JP5565352B2 - FUEL CELL AND EXPANDED METAL MANUFACTURING DEVICE AND MANUFACTURING METHOD FOR FUEL CELL - Google Patents

FUEL CELL AND EXPANDED METAL MANUFACTURING DEVICE AND MANUFACTURING METHOD FOR FUEL CELL Download PDF

Info

Publication number
JP5565352B2
JP5565352B2 JP2011062802A JP2011062802A JP5565352B2 JP 5565352 B2 JP5565352 B2 JP 5565352B2 JP 2011062802 A JP2011062802 A JP 2011062802A JP 2011062802 A JP2011062802 A JP 2011062802A JP 5565352 B2 JP5565352 B2 JP 5565352B2
Authority
JP
Japan
Prior art keywords
flow path
mold
width
mesh
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011062802A
Other languages
Japanese (ja)
Other versions
JP2012199093A (en
Inventor
篤志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Auto Body Co Ltd
Toyota Motor Corp
Original Assignee
Toyota Auto Body Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Auto Body Co Ltd, Toyota Motor Corp filed Critical Toyota Auto Body Co Ltd
Priority to JP2011062802A priority Critical patent/JP5565352B2/en
Publication of JP2012199093A publication Critical patent/JP2012199093A/en
Application granted granted Critical
Publication of JP5565352B2 publication Critical patent/JP5565352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池における電解質膜の膜面に沿った網目状の流路を形成するエキスパンドメタルを製造する技術に関する。   The present invention relates to a technique for manufacturing an expanded metal that forms a mesh-like flow path along a membrane surface of an electrolyte membrane in a fuel cell.

一般に、燃料電池は、電解質膜の各膜面に電極を接合した膜電極接合体を含む発電体層と、当該発電体層を間に挟んで配置されるセパレーターとを備え、発電体層とセパレーターとの間をガス流路とする。近年では、このガス流路を、金属製の薄板のプレス成形を経たエキスパンドメタルにて、網目状に形成することが提案されている(特許文献1)。   In general, a fuel cell includes a power generator layer including a membrane electrode assembly in which electrodes are joined to respective membrane surfaces of an electrolyte membrane, and a separator disposed with the power generator layer interposed therebetween, and the power generator layer and the separator A gas flow path is defined between the two. In recent years, it has been proposed that the gas flow path be formed in a mesh shape with expanded metal that has been subjected to press molding of a thin metal plate (Patent Document 1).

特開2010−170984号公報JP 2010-170984 A

エキスパンドメタルは、プレス成形という簡便な既存技術で網目状の流路(ガス流路)を形成できることから、コスト的に有利であるものの、更なる発電性能の向上が要請されている。   Expanded metal is capable of forming a mesh-like flow path (gas flow path) with a simple existing technique called press molding, and thus is advantageous in terms of cost, but further improvement in power generation performance is required.

一般に、反応ガスは、燃料電池の一方の端部の側から供給されて、エキスパンドメタルの形成する網目状のガス流路を通過し、この流路通過の間に電極面の各部位に到って消費される。そして、燃料電池の他方の端部からは、オフガスが排出される。このため、反応ガスの供給側は、オフガス排出側と比較して、ガス量(ガス通過量)が多くなるので、エキスパンドメタルのガス流路を通過するガスによる水分の持ち去りが多くなり、その分だけ電解質膜の乾燥が進むと予想される。   In general, the reaction gas is supplied from one end side of the fuel cell, passes through a mesh-like gas flow path formed by the expanded metal, and reaches each part of the electrode surface during the passage of the flow path. Is consumed. And off-gas is discharged | emitted from the other edge part of a fuel cell. For this reason, since the amount of gas (gas passage amount) is larger on the reaction gas supply side than on the off-gas discharge side, moisture is carried away by the gas passing through the expanded metal gas flow path. It is expected that the electrolyte membrane will continue to dry.

その一方、燃料電池は、電気化学反応に伴って昇温するので、冷却用の冷媒を供給することで、昇温の抑制が図られている。冷媒は、燃料電池の温度を奪って暖められるので、冷媒の流入側と流出側とでは、流出側の方が冷媒温度は高くなる。このため、冷媒の流出側でもあり既述した反応ガスの供給側でもある領域では、冷媒温度が高いので、その分、電池温度の昇温抑制の効果が薄れると共に、ガスによる水分持ち去りが増えるので、燃料電池の高温運転時において、電解質膜の乾燥がより進むことが危惧される。電解質膜の乾燥は、反応ガスの電気化学反応の進行の妨げとなり得るので、乾燥抑制を図ることが望ましい。ところが、従来のエキスパンドメタルでは、こうした点への配慮に欠けることから、電解質膜の乾燥対処が望まれるに至った。   On the other hand, since the temperature of a fuel cell increases with an electrochemical reaction, the temperature increase is suppressed by supplying a cooling refrigerant. Since the refrigerant takes the temperature of the fuel cell and warms, the refrigerant temperature is higher on the outflow side on the inflow side and outflow side of the refrigerant. For this reason, in the region which is both the refrigerant outflow side and the above-described reaction gas supply side, the refrigerant temperature is high, and accordingly, the effect of suppressing the temperature rise of the battery temperature is reduced, and moisture removal by the gas increases. Therefore, there is a concern that the electrolyte membrane may be further dried during high temperature operation of the fuel cell. Since drying of the electrolyte membrane can hinder the progress of the electrochemical reaction of the reaction gas, it is desirable to suppress drying. However, the conventional expanded metal lacks consideration for these points, and thus it has been desired to deal with drying of the electrolyte membrane.

本発明は、上記した課題を踏まえ、電解質膜の乾燥を抑制可能な新たなエキスパンドメタルを提供して、発電性能の向上を図ることをその目的とする。   In view of the above-described problems, an object of the present invention is to provide a new expanded metal capable of suppressing drying of an electrolyte membrane and to improve power generation performance.

上記した目的の少なくとも一部を達成するために、本発明では、以下の構成を採用した。
燃料電池であって、
電解質膜の各膜面に電極を接合した膜電極接合体を含む発電体層と、
前記発電体層を間に挟んで配置され、前記発電体層での発電反応に供される反応ガスの給排に関与する一対のセパレーターと、
前記発電体層と前記一対のセパレーターの少なくとも一方との間に配置され、前記セパレーターからの前記反応ガスを前記電解質膜の膜面に沿ったガス流れ方向に流す網目状の流路を形成する流路形成部材とを備え、
該流路形成部材は、
前記網目状の流路を取り囲む部位が前記発電体層に接触する接触部位面積に広狭の差を備え、前記流路を通過する反応ガスの流量に基づいて、前記発電体層における前記電解質膜の乾燥が他の電解質膜箇所より起きやすいと予想される範囲に、前記接触部位面積が広い範囲の前記網目状の流路を形成する。
In order to achieve at least a part of the above object, the present invention adopts the following configuration.
A fuel cell,
A power generator layer including a membrane electrode assembly in which an electrode is bonded to each membrane surface of the electrolyte membrane;
A pair of separators that are arranged with the power generation layer sandwiched therebetween and that are involved in the supply and discharge of the reaction gas used in the power generation reaction in the power generation layer;
A flow that is disposed between the power generation layer and at least one of the pair of separators and forms a mesh-like flow path that allows the reaction gas from the separator to flow in the gas flow direction along the membrane surface of the electrolyte membrane. A road forming member,
The flow path forming member is:
The portion surrounding the mesh-shaped flow path has a wide and narrow difference in the contact part area that contacts the power generation body layer, and based on the flow rate of the reaction gas passing through the flow path, the electrolyte membrane of the power generation layer The mesh-like flow path having a wide contact area is formed in a range where drying is expected to occur more easily than other electrolyte membrane locations.

[適用1:燃料電池]
燃料電池であって、
電解質膜の各膜面に電極を接合した膜電極接合体を含む発電体層と、
前記発電体層を間に挟んで配置され、前記発電体層での発電反応に供される反応ガスの給排に関与する一対のセパレーターと、
前記発電体層と前記一対のセパレーターの少なくとも一方との間に配置され、前記セパレーターからの前記反応ガスを前記電解質膜の膜面に沿ったガス流れ方向に流す網目状の流路を形成する流路形成部材とを備え、
該流路形成部材は、
前記網目状の流路を取り囲む部位が前記発電体層に接触する接触部位面積に広狭の差を備え、前記発電体層における前記電解質膜の乾燥が他の電解質膜箇所より起きやすい範囲に、前記接触部位面積が広い範囲の前記網目状の流路を形成する
ことを要旨とする。
[Application 1: Fuel cell]
A fuel cell,
A power generator layer including a membrane electrode assembly in which an electrode is bonded to each membrane surface of the electrolyte membrane;
A pair of separators that are arranged with the power generation layer sandwiched therebetween and that are involved in the supply and discharge of the reaction gas used in the power generation reaction in the power generation layer;
A flow that is disposed between the power generation layer and at least one of the pair of separators and forms a mesh-like flow path that allows the reaction gas from the separator to flow in the gas flow direction along the membrane surface of the electrolyte membrane. A road forming member,
The flow path forming member is:
The area surrounding the mesh-shaped flow path has a wide and narrow difference in the contact part area in contact with the power generator layer, and in the range where the drying of the electrolyte membrane in the power generator layer is more likely to occur than other electrolyte membrane locations, The gist of the present invention is to form the mesh-like flow path having a wide contact area.

上記構成の燃料電池は、流路形成部材にて、セパレーターからの反応ガスの電解質膜の膜面に沿った網目状の流路を形成するに当たり、この網目状の流路を取り囲む部位が発電体層に接触する接触部位面積に広狭の差を持たせた。接触部位面積が広いと、網目状の流路を取り囲む部位にて発電体層表層が覆われる面積が広くなるので、網目状の流路を反応ガスが通過する際に反応ガスが発電体層表層に接触する面積が狭くなり、水分の持ち去りを抑制できる。上記構成の燃料電池は、発電体層における電解質膜の乾燥が他の電解質膜箇所より起きやすい範囲に、接触部位面積が広い範囲の網目状の流路を形成するので、電解質膜の乾燥が起きやすい範囲での水分の持ち去り抑制により、電解質膜の乾燥についても、これを抑制できる。この結果、上記構成の燃料電池によれば、電解質膜の乾燥抑制により、発電性能を高めることができる。   In the fuel cell having the above-described structure, when forming a mesh-like channel along the membrane surface of the electrolyte membrane of the reaction gas from the separator by the channel-forming member, a portion surrounding the mesh-like channel is a power generator. There were wide and narrow differences in the area of the contact area in contact with the layer. If the contact part area is large, the area where the power generator layer surface layer is covered at the part surrounding the mesh-like flow path becomes larger, so that the reaction gas is generated when the reaction gas passes through the mesh-like flow path. The area in contact with the water becomes narrow, and moisture removal can be suppressed. The fuel cell having the above configuration forms a network-like flow path having a wide contact area in a range where the electrolyte membrane in the power generation layer is more likely to dry than other electrolyte membrane locations, so that the electrolyte membrane is dried. By suppressing the removal of moisture within an easy range, it is possible to suppress the drying of the electrolyte membrane. As a result, according to the fuel cell having the above configuration, the power generation performance can be improved by suppressing the drying of the electrolyte membrane.

上記した燃料電池システムは、次のような態様とすることができる。例えば、前記流路形成部材をエキスパンドメタルとすることができ、こうすれば、簡便に流路形成部材を提供できる。   The fuel cell system described above can be configured as follows. For example, the flow path forming member can be an expanded metal, and in this way, the flow path forming member can be simply provided.

また、セパレーターについては、前記発電体層の冷却用の冷媒の流路を備えるものとした上で、冷媒の流路が前記流路形成部材の形成する前記網目状の流路における前記ガスの流れ方向と交差するようにした。そして、前記冷媒の流路における流路末端側であって前記網目状の流路における前記反応ガスの流路上流側の領域を前記電解質膜の乾燥が起きやすい範囲として、流路形成部材については、これを、前記領域に前記接触部位面積が広い範囲の前記網目状の流路を形成するようにできる。こうすれば、燃料電池の高温運転により冷媒温度が上がる冷媒流路末端側でもあり、水分持ち去りにより電解質膜の乾燥が進むと想定される反応ガス流路上流側でもある領域において、上記した電解質膜の乾燥抑制が可能となる。よって、高温運転時の発電能力を維持もしくは高めることができる。そして、反応ガスの流路上流側では、既述したように網目状の流路を取り囲む部位にて発電体層表層が覆われる面積が広くなるので、その分、反応ガスの消費が抑制される。このため、反応ガスの流路下流側では、未消費の反応ガスが届きやすくなるので、電気化学反応が活性化して発電能力が高まることから、燃料電池全体での発電分布がより均一化して、電池全体の発電能力も高まる。   Further, the separator is provided with a cooling medium flow path for cooling the power generation body layer, and the flow path of the gas flows in the mesh-shaped flow path formed by the flow path forming member. Crossed the direction. With respect to the flow path forming member, the region on the flow path end side in the flow path of the refrigerant and the upstream side of the flow path of the reactive gas in the mesh flow path is set as a range in which the electrolyte membrane is liable to dry. Thus, the mesh-like flow path having a wide area of the contact part can be formed in the region. In this way, in the region that is also the refrigerant channel end side where the refrigerant temperature rises due to the high-temperature operation of the fuel cell and also the upstream side of the reaction gas channel that is assumed to dry the electrolyte membrane due to moisture removal, the electrolyte described above The drying of the film can be suppressed. Therefore, the power generation capacity during high-temperature operation can be maintained or increased. In addition, as described above, since the area where the power generator layer surface layer is covered is widened at the portion surrounding the mesh-like flow path as described above, the consumption of the reaction gas is suppressed accordingly. . For this reason, since the unreacted reaction gas can easily reach the downstream side of the reaction gas flow path, the electrochemical reaction is activated and the power generation capability is increased. The power generation capacity of the entire battery will also increase.

[適用2:燃料電池用のエキスパンドメタルの製造装置]
燃料電池用のエキスパンドメタルの製造装置であって、
金属製の板材を送り出す供給部と、
凸形状の刃部を金型幅方向に並べて有する金型を、前記供給部により送り出される前記金属製の板材に対してプレスすることで、前記板材の板幅において凹部と凸部が交互に連続した網目状の流路をプレス形成するプレス部とを備え、
前記金型は、
前記網目状の流路の流路幅より幅広の金型幅とされ、該金型幅を前記網目状の流路の流路幅に対応する範囲の第1金型幅部と残余の範囲の第2金型幅部とに分け、前記第1金型幅部における前記凸形状の刃部のピッチが前記第2金型幅部における前記凸形状の刃部のピッチより狭くなるように、前記凸形状の刃部を前記第1、第2の金属幅部に並べて備え、
前記プレス部は、
前記金型を前記金型幅方向に沿ってスライド可能に保持し、
前記第1金型幅において並んだ前記凸形状の刃部による前記流路幅に亘っての前記網目状の流路のプレス形成と、前記第2金型幅部において並んだ前記凸形状の刃部と前記第2金型幅部に連続した前記第1金型幅における前記凸形状の刃部とによる前記流路幅に亘っての前記網目状の流路のプレス形成とを、前記金型の前記金型幅方向に沿ったスライドにより切り換える
ことを要旨とする。
[Application 2: Expanded metal manufacturing equipment for fuel cells]
An apparatus for producing expanded metal for fuel cells,
A supply section for feeding out metal plate materials;
By pressing a metal mold having convex blade parts arranged in the mold width direction against the metal plate material fed by the supply unit, recesses and projections are alternately continuous in the plate width of the plate material. A press portion for press-forming the mesh-shaped flow path,
The mold is
The width of the mold is wider than the flow path width of the mesh-shaped flow path, and the width of the mold corresponds to the flow width of the first flow path of the mesh-shaped flow path and the remaining range of the mold. Dividing into the second mold width part, the pitch of the convex blade part in the first mold width part is narrower than the pitch of the convex blade part in the second mold width part, A convex blade portion is provided side by side with the first and second metal width portions,
The press section is
Holding the mold slidably along the mold width direction,
Press formation of the mesh-like flow path over the flow path width by the convex blade parts arranged in the first mold width, and the convex blades arranged in the second mold width part Press forming the mesh-shaped flow path across the flow path width by the convex blade portion in the first mold width continuous with the second mold width section. The gist is to switch by sliding along the mold width direction.

[適用3:燃料電池用のエキスパンドメタルの製造方法]
燃料電池用のエキスパンドメタルの製造方法であって、
金属製の板材を送り出す送り出し工程と、
凸形状の刃部を金型幅方向に並べて有する金型を、前記送り出される前記金属製の板材に対してプレスすることで、前記流路幅において凹部と凸部が交互に連続した網目状の流路をプレス形成するプレス工程とを備え、
該プレス工程では、
前記流路幅より幅広の金型幅を前記網目状の流路の流路幅に対応する第1金型幅部と残余の第2金型幅部とに分け、前記第1金型幅部における前記凸形状の刃部のピッチが前記第2金型幅部における前記凸形状の刃部のピッチより狭くなるように、前記凸形状の刃部を備えた前記金型を、前記金型幅方向に沿ってスライド可能に保持し、
前記第1金型幅において並んだ前記凸形状の刃部による前記流路幅に亘っての前記網目状の流路のプレス形成と、前記第2金型幅部において並んだ前記凸形状の刃部と前記第2金型幅部に連続した前記第1金型幅における前記凸形状の刃部とによる前記流路幅に亘っての前記網目状の流路のプレス形成とを、前記金型の前記金型幅方向に沿ったスライドにより切り換える
ことを要旨とする。
[Application 3: Manufacturing method of expanded metal for fuel cell]
A method for producing expanded metal for a fuel cell, comprising:
A delivery process for delivering a metal plate;
By pressing a mold having convex blade portions arranged in the mold width direction against the metal plate material to be sent out, a mesh-like structure in which concave portions and convex portions are alternately continuous in the flow path width. A press process for press forming the flow path,
In the pressing process,
A mold width wider than the flow path width is divided into a first mold width section corresponding to the flow path width of the mesh-shaped flow path and a remaining second mold width section, and the first mold width section The mold having the convex blade portion is arranged so that the pitch of the convex blade portion is narrower than the pitch of the convex blade portion in the second mold width portion. Slidable along the direction,
Press formation of the mesh-like flow path over the flow path width by the convex blade parts arranged in the first mold width, and the convex blades arranged in the second mold width part Press forming the mesh-shaped flow path across the flow path width by the convex blade portion in the first mold width continuous with the second mold width section. The gist is to switch by sliding along the mold width direction.

上記した構成・手順を有する燃料電池用のエキスパンドメタルの製造装置と製造方法によれば、電解質膜の乾燥抑制を通して発電性能の向上に寄与し得るエキスパンドメタルを、金属製の板材に対する金型のプレスという既存手法で、容易に製造できる。しかも、刃部を有する金型の交換も不要であることから、工数低減、延いては、コスト低減も可能となる。   According to the expanded metal manufacturing apparatus and manufacturing method for a fuel cell having the above-described configuration / procedure, the expanded metal that can contribute to the improvement of power generation performance through the suppression of drying of the electrolyte membrane is pressed into a metal plate. It can be easily manufactured with the existing method. In addition, since it is not necessary to replace the metal mold having the blade portion, the number of man-hours can be reduced, and the cost can be reduced.

さらに、本発明は、種々の形態で実現可能であり、例えば、上記したエキスパンドメタルにて網目状のガス流路を形成する燃料電池の製造方法の形態で実現することが可能である。   Furthermore, the present invention can be realized in various forms, for example, in the form of a fuel cell manufacturing method in which a network-like gas flow path is formed of the above-described expanded metal.

本実施例の燃料電池スタック100の概略構成を燃料電池20の概略構成と合わせて示す説明図である。2 is an explanatory diagram showing a schematic configuration of a fuel cell stack 100 of the present embodiment together with a schematic configuration of a fuel cell 20. FIG. ガス流路形成部材40の概略構造を示す説明図である。3 is an explanatory diagram showing a schematic structure of a gas flow path forming member 40. FIG. ガス流路形成部材40を平面視しつつ当該形成部材における空気の流れ方向をガス流路形成部材40に接触するセパレーター80での冷却水流れ方向と関連付けて示す説明図である。FIG. 4 is an explanatory diagram showing the flow direction of air in the forming member in association with the cooling water flow direction in the separator 80 in contact with the gas flow path forming member 40 while viewing the gas flow path forming member 40 in plan view. 図3における4−4線に沿って発電体層35とガス流路形成部材40とセパレーター80との関係を模式的に示す説明図である。It is explanatory drawing which shows typically the relationship between the electric power generation body layer 35, the gas flow path formation member 40, and the separator 80 along line 4-4 in FIG. 図3における5−5線に沿って発電体層35とガス流路形成部材40とセパレーター80との関係を模式的に示す説明図である。FIG. 5 is an explanatory diagram schematically showing a relationship among a power generation layer 35, a gas flow path forming member 40, and a separator 80 along line 5-5 in FIG. ガス流路形成部材40のプレス形成に用いる刃型部300と供給系340の構成および両者の関係を示す説明図である。It is explanatory drawing which shows the structure of the blade type | mold part 300 used for press formation of the gas flow path formation member 40, the structure of a supply system 340, and both. プレス形態の切り換えと刃型スライドと基材210との関係を概略的に平面視して示す説明図である。It is explanatory drawing which shows the switching of a press form, the relationship between a blade type | mold slide, and the base material 210 in planar view roughly. 40Wプレス形態でのプレス形成の第一段階を示す説明図である。It is explanatory drawing which shows the 1st step of press formation in a 40W press form. 40Wプレス形態でのプレス形成の第2段階を説明図である。It is explanatory drawing the 2nd step of press formation in a 40W press form. 40Wプレス形態でのプレス形成の第3段階を示す説明図である。It is explanatory drawing which shows the 3rd step of press formation in a 40W press form. 40Nプレス形態でのプレス形成の第一段階を示す説明図である。It is explanatory drawing which shows the 1st step of the press formation in a 40N press form. 40Nプレス形態でのプレス形成の第2段階を説明図である。It is explanatory drawing the 2nd step of press formation in a 40N press form. 40Nプレス形態でのプレス形成の第3段階を示す説明図である。It is explanatory drawing which shows the 3rd step of press formation in a 40N press form. 燃料電池20の発電体層35における電解質膜31の発電分布の様子と空気とガスの流路との関係を常温運転と高温運転とで概略的に示す説明図である。4 is an explanatory diagram schematically showing the relationship between the power generation distribution of the electrolyte membrane 31 in the power generation body layer 35 of the fuel cell 20 and the flow paths of air and gas in normal temperature operation and high temperature operation. FIG.

以下、本発明の実施の形態について、その実施例を図面に基づき説明する。図1は本実施例の燃料電池スタック100の概略構成を燃料電池20の概略構成と合わせて示す説明図である。図示するように、燃料電池スタック100は、固体高分子形の燃料電池20を複数積層し、その両端にターミナルおよびインシュレータ(図示省略)を配置して、これをエンドプレート95,96で挟持して構成される。この燃料電池スタック100では、燃料ガスとしての水素ガスおよび酸化ガスとしての空気が水素供給マニホールド95a、空気供給マニホールド95bから燃料電池20に供給され、その排ガスが水素排出マニホールド95cおよび空気排出マニホールド95dから排出される。また、冷却水が冷却水供給マニホールド95eから燃料電池20に供給され、その排水が冷却水排出マニホールド95fから排出される。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view showing a schematic configuration of a fuel cell stack 100 of this embodiment together with a schematic configuration of a fuel cell 20. As shown in the figure, the fuel cell stack 100 includes a plurality of polymer electrolyte fuel cells 20 stacked, terminals and insulators (not shown) arranged at both ends, and sandwiched between end plates 95 and 96. Composed. In this fuel cell stack 100, hydrogen gas as fuel gas and air as oxidant gas are supplied to the fuel cell 20 from the hydrogen supply manifold 95a and air supply manifold 95b, and the exhaust gas is supplied from the hydrogen discharge manifold 95c and air discharge manifold 95d. Discharged. Further, the cooling water is supplied from the cooling water supply manifold 95e to the fuel cell 20, and the waste water is discharged from the cooling water discharge manifold 95f.

燃料電池20は、発電体層35の両面に、ガス流路形成部材40、60、セパレーター70、80を積層して構成される。発電体層35は、電解質膜・電極接合体としてのMEA(Membrane Electrode Assembly)34の両面にガス拡散層33a、33bを接合して構成される。MEA34は、電解質膜31の表面上に、カソード電極32aとアノード電極32bとを備える。電解質膜31は、湿潤状態で良好なプロトン伝導性を示す固体高分子材料の薄膜である。本実施例では、電解質膜31には、ナフィオン(登録商標)を用いた。カソード電極32aおよびアノード電極32bは、導電性を有する担体上に触媒を担持させた電極であり、本実施例においては、白金触媒を担持したカーボン粒子と、電解質膜31を構成する高分子電解質と同質の電解質とを備えている。   The fuel cell 20 is configured by laminating gas flow path forming members 40, 60 and separators 70, 80 on both surfaces of the power generation body layer 35. The power generation body layer 35 is configured by bonding gas diffusion layers 33a and 33b to both surfaces of an MEA (Membrane Electrode Assembly) 34 as an electrolyte membrane / electrode assembly. The MEA 34 includes a cathode electrode 32 a and an anode electrode 32 b on the surface of the electrolyte membrane 31. The electrolyte membrane 31 is a thin film of a solid polymer material that exhibits good proton conductivity in a wet state. In this embodiment, Nafion (registered trademark) is used for the electrolyte membrane 31. The cathode electrode 32a and the anode electrode 32b are electrodes in which a catalyst is supported on a carrier having conductivity. In this embodiment, carbon particles supporting a platinum catalyst, a polymer electrolyte constituting the electrolyte membrane 31, and With the same electrolyte.

ガス拡散層33a,33bは、ガス透過性を有する導電性部材、例えば、カーボンペーパやカーボンクロス、あるいは金属メッシュや発泡金属によって形成することができる。本実施例においては、ガス拡散層33a,33bは、カーボンペーパを用いた。ガス拡散層33a,33bは、酸化ガスまたは燃料ガスを拡散して、カソード電極32aまたはアノード電極32bの全面に供給する。ガス拡散層33a,33bは、後述するガス流路形成部材40、60と比べて小さい気孔率を有しており、ガス拡散機能の他に、集電機能や、MEA34の保護機能も担っている。なお、このガス拡散層33aおよび33bには、MEA34の水分量を調節する機能などを持たせてもよい。   The gas diffusion layers 33a and 33b can be formed of a conductive member having gas permeability, such as carbon paper or carbon cloth, a metal mesh, or a foam metal. In this embodiment, carbon paper is used for the gas diffusion layers 33a and 33b. The gas diffusion layers 33a and 33b diffuse the oxidizing gas or the fuel gas and supply it to the entire surface of the cathode electrode 32a or the anode electrode 32b. The gas diffusion layers 33a and 33b have a smaller porosity than those of gas flow path forming members 40 and 60, which will be described later. In addition to the gas diffusion function, the gas diffusion layers 33a and 33b also have a current collecting function and a MEA 34 protection function. . The gas diffusion layers 33a and 33b may have a function of adjusting the moisture content of the MEA 34.

かかる発電体層35は、その外周に配されたシールガスケット36と一体形成される。シールガスケット36には、水素供給マニホールド30a、空気供給マニホールド30b、水素排出マニホールド30c、空気排出マニホールド30d、冷却水供給マニホールド30e、冷却水排出マニホールド30fを備えている。また、シールガスケット36には、厚み方向に、各マニホールドと発電体層35の外周部とをそれぞれ囲む凸状の部位が形成されており、当該部位は、シールガスケット36の両側に積層されるセパレーター70、80と当接し、マニホールド内や発電体層35内からの流体(燃料ガス、酸化ガス、冷却水)の漏れを抑制するシールとして機能する。   The power generator layer 35 is integrally formed with a seal gasket 36 disposed on the outer periphery thereof. The seal gasket 36 includes a hydrogen supply manifold 30a, an air supply manifold 30b, a hydrogen discharge manifold 30c, an air discharge manifold 30d, a cooling water supply manifold 30e, and a cooling water discharge manifold 30f. The seal gasket 36 is formed with convex portions surrounding each manifold and the outer peripheral portion of the power generation layer 35 in the thickness direction, and the portions are separators laminated on both sides of the seal gasket 36. 70 and 80, and functions as a seal that suppresses leakage of fluid (fuel gas, oxidizing gas, cooling water) from the inside of the manifold and the power generation layer 35.

ガス流路形成部材40、60は、発電体層35にガスを供給するガス流路を形成する。ガス流路形成部材40は、発電体層35のアノード電極32b側とセパレーター70との間(流路形成領域)に配設され、セパレーター70を介して供給された燃料ガス(ここでは水素ガス)を、MEA34の電極面の側方の一方の側から他方の側に向けた流れで流しつつ、燃料ガスを発電体層35のアノード電極32b側に供給する。同様に、ガス流路形成部材60は、酸化ガス(ここでは空気)を発電体層35のカソード電極32a側に供給する。かかるガス流路形成部材40、60は、耐食性と導電性とを有する金属、例えば、ステンレス鋼やチタン、チタン合金などによって形成されるが、本実施例では、ステンレス鋼を用いた。ガス流路形成部材40、60の詳細な構造については後述する。なお、本実施例では、発電体層35の両面にガス流路形成部材40、60を備える構成としたが、発電体層35の片面のみに備える構成としてもよい。   The gas flow path forming members 40 and 60 form a gas flow path for supplying gas to the power generation body layer 35. The gas flow path forming member 40 is disposed between the anode electrode 32b side of the power generation body layer 35 and the separator 70 (flow path forming region), and is a fuel gas (here, hydrogen gas) supplied via the separator 70. The fuel gas is supplied to the anode electrode 32b side of the power generation body layer 35 while flowing in a flow from one side of the electrode surface of the MEA 34 toward the other side. Similarly, the gas flow path forming member 60 supplies an oxidizing gas (air in this case) to the cathode electrode 32 a side of the power generation body layer 35. The gas flow path forming members 40, 60 are formed of a metal having corrosion resistance and conductivity, such as stainless steel, titanium, titanium alloy, etc., but in this embodiment, stainless steel was used. The detailed structure of the gas flow path forming members 40 and 60 will be described later. In the present embodiment, the gas flow path forming members 40 and 60 are provided on both surfaces of the power generation body layer 35, but may be provided only on one side of the power generation body layer 35.

セパレーター70、80は、反応ガスの隔壁として機能する部材であり、同一の構成を有している。以下、セパレーター70について説明する。セパレーター70は、ガス不透過な導電性部材、例えば圧縮カーボンやステンレス鋼から成る部材によって形成される。本実施例では、ステンレス鋼を用いた。セパレーター70は、カソード電極32a側に設けられる平坦なカソード側セパレーター71と、アノード電極32b側に設けられる平坦なアノード側セパレーター73と、それらの間に配置される中間セパレーター72とが一体となって構成される。カソード側セパレーター71は、水素供給マニホールド71a、空気供給マニホールド71b、水素排出マニホールド71c、空気排出マニホールド71d、冷却水供給マニホールド71e、冷却水排出マニホールド71f、空気連通孔75,76を備えている。空気供給マニホールド71bに供給された空気は、中間セパレーター72の空気連通孔72bおよび空気連通孔75を介して、カソード側セパレーター71に面して設けられる他の燃料電池20(図示省略)のガス流路形成部材40に導かれる。また、その排ガスは、空気連通孔76および中間セパレーター72の連通孔(図示省略)を介して、空気排出マニホールド71dに排出される。   Separator 70,80 is a member which functions as a reaction gas partition, and has the same configuration. Hereinafter, the separator 70 will be described. The separator 70 is formed of a gas impermeable conductive member, such as a member made of compressed carbon or stainless steel. In this example, stainless steel was used. In the separator 70, a flat cathode side separator 71 provided on the cathode electrode 32a side, a flat anode side separator 73 provided on the anode electrode 32b side, and an intermediate separator 72 disposed therebetween are integrated. Composed. The cathode-side separator 71 includes a hydrogen supply manifold 71a, an air supply manifold 71b, a hydrogen discharge manifold 71c, an air discharge manifold 71d, a cooling water supply manifold 71e, a cooling water discharge manifold 71f, and air communication holes 75 and 76. The air supplied to the air supply manifold 71 b flows through the air communication hole 72 b and the air communication hole 75 of the intermediate separator 72 and flows in the other fuel cell 20 (not shown) provided facing the cathode side separator 71. Guided to the path forming member 40. The exhaust gas is discharged to the air discharge manifold 71d through the air communication hole 76 and the communication hole (not shown) of the intermediate separator 72.

同様に、水素供給マニホールド71aに供給された水素は、中間セパレーター72の水素連通孔72aおよびアノード側セパレーター73の連通孔(図示省略)を介して、ガス流路形成部材60に導かれ、ガス流路形成部材60を流れた後、中間セパレーター72およびアノード側セパレーター73の連通孔(図示せず)を介して、水素排出マニホールド71cに排出される。また、中間セパレーター72には、略長方形外形の長辺方向に沿って複数の切欠が形成され、その切欠の両端はそれぞれ、冷却水排出マニホールド71fおよび冷却水供給マニホールド71eと連通している。なお、セパレーター70は、上述した3層構造のものに限るものではない。例えば、カソード側セパレーター71とアノード側セパレーター73との2層構造とし、中間セパレーター72に形成される連通孔に相当する形状をカソード側セパレーター71および/またはアノード側セパレーター73の内側に形成してもよい。   Similarly, the hydrogen supplied to the hydrogen supply manifold 71a is guided to the gas flow path forming member 60 through the hydrogen communication hole 72a of the intermediate separator 72 and the communication hole (not shown) of the anode side separator 73, and the gas flow After flowing through the passage forming member 60, it is discharged to the hydrogen discharge manifold 71 c through the communication holes (not shown) of the intermediate separator 72 and the anode side separator 73. The intermediate separator 72 is formed with a plurality of cutouts along the long side direction of a substantially rectangular outline, and both ends of the cutouts communicate with the cooling water discharge manifold 71f and the cooling water supply manifold 71e, respectively. The separator 70 is not limited to the three-layer structure described above. For example, the cathode side separator 71 and the anode side separator 73 may have a two-layer structure, and a shape corresponding to the communication hole formed in the intermediate separator 72 may be formed inside the cathode side separator 71 and / or the anode side separator 73. Good.

セパレーター70は、冷却水供給マニホールド71eから流入した冷却水を、冷却水排出マニホールド71fから排出するに当たり、カソード側セパレーター71と中間セパレーター72で挟まれた中間セパレーター72にて、冷却水流路を形成する。セパレーター80にあっても同様であり、発電体層35のカソード電極32aの側に位置するセパレーター80は、冷却水流路を図1に点線で示すように、形成し、当該流路を流れる冷却水にて、発電体層35を冷却する。この場合、セパレーター80の冷却水流路とガス流路形成部材40における空気流路とは、冷却水の流れ方向と空気の流れ方向とが交差するように形成されることになる。   The separator 70 forms a cooling water flow path in the intermediate separator 72 sandwiched between the cathode separator 71 and the intermediate separator 72 when discharging the cooling water flowing in from the cooling water supply manifold 71e from the cooling water discharge manifold 71f. . The same applies to the separator 80, and the separator 80 located on the cathode electrode 32a side of the power generation body layer 35 is formed with a cooling water flow path as indicated by a dotted line in FIG. Then, the power generator layer 35 is cooled. In this case, the cooling water flow path of the separator 80 and the air flow path in the gas flow path forming member 40 are formed so that the flow direction of the cooling water and the flow direction of the air intersect.

次に、ガス流路形成部材40、60について説明する。本実施例においては、ガス流路形成部材40とガス流路形成部材60とは同一の構造を有しているので、以下では、カソード電極32aの側のガス流路形成部材40の構造として説明する。図2はガス流路形成部材40の概略構造を示す説明図、図3はガス流路形成部材40を平面視しつつ当該形成部材における空気の流れ方向をガス流路形成部材40に接触するセパレーター80での冷却水流れ方向と関連付けて示す説明図である。   Next, the gas flow path forming members 40 and 60 will be described. In this embodiment, since the gas flow path forming member 40 and the gas flow path forming member 60 have the same structure, the following description will be made as the structure of the gas flow path forming member 40 on the cathode electrode 32a side. To do. FIG. 2 is an explanatory view showing a schematic structure of the gas flow path forming member 40, and FIG. 3 is a separator that contacts the gas flow path forming member 40 in the air flow direction in the forming member while viewing the gas flow path forming member 40 in plan view. It is explanatory drawing shown in relation with the cooling water flow direction in 80. FIG.

図2に示すように、ガス流路形成部材40は、凹部51と凸部53とを一方向(以下、この方向を便宜上X方向と称する)に交互に連続させ、この凹凸の連続をX方向と直交するY方向に繰り返すエキスパンドメタルとされている。このガス流路形成部材40は、Y方向に沿って凹部51と凸部53を並べ、このY方向に並ぶ凹部51の底部と凸部53の頂上部53aとを繋げて、凹部51と凸部53とでY方向に沿った貫通孔41を形成し、この貫通孔41の連続により網目状の流路を形成する。以下、本実施例では、図におけるY方向が流路方向となり、図の手前側が空気のin側、奥側がout側となり、凹部51と凸部53とで形成された網目状の流路は、XY平面に対して凹部51および凸部53の形成壁が一定の勾配をもって連設された形状として構成される。図2に示すY方向の空気の流路方向は、図1のガス流路形成部材40においては、図中実線で示された方向となる。   As shown in FIG. 2, the gas flow path forming member 40 has the concave portions 51 and the convex portions 53 alternately and continuously in one direction (hereinafter, this direction is referred to as the X direction for convenience), Expand metal that repeats in the Y direction orthogonal to The gas flow path forming member 40 includes a concave portion 51 and a convex portion 53 arranged in the Y direction, and the bottom portion of the concave portion 51 and the top portion 53a of the convex portion 53 arranged in the Y direction are connected. 53, a through hole 41 along the Y direction is formed, and a continuous flow path 41 forms a mesh-like flow path. Hereinafter, in this embodiment, the Y direction in the figure is the flow path direction, the front side of the figure is the air in side, the back side is the out side, and the mesh-like flow path formed by the concave portions 51 and the convex portions 53 is: The formation wall of the recessed part 51 and the convex part 53 is comprised as a shape connected with a fixed gradient with respect to XY plane. The flow direction of the air in the Y direction shown in FIG. 2 is the direction indicated by the solid line in the gas flow path forming member 40 of FIG.

ガス流路形成部材40は、凹部51と凸部53とを1周期として、同一周期で連続させる他、Y方向では、凹凸の位相をほぼ半周期(ハーフピッチ)ズラしている。また、ガス流路形成部材40は、図2における右下端側の領域において、凹部51に連続する凸部を広範囲凸部54としている。この広範囲凸部54の形成領域(以下、広範囲凸部領域40W)は、図3にクロスハッチで示され、発電体層35とセパレーター80とで挟まれたガス流路形成部材40(図1参照)において、セパレーター80における冷却水流路の末端側(詳しくは、冷却水流路の末端側1/4〜1/2)であって、ガス流路形成部材40における貫通孔41で形成される空気の流路の上流側(詳しくは、空気流路の上流側1/4〜1/2)の領域とされている。そして、この図3におけるノーマルハッチの範囲は、凹部51と凸部53の交互連続で空気流路が網目状に形成された領域(以下、ノーマル領域40N)とされている。なお、図2の例では、X方向の凹凸の連続をY方向に6対繰り返して記載しているが、これは図示の都合によるもので、実際は、発電体層35のスペックに合わせて、凹凸連続がX方向およびY方向に繰り返される。   The gas flow path forming member 40 has the concave portion 51 and the convex portion 53 as one cycle and is continuous in the same cycle, and the phase of the concave and convex portions is shifted by almost a half cycle (half pitch) in the Y direction. Further, in the gas flow path forming member 40, a convex portion continuous with the concave portion 51 is a wide range convex portion 54 in the region on the lower right side in FIG. 2. The formation area of the wide area convex portion 54 (hereinafter, wide area convex area 40W) is shown by a cross hatch in FIG. 3, and the gas flow path forming member 40 sandwiched between the power generation layer 35 and the separator 80 (see FIG. 1). ), The end side of the cooling water flow path in the separator 80 (specifically, the end side 1/4 to 1/2 of the cooling water flow path), and the air formed in the through hole 41 in the gas flow path forming member 40 It is an area on the upstream side of the flow path (specifically, on the upstream side 1/4 to 1/2 of the air flow path). The range of the normal hatch in FIG. 3 is a region (hereinafter referred to as a normal region 40N) in which the air flow paths are formed in a mesh pattern by alternately and continuously forming the concave portions 51 and the convex portions 53. In the example of FIG. 2, the concavo-convex in the X direction is described by repeating six pairs in the Y direction. However, this is for the convenience of illustration, and actually, in accordance with the specifications of the power generation layer 35, the concavo-convex The continuation is repeated in the X and Y directions.

ガス流路形成部材40は、既述した広範囲凸部領域40Wにおいて広範囲凸部54を凹部51に連続させているので、この広範囲凸部領域40Wにおいては、Y方向に並んで凹部51の底部と広範囲凸部54の頂上部54aとを繋げて、この凹部51と広範囲凸部54とで貫通孔41を形成する。こうして凹部51と広範囲凸部54とで形成された貫通孔41と、凹部51と凸部53の連続したノーマル領域40Nの貫通孔41とでは、その大きさに差が生じる。ガス流路形成部材40は、図2に示したように、凸部53および広範囲凸部54の頂上面側をMEA34、詳しくは発電体層35(図1参照)に接触させる。そして、凹部51と広範囲凸部54の連続した広範囲凸部領域40Wの貫通孔41を発電体層35の側で取り囲む広範囲凸部54の頂上部54aは、凹部51と凸部53の連続したノーマル領域40Nの貫通孔41を発電体層35の側で取り囲む凸部53の頂上部53aより広くなる。よって、ガス流路形成部材40は、貫通孔41を取り囲む凸部53或いは広範囲凸部54の頂上部が発電体層35に接触する頂上部面積に広狭の差を持たせている。この様子を、図でもって説明する。図4は図3における4−4線に沿って発電体層35とガス流路形成部材40とセパレーター80との関係を模式的に示す説明図、図5は図3における5−5線に沿って発電体層35とガス流路形成部材40とセパレーター80との関係を模式的に示す説明図である。この場合、図においては、図2におけるX方向の一列の凹部51と凸部53および凹部51と広範囲凸部54の連続を示しているが、図紙面の手前側から奥側に掛けて、これらの連続が重なることで貫通孔41が、凹部51と凸部53の半周期分だけずれて重なることになる。   Since the gas flow path forming member 40 has the wide-area convex portion 54 connected to the concave portion 51 in the wide-area convex portion area 40W described above, in the wide-area convex portion area 40W, the bottom of the concave portion 51 is aligned with the Y direction. The through hole 41 is formed by the concave portion 51 and the wide area convex portion 54 by connecting the top portion 54 a of the wide area convex portion 54. Thus, there is a difference in size between the through hole 41 formed by the concave portion 51 and the wide convex portion 54 and the through hole 41 in the normal region 40N where the concave portion 51 and the convex portion 53 are continuous. As shown in FIG. 2, the gas flow path forming member 40 brings the top surface sides of the convex portion 53 and the wide range convex portion 54 into contact with the MEA 34, specifically, the power generator layer 35 (see FIG. 1). The apex portion 54a of the wide-area convex portion 54 surrounding the through-hole 41 of the wide-area convex portion area 40W where the concave portion 51 and the wide-area convex portion 54 are continuous on the power generator layer 35 side is a normal portion where the concave portion 51 and the convex portion 53 are continuous. It becomes wider than the top 53a of the convex part 53 which surrounds the through-hole 41 of the area | region 40N by the electric power generation body layer 35 side. Therefore, the gas flow path forming member 40 has a wide and narrow difference in the top area where the top of the convex portion 53 or the wide range convex portion 54 surrounding the through-hole 41 contacts the power generator layer 35. This will be described with reference to the drawings. 4 is an explanatory view schematically showing the relationship among the power generating layer 35, the gas flow path forming member 40, and the separator 80 along line 4-4 in FIG. 3, and FIG. 5 is along line 5-5 in FIG. FIG. 6 is an explanatory diagram schematically showing a relationship among a power generation layer 35, a gas flow path forming member 40, and a separator 80. In this case, in the figure, a series of concave portions 51 and convex portions 53 and concave portions 51 and wide range convex portions 54 in the X direction in FIG. 2 are shown, but these are hung from the near side to the far side of the drawing. As a result, the through holes 41 overlap with each other by being shifted by a half cycle of the concave portion 51 and the convex portion 53.

この図4〜図5に示すように、広範囲凸部領域40Wでは、当該領域での凹部51のピッチが広い分だけ広範囲凸部54の頂上部54aが広くなって、発電体層35に接触する頂上部面積も広くなる。その一方、ノーマル領域40Nでは、当該領域での凹部51のピッチが狭い分だけ凸部53の頂上部53aが狭くなって、発電体層35に接触する頂上部面積も狭くなる。この場合、凸部53の頂上部53aおよび広範囲凸部54の頂上部54aは、傾斜して発電体層35に接触することになるが、ガス流路形成部材40を通過するガス(空気;図1参照)に対しては、発電体層35の側からセパレーター80の側に案内するよう傾斜しているので、上記の頂上部53aおよび頂上部54aは、発電体層35へのガス拡散(浸透)を妨げるよう発電体層35の表層を覆うようになる。なお、凹部51の底部と凸部53の頂上部53aおよび広範囲凸部54の頂上部54aとを、図2におけるXY平面と並行となるよう平坦化させることができ、こうすれば、発電体層35とは面接触することになって上記した頂上部面積の広狭、即ち、発電体層35の表層を覆う面積の広狭はより顕著となる。   As shown in FIGS. 4 to 5, in the wide-area convex portion area 40 </ b> W, the top portion 54 a of the wide-area convex portion 54 is widened by the wide pitch of the concave portions 51 in the area, and is in contact with the power generation body layer 35. The top area increases. On the other hand, in the normal region 40N, the top portion 53a of the convex portion 53 is narrowed by the narrow pitch of the concave portions 51 in the region, and the top area in contact with the power generation body layer 35 is also narrowed. In this case, the top 53a of the convex part 53 and the top part 54a of the wide-range convex part 54 are inclined and come into contact with the power generator layer 35, but the gas (air; FIG. 1), the top 53a and the top 54a are diffused into the power generation layer 35 (permeation) because they are inclined so as to be guided from the power generation layer 35 side to the separator 80 side. ) To cover the surface layer of the power generator layer 35. Note that the bottom of the recess 51, the top 53a of the protrusion 53, and the top 54a of the wide-range protrusion 54 can be flattened so as to be parallel to the XY plane in FIG. The area of the top portion described above is in surface contact with 35, that is, the area covering the surface layer of the power generation layer 35 becomes more prominent.

次に、ガス流路形成部材40、60の製造手法について説明する。図6はガス流路形成部材40のプレス形成に用いる刃型部300と供給系340の構成および両者の関係を示す説明図である。図示するように、供給系340は、ローラーを対向させたローラ対342により基材210を刃型部300に対して送り出す。基材210は、ステンレスの薄板鋼板であり、刃型部300による後述のプレスを受けて、図2に示すエキスパンドメタルのガス流路形成部材40となる。以下、説明の便宜上、基材210の幅はガス流路形成部材40の幅と同一とするが、基材210は、ガス流路形成部材40の幅の等倍とすることもでき、この場合には、以下に説明する刃型部300についても幅広とすればよい。   Next, a method for manufacturing the gas flow path forming members 40 and 60 will be described. FIG. 6 is an explanatory diagram showing the configuration of the blade mold part 300 and the supply system 340 used for press forming of the gas flow path forming member 40 and the relationship between them. As shown in the figure, the supply system 340 feeds the substrate 210 to the blade mold part 300 by a roller pair 342 in which rollers are opposed to each other. The base material 210 is a stainless steel plate and receives the press described later by the blade mold part 300 to become an expanded metal gas flow path forming member 40 shown in FIG. Hereinafter, for convenience of explanation, the width of the base material 210 is the same as the width of the gas flow path forming member 40, but the base material 210 may be equal to the width of the gas flow path forming member 40. In addition, the blade mold portion 300 described below may be wide.

刃型部300は、プレス金型であり、上刃型310と下刃型320と下受け刃型330とを備える。これら刃部を有する刃型部300は、図3に示すガス流路形成部材40の空気流路幅、即ちガス流路形成部材40自体の幅より幅広の金型幅とされ、供給系340の送り出す基材210に対して上記刃部にてプレスして、既述した貫通孔41(図2〜5参照)が連続した網目状のガス流路を形成する。上刃型310は、その金型幅方向(X方向)に、凸形状の凸刃部312を並べて有する。下刃型320は、その金型幅方向(X方向)に沿って伸びるエッジを有するものであり、降下する凸刃部312とで基材切断に関与する。下受け刃型330は、上刃型310の凸刃部312に対応した凹刃部332をその金型幅方向(X方向)に並べて有し、凹刃部332に凸刃部312が入り込むことで、図2に示した凹部51を形成する。刃型部300は、供給系340が送り出す基材210に対して固定した位置関係で下刃型320を備え、上刃型310と下受け刃型330とを、金型幅方向に沿ってスライド可能に保持する。よって、上刃型310と下受け刃型330とは、供給系340が送り出す基材210に対して、その基材幅方向、即ち金型幅方向にスライドする。   The blade mold part 300 is a press mold and includes an upper blade mold 310, a lower blade mold 320, and a lower receiving blade mold 330. The blade mold part 300 having these blade parts has an air flow path width of the gas flow path forming member 40 shown in FIG. 3, that is, a mold width wider than the width of the gas flow path forming member 40 itself. The substrate 210 to be fed is pressed by the blade part to form a mesh-like gas flow path in which the above-described through holes 41 (see FIGS. 2 to 5) are continuous. The upper blade mold 310 has convex convex blade portions 312 arranged in the mold width direction (X direction). The lower blade mold 320 has an edge extending along the mold width direction (X direction), and participates in cutting the base material with the projecting blade portion 312 that descends. The lower receiving blade mold 330 has concave blade portions 332 corresponding to the convex blade portions 312 of the upper blade die 310 arranged in the mold width direction (X direction), and the convex blade portions 312 enter the concave blade portions 332. Thus, the recess 51 shown in FIG. 2 is formed. The blade mold part 300 includes a lower blade mold 320 in a positional relationship fixed with respect to the base 210 delivered by the supply system 340, and slides the upper blade mold 310 and the lower receiving blade mold 330 along the mold width direction. Hold as possible. Therefore, the upper blade mold 310 and the lower receiving blade mold 330 slide in the substrate width direction, that is, the mold width direction with respect to the substrate 210 sent out by the supply system 340.

上刃型310と下刃型320とは、上記した金型幅方向のスライドを経て、図3に示すように、流路幅方向にノーマル領域40Nと広範囲凸部領域40Wが連続した流路のプレス形成となる40Wプレス形態と、流路幅全域がノーマル領域40Nの流路のプレス形成となる40Nプレス形態とを採る。上刃型310は、40Nプレス形態でのプレス形成の要をなす第1金型幅部において、凸刃部312を等ピッチで備え、残余の第2金型幅部においては、凸刃部312を幅広のピッチで備える。40Nプレス形態でのプレス形成の要をなす第1金型幅部における凸刃部312の形成ピッチは、図2に示した凸部53に並ぶ凹部51のピッチ(第1ピッチ)と等しくされている。また、残余の第2金型幅部における凸刃部312のピッチ(第2ピッチ)は、図2に示した広範囲凸部54に並ぶ凹部51のピッチと等しくされ、上記の第1ピッチは上記の第2ピッチより狭くされている。下受け刃型330にあっては、上記した上刃型310の凸刃部312の並びに合わせて、凹刃部332を備える。そして、刃型部300は、図6に示す40Wプレス形態では、幅広の第2ピッチで並んだ凹部51と狭小の第1ピッチで並んだ凹部51とを、基材210に対してプレスする。その一方、図6に示す40Nプレス形態では、狭小の第1ピッチで並んだ凹部51だけを、基材210に対してプレスする。なお、既述したように基材210がガス流路形成部材40の幅の等倍である場合には、刃型部300、詳しくは、上刃型310は、上記した第1ピッチおよび第2ピッチで並んだ凹部51を、金型幅方向に繰り返して備えることになる。下受け刃型330についても同様である。また、図6では、図示の都合、上記の40Wプレス形態では、第1ピッチで三つの凹部51が並び、第2ピッチで三つの凹部51が並ぶようにし、上記の40Nプレス形態では、第1ピッチで六つの凹部51が並ぶこととした。後述の図8以降にあっても同様である。   The upper blade mold 310 and the lower blade mold 320 are flow paths in which the normal region 40N and the wide-area convex region 40W are continuous in the flow channel width direction as shown in FIG. The 40W press form that forms the press and the 40N press form that forms the press of the flow path having the normal area 40N in the entire flow path width are adopted. The upper blade mold 310 is provided with the convex blade portions 312 at an equal pitch in the first mold width portion which is the key to press formation in the 40N press form, and the convex blade portion 312 in the remaining second mold width portion. With a wide pitch. The formation pitch of the convex blade portions 312 in the first mold width portion, which is the key to the press formation in the 40N press form, is made equal to the pitch (first pitch) of the concave portions 51 aligned with the convex portions 53 shown in FIG. Yes. Further, the pitch (second pitch) of the convex blade portions 312 in the remaining second mold width portion is equal to the pitch of the concave portions 51 arranged in the wide range convex portion 54 shown in FIG. It is narrower than the second pitch. The lower receiving blade mold 330 includes a concave blade portion 332 in combination with the convex blade portions 312 of the upper blade mold 310 described above. In the 40 W press form shown in FIG. 6, the blade mold portion 300 presses the concave portions 51 arranged at the wide second pitch and the concave portions 51 arranged at the narrow first pitch against the base material 210. On the other hand, in the 40N press form shown in FIG. 6, only the concave portions 51 arranged at a narrow first pitch are pressed against the base material 210. As described above, when the base material 210 has the same width as the width of the gas flow path forming member 40, the blade mold portion 300, specifically, the upper blade mold 310, has the above-described first pitch and second pitch. The concave portions 51 arranged at a pitch are repeatedly provided in the mold width direction. The same applies to the lower receiving blade mold 330. In FIG. 6, for convenience of illustration, in the 40 W press form, the three concave portions 51 are arranged at the first pitch and the three concave portions 51 are arranged at the second pitch. In the 40 N press form, the first concave portion 51 is arranged. The six concave portions 51 are arranged at a pitch. The same applies to FIG. 8 and later described later.

次に、刃型部300によるプレス成形手順について説明する。図7はプレス形態の切り換えと刃型スライドと基材210との関係を概略的に平面視して示す説明図である。図示するように、基材210は、紙面下方に送り出され、この基材210に対して、刃型部300の上刃型310と下受け刃型330とは、40Wプレス形態と40Nプレス形態の各プレス形態において、ノーマル領域40Nでの凹部51のピッチの半分ずつ図における左右方向である金型幅方向にハーフピッチスライドする。そして、40Wプレス形態と40Nプレス形態の各プレス形態との間のプレス形態切換の際には、上刃型310と下受け刃型330とは、図6に示すように広範囲に亘って金型幅方向にスライドする。図8は40Wプレス形態でのプレス形成の第一段階を示す説明図、図9は40Wプレス形態でのプレス形成の第2段階を説明図、図10は40Wプレス形態でのプレス形成の第3段階を示す説明図である。   Next, the press molding procedure by the blade mold part 300 will be described. FIG. 7 is an explanatory diagram schematically showing the relationship between the press mode switching, the blade-type slide, and the substrate 210 in plan view. As shown in the drawing, the base material 210 is sent out downward in the drawing, and the upper blade mold 310 and the lower receiving blade mold 330 of the blade mold part 300 are in a 40W press form and a 40N press form with respect to the base material 210. In each press form, a half-pitch slide is performed in the mold width direction, which is the left-right direction in the drawing, by half of the pitch of the recesses 51 in the normal region 40N. When the press form is switched between the 40W press form and the 40N press form, the upper blade mold 310 and the lower receiving blade mold 330 are formed over a wide range as shown in FIG. Slide in the width direction. FIG. 8 is an explanatory diagram showing a first stage of press formation in a 40 W press form, FIG. 9 is an explanatory view of a second stage of press formation in a 40 W press form, and FIG. 10 is a third stage of press formation in a 40 W press form. It is explanatory drawing which shows a step.

図6の40Wプレス形態では、図8(a)に示すように、供給系340は、基材210をローラ対342によりY方向に送り出す。この基材210の送り出し量は、上刃型310の刃厚さに相当する長さであり、供給系340は、この基材送り出しを刃型部300による後述のプレスの都度に行う。刃型部300は、こうして送り出された210に対して、図8(b)に示すように、上刃型310をZ軸方向に上下させてプレスする。このプレスにより、基材210は、下刃型320と上刃型310の凸刃部312、並びに下受け刃型330の凹刃部332で一部剪断加工を受けるので、凸部53と凹部51とを形成する。これにより、狭小の第1ピッチで凹部51が並んでこの凹部51と凸部53が交互に連続して形成され、幅広の第2ピッチで凹部51が並んでこの凹部51に広範囲凸部54が交互に連続して形成される。つまり、図2における紙面手前側のX方向の第一列目の凹凸が、凹部51と凸部53および凹部51と広範囲凸部54とが基材210の幅方向に交互に連続して形成される。なお、図におけるX方向、Y方向、Z方向は、互いに直交する方向である(以下、同じ)。   In the 40 W press form of FIG. 6, as shown in FIG. 8A, the supply system 340 sends the base material 210 in the Y direction by the roller pair 342. The feed amount of the base material 210 is a length corresponding to the blade thickness of the upper blade mold 310, and the supply system 340 performs the base material feed each time a press described later by the blade mold portion 300. The blade mold part 300 presses the upper blade mold 310 up and down in the Z-axis direction as shown in FIG. By this pressing, the base 210 is partially sheared by the convex blade portion 312 of the lower blade die 320 and the upper blade die 310 and the concave blade portion 332 of the lower blade die 330, and therefore the convex portion 53 and the concave portion 51. And form. As a result, the concave portions 51 are arranged at the first narrow pitch, and the concave portions 51 and the convex portions 53 are alternately and continuously formed. The concave portions 51 are arranged at the second wide pitch, and the wide convex portions 54 are formed in the concave portions 51. It is formed alternately and continuously. That is, the first row of projections and depressions in the X direction on the front side in FIG. 2 is formed such that the concave portions 51 and the convex portions 53 and the concave portions 51 and the wide range convex portions 54 are alternately and continuously formed in the width direction of the substrate 210. The In the figure, the X direction, the Y direction, and the Z direction are directions orthogonal to each other (hereinafter the same).

刃型部300は、上刃型310をZ軸に沿ってプレス前の位置に復帰させると、供給系340は、図9(a)に示すように、既述した基材送り出し量で、基材210をローラ対342によりY方向に送り出す。刃型部300は、供給系340による基材送り出しと並行してもしくは基材送り出し後に、図9(b)に示すように、上刃型310および下受け刃型330をX方向に移動させる。この時の移動量は、凹部51が狭小間隔で並ぶ第1ピッチの半分よりも短いハーフピッチとなる。この移動量が、図2におけるY方向に隣接する各列の凹凸の位相ずれとなる。   When the blade mold part 300 returns the upper blade mold 310 to the position before pressing along the Z axis, the supply system 340 has the above-mentioned base material feed amount as shown in FIG. The material 210 is sent out in the Y direction by the roller pair 342. The blade mold portion 300 moves the upper blade mold 310 and the lower receiving blade mold 330 in the X direction as shown in FIG. 9B in parallel with or after the substrate feed by the supply system 340. The amount of movement at this time is a half pitch shorter than half of the first pitch in which the recesses 51 are arranged at narrow intervals. This movement amount becomes the phase shift of the unevenness of each column adjacent in the Y direction in FIG.

刃型部300は、上刃型310と下受け刃型330を移動させると、図10(a)に示すように、再度、上刃型310を上下させて、基材210に対してプレスする。これにより、図8(b)で形成済みの凹部51と凸部53の連続および凹部51と広範囲凸部54の連続による凹凸に対して上記のハーフピッチだけ位相ずれした配列で、新たな凹部51と凸部53の連続および凹部51と広範囲凸部54の連続による凹凸がY方向に隣接して形成される。こうしたY方向の隣接において、図2に示すように、凹部51の底部と凸部53の頂上部53aとが繋がり、および凹部51の底部と広範囲凸部54の頂上部54aとが繋がり、これらで取り囲まれた貫通孔41が連続した網目状の流路が形成される。その後、刃型部300は、図10(b)に示すように、上刃型310および下受け刃型330をハーフピッチ分もとの位置に戻し、以後においては、図8〜図10の上記した各工程を繰り返す。上記した40Wプレス形態における工程の繰り返しは、図3および図7に示すように、流路幅方向(基材210の幅方向)にノーマル領域40Nと広範囲凸部領域40Wが連続した範囲に亘って行われる。   When the upper blade mold 310 and the lower receiving blade mold 330 are moved, the blade mold section 300 moves the upper blade mold 310 up and down again and presses against the substrate 210 as shown in FIG. . Thus, the new recesses 51 are arranged in a phase shifted by the above half pitch with respect to the unevenness due to the continuation of the recesses 51 and the protrusions 53 formed in FIG. Concavities and convexities are formed adjacent to each other in the Y direction. In such an adjacency in the Y direction, as shown in FIG. 2, the bottom of the recess 51 and the top 53a of the projection 53 are connected, and the bottom of the recess 51 and the top 54a of the wide projection 54 are connected. A mesh-like flow path in which the surrounded through holes 41 are continuous is formed. Thereafter, as shown in FIG. 10B, the blade mold part 300 returns the upper blade mold 310 and the lower receiving blade mold 330 to their original positions corresponding to the half pitch. Repeat each step. As shown in FIG. 3 and FIG. 7, the repetition of the process in the 40 W press form described above spans a range in which the normal region 40N and the wide-area convex portion region 40W are continuous in the flow channel width direction (width direction of the substrate 210). Done.

刃型部300は、上記した40Wプレス形態(図6参照)に続き、狭小の第1ピッチで並んだ凹部51だけによる40Nプレス形態(図6参照)でのプレスを継続する。このプレス形態推移に当たり、刃型部300は、図6〜図7に示すように、40Wプレス形態におけるプレス位置にあった上刃型310と下受け刃型330とを、上記両図における右方に広範囲にスライドさせる。これにより、基材210の基材幅(即ち、ガス流路形成部材40の流路幅)において、狭小の第1ピッチで凸刃部312と凹刃部332とが交互に並ぶようになり、これらによるプレス(40Nプレス形態)が可能となる。図11は40Nプレス形態でのプレス形成の第一段階を示す説明図、図12は40Nプレス形態でのプレス形成の第2段階を説明図、図13は40Nプレス形態でのプレス形成の第3段階を示す説明図である。   The blade mold part 300 continues the press in the 40N press form (see FIG. 6) using only the concave portions 51 arranged at the narrow first pitch following the 40W press form (see FIG. 6). In this press form transition, as shown in FIGS. 6 to 7, the blade mold part 300 moves the upper blade mold 310 and the lower receiving blade mold 330 at the press position in the 40 W press form to the right in both the above figures. Slide over a wide range. Thereby, in the base material width of the base material 210 (that is, the flow path width of the gas flow path forming member 40), the convex blade portions 312 and the concave blade portions 332 are alternately arranged at a narrow first pitch, The press (40N press form) by these becomes possible. FIG. 11 is an explanatory view showing a first stage of press forming in a 40N press form, FIG. 12 is an explanatory view of a second stage of press forming in a 40N press form, and FIG. 13 is a third stage of press forming in a 40N press form. It is explanatory drawing which shows a step.

図6の40Nプレス形態では、図11(a)に示すように、供給系340は、基材210を既述した送り出し量でローラ対342によりY方向に送り出す。刃型部300は、こうして送り出された210に対して、図11(b)に示すように、上刃型310をZ軸方向に上下させてプレスする。この場合、図示するように基材210には狭小の第1ピッチで凸刃部312と凹刃部332しかプレス形成に作用しないので、基材210には、狭小の第1ピッチで凹部51が並んでこの凹部51と凸部53が交互に連続して形成される。   In the 40N press form of FIG. 6, as shown in FIG. 11A, the supply system 340 feeds the base material 210 in the Y direction by the roller pair 342 with the feed amount already described. The blade mold 300 presses the upper blade mold 310 up and down in the Z-axis direction as shown in FIG. In this case, as shown in the figure, since only the convex blade portion 312 and the concave blade portion 332 act on the base 210 at a narrow first pitch, the concave portion 51 is formed on the base 210 at a narrow first pitch. The concave portions 51 and the convex portions 53 are alternately and continuously formed side by side.

刃型部300は、上刃型310をZ軸に沿ってプレス前の位置に復帰させると、供給系340は、図12(a)に示すように、既述した基材送り出し量で、基材210をローラ対342によりY方向に送り出す。刃型部300は、供給系340による基材送り出しと並行してもしくは基材送り出し後に、図12(b)に示すように、上刃型310および下受け刃型330をX方向に移動させる。この時の移動量は、凹部51が狭小間隔で並ぶ第1ピッチの半分よりも短いハーフピッチとなる。この移動量が、図2におけるY方向に隣接する各列の凹凸の位相ずれとなる。   When the blade mold portion 300 returns the upper blade mold 310 to the position before pressing along the Z-axis, the supply system 340 uses the base material feed amount described above as shown in FIG. The material 210 is sent out in the Y direction by the roller pair 342. The blade mold portion 300 moves the upper blade mold 310 and the lower receiving blade mold 330 in the X direction as shown in FIG. 12B in parallel with or after the substrate feed by the supply system 340. The amount of movement at this time is a half pitch shorter than half of the first pitch in which the recesses 51 are arranged at narrow intervals. This movement amount becomes the phase shift of the unevenness of each column adjacent in the Y direction in FIG.

刃型部300は、上刃型310と下受け刃型330を移動させると、図13(a)に示すように、再度、上刃型310を上下させて、基材210に対してプレスする。これにより、図11(b)で形成済みの凹部51と凸部53の連続による凹凸に対して上記のハーフピッチだけ位相ずれした配列で、新たな凹部51と凸部53の連続による凹凸がY方向に隣接して形成される。こうしたY方向の隣接において、図2に示すように、凹部51の底部と凸部53の頂上部53aとが繋がり、この底部と頂上部53aで取り囲まれた貫通孔41が連続した網目状の流路が形成される。その後、刃型部300は、図13(b)に示すように、上刃型310および下受け刃型330をハーフピッチ分もとの位置に戻し、以後においては、図11〜図13の上記した各工程を繰り返す。上記した40Nプレス形態における工程の繰り返しは、図3および図7に示すように、流路幅方向(基材210の幅方向)の全域がノーマル領域40Nの範囲に亘って行われる。   When the upper blade mold 310 and the lower receiving blade mold 330 are moved, the blade mold section 300 moves the upper blade mold 310 up and down again and presses against the substrate 210 as shown in FIG. . Thus, the unevenness due to the continuation of the new concave portion 51 and the convex portion 53 is Y in the arrangement shifted in phase by the above-mentioned half pitch with respect to the concave and convex portion due to the continuation of the concave portion 51 and the convex portion 53 that have been formed in FIG. It is formed adjacent to the direction. As shown in FIG. 2, in the adjacency in the Y direction, the bottom of the recess 51 and the top 53a of the projection 53 are connected, and the through-hole 41 surrounded by the bottom and the top 53a is continuous. A path is formed. Thereafter, as shown in FIG. 13B, the blade mold part 300 returns the upper blade mold 310 and the lower receiving blade mold 330 to their original positions corresponding to the half pitch. Repeat each step. The repetition of the process in the 40N press form described above is performed over the entire area in the flow path width direction (width direction of the substrate 210) over the range of the normal area 40N, as shown in FIGS.

本実施例では、上記した40Wプレス形態でのプレスと40Nプレス形態でのプレスが、図7に示すように繰り返すので、上記プレスを経て得られたエキスパンドメタルたるガス流路形成部材40は、ガス流路方向に複数繋がることになる。よって、刃型部300でのプレスに続き、基材210の送り方向に交差した切断を経ることで、ガス流路形成部材40が得られる。ガス流路形成部材60についても同様であるが、アノード側のガス流路形成部材60については、狭小の第1ピッチで凹部51が並んでこの凹部51と凸部53とが交互に連続したエキスパンドメタルとできる。こうして得られたガス流路形成部材40、60を有する燃料電池20、延いては燃料電池スタック100の製造に当たっては、まず、得られたガス流路形成部材40、60を、凸部53の頂上部53aおよび広範囲凸部54の頂上部54aがMEGA35と当接するように配置し、積層する。その後、セパレーター70とセパレーター80とで挟持して燃料電池20を製造し、これを図1のように積層することで、燃料電池スタック100が得られる。   In this embodiment, the press in the 40W press form and the press in the 40N press form are repeated as shown in FIG. 7, so that the gas flow path forming member 40, which is an expanded metal obtained through the press, is a gas A plurality are connected in the flow path direction. Therefore, the gas flow path forming member 40 is obtained by passing through the cutting in the feeding direction of the base material 210 following the pressing in the blade mold part 300. The same applies to the gas flow path forming member 60, but for the gas flow path forming member 60 on the anode side, an expanded state in which the concave portions 51 are arranged at a narrow first pitch and the concave portions 51 and the convex portions 53 are alternately continued. Can be metal. In manufacturing the fuel cell 20 having the gas flow path forming members 40, 60 thus obtained, and thus the fuel cell stack 100, first, the obtained gas flow path forming members 40, 60 are placed on the top of the convex portion 53. The portions 53a and the top portions 54a of the wide-area convex portions 54 are arranged and laminated so as to contact the MEGA 35. Thereafter, the fuel cell 20 is manufactured by being sandwiched between the separator 70 and the separator 80, and the fuel cell stack 100 is obtained by stacking them as shown in FIG.

次に、図3に示したように、ガス流路形成部材40において広範囲凸部領域40Wを設ける利点について説明する。図14は燃料電池20の発電体層35における電解質膜31の発電分布の様子と空気とガスの流路との関係を常温運転と高温運転とで概略的に示す説明図である。図示するように、本実施例の燃料電池20では、ガス流路形成部材40は、発電体層35の一方端(図では下端)から他方端(図では上端)に向けた空気の流路(図1参照)を形成する。この空気流路は、既述した凹部51の底部と凸部53の頂上部53aとで取り囲んだ貫通孔41、および凹部51の底部と広範囲凸部54の頂上部54aとで取り囲んだ貫通孔41による網目状の流路である。また、燃料電池20のセパレーター80は、上記した空気の流路と直交するよう、発電体層35の一方端(図では左端)から他方端(図では右端)に向かう冷却水の流路(図1参照)を形成する。   Next, as shown in FIG. 3, the advantage of providing the wide convex region 40W in the gas flow path forming member 40 will be described. FIG. 14 is an explanatory diagram schematically showing the relationship between the power generation distribution of the electrolyte membrane 31 in the power generation body layer 35 of the fuel cell 20 and the flow paths of air and gas in normal temperature operation and high temperature operation. As shown in the figure, in the fuel cell 20 of the present embodiment, the gas flow path forming member 40 has an air flow path (from the lower end in the drawing) toward the other end (upper end in the drawing) of the power generation layer 35 ( 1). This air flow path includes the through-hole 41 surrounded by the bottom of the recess 51 and the top 53a of the protrusion 53, and the through-hole 41 surrounded by the bottom of the recess 51 and the top 54a of the wide-area protrusion 54. This is a mesh-like flow path. Further, the separator 80 of the fuel cell 20 has a cooling water flow path (shown in the figure) from one end (left end in the figure) to the other end (right end in the figure) of the power generation layer 35 so as to be orthogonal to the air flow path described above. 1).

空気の流入側(供給側)である流路上流側の領域では、ガス流入側であるために未消費ガスが多いので、空気の通過量が多くなり、ガス流路形成部材40の上記の網目状の流路を通過する空気による水分の持ち去りが多くなる。このため、空気の流路上流側の領域では、電解質膜31の乾燥が進むと予想される。また、冷却水は、発電体層35での発電に伴う熱を奪いつつセパレーター80の流路を流れることから、セパレーター80からの冷却水流出側で、冷却水温度が高くなる。このため、冷却水の流出側でもあり空気の流路上流側でもある領域では、冷媒温度が高いので、その分、電解質膜31の昇温抑制の効果が薄れると共に、水分持ち去り増により、電解質膜31の乾燥より進むことが危惧される。図では、冷却水の流出側でもあり空気の流路上流側でもある領域を乾き顕在域として示している。常温運転時の上記の乾き顕在域では、膜の乾燥に伴う発電能力低下が観察され、高温運転時では、発電能力の低下が見られる部位が広がる。このため、本実施例の燃料電池20では、図14の高温運転時の乾き顕在域と重なる領域、即ち冷却水の流出側でもあり空気の流路上流側でもある領域については、図3に示す広範囲凸部領域40Wとした。   In the region upstream of the flow path that is the air inflow side (supply side), since there is a large amount of unconsumed gas because it is on the gas inflow side, the amount of air passing increases, and the mesh of the gas flow path forming member 40 is increased. The amount of moisture taken away by air passing through the channel is increased. For this reason, the drying of the electrolyte membrane 31 is expected to proceed in the region upstream of the air flow path. In addition, since the cooling water flows through the flow path of the separator 80 while taking heat accompanying the power generation in the power generation body layer 35, the cooling water temperature becomes higher on the cooling water outflow side from the separator 80. For this reason, in the region that is both the cooling water outflow side and the air flow path upstream side, the refrigerant temperature is high. Therefore, the effect of suppressing the temperature rise of the electrolyte membrane 31 is reduced by that amount, and the moisture removal is increased. There is a concern that the film 31 may proceed from drying. In the figure, a region which is both the cooling water outflow side and the air flow path upstream side is shown as a dry sensible area. In the above-described dry sensible region during normal temperature operation, a decrease in power generation capacity due to the drying of the film is observed, and in high temperature operation, a site where a decrease in power generation capacity is observed spreads. For this reason, in the fuel cell 20 of the present embodiment, the region overlapping the dry sensible region during high temperature operation in FIG. 14, that is, the region that is both the cooling water outflow side and the air flow path upstream side is shown in FIG. The wide convex region 40W was used.

この広範囲凸部領域40Wでは、図2に示すように、空気の流れ方向と交差する方向(X方向)に広範囲凸部54を凹部51に連続させ、空気の流れ方向(Y方向)に沿っては凹部51の底部と広範囲凸部54の頂上部54aとを繋げて、この凹部51と広範囲凸部54とで貫通孔41を形成する。こうして凹部51と広範囲凸部54とで形成された貫通孔41は、広範囲凸部54が幅広のピッチで形成された凹部51の間に位置することから、凹部51と凸部53の連続による貫通孔41よりも大きくなる。そして、この貫通孔41を発電体層35の側で取り囲む広範囲凸部54の頂上部54aは、凹部51と凸部53の連続による貫通孔41を発電体層35の側で取り囲む凸部53の頂上部53aより広い面積で発電体層35に接触する。このため、広範囲凸部領域40Wでは、広範囲凸部54の頂上部54aにより、発電体層35へのガス拡散(浸透)を妨げるよう発電体層35の表層を覆うので、貫通孔41が連続した網目状の流路を空気が通過する際に、この空気が発電体層35の表層に接触する面積を狭くでき、通過する空気による水分の持ち去りを抑制する。つまり、本実施例の燃料電池20では、冷却水の流出側でもあり空気の流路上流側でもあって電解質膜31の乾燥より進むことが危惧される領域を、水分持ち去りの抑制が可能な広範囲凸部領域40Wとするので、発電体層35の乾燥を抑制できる。この結果、本実施例の燃料電池20によれば、電解質膜31の乾燥抑制により、常温運転時はもとより、高温運転時にあっても、発電性能を高めることができる。   In this wide area 40W, as shown in FIG. 2, the wide area 54 is connected to the recess 51 in the direction (X direction) intersecting the air flow direction, and along the air flow direction (Y direction). Connects the bottom of the recess 51 and the top 54 a of the wide projection 54, and the through hole 41 is formed by the recess 51 and the wide projection 54. The through hole 41 formed by the concave portion 51 and the wide convex portion 54 is located between the concave portions 51 having the wide convex portion 54 formed at a wide pitch. It becomes larger than the hole 41. The top 54 a of the wide-area convex portion 54 that surrounds the through-hole 41 on the power generator layer 35 side is the top of the convex portion 53 that surrounds the through-hole 41 formed by the continuation of the concave portion 51 and the convex portion 53 on the power generator layer 35 side. The power generator layer 35 is brought into contact with an area wider than the top 53a. For this reason, in the wide-area convex portion area 40W, the top portion 54a of the wide-area convex portion 54 covers the surface layer of the power generation body layer 35 so as to prevent gas diffusion (penetration) into the power generation body layer 35. When air passes through the mesh-shaped flow path, the area where the air contacts the surface layer of the power generation body layer 35 can be reduced, and moisture removal due to the passing air is suppressed. In other words, in the fuel cell 20 of the present embodiment, a region that is both on the cooling water outflow side and on the upstream side of the air flow path and is likely to proceed from the drying of the electrolyte membrane 31 is a wide range capable of suppressing moisture removal. Since it is set as the convex part area | region 40W, drying of the electric power generation body layer 35 can be suppressed. As a result, according to the fuel cell 20 of the present embodiment, by suppressing the drying of the electrolyte membrane 31, it is possible to improve the power generation performance not only during normal temperature operation but also during high temperature operation.

また、本実施例の燃料電池20では、広範囲凸部領域40Wにおいて頂上部54aにより発電体層35の表層を覆う面積を広くするので、その分、空気中の酸素が発電体層35に浸透し難くなり空気(酸素)の消費を抑制する。このため、広範囲凸部領域40Wよりも空気の流路下流側(図3参照)において、未消費の空気(酸素)が届きやすくなって電気化学反応が活性化し、発電能力が高まる。この結果、本実施例の燃料電池20によれば、燃料電池全体での発電分布の均一化により、電池全体の発電能力を高めることができる。   Further, in the fuel cell 20 of the present embodiment, since the area covering the surface layer of the power generator layer 35 by the top 54a in the wide area 40W of the wide area is widened, oxygen in the air permeates the power generator layer 35 correspondingly. It becomes difficult to suppress the consumption of air (oxygen). For this reason, unconsumed air (oxygen) can easily reach the downstream side of the air flow path (see FIG. 3) from the wide convex region 40W, and the electrochemical reaction is activated, thereby increasing the power generation capacity. As a result, according to the fuel cell 20 of the present embodiment, the power generation capacity of the entire battery can be increased by making the power generation distribution uniform throughout the fuel cell.

また、本実施例では、ガス流路形成部材40の製造に用いる刃型部300を、ガス流路形成部材40の流路幅より幅広の金型とした上で、刃型部300において、狭小の第1ピッチで凸刃部312を金型幅方向に並べて有すると共に、これに続いて幅広の第2ピッチで金型幅方向に凸刃部312を並べて有するようにした。そして、狭小の第1ピッチで並んだ凸刃部312とこれに続いて幅広の第2ピッチで並んだ凸刃部312とを、流路幅方向にノーマル領域40Nと広範囲凸部領域40Wが連続した流路領域のプレス形成(40Wプレス形態:図3,図6〜図7参照)に用い、流路幅全域がノーマル領域40Nの流路領域のプレス形成(40Nプレス形態:図3,図6〜図7参照)に際しては、刃型部300(詳しくは、上刃型310と下受け刃型330)を金型幅方向にスライドすることで、狭小の第1ピッチで並んだ凸刃部312だけを用いるようにした。この結果、本実施例のガス流路形成部材製造方法によれば、電解質膜31の乾燥抑制を通して発電性能の向上に寄与し得るエキスパンドメタルとしてのガス流路形成部材40、60を、金属製の基材210に対する金型のプレスという既存手法で、容易に製造できる。しかも、流路幅方向にノーマル領域40Nと広範囲凸部領域40Wが連続した流路領域のプレス形成(40Wプレス形態:図3,図6〜図7参照)と、流路幅全域がノーマル領域40Nの流路領域のプレス形成(40Nプレス形態:図3,図6〜図7参照)とを、刃型部300のスライド移動により切り換えることができるので、金型交換が不要となって工数低減、延いては、コスト低減を図ることもできる。   In the present embodiment, the blade mold part 300 used for manufacturing the gas flow path forming member 40 is a mold wider than the flow path width of the gas flow path forming member 40, and the blade mold part 300 is narrow. The convex blade portions 312 are arranged in the mold width direction at the first pitch, and the convex blade portions 312 are arranged in the mold width direction at the second wide pitch. Then, the convex blade portions 312 arranged at the narrow first pitch and the convex blade portions 312 arranged at the second wide pitch following thereto are continuously connected in the normal region 40N and the wide convex region 40W in the flow path width direction. Used for the press formation of the flow channel region (40W press configuration: see FIGS. 3, 6 to 7), and the press formation of the flow channel region where the entire channel width is the normal region 40N (40N press configuration: FIGS. 3 and 6). (See FIG. 7), by sliding the blade mold portion 300 (specifically, the upper blade mold 310 and the lower receiving blade mold 330) in the mold width direction, the convex blade portions 312 arranged at a narrow first pitch. Only to use. As a result, according to the gas flow path forming member manufacturing method of the present embodiment, the gas flow path forming members 40 and 60 as expanded metals that can contribute to improvement of power generation performance through suppression of drying of the electrolyte membrane 31 are made of metal. It can be easily manufactured by an existing method of pressing a mold against the substrate 210. Moreover, the press formation of the flow channel region in which the normal region 40N and the wide-area convex region 40W are continuous in the flow channel width direction (40W press form: see FIGS. 3, 6 to 7), and the entire flow channel width is the normal region 40N. Since the press formation (40N press form: see FIG. 3, FIG. 6 to FIG. 7) of the flow path area can be switched by the sliding movement of the blade mold part 300, it is not necessary to replace the mold, thereby reducing the man-hours. As a result, the cost can be reduced.

以上、本発明の実施の形態を実施例にて説明したが、本発明は上記した実施例や変形例の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様にて実施することが可能である。例えば、上記の実施例では、冷却水の流出側でもあり空気の流路上流側でもある領域を電解質膜31の乾燥が進みやすい領域であるとして当該領域を広範囲凸部領域40Wとしたが、これに限るわけではない。仮に、図3における広範囲凸部領域40Wからガス流路方向に隔たった流路末端側においても乾燥が進むのであれば、ガス流路末端側で冷却水流路の末端側においても、広範囲凸部領域40Wとすることもできる。つまり、図3においてガス流路方向に広範囲凸部領域40Wと並んだノーマル領域40Nの流路末端側の一部領域を、広範囲凸部領域40Wとすることもできる。   As mentioned above, although the embodiment of the present invention has been described in the embodiments, the present invention is not limited to the above-described embodiments and modifications, and can be implemented in various modes without departing from the gist thereof. Is possible. For example, in the above-described embodiment, the region that is both the cooling water outflow side and the air flow path upstream side is the region where the drying of the electrolyte membrane 31 is easy to proceed, and the region is defined as the wide convex region 40W. It is not limited to. If the drying proceeds on the flow path end side separated in the gas flow path direction from the wide-area convex area 40W in FIG. 3, the wide-area convex area on the gas flow path end side and also on the cooling water flow path end side. It can also be 40W. That is, in FIG. 3, a partial region on the flow channel end side of the normal region 40N aligned with the wide-area convex region 40W in the gas flow channel direction can be the wide-area convex region 40W.

20…燃料電池
30a…水素供給マニホールド
30b…空気供給マニホールド
30c…水素排出マニホールド
30d…空気排出マニホールド
30e…冷却水供給マニホールド
30f…冷却水排出マニホールド
31…電解質膜
32a…カソード電極
32b…アノード電極
33a…ガス拡散層
34…MEA
35…発電体層
36…シールガスケット
40…ガス流路形成部材
40N…ノーマル領域
40W…広範囲凸部領域
41…貫通孔
51…凹部
53…凸部
53a…頂上部
54…広範囲凸部
54a…頂上部
60…ガス流路形成部材
70…セパレーター
71…カソード側セパレーター
71a…水素供給マニホールド
71b…空気供給マニホールド
71c…水素排出マニホールド
71d…空気排出マニホールド
71e…冷却水供給マニホールド
71f…冷却水排出マニホールド
72…中間セパレーター
72a…水素連通孔
72b…空気連通孔
73…アノード側セパレーター
75…空気連通孔
76…空気連通孔
80…セパレーター
95…エンドプレート
95a…水素供給マニホールド
95b…空気供給マニホールド
95c…水素排出マニホールド
95d…空気排出マニホールド
95e…冷却水供給マニホールド
95f…冷却水排出マニホールド
100…燃料電池スタック
210…基材
300…刃型部
310…上刃型
312…凸刃部
320…下刃型
330…下受け刃型
332…凹刃部
340…供給系
342…ローラ対
DESCRIPTION OF SYMBOLS 20 ... Fuel cell 30a ... Hydrogen supply manifold 30b ... Air supply manifold 30c ... Hydrogen discharge manifold 30d ... Air discharge manifold 30e ... Cooling water supply manifold 30f ... Cooling water discharge manifold 31 ... Electrolyte membrane 32a ... Cathode electrode 32b ... Anode electrode 33a ... Gas diffusion layer 34 ... MEA
35 ... Power generation layer 36 ... Seal gasket 40 ... Gas flow path forming member 40N ... Normal region 40W ... Wide area convex region 41 ... Through hole 51 ... Recessed portion 53 ... Convex portion 53a ... Top portion 54 ... Wide area convex portion 54a ... Top portion 60 ... Gas flow path forming member 70 ... Separator 71 ... Cathode side separator 71a ... Hydrogen supply manifold 71b ... Air supply manifold 71c ... Hydrogen discharge manifold 71d ... Air discharge manifold 71e ... Cooling water supply manifold 71f ... Cooling water discharge manifold 72 ... Intermediate Separator 72a ... Hydrogen communication hole 72b ... Air communication hole 73 ... Anode separator 75 ... Air communication hole 76 ... Air communication hole 80 ... Separator 95 ... End plate 95a ... Hydrogen supply manifold 95b ... Air supply manifold 95c ... Hydrogen exhaust manifold Hold 95d ... Air discharge manifold 95e ... Cooling water supply manifold 95f ... Cooling water discharge manifold 100 ... Fuel cell stack 210 ... Substrate 300 ... Blade part 310 ... Upper blade type 312 ... Convex blade part 320 ... Lower blade type 330 ... Lower Receiving blade type 332 ... Concave blade 340 ... Supply system 342 ... Roller pair

Claims (5)

燃料電池であって、
電解質膜の各膜面に電極を接合した膜電極接合体を含む発電体層と、
前記発電体層を間に挟んで配置され、前記発電体層での発電反応に供される反応ガスの給排に関与する一対のセパレーターと、
前記発電体層と前記一対のセパレーターの少なくとも一方との間に配置され、前記セパレーターからの前記反応ガスを前記電解質膜の膜面に沿ったガス流れ方向に流す網目状の流路を形成する流路形成部材とを備え、
該流路形成部材は、
前記網目状の流路を取り囲む部位が前記発電体層に接触する接触部位面積に広狭の差を備え、前記流路を通過する反応ガスの流量に基づいて、前記発電体層における前記電解質膜の乾燥が他の電解質膜箇所より起きやすいと予想される範囲に、前記接触部位面積が広い範囲の前記網目状の流路を形成する
燃料電池。
A fuel cell,
A power generator layer including a membrane electrode assembly in which an electrode is bonded to each membrane surface of the electrolyte membrane;
A pair of separators that are arranged with the power generation layer sandwiched therebetween and that are involved in the supply and discharge of the reaction gas used in the power generation reaction in the power generation layer;
A flow that is disposed between the power generation layer and at least one of the pair of separators and forms a mesh-like flow path that allows the reaction gas from the separator to flow in the gas flow direction along the membrane surface of the electrolyte membrane. A road forming member,
The flow path forming member is:
The portion surrounding the mesh-shaped flow path has a wide and narrow difference in the contact part area that contacts the power generation body layer, and based on the flow rate of the reaction gas passing through the flow path, the electrolyte membrane of the power generation layer A fuel cell in which the mesh-like flow path having a wide contact area is formed in a range where drying is expected to occur more easily than other electrolyte membrane locations.
前記流路形成部材は、エキスパンドメタルとされている請求項1に記載の燃料電池。   The fuel cell according to claim 1, wherein the flow path forming member is an expanded metal. 請求項1または請求項2に記載の燃料電池であって、
前記セパレーターは、前記発電体層の冷却用の冷媒の流路を、該冷媒の流路が前記流路形成部材の形成する前記網目状の流路における前記ガスの流れ方向と交差するように、備え、
前記流路形成部材は、前記冷媒の流路における流路末端側であって前記網目状の流路における前記反応ガスの流路上流側の領域を前記電解質膜の乾燥が起きやすい範囲として、前記領域に前記接触部位面積が広い範囲の前記網目状の流路を形成する
燃料電池。
The fuel cell according to claim 1 or 2, wherein
The separator is configured such that the flow path of the cooling medium for cooling the power generation body layer intersects the flow direction of the gas in the mesh-shaped flow path formed by the flow path forming member. Prepared,
The flow path forming member has an area on the flow path end side in the flow path of the refrigerant and on the upstream side of the flow path of the reaction gas in the mesh flow path as a range in which the electrolyte membrane is easily dried. A fuel cell in which the mesh-like flow path having a wide contact area is formed in a region.
燃料電池用のエキスパンドメタルの製造装置であって、
金属製の板材を送り出す供給部と、
凸形状の刃部を金型幅方向に並べて有する金型を、前記供給部により送り出される前記金属製の板材に対してプレスすることで、前記板材の板幅において凹部と凸部が交互に連続した網目状の流路をプレス形成するプレス部とを備え、
前記金型は、
前記網目状の流路の流路幅より幅広の金型幅とされ、該金型幅を前記網目状の流路の流路幅に対応する範囲の第1金型幅部と残余の範囲の第2金型幅部とに分け、前記第1金型幅部における前記凸形状の刃部のピッチが前記第2金型幅部における前記凸形状の刃部のピッチより狭くなるように、前記凸形状の刃部を前記第1、第2の金属幅部に並べて備え、
前記プレス部は、
前記金型を前記金型幅方向に沿ってスライド可能に保持し、
前記第1金型幅において並んだ前記凸形状の刃部による前記流路幅に亘っての前記網目状の流路のプレス形成と、前記第2金型幅部において並んだ前記凸形状の刃部と前記第2金型幅部に連続した前記第1金型幅における前記凸形状の刃部とによる前記流路幅に亘っての前記網目状の流路のプレス形成とを、前記金型の前記金型幅方向に沿ったスライドにより切り換える
燃料電池用のエキスパンドメタルの製造装置。
An apparatus for producing expanded metal for fuel cells,
A supply section for feeding out metal plate materials;
By pressing a metal mold having convex blade parts arranged in the mold width direction against the metal plate material fed by the supply unit, recesses and projections are alternately continuous in the plate width of the plate material. A press portion for press-forming the mesh-shaped flow path,
The mold is
The width of the mold is wider than the flow path width of the mesh-shaped flow path, and the width of the mold corresponds to the flow width of the first flow path of the mesh-shaped flow path and the remaining range of the mold. Dividing into the second mold width part, the pitch of the convex blade part in the first mold width part is narrower than the pitch of the convex blade part in the second mold width part, A convex blade portion is provided side by side with the first and second metal width portions,
The press section is
Holding the mold slidably along the mold width direction,
Press formation of the mesh-like flow path over the flow path width by the convex blade parts arranged in the first mold width, and the convex blades arranged in the second mold width part Press forming the mesh-shaped flow path across the flow path width by the convex blade portion in the first mold width continuous with the second mold width section. An apparatus for producing expanded metal for a fuel cell, which is switched by sliding along the mold width direction.
燃料電池用のエキスパンドメタルの製造方法であって、
金属製の板材を送り出す送り出し工程と、
凸形状の刃部を金型幅方向に並べて有する金型を、前記送り出される前記金属製の板材に対してプレスすることで、前記流路幅において凹部と凸部が交互に連続した網目状の流路をプレス形成するプレス工程とを備え、
該プレス工程では、
前記流路幅より幅広の金型幅を前記網目状の流路の流路幅に対応する第1金型幅部と残余の第2金型幅部とに分け、前記第1金型幅部における前記凸形状の刃部のピッチが前記第2金型幅部における前記凸形状の刃部のピッチより狭くなるように、前記凸形状の刃部を備えた前記金型を、前記金型幅方向に沿ってスライド可能に保持し、
前記第1金型幅において並んだ前記凸形状の刃部による前記流路幅に亘っての前記網目状の流路のプレス形成と、前記第2金型幅部において並んだ前記凸形状の刃部と前記第2金型幅部に連続した前記第1金型幅における前記凸形状の刃部とによる前記流路幅に亘っての前記網目状の流路のプレス形成とを、前記金型の前記金型幅方向に沿ったスライドにより切り換える
燃料電池用のエキスパンドメタルの製造方法。
A method for producing expanded metal for a fuel cell, comprising:
A delivery process for delivering a metal plate;
By pressing a mold having convex blade portions arranged in the mold width direction against the metal plate material to be sent out, a mesh-like structure in which concave portions and convex portions are alternately continuous in the flow path width. A press process for press forming the flow path,
In the pressing process,
A mold width wider than the flow path width is divided into a first mold width section corresponding to the flow path width of the mesh-shaped flow path and a remaining second mold width section, and the first mold width section The mold having the convex blade portion is arranged so that the pitch of the convex blade portion is narrower than the pitch of the convex blade portion in the second mold width portion. Slidable along the direction,
Press formation of the mesh-like flow path over the flow path width by the convex blade parts arranged in the first mold width, and the convex blades arranged in the second mold width part Press forming the mesh-shaped flow path across the flow path width by the convex blade portion in the first mold width continuous with the second mold width section. A method for producing expanded metal for a fuel cell, which is switched by sliding along the mold width direction.
JP2011062802A 2011-03-22 2011-03-22 FUEL CELL AND EXPANDED METAL MANUFACTURING DEVICE AND MANUFACTURING METHOD FOR FUEL CELL Active JP5565352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011062802A JP5565352B2 (en) 2011-03-22 2011-03-22 FUEL CELL AND EXPANDED METAL MANUFACTURING DEVICE AND MANUFACTURING METHOD FOR FUEL CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011062802A JP5565352B2 (en) 2011-03-22 2011-03-22 FUEL CELL AND EXPANDED METAL MANUFACTURING DEVICE AND MANUFACTURING METHOD FOR FUEL CELL

Publications (2)

Publication Number Publication Date
JP2012199093A JP2012199093A (en) 2012-10-18
JP5565352B2 true JP5565352B2 (en) 2014-08-06

Family

ID=47181120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011062802A Active JP5565352B2 (en) 2011-03-22 2011-03-22 FUEL CELL AND EXPANDED METAL MANUFACTURING DEVICE AND MANUFACTURING METHOD FOR FUEL CELL

Country Status (1)

Country Link
JP (1) JP5565352B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101990281B1 (en) * 2015-06-30 2019-06-18 주식회사 엘지화학 Separator, manufacturing method thereof and Fuel cell stack comprising the same
KR101959469B1 (en) * 2015-07-31 2019-07-02 주식회사 엘지화학 Separator, and Fuel cell stack comprising the same
KR102024259B1 (en) 2016-08-12 2019-09-23 주식회사 엘지화학 Separator, and Fuel cell stack comprising the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4312290B2 (en) * 1999-01-29 2009-08-12 アイシン高丘株式会社 Fuel cell and separator
JP2005235418A (en) * 2004-02-17 2005-09-02 Nissan Motor Co Ltd Solid polymer fuel cell
JP2009026476A (en) * 2007-07-17 2009-02-05 Toyota Motor Corp Unit cell of fuel cell
JP2009117250A (en) * 2007-11-08 2009-05-28 Toyota Motor Corp Gas passage layer at cathode electrode side, and fuel cell
JP5098652B2 (en) * 2008-01-15 2012-12-12 日産自動車株式会社 Fuel cell

Also Published As

Publication number Publication date
JP2012199093A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
KR101693993B1 (en) Bipolar plate for fuel cell
JP4678359B2 (en) Fuel cell
US7989121B2 (en) Solid oxide fuel cell and separator
US7569301B2 (en) Fuel cell
JP5240282B2 (en) Fuel cell
CN101335358B (en) Fuel cell
JP5123279B2 (en) Fuel cell
JP5621709B2 (en) Fuel cell, expanded metal for fuel cell, manufacturing apparatus and manufacturing method thereof
WO2005109556A1 (en) Fuel cell and separator thereof
US8053125B2 (en) Fuel cell having buffer and seal for coolant
JP4682511B2 (en) Solid oxide fuel cell
JP5565352B2 (en) FUEL CELL AND EXPANDED METAL MANUFACTURING DEVICE AND MANUFACTURING METHOD FOR FUEL CELL
JP5297990B2 (en) Fuel cell
JP2004103255A (en) Fuel cell
JP2005235613A (en) Fuel cell
JP4031952B2 (en) Fuel cell
JP2021519506A (en) Bipolar plate with wavy channels
JP2021511630A (en) Fuel cell plate and flow structure design
JP2004171824A (en) Fuel cell
JP5463256B2 (en) Polymer electrolyte fuel cell
JP2007250432A (en) Fuel cell
JP5583824B2 (en) Fuel cell
JP4422505B2 (en) Fuel cell
JP2006107968A (en) Gas passage forming member for fuel cell, and fuel cell
JP2005183141A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140602

R150 Certificate of patent or registration of utility model

Ref document number: 5565352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250