JP5565680B2 - Gadolinium sulfide type structure yttrium oxide and method for producing the same - Google Patents

Gadolinium sulfide type structure yttrium oxide and method for producing the same Download PDF

Info

Publication number
JP5565680B2
JP5565680B2 JP2010089993A JP2010089993A JP5565680B2 JP 5565680 B2 JP5565680 B2 JP 5565680B2 JP 2010089993 A JP2010089993 A JP 2010089993A JP 2010089993 A JP2010089993 A JP 2010089993A JP 5565680 B2 JP5565680 B2 JP 5565680B2
Authority
JP
Japan
Prior art keywords
yttrium oxide
pressure
type
gadolinium sulfide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010089993A
Other languages
Japanese (ja)
Other versions
JP2011219306A (en
Inventor
斉 遊佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2010089993A priority Critical patent/JP5565680B2/en
Publication of JP2011219306A publication Critical patent/JP2011219306A/en
Application granted granted Critical
Publication of JP5565680B2 publication Critical patent/JP5565680B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は硫化ガドリニウム(Gd)型構造の酸化イットリウム(Y)とこの構造を有する酸化イットリウムを高温高圧処理過程により製造することに関する。 The present invention relates to producing gadolinium sulfide (Gd 2 S 3 ) type yttrium oxide (Y 2 O 3 ) and yttrium oxide having this structure by a high-temperature and high-pressure treatment process.

酸化イットリウムは耐熱セラミックに、また固体燃料電池用のイットリア安定化ジルコニアのような機能性材料の主要構成要素として広く使用されている。また、酸化イットリウムのイオン半径(Y3+=0.9Å)はランタニド系のイオン半径(Ln3+=0.86〜1.03Å)と近いため、ランタニド系のイオンを酸化イットリウム中に取り込んでEu3+:Y赤色発光蛍光体やNd3+:Y、Yb3+:Yレーザーなどの光学セラミックを製造するためにも使用されている。 Yttrium oxide is widely used in heat resistant ceramics and as a major component of functional materials such as yttria stabilized zirconia for solid fuel cells. In addition, since the ionic radius (Y 3+ = 0.9Y) of yttrium oxide is close to the lanthanide-based ionic radius (Ln 3+ = 0.86 to 1.03Å), the lanthanide-based ions are incorporated into yttrium oxide and Eu 3+. : Y 2 O 3 red light-emitting phosphors and Nd 3+ : Y 2 O 3 , Yb 3+ : Y 2 O 3 lasers are also used to produce optical ceramics.

酸化イットリウムの結晶構造としては、従来、A型希土類型、B型希土類型、C型希土類型、及びCaF型の4種類が知られている。室温常圧環境下では、酸化イットリウムはLnに見られるようなC型希土類型構造を取る。2.5GPa、1273Kでの高静圧実験(非特許文献1及び2)及び圧力12GPa以上、温度673K以下で行われた衝撃圧縮実験(非特許文献3)でB型希土類型構造が得られたことが報告されている。また、高温ラマンスペクトルにより、12GPaでC型希土類型からB型希土類型へ、また19GPaでB型希土類型からA型希土類型へのステップ状の相転移が起こることが示された(非特許文献4)。これとは対照的に、高圧下のX線による酸化イットリウムの研究では、C型希土類型はB型希土類型を経ることなく12GPaにおいて直接にA型希土類型へ相転移し、C型希土類型⇒B型希土類型⇒A型希土類型という順番の相転移はEu3+:Yの場合に限って見られたとされている(非特許文献5)。これに加えて、融点のわずかに下である2493Kにおいて常圧下で形成された酸化イットリウムの高温相(CaF型)の報告もある(非特許文献6及び7)。 Conventionally, four types of crystal structures of yttrium oxide are known: A-type rare earth type, B-type rare earth type, C-type rare earth type, and CaF 2 type. Under a room temperature and atmospheric pressure environment, yttrium oxide takes a C-type rare earth structure as found in Ln 2 O 3 . A B-type rare earth structure was obtained in a high static pressure experiment at 2.5 GPa and 1273 K (Non-patent Documents 1 and 2) and an impact compression experiment (Non-patent Document 3) conducted at a pressure of 12 GPa or more and a temperature of 673 K or less. It has been reported. In addition, the high-temperature Raman spectrum shows that a step-like phase transition occurs from C-type rare earth type to B-type rare earth type at 12 GPa and from B-type rare earth type to A-type rare earth type at 19 GPa (non-patent document). 4). In contrast, in the study of yttrium oxide by X-rays under high pressure, the C-type rare earth type does not pass through the B-type rare earth type, but directly transitions to the A-type rare earth type at 12 GPa. It is said that the phase transition in the order of B-type rare earth type → A-type rare earth type was observed only in the case of Eu 3+ : Y 2 O 3 (Non-patent Document 5). In addition to this, there is also a report of a high-temperature phase (CaF 2 type) of yttrium oxide formed under normal pressure at 2493 K, which is slightly below the melting point (Non-patent Documents 6 and 7).

しかしながら、本願発明者の知る限り、酸化イットリウムの相転移への温度の効果を入れた高圧下X線回折実験は報告されていない。   However, as far as the inventors of the present application know, no high-pressure X-ray diffraction experiments including the effect of temperature on the phase transition of yttrium oxide have been reported.

本発明の課題は、上述した既知の構造とは異なり、したがって従来にはなかった有用な特性が期待できる酸化イットリウムを得ることにある。   An object of the present invention is to obtain yttrium oxide which is different from the above-described known structure and therefore can be expected to have useful properties which have not been conventionally obtained.

本発明の一側面によれば、硫化ガドリニウム型構造を有する酸化イットリウムが与えられる。   According to one aspect of the present invention, there is provided yttrium oxide having a gadolinium sulfide type structure.

本発明の他の側面によれば、9GPa以上の圧力と800℃以上の温度で酸化イットリウムを処理する、硫化ガドリニウム型構造を有する酸化イットリウムの製造方法が与えられる。   According to another aspect of the present invention, there is provided a method for producing yttrium oxide having a gadolinium sulfide type structure, wherein yttrium oxide is treated at a pressure of 9 GPa or more and a temperature of 800 ° C. or more.

ここにおいて、圧力は40GPa以下とすることができる。   Here, the pressure can be 40 GPa or less.

また、圧力は10GPa以上かつ23GPa以下とすることができる。   The pressure can be 10 GPa or more and 23 GPa or less.

また、温度は2000℃以下とすることができる。   Moreover, temperature can be 2000 degrees C or less.

また、レーザー照射によって昇温を行うことができる。   Further, the temperature can be raised by laser irradiation.

また、ダイヤモンドアンビルにより圧力を印加することができる。   Moreover, a pressure can be applied with a diamond anvil.

本発明は、硫化ガドリニウム型構造の酸化イットリウムという、新規な構造の酸化イットリウムを与えるものである。本構造の酸化イットリウムは常温常圧下でも準安定的に存在し、また結晶構造が密になるになるため、C型及びB型希土類型構造を持つEu3+:Yとは異なる蛍光特性が期待される。 The present invention provides a novel structure of yttrium oxide called gadolinium sulfide type yttrium oxide. The yttrium oxide of this structure exists metastable even at normal temperature and pressure, and the crystal structure becomes dense, so that the fluorescence characteristics are different from Eu 3+ : Y 2 O 3 having C-type and B-type rare earth structures. There is expected.

ダイヤモンドアンビルセル高圧装置の原理を示す概念図。The conceptual diagram which shows the principle of a diamond anvil cell high pressure apparatus. 実施例で得られた硫化ガドリニウム型構造をもつ酸化イットリウムのX線回折図形。The X-ray diffraction pattern of the yttrium oxide which has the gadolinium sulfide type structure obtained in the Example. 硫化ガドリニウム型酸化イットリウムの生成経路と各種結晶構造の比較を示す模式図。The schematic diagram which shows the comparison of the production | generation path | route of gadolinium sulfide type yttrium oxide, and various crystal structures.

本発明の硫化ガドリニウム(Gd)型構造の酸化イットリウム(Y)は高温高圧処理過程により製造した。従来の高温高圧合成法では、B型希土類構造の酸化イットリウムの合成が確認されていたが、本発明では高温下でかつ従来法より高い圧力の発生により、今まで報告されていなかった硫化ガドリニウム型構造の酸化イットリウムの製造に成功した。 The gadolinium sulfide (Gd 2 S 3 ) type yttrium oxide (Y 2 O 3 ) of the present invention was produced by a high temperature and high pressure treatment process. In the conventional high-temperature and high-pressure synthesis method, synthesis of yttrium oxide having a B-type rare earth structure has been confirmed. However, in the present invention, a gadolinium sulfide type that has not been reported so far due to generation of pressure at a high temperature and higher than that of the conventional method The structure of yttrium oxide was successfully produced.

また、本発明者の実験によれば、室温高圧下ではA型希土類構造ができるが、この構造は一気圧への減圧時にB型希土類構造へ変化することが確認された。   Further, according to the experiment by the present inventor, an A-type rare earth structure can be formed at room temperature and high pressure, but it has been confirmed that this structure changes to a B-type rare earth structure when the pressure is reduced to 1 atm.

製造された硫化ガドリニウム型構造の酸化イットリウムはB型希土類構造に比べ8%高密度である。   The produced gadolinium sulfide type yttrium oxide is 8% denser than the B type rare earth structure.

以下、本発明を温度、圧力などを変化させて行った実施例に基づいて更に詳細に説明する。   Hereinafter, the present invention will be described in more detail based on examples carried out by changing temperature, pressure and the like.

微量の金粉末(0.1重量%未満)を混入した粉末のY(Aldrich P/N 204927、純度99.999%)を873Kで3時間乾燥させたものを高圧実験用の試料として準備した。なお、ここで金粉末を混入するのは、加熱及び圧力測定のためであり、結晶の構造には何の影響も与えない。すなわち、加熱は以下で説明するようにレーザー光(Nd:YLFレーザー)の吸収により行われる。しかし、酸化イットリウムは当該レーザー波長(1053nm)に対し透明であるため、微量の金粉末を試料に分散することによりレーザー吸収を可能にする。また、高圧下で金の格子定数をX線回折データから計算することにより、圧力測定をおこなうことも可能となる。 A sample of Y 2 O 3 (Aldrich P / N 204927, purity 99.999%) mixed with a small amount of gold powder (less than 0.1% by weight) dried at 873 K for 3 hours was used as a sample for high-pressure experiments. Got ready. Note that the gold powder is mixed here for heating and pressure measurement, and has no effect on the crystal structure. That is, heating is performed by absorption of laser light (Nd: YLF laser) as described below. However, since yttrium oxide is transparent to the laser wavelength (1053 nm), laser absorption is enabled by dispersing a small amount of gold powder in the sample. It is also possible to measure pressure by calculating the lattice constant of gold from X-ray diffraction data under high pressure.

試料に圧力をかけるため、図1に示す、上下に設けられた一対のダイヤモンドアンビル3でその間に存在する試料2を挟んで加圧する対称型のダイヤモンドアンビルセル(DAC)を使用した。図1において、50〜70μmの厚さのレニウム製のガスケット1に開設された直径100〜150μmの孔に試料2を装填した。室温での加圧の際には液圧媒体(hydrostatic medium)(ここではメタノール:エタノール:水=16:3:1)を使用したが、高温での加圧の際には液圧媒体は使用しなかった。室温及び高温でのその場高圧力X線回折実験は、夫々BL04B2及びSPring8(財団法人高輝度光科学研究センター(JASRI))で行った。30または38keVに調節された単色シンクロトロンX線(monochromatic synchrotron X-ray)を、DAC中の試料上で直径が約50μmのスポットに収束させた。回折されたX線はイメージ板(IP)とCCDを使用して検出した。検出器に記録したデバイ(Debye)リングはFIT2Dプログラム(非特許文献8)を使用して図2に示す強度対2θのデータに変換した。レーザービーム4による加熱はNd:YLFレーザー(図示せず)を使用し、レーザービーム4をDAC中の試料2上で直径20μmのスポットに収束させた。試料の温度は、試料からの灰色放射(gray body radiation)を測定することによってモニタした。圧力は金の格子定数から判定した(非特許文献9)。   In order to apply pressure to the sample, a symmetrical diamond anvil cell (DAC) shown in FIG. 1 is used in which a pair of diamond anvils 3 provided on the upper and lower sides are pressed between the sample 2 existing therebetween. In FIG. 1, a sample 2 was loaded into a hole having a diameter of 100 to 150 μm opened in a rhenium gasket 1 having a thickness of 50 to 70 μm. Hydrostatic medium (in this case methanol: ethanol: water = 16: 3: 1) was used for pressurization at room temperature, but hydraulic medium was used for pressurization at high temperature. I did not. In-situ high pressure X-ray diffraction experiments at room temperature and high temperature were performed at BL04B2 and SPring8 (High Intensity Photoscience Research Center (JASRI)), respectively. Monochromatic synchrotron X-rays adjusted to 30 or 38 keV were focused on a spot of about 50 μm in diameter on the sample in the DAC. Diffracted X-rays were detected using an image plate (IP) and a CCD. The Debye ring recorded in the detector was converted into the intensity versus 2θ data shown in FIG. 2 using the FIT2D program (Non-Patent Document 8). For the heating by the laser beam 4, an Nd: YLF laser (not shown) was used, and the laser beam 4 was focused on a spot having a diameter of 20 μm on the sample 2 in the DAC. The temperature of the sample was monitored by measuring the gray body radiation from the sample. The pressure was determined from the lattice constant of gold (Non-Patent Document 9).

表1に本願発明者が行った代表的な実験の結果をまとめた。なお、表1には圧力と温度を維持した時間は記載していないが、これは、相転移は加熱時間には敏感でないからである。表1で「高圧状態の構造」の列が「硫化ガドリニウム型」となっている圧力・温度条件下では数秒から数10秒程度の加熱・加圧時間でも十分に相転移する。余裕を見ても、おおむね1分以上の加熱・加圧を行えば十分である。   Table 1 summarizes the results of representative experiments conducted by the inventors. In Table 1, the time for maintaining the pressure and temperature is not described, because the phase transition is not sensitive to the heating time. In Table 1, under the pressure and temperature conditions in which the column of “high-pressure structure” is “gadolinium sulfide type”, a sufficient phase transition can be achieved even with a heating and pressurizing time of several seconds to several tens of seconds. Even if there is a margin, it is sufficient to perform heating and pressurizing for approximately 1 minute or more.

表1に示す実験結果において、実験No.1、5及び9の場合に硫化ガドリニウム型への相転移が観察された。一旦高温状態で硫化ガドリニウム型に相転移すると、実験No.1及び9の「減圧試料の構造」(DACによる加圧をやめて常圧に戻した状態での試料の構造)カラムに示すように、常圧に戻しても硫化ガドリニウム型構造を維持した。   In the experimental results shown in Table 1, Experiment No. In cases 1, 5, and 9, a phase transition to the gadolinium sulfide type was observed. Once the phase transition to the gadolinium sulfide type at high temperature, the experiment No. As shown in the column “Structure of the reduced pressure sample” 1 and 9 (the structure of the sample in a state where the pressure applied by the DAC was stopped and returned to the normal pressure), the gadolinium sulfide structure was maintained even when the pressure was returned to the normal pressure.

なお、実験No.5の「減圧試料の構造」カラムには「(回収せず)」と記載されている。これは、実験No.1及び9において、硫化ガドリニウム型が常圧でも構造が維持されていることを確認できているので、ここでは常圧下で試料をDACから回収して構造を確認することを省略したことを意味する。   Experiment No. In the column “Structure of the reduced pressure sample” 5, “(not recovered)” is written. This is the result of Experiment No. In 1 and 9, since it has been confirmed that the structure of the gadolinium sulfide type is maintained even under normal pressure, it means that the structure is not confirmed by collecting the sample from the DAC under normal pressure. .

また、「減圧試料の構造」カラムには他のいくつかの実験でも「(回収せず)」との記載があるが、上の場合と同様に、敢えて確認するまでもないなどの理由で常圧下での試料構造の確認を省略したことを意味する。   In addition, in the “reduced pressure sample structure” column, “(not recovered)” is also described in some other experiments. However, as in the above case, it is always necessary to confirm it. This means that the confirmation of the sample structure under pressure was omitted.

ここで行った実験で硫化ガドリニウム型の酸化イットリウムができたことを確認するため、図2に示すX線解析の強度対2θのデータを検討した。本データは実験No.1の試料から得られたものである。   In order to confirm that gadolinium sulfide type yttrium oxide was formed in the experiment conducted here, the data of the intensity versus 2θ of the X-ray analysis shown in FIG. 2 was examined. This data is from Experiment No. It was obtained from one sample.

図2のグラフにおいて、実測データ点は小さな十字マークで表す。また、これらの実測データ点に当てはめたところの、硫化ガドリニウム構造から観測されるはずの理論的な曲線は細い実線で示す。また、実測データ点と理論的なデータとの差を、図2のグラフ領域の下端近くに細い点線で示す。なお、実測データと重なった理論的な曲線がほぼ垂直方向を向いている箇所(そのような箇所はかなり多い)では、実測データ点の十字マークの縦方向の線は理論的なデータの曲線と重なって判別できず、実測テータ点のマークは短い横方向の細線のように見えることに注意されたい。   In the graph of FIG. 2, the measured data points are represented by small cross marks. The theoretical curve that should be observed from the gadolinium sulfide structure, applied to these measured data points, is indicated by a thin solid line. Further, the difference between the actually measured data point and the theoretical data is indicated by a thin dotted line near the lower end of the graph area of FIG. Note that in the places where the theoretical curve that overlaps the actual measurement data is almost vertical (there are many such places), the vertical line of the cross mark of the actual measurement data points is the curve of the theoretical data. Note that the mark of the measured data point looks like a short horizontal thin line because it cannot be distinguished by overlapping.

また、図2において、上述の細い点線と実測データ点及び理論的なデータの曲線との間に見える目盛マーク(tick mark)は、計算により夫々当該角度位置に硫化ガリウム型構造のピークが出現する位置を示し、目盛マークの下側にある上向きの細い8本の矢印は、夫々金粉からの回折の位置を示す。   In addition, in FIG. 2, a tick mark that appears between the above-mentioned thin dotted line, the measured data point, and the theoretical data curve has a peak of a gallium sulfide type structure at the angular position by calculation. The eight thin arrows pointing up and below the scale mark indicate the positions of diffraction from the gold powder.

図2に示されるように、実験No.1の処理を行った試料から得られたX線回折データと硫化ガドリニウム構造から得られるはずの理論データは非常によく一致しているため、ここで得られた酸化イットリウムは硫化ガドリニウム型の構造を有していることが確認できた。図示しないが、他の条件で処理した試料についても同様な方法で夫々の構造を同定した。   As shown in FIG. Since the X-ray diffraction data obtained from the sample treated in 1 and the theoretical data that should be obtained from the gadolinium sulfide structure are in good agreement, the obtained yttrium oxide has a gadolinium sulfide type structure. It was confirmed that it had. Although not shown, the structures of the samples treated under other conditions were identified by the same method.

また、得られた硫化ガドリニウム型構造を有する酸化イットリウムの密度を測定したところ、B型希土類型構造の酸化イットリウムに比べて8%の密度上昇が見られた。なお、1気圧における密度(g/cm)は、C型希土類型構造は5.03、B型希土類型構造は4.63、硫化ガドリニウム型構造の場合は4.27であった。 Further, when the density of the obtained yttrium oxide having a gadolinium sulfide type structure was measured, an increase in density of 8% was observed as compared with the yttrium oxide having a B type rare earth type structure. The density (g / cm 3 ) at 1 atm was 5.03 for the C-type rare earth structure, 4.63 for the B-type rare earth structure, and 4.27 for the gadolinium sulfide structure.

なお、上の表には示さないが、30GPa以上の圧力を印加した場合でも硫化ガドリニウム型への相転移が起こることがわかった。また、圧力の下限については実験的にほぼ9GPaであることがわかった。したがって、硫化ガドリニウム型構造への相転移を起こすための圧力範囲は9GPa以上、好ましくは9GPaから40Pa、より好ましくは10GPaから23GPaの範囲である。   Although not shown in the above table, it was found that even when a pressure of 30 GPa or more was applied, a phase transition to the gadolinium sulfide type occurred. The lower limit of the pressure was experimentally found to be about 9 GPa. Therefore, the pressure range for causing the phase transition to the gadolinium sulfide type structure is 9 GPa or more, preferably 9 GPa to 40 Pa, more preferably 10 GPa to 23 GPa.

また、この相転移を起こすための温度範囲は800℃以上で酸化イットリウムの融点未満、好ましくは800℃から2000℃の範囲である。   The temperature range for causing this phase transition is 800 ° C. or more and less than the melting point of yttrium oxide, preferably 800 ° C. to 2000 ° C.

図3に、上記実験の結果判明した酸化イットリウムの相転移を図式的に表す。同図からわかるように、従来試みられたことがなかった圧力及び温度の条件下で、硫化ガドリニウム型構造という新規な構造を有する酸化イットリウムが得られる。   FIG. 3 schematically shows the phase transition of yttrium oxide which has been found as a result of the above experiment. As can be seen from the figure, yttrium oxide having a novel structure called gadolinium sulfide type structure can be obtained under conditions of pressure and temperature that have not been attempted in the past.

以上詳細に説明したように、結晶構造が密になるため、C型およびB型希土類構造をもつEu3+:Yとは違う蛍光特性が期待される。 As described above in detail, since the crystal structure becomes dense, fluorescence characteristics different from Eu 3+ : Y 2 O 3 having C-type and B-type rare earth structures are expected.

1 ガスケット
2 試料
3 ダイヤモンドアンビル
4 レーザービーム
1 Gasket 2 Sample 3 Diamond anvil 4 Laser beam

Hoekstra and Gingerich(1964), Science, 146, 1163Hoekstra and Gingerich (1964), Science, 146, 1163 Hoekstra(1966), H. R. Inorg. Chem.,5, 754Hoekstra (1966), H. R. Inorg. Chem., 5, 754 Atou, T.; Kusaba, K.;Fukuoka, K.;Kikuchi, M.; Syono, Y. J. (1990), Solid State Chem.,89, 378Atou, T .; Kusaba, K .; Fukuoka, K .; Kikuchi, M .; Syono, Y. J. (1990), Solid State Chem., 89, 378 Husson, E.; Proust, C.; Gillet,P.; Itie, J. P. (1999), Mater. Res. Bull., 34, 2085Husson, E .; Proust, C .; Gillet, P .; Itie, J. P. (1999), Mater. Res. Bull., 34, 2085 Wang, L.; Pan, Y.; Ding, Y.; Yang, W.; Mao,W. L.; Sinogeikin, S. V.; Meng,Y.; Shen, G.;Mao, H. K.(2009), Appl. Phys Lett., 94, 061921Wang, L .; Pan, Y .; Ding, Y .; Yang, W .; Mao, WL; Sinogeikin, SV; Meng, Y .; Shen, G .; Mao, HK (2009), Appl. Phys Lett. , 94, 061921 Katagiri, S.; Ishizawa, N.; Marumo,F. (1993), Powder diffraction, 8, 60Katagiri, S .; Ishizawa, N .; Marumo, F. (1993), Powder diffraction, 8, 60 Swamy, V.; Dubrovinskaya,N. A.; Dubrovinsky, L. S. (1999), J. Mater. Res., 14,459Swamy, V .; Dubrovinskaya, N. A .; Dubrovinsky, L. S. (1999), J. Mater. Res., 14,459 Hammersley, A. P. European Synchrotron Radiation Facility Internal Report1997, ESRF97HA02THammersley, A. P. European Synchrotron Radiation Facility Internal Report 1997, ESRF97HA02T Andeson, O. L.; Isaak, D. G.; Yamamoto, S. (1989)J. Appl. Phys., 65, 1534Andeson, O. L .; Isaak, D. G .; Yamamoto, S. (1989) J. Appl. Phys., 65, 1534

Claims (7)

硫化ガドリニウム型構造を有する酸化イットリウム。   Yttrium oxide having a gadolinium sulfide type structure. 9GPa以上の圧力と800℃以上の温度で酸化イットリウムを処理する、硫化ガドリニウム型構造を有する酸化イットリウムの製造方法。   A method for producing yttrium oxide having a gadolinium sulfide type structure, wherein yttrium oxide is treated at a pressure of 9 GPa or more and a temperature of 800 ° C. or more. 圧力が40GPa以下である、請求項2に記載の硫化ガドリニウム型構造を有する酸化イットリウムの製造方法。   The manufacturing method of the yttrium oxide which has a gadolinium sulfide type structure of Claim 2 whose pressure is 40 GPa or less. 圧力が10GPa以上かつ23GPa以下である、請求項2または請求項3に記載の硫化ガドリニウム型構造を有する酸化イットリウムの製造方法。   The method for producing yttrium oxide having a gadolinium sulfide type structure according to claim 2 or 3, wherein the pressure is 10 GPa or more and 23 GPa or less. 温度が2000℃以下である、請求項2から請求項4のいずれかに記載の硫化ガドリニウム型構造を有する酸化イットリウムの製造方法。   The manufacturing method of the yttrium oxide which has a gadolinium sulfide type structure in any one of Claims 2-4 whose temperature is 2000 degrees C or less. レーザー照射によって昇温を行う、請求項2から請求項5の何れかに記載の硫化ガドリニウム型構造を有する酸化イットリウムの製造方法。   The method for producing yttrium oxide having a gadolinium sulfide structure according to any one of claims 2 to 5, wherein the temperature is raised by laser irradiation. ダイヤモンドアンビルにより圧力を印加する、請求項2から請求項6の何れかに記載の硫化ガドリニウム型構造を有する酸化イットリウムの製造方法。   The method for producing yttrium oxide having a gadolinium sulfide structure according to any one of claims 2 to 6, wherein pressure is applied by a diamond anvil.
JP2010089993A 2010-04-09 2010-04-09 Gadolinium sulfide type structure yttrium oxide and method for producing the same Expired - Fee Related JP5565680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010089993A JP5565680B2 (en) 2010-04-09 2010-04-09 Gadolinium sulfide type structure yttrium oxide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010089993A JP5565680B2 (en) 2010-04-09 2010-04-09 Gadolinium sulfide type structure yttrium oxide and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011219306A JP2011219306A (en) 2011-11-04
JP5565680B2 true JP5565680B2 (en) 2014-08-06

Family

ID=45036761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010089993A Expired - Fee Related JP5565680B2 (en) 2010-04-09 2010-04-09 Gadolinium sulfide type structure yttrium oxide and method for producing the same

Country Status (1)

Country Link
JP (1) JP5565680B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661451B2 (en) * 1985-12-04 1994-08-17 住友電気工業株式会社 Ultra high pressure generator
JP2773193B2 (en) * 1989-03-03 1998-07-09 住友電気工業株式会社 Method for producing translucent yttria sintered body
FR2684660B1 (en) * 1991-12-04 1994-08-19 Rhone Poulenc Chimie COMPOSITIONS BASED ON RARE EARTH SULPHIDES, PREPARATION AND USES.
JPH0765328A (en) * 1993-08-25 1995-03-10 Matsushita Electric Ind Co Ltd Alloy of exchange bias film for soft magnetic film and magnetoresistive type thin film magnetic head
JPH11300194A (en) * 1998-04-23 1999-11-02 Sumitomo Electric Ind Ltd Superhigh pressure generating diamond anvil
JP4131771B2 (en) * 1999-10-18 2008-08-13 株式会社フジクラ Polycrystalline thin film, manufacturing method thereof and oxide superconducting conductor

Also Published As

Publication number Publication date
JP2011219306A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
Goderski et al. Lanthanide upconverted luminescence for simultaneous contactless optical thermometry and manometry–sensing under extreme conditions of pressure and temperature
Schmitt et al. A review of defect structure and chemistry in ceria and its solid solutions
Prieur et al. Size dependence of lattice parameter and electronic structure in CeO2 nanoparticles
Jiang et al. High-pressure x-ray diffraction and Raman spectroscopy of phase transitions in Sm2O3
Simeone et al. Investigation on the zirconia phase transition under irradiation
Vásquez et al. Laser-induced anatase-to-rutile transition in TiO2 nanoparticles: promotion and inhibition effects by Fe and Al doping and achievement of micropatterning
Sun et al. The YMgB 5 O 10 crystal preparation and attractive multi-wavelength emission characteristics of doping Nd 3+ ions
Lang et al. Swift heavy ion-induced phase transformation in Gd2O3
Wang et al. Synthesis of nanosize powders and thin films of Yb-doped YAG by Sol− Gel methods
Zhang et al. Design of layer‐structured KAlF4: Yb/Er for pressure‐enhanced upconversion luminescence
He et al. Protection of nuclear graphite toward liquid fluoride salt by isotropic pyrolytic carbon coating
Pirri et al. Yb3+:(LuxY1− x) 2O3 mixed sesquioxide ceramics for laser applications. Part I: Fabrication, microstructure and spectroscopy
Lokesha et al. Unraveling the charge state of oxygen vacancies in monoclinic ZrO2 and spectroscopic properties of ZrO2: Sm3+ phosphor
Liu et al. High-pressure structural transitions of Sc2O3 by X-ray diffraction, Raman spectra, and ab initio calculations
Bouras et al. Photon management properties of Yb-doped SnO 2 nanoparticles synthesized by the sol–gel technique
Kostyukov et al. Synthesis, structure and photoluminescent properties of Eu: Gd2O3 nanophosphor synthesized by cw CO2 laser vaporization
Hansen et al. Single nanomaterial level investigation of ZnO nanorod sulfidation reactions via position resolved confocal Raman spectroscopy
Wang et al. Impact of Sc3+-modified local site symmetries on Er3+ ion upconversion luminescence in Y2O3 nanoparticles
JP5565680B2 (en) Gadolinium sulfide type structure yttrium oxide and method for producing the same
Ning et al. Femtosecond laser-induced anisotropic structure and nonlinear optical response of yttria-stabilized zirconia single crystals with different planes
Ghyngazov et al. Surface modification of ZrO2-3Y2O3 ceramics with continuous Ar+ ion beams
Aluri et al. An investigation of the electronic structure and structural stability of RE2Ti2O7 by glancing angle and total electron yield XANES
Dorman et al. In situ x-ray diffraction and absorption studies of the growth and phase transformation of yttrium hydroxide nanotubes to their oxide counterparts
Baraldi et al. Eu incorporation into sol–gel silica for photonic applications: spectroscopic and TEM evidences of α-quartz and Eu pyrosilicate nanocrystal growth
Baranov et al. High-pressure synthesis and luminescent properties of cubic ZnO/MgO nanocomposites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140605

R150 Certificate of patent or registration of utility model

Ref document number: 5565680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees