set along the width direction of the tire molding model 20 with respect to the development laminated surface 24T, the X coordinate at each circumferential position (angle) of the rubber ribbon R is calculated, and the rubber ribbon R The X coordinate over the whole circumferential direction is acquired. At this time, for example, in the rubber ribbon R (N), the X coordinate at the angle A is X (A), the X coordinate at 0 ° is X (N), and the X coordinate at 360 ° (= 0 of the rubber ribbon R (N + 1)). X (A) is calculated by the following equation (Equation 1), where X (N coordinates) in degrees is X (N + 1).

Figure 0005566094
Figure 0005566094

積層位置決定部13は、この算出式により、端部位置同士をつなぐゴムリボンRのX座標を、その幅方向の所定位置(例えば、端部や中央部)において全角度Aで算出する。また、予め設定されたゴムリボンRの幅に基づき、ゴムリボンRの幅方向の各部のX座標を算出して、それぞれのゴムリボンRの積層位置を求める。ただし、最後に巻き付けられるゴムリボンR(N+2)は、その0°でのX座標が周方向全体の積層位置となる。このようにして、積層位置決定部13は、配置位置設定部11により設定されたゴムリボンRの配置位置に基づき、展開積層面24T上のゴムリボンRの積層位置を決定する(図3、S104)。次に、積層厚さ算出部14が、記憶部3からゴムリボンRの予め設定された厚さを読み出し、ゴムリボンRの決定された積層位置と予め設定された厚さに基づき、展開積層面24T上のゴムリボンRの積層厚さを算出する(図3、S105)。   The stacking position determination unit 13 calculates the X coordinate of the rubber ribbon R connecting the end positions with a full angle A at a predetermined position in the width direction (for example, the end or the center) using this calculation formula. Further, the X coordinate of each part in the width direction of the rubber ribbon R is calculated based on the preset width of the rubber ribbon R, and the lamination position of each rubber ribbon R is obtained. However, the rubber ribbon R (N + 2) wound lastly has an X coordinate at 0 ° as a lamination position in the entire circumferential direction. In this way, the lamination position determination unit 13 determines the lamination position of the rubber ribbon R on the developed lamination surface 24T based on the arrangement position of the rubber ribbon R set by the arrangement position setting unit 11 (FIG. 3, S104). Next, the lamination thickness calculation unit 14 reads out the preset thickness of the rubber ribbon R from the storage unit 3, and based on the decided lamination position of the rubber ribbon R and the preset thickness, on the development lamination surface 24T. The thickness of the rubber ribbon R is calculated (FIG. 3, S105).

図6は、図5の展開積層面24Tの各積層位置にゴムリボンRを積層した状態を模式的に示す図である。
積層厚さ算出部14は、ゴムリボンRに厚さを付加して、展開積層面24Tの法線方向に設定されたY座標を算出する。Y座標は、ゴムリボンRの各積層位置で厚さ分の値を加算し、ゴムリボンRが重なる部分では重なりの数だけ法線方向に厚さ分の値を積み上げて、展開積層面24Tの全体に亘って算出する。これにより、積層厚さ算出部14は、展開積層面24Tに積層された全ゴムリボンRのY座標、及び、Y座標に対応するゴムリボンRの各部の積層厚さを算出する。
FIG. 6 is a diagram schematically showing a state in which the rubber ribbon R is laminated at each lamination position of the developed lamination surface 24T of FIG.
The laminated thickness calculation unit 14 adds the thickness to the rubber ribbon R and calculates the Y coordinate set in the normal direction of the developed laminated surface 24T. For the Y coordinate, the value for the thickness is added at each lamination position of the rubber ribbon R, and the value for the thickness is accumulated in the normal direction by the number of overlaps at the overlapping portion of the rubber ribbon R, and the entire laminated surface 24T is spread. To calculate. Thereby, the lamination thickness calculation unit 14 calculates the Y coordinate of all the rubber ribbons R laminated on the development lamination surface 24T and the lamination thickness of each part of the rubber ribbon R corresponding to the Y coordinate.

図7は、展開積層面24T上のゴムリボンRの積層厚さを示す図であり、積層厚さを厚さ毎に区画して模式的に示す表示装置5への表示例である。
シミュレート部10は、図示のように、ゴムリボンRの積層厚さを算出し、算出結果から、展開積層面24T上におけるゴムリボンRの積層形状を判別して、積層形状と積層形状に応じたタイヤ成形形状を取得する(図3、S106)。シミュレーション装置1は、このようにして、ゴムリボンRを積層して成形するタイヤの成形形状を、タイヤ成形モデル20を用いてシミュレートし、ゴムリボンRの積層形状を含むタイヤ成形形状を取得して、シミュレーション処理を終了する。
FIG. 7 is a view showing the laminated thickness of the rubber ribbon R on the developed laminated surface 24T, and is a display example on the display device 5 schematically showing the laminated thickness divided for each thickness.
As shown in the figure, the simulating unit 10 calculates the laminated thickness of the rubber ribbon R, discriminates the laminated shape of the rubber ribbon R on the developed laminated surface 24T from the calculation result, and the tire according to the laminated shape and the laminated shape. A molding shape is acquired (FIG. 3, S106). In this way, the simulation apparatus 1 simulates the molded shape of the tire formed by laminating the rubber ribbon R using the tire molding model 20, and acquires the tire molded shape including the laminated shape of the rubber ribbon R, The simulation process ends.

以上説明したように、本実施形態では、タイヤ成形モデル20を用い、展開積層面24T上のゴムリボンRの積層位置を決定して積層厚さを算出等することで、ゴムリボンRの積層によるタイヤの周方向全体の成形形状をシミュレーションにより取得できる。そのため、実際にゴムリボンRを積層してタイヤを試作することなく、その積層状態を簡単に精度よく確認できるとともに、ゴムリボンRの積層パターンを変更して様々な積層パターンでの積層状態を容易に確認できる。これに伴い、タイヤの生産開始前に、予めゴムリボンRの積層に伴う問題を把握でき、周方向に沿って積層の偏りや積層厚さのバラツキが発生するか否かを正確に判断して、最適な積層パターンを決定できる。また、積層状態の確認に要する手間や時間、及び、タイヤの試作工数を大幅に削減して、タイヤの生産コストを減少させることもできる。   As described above, in the present embodiment, the tire molding model 20 is used to determine the lamination position of the rubber ribbon R on the development lamination surface 24T and calculate the lamination thickness. The entire shape in the circumferential direction can be obtained by simulation. Therefore, it is possible to easily and accurately check the lamination state without actually stacking the rubber ribbon R to make a tire prototype, and to easily check the lamination state with various lamination patterns by changing the lamination pattern of the rubber ribbon R. it can. Along with this, before starting production of the tire, it is possible to grasp in advance the problems associated with the lamination of the rubber ribbon R, and accurately determine whether or not there is a deviation in the lamination or a variation in the lamination thickness along the circumferential direction, An optimum lamination pattern can be determined. In addition, it is possible to significantly reduce the labor and time required for checking the lamination state and the number of trial manufacturing steps of the tire, thereby reducing the production cost of the tire.

なお、タイヤ成形モデル20の基準位置K(図4参照)で、ゴムリボンRの配置位置を設定するときには、任意に各配置位置を設定すればよく、複数の配置位置を同じ間隔で設定してもよく、互いに異なる間隔で設定してもよい。その際、ゴムリボンRの配置位置は、一部又は全体を、積層面24の法線方向に複数重ねて設定してもよい。また、ゴムリボンRを積層して成形するタイヤ構成部材は、トレッドゴムに限らず、サイドウォールゴム等の他のタイヤ構成部材であってもよく、それぞれシミュレーション装置1により上記と同様にして積層形状を取得できる。加えて、本発明は、コンピュータにより、タイヤ成形形状のシミュレーション装置1の以上説明した処理を実行する各手段を実現するためのプログラムとすることもできる。   In addition, when setting the arrangement position of the rubber ribbon R at the reference position K (see FIG. 4) of the tire molding model 20, each arrangement position may be set arbitrarily, and a plurality of arrangement positions may be set at the same interval. It may be set at intervals different from each other. At this time, the arrangement position of the rubber ribbon R may be set by overlapping a part or the whole in the normal direction of the laminated surface 24. Further, the tire constituent member formed by laminating the rubber ribbon R is not limited to the tread rubber, but may be other tire constituent members such as a sidewall rubber. You can get it. In addition, this invention can also be made into the program for implement | achieving each means which performs the process demonstrated above of the tire shaping shape simulation apparatus 1 with a computer.

1・・・タイヤ成形形状のシミュレーション装置、2・・・入出力部、3・・・記憶部、4・・・入力装置、5・・・表示装置、10・・・シミュレート部、11・・・配置位置設定部、12・・・展開積層面取得部、13・・・積層位置決定部、14・・・積層厚さ算出部、15・・・バス、20・・・タイヤ成形モデル、24・・・積層面、24T・・・展開積層面、K・・・基準位置、R・・・ゴムリボン。   DESCRIPTION OF SYMBOLS 1 ... Tire shaping | molding shape simulation apparatus, 2 ... Input-output part, 3 ... Memory | storage part, 4 ... Input device, 5 ... Display apparatus, 10 ... Simulation part, 11 * ··· Arrangement position setting unit, 12 ··· Laminated laminated surface acquisition unit, 13 ··· Lamination position determination unit, 14 ··· Lamination thickness calculation unit, 15 ··· Bus, 20 ··· Tire molding model, 24: Laminated surface, 24T: Unfolded laminated surface, K: Reference position, R: Rubber ribbon.

Claims (3)

ゴムリボンを積層して成形するタイヤの成形形状を、タイヤ成形モデルを用いてシミュレートするタイヤ成形形状のシミュレーション装置であって、
タイヤ成形モデルの周方向の基準位置で、周方向に連続して複数周配置するゴムリボンの配置位置を設定する手段と、
タイヤ成形モデルのゴムリボンの積層面を基準位置で切り開いて展開し、展開積層面を取得する手段と、
ゴムリボンの設定された配置位置に基づき、展開積層面上のゴムリボンの積層位置を決定する手段と、
ゴムリボンの積層位置と予め設定されたゴムリボンの厚さに基づき、展開積層面上のゴムリボンの積層厚さを算出する手段と、を備え、
ゴムリボンの積層位置を決定する手段が、展開積層面の両切り開き端にゴムリボンの各配置位置に合わせてゴムリボンの端部位置を設定する手段と、両切り開き端の対応するゴムリボンの端部位置同士をつないで展開積層面上のゴムリボンの積層位置を算出する手段と、を有し、
ゴムリボンの積層厚さを算出する手段が、展開積層面に積層されたゴムリボンの重なりの数だけ、展開積層面の法線方向にゴムリボンの厚さ分の値を積み上げて、展開積層面の全体に亘って、ゴムリボンの積層厚さを算出する手段を有することを特徴とするタイヤ成形形状のシミュレーション装置。
A tire molding shape simulation device that simulates a molding shape of a tire formed by laminating rubber ribbons using a tire molding model,
Means for setting an arrangement position of a rubber ribbon arranged continuously in the circumferential direction at a reference position in the circumferential direction of the tire molding model;
Means for cutting and unfolding the laminated surface of the rubber ribbon of the tire molding model at a reference position and obtaining the unfolded laminated surface;
Means for determining a lamination position of the rubber ribbon on the development lamination surface based on the set arrangement position of the rubber ribbon;
A means for calculating a lamination thickness of the rubber ribbon on the development lamination surface based on a lamination position of the rubber ribbon and a predetermined thickness of the rubber ribbon, and
The means for determining the laminating position of the rubber ribbon includes a means for setting the end position of the rubber ribbon in accordance with each arrangement position of the rubber ribbon at both open ends of the development lamination surface, and the end positions of the rubber ribbons corresponding to the both open ends. And means for calculating a lamination position of the rubber ribbon on the development lamination surface,
The means for calculating the laminated thickness of the rubber ribbon accumulates the value of the thickness of the rubber ribbon in the normal direction of the developed laminated surface by the number of overlapping rubber ribbons laminated on the developed laminated surface. A tire molding shape simulation apparatus characterized by having means for calculating the laminated thickness of the rubber ribbon.
コンピュータにより、請求項1に記載されたタイヤ成形形状のシミュレーション装置の各手段を実現するためのプログラム。 The program for implement | achieving each means of the simulation apparatus of the tire shaping | molding shape described in Claim 1 by computer . ゴムリボンを積層して成形するタイヤの成形形状を、タイヤ成形モデルを用いてシミュレートするシミュレーション装置におけるタイヤ成形形状のシミュレーション方法であって、
タイヤ成形モデルの周方向の基準位置で、周方向に連続して複数周配置するゴムリボンの配置位置を設定する工程と、
タイヤ成形モデルのゴムリボンの積層面を基準位置で切り開いて展開し、展開積層面を取得する工程と、
ゴムリボンの設定された配置位置に基づき、展開積層面上のゴムリボンの積層位置を決定する工程と、
ゴムリボンの積層位置と予め設定されたゴムリボンの厚さに基づき、展開積層面上のゴムリボンの積層厚さを算出する工程と、を有し、
ゴムリボンの積層位置を決定する工程が、展開積層面の両切り開き端にゴムリボンの各配置位置に合わせてゴムリボンの端部位置を設定する工程と、両切り開き端の対応するゴムリボンの端部位置同士をつないで展開積層面上のゴムリボンの積層位置を算出する工程と、を有し、
ゴムリボンの積層厚さを算出する工程が、展開積層面に積層されたゴムリボンの重なりの数だけ、展開積層面の法線方向にゴムリボンの厚さ分の値を積み上げて、展開積層面の全体に亘って、ゴムリボンの積層厚さを算出する工程を有することを特徴とするタイヤ成形形状のシミュレーション方法。
A tire molding shape simulation method in a simulation apparatus for simulating a molding shape of a tire formed by laminating rubber ribbons using a tire molding model ,
A step of setting an arrangement position of a rubber ribbon arranged continuously in the circumferential direction at a reference position in the circumferential direction of the tire molding model;
Cutting and unfolding the laminated surface of the rubber ribbon of the tire molding model at the reference position and obtaining the unfolded laminated surface;
A step of determining a lamination position of the rubber ribbon on the development lamination surface based on the set arrangement position of the rubber ribbon;
A step of calculating a lamination thickness of the rubber ribbon on the development lamination surface based on a lamination position of the rubber ribbon and a predetermined thickness of the rubber ribbon,
The step of determining the lamination position of the rubber ribbon includes the step of setting the end position of the rubber ribbon in accordance with each arrangement position of the rubber ribbon at the two open ends of the development lamination surface, and the end positions of the corresponding rubber ribbons of the two open ends. And connecting the rubber ribbon on the development lamination surface to calculate the lamination position,
The process of calculating the thickness of the rubber ribbon stacks the value of the thickness of the rubber ribbon in the normal direction of the developed laminated surface by the number of overlapping rubber ribbons laminated on the developed laminated surface, A method for simulating a tire shape, comprising a step of calculating a laminated thickness of the rubber ribbon.
JP2009289122A 2009-12-21 2009-12-21 Tire molding shape simulation apparatus, simulation method, and program Expired - Fee Related JP5566094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009289122A JP5566094B2 (en) 2009-12-21 2009-12-21 Tire molding shape simulation apparatus, simulation method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009289122A JP5566094B2 (en) 2009-12-21 2009-12-21 Tire molding shape simulation apparatus, simulation method, and program

Publications (2)

Publication Number Publication Date
JP2011126483A JP2011126483A (en) 2011-06-30
JP5566094B2 true JP5566094B2 (en) 2014-08-06

Family

ID=44289554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009289122A Expired - Fee Related JP5566094B2 (en) 2009-12-21 2009-12-21 Tire molding shape simulation apparatus, simulation method, and program

Country Status (1)

Country Link
JP (1) JP5566094B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240651A (en) * 2002-02-20 2003-08-27 Sumitomo Rubber Ind Ltd Physical quantity display method for tire
JP2003291226A (en) * 2002-04-08 2003-10-14 Toyo Tire & Rubber Co Ltd Method for producing pneumatic tire
JP4205467B2 (en) * 2003-03-31 2009-01-07 横浜ゴム株式会社 Profile measuring apparatus and profile measuring method
JP2004358738A (en) * 2003-06-03 2004-12-24 Toyo Tire & Rubber Co Ltd Continuous molding equipment for strip rubber and continuous molding method using it
JP4881548B2 (en) * 2004-03-05 2012-02-22 株式会社ブリヂストン Rubber ribbon winding device
WO2008062609A1 (en) * 2006-11-20 2008-05-29 Bridgestone Corporation Method for measuring tire, device for measuring tire, and tire-molding device

Also Published As

Publication number Publication date
JP2011126483A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
US7908128B2 (en) Method for modeling a tire model and simulation method
JP7134027B2 (en) System and method for edge length difference measurement for fiber guidance in automated fiber placement
JP2010191612A (en) Tire model formation method and tire simulation method
JP4081330B2 (en) Mechanical property simulation method and mechanical property simulation apparatus for composite material
JP2003225952A (en) Method for simulating tire manufacturing process, program for putting this method into practice, method for manufacturing pneumatic tire, and pneumatic tire
JP5566094B2 (en) Tire molding shape simulation apparatus, simulation method, and program
JP5211549B2 (en) Tire model creation method, tire model performance prediction method, and tire design method
JP5169114B2 (en) How to create a tire model
CN112060292B (en) Arrangement method of prefabricated building precast concrete component moulds based on BIM
JP6152003B2 (en) How to create a tire model
JP5986481B2 (en) How to create a simulation model
JP6658108B2 (en) Tire vibration performance evaluation method
JP6424543B2 (en) Tire simulation method and tire performance evaluation method
JP6569492B2 (en) How to create a raw tire model
JP6393027B2 (en) Tire simulation method
JP5814740B2 (en) Tire simulation method
JP6812784B2 (en) How to create a model for numerical analysis of a rubber laminate
JP6163749B2 (en) Tire simulation method, tire characteristic evaluation method, tire manufacturing method
JP2007331500A (en) Creation method of simulation model of pneumatic tire and program for making computer execute creation method
JP4466119B2 (en) Operation method of simulation apparatus
CN111008496A (en) Method for designing tire bead filler core structure
JP2012056392A (en) Method of preparing tire model
JP6769180B2 (en) Raw tire temperature simulation method and tire vulcanization method
JP5315799B2 (en) Tire model creation method, tire model creation computer program, and tire design method
JP6644257B2 (en) Simulation method and evaluation method of pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140314

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140617

R150 Certificate of patent or registration of utility model

Ref document number: 5566094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees