JP5564676B1 - Liquefaction suppression device and liquefaction suppression method - Google Patents
Liquefaction suppression device and liquefaction suppression method Download PDFInfo
- Publication number
- JP5564676B1 JP5564676B1 JP2014027438A JP2014027438A JP5564676B1 JP 5564676 B1 JP5564676 B1 JP 5564676B1 JP 2014027438 A JP2014027438 A JP 2014027438A JP 2014027438 A JP2014027438 A JP 2014027438A JP 5564676 B1 JP5564676 B1 JP 5564676B1
- Authority
- JP
- Japan
- Prior art keywords
- drainage
- ground
- liquefaction
- pipe
- liquefaction suppression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001629 suppression Effects 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 109
- 239000011148 porous material Substances 0.000 claims abstract description 70
- 230000007423 decrease Effects 0.000 claims abstract description 8
- 230000001105 regulatory effect Effects 0.000 claims abstract description 7
- 239000004575 stone Substances 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 3
- 239000002344 surface layer Substances 0.000 claims description 3
- 239000004576 sand Substances 0.000 abstract description 8
- 230000002401 inhibitory effect Effects 0.000 abstract 1
- 239000002689 soil Substances 0.000 description 20
- 239000003673 groundwater Substances 0.000 description 17
- 230000006835 compression Effects 0.000 description 11
- 238000007906 compression Methods 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 7
- 239000010410 layer Substances 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 239000010865 sewage Substances 0.000 description 6
- 229920003002 synthetic resin Polymers 0.000 description 6
- 239000000057 synthetic resin Substances 0.000 description 6
- 101100491335 Caenorhabditis elegans mat-2 gene Proteins 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000006260 foam Substances 0.000 description 4
- 101100495256 Caenorhabditis elegans mat-3 gene Proteins 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 239000004568 cement Substances 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 229920001875 Ebonite Polymers 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 238000007596 consolidation process Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 101100495270 Caenorhabditis elegans cdc-26 gene Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
Images
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Foundations (AREA)
- Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
Abstract
【課題】緩い砂層が堆積する地盤の上に建つ建物の傾きや沈下、当該地盤中に埋設された構造物の浮上等の地震時の液状化に伴う被害を防止することができる液状化抑制装置および液状化抑制方法を提供する。
【解決手段】液状化地盤内に埋設されたマンホールAの周囲に設置する。マンホールAの周囲に埋設された排水管1と排水管1の上端部に取り付けられた排水調整弁5、コイルバネ6およびキャップ7を備えている。排水調整弁5は排水管1内に流入した地盤中の過剰間隙水圧によって排水管1の管軸上方に押し上げられることにより排水管1の上端部に設けられた排水口1bを開け、かつ過剰間隙水圧の低下と共にコイルバネ6によって排水管1の管軸下方向に押し下げられることにより排水口1bを閉じるように取り付ける。排水管1の周囲に複数の集水孔1Bを設ける。
【選択図】図2The present invention relates to a liquefaction suppression device capable of preventing damage caused by liquefaction during an earthquake, such as the inclination or subsidence of a building built on a ground on which a loose sand layer accumulates, and the floating of a structure embedded in the ground. And a method for inhibiting liquefaction.
It is installed around a manhole A embedded in the liquefied ground. A drainage pipe 1 buried around the manhole A, a drainage adjustment valve 5 attached to the upper end of the drainage pipe 1, a coil spring 6 and a cap 7 are provided. The drainage regulating valve 5 is opened upward by the excess pore water pressure in the ground that has flowed into the drainage pipe 1 to open the drainage port 1b provided at the upper end of the drainage pipe 1 and the excess gap. The drainage port 1b is attached so as to be closed by being pushed down by the coil spring 6 in the downward direction of the pipe axis of the drainage pipe 1 as the water pressure decreases. A plurality of water collecting holes 1B are provided around the drain pipe 1.
[Selection] Figure 2
Description
本発明は、液状化のおそれのある地盤の上に建つ構造物、当該地盤内に埋設された埋設物の液状化対策に用いられる液状化抑制装置および液状化抑制方法に関し、地震時の液状化に伴う地上の住宅などの既設構造物の沈下や傾き、地中の上下水道管、電信用ケーブルダクト等の地中埋設管、マンホールや共同溝などの既設構造物の液状化による浮上等を防止し、また通常時の過剰な地下水の排水による構造物周辺の地盤沈下を防止することができる。 The present invention relates to a structure built on a ground that is likely to be liquefied, a liquefaction suppression device and a liquefaction suppression method used for liquefaction countermeasures for buried objects embedded in the ground, and liquefaction during an earthquake Prevents subsidence and inclination of existing structures such as above-ground houses, levitation due to liquefaction of underground structures such as underground water and sewage pipes, telegraph cable ducts, underground pipes such as manholes and common grooves, etc. In addition, ground subsidence around the structure due to excessive groundwater drainage during normal times can be prevented.
近年、地震の際の地盤の液状化は、緩い砂層が堆積する地盤に限らず、粘性土が混在する地盤や粘性土層と砂層が交互に堆積する地盤でも発生することが明らかになってきた。 In recent years, it has become clear that ground liquefaction during earthquakes occurs not only in soils with loose sand layers, but also in soils with cohesive soils or with soils with alternating clay and sand layers. .
これらの地盤では、地震時に液状化が発生すると地上に建つ住宅などの建物が大きく傾いたり沈下し、また地中に埋設された上下水道管、電信・電話ケーブルダクト等の地中埋設管、さらにはマンホールや共同溝などの既設地中構造物が地上に大きく浮上したりする等の被害に見舞われることがある。 In these grounds, when liquefaction occurs during an earthquake, buildings such as houses built on the ground will tilt or sink, and underground pipes such as water and sewage pipes, telegraph and telephone cable ducts buried underground, In some cases, existing underground structures such as manholes and common trenches may be damaged.
従来、この種の液状化による被害を防止する方法として、地上または地中の構造物の周囲に砂杭を造成して地盤を締め固めて密度を上げる締め固め方法、地盤中にセメント系の固化材を注入して硬質地盤に改良して地震時の変形を抑制する固化方法、さらに、構造物の周囲に複数のドレーンパイプを埋設して地盤中の過剰間隙水を地上に排水して地下水位を低下させる地下水位低下方法などがとられている。 Conventionally, as a method of preventing damage due to this type of liquefaction, a sand pile is formed around the structure on the ground or in the ground, the ground is compacted to increase the density, and the cement-based solidification in the ground A solidification method that suppresses deformation during earthquakes by injecting materials into hard ground, and also burying multiple drain pipes around the structure to drain excess pore water in the ground to the ground level The groundwater level lowering method to reduce
しかし、地盤中に砂杭を造成して地盤を締め固めたり地盤をセメント系の改良材で硬質地盤に改良する方法は、専用の重機や設備を使用するため、そのような専用の重機や設備を用いて作業を行えるような作業空間を必要とし、また工事そのものも大規模化して既存の構造物の周囲では実施できない場合が多かった。そもそも、これらの工法は、一般に更地に適用されるものである。 However, the methods of compacting the ground by creating sand piles in the ground and improving the ground to hard ground with cement-based improvement materials use dedicated heavy machinery and equipment, so such dedicated heavy machinery and equipment In many cases, a work space that can be used for work is required, and the work itself is large and cannot be performed around existing structures. In the first place, these construction methods are generally applied to lands.
また、周知の地下水位低下工法では、地下水位までは不飽和化することにより地震時の液状化を防止できるが、地下水位の低下に伴って地盤沈下を引き起こすおそれがある。 Moreover, in the known groundwater level lowering method, liquefaction during an earthquake can be prevented by desaturating the groundwater level, but there is a risk of causing ground subsidence as the groundwater level decreases.
また、地下水の過剰な排水により構造物周囲の地盤が圧密されて思わぬ地盤沈下を引き起こすおそれがあり、既存の構造物に沈下や傾き等といった思わぬ被害をもたらすおそれがあった。また、いつ襲来するかわからない地震に対して地下水位を低下し続けることは実際上、困難である。 In addition, excessive groundwater drainage may consolidate the ground around the structure and cause unexpected ground subsidence, which may cause unexpected damage such as subsidence and inclination. In addition, it is practically difficult to keep the groundwater level low for earthquakes that do not know when they will strike.
特に近年、液状化は、ルーズな砂質地盤だけでなく粘性土が混在する地盤や粘性土層が介在する地盤においても発生することがわかってきた。このような地盤にドレーンパイプ等を常設して地下水を排水し続けると、地盤中の間隙水が過剰に排水されて構造物周囲の地盤が圧密沈下を引き起こすおそれがある。 In recent years, in particular, it has been found that liquefaction occurs not only on loose sandy ground but also on ground where cohesive soil is mixed or ground where a viscous soil layer is interposed. If drain pipes or the like are permanently installed on such ground and groundwater continues to be drained, pore water in the ground may be excessively drained and the ground around the structure may cause consolidation settlement.
本発明は、以上の課題を解決するためになされたもので、液状化のおそれある地盤に建つ構造物の沈下や傾き、当該地盤内に埋設された構造物の浮上等の、地震時の液状化による被害を未然に防止し、かつ通常時の地下水の過剰な排水による既存構造物周囲の地盤沈下を防止できるようにした液状化抑制装置および液状化抑制方法を提供することを目的とするものである。 The present invention has been made in order to solve the above-mentioned problems, and the liquidity at the time of an earthquake such as the sinking or tilting of a structure built on the ground where there is a risk of liquefaction, the floating of a structure embedded in the ground, etc. It aims to provide a liquefaction suppression device and a liquefaction suppression method that can prevent damage caused by liquefaction and prevent ground subsidence around existing structures due to excessive drainage of groundwater during normal times It is.
本発明は、地盤中の土粒子間の間隙水圧を制御して液状化を抑制することにより、地震時の液状化に伴う既設構造物の沈下や傾き、上下水道管、電信用ケーブルダクト等の地中埋設管、さらにはマンホールや共同溝などの既設構造物の浮上等を未然に防止することができ、また通常時の地下水の過剰な排水による既存構造物周囲の地盤沈下を防止できるようにしたものである。 The present invention suppresses liquefaction by controlling the pore water pressure between soil particles in the ground, so that subsidence and inclination of existing structures accompanying liquefaction during earthquakes, water and sewage pipes, telegraph cable ducts, etc. It is possible to prevent underground structures such as underground pipes, as well as floating structures such as manholes and common ditches, and to prevent ground subsidence around existing structures due to excessive drainage of normal groundwater. It is a thing.
本発明によれば、通常時は、地盤中の間隙水が排水管内に排水されて、地盤が不飽和状態(地下水と空気が存在する状態)にあることにより、地震の際にダイレイタンシーが起きて土の堆積が収縮しても、土粒子間の有効応力が間隙水圧に転化されることはないので、液状化の発生を防止することができる。 According to the present invention, normally, the interstitial water in the ground is drained into the drain pipe, and the ground is in an unsaturated state (a state in which groundwater and air are present). Even if it occurs and the soil deposition shrinks, the effective stress between the soil particles is not converted into pore water pressure, so that the occurrence of liquefaction can be prevented.
また通常時、排水管の上端部に設けられた排水口は、排水調整弁によって閉ざされていることにより、地盤中の間隙水が排水管を介して地上に排水されることはないので、地下水の過剰な排水による地盤の異常な沈下等を防止することができる。 In addition, normally, the drainage port provided at the upper end of the drainage pipe is closed by the drainage adjustment valve, so that pore water in the ground is not drained to the ground via the drainage pipe. Abnormal subsidence of the ground due to excessive drainage can be prevented.
さらに、地震の際にダイレイタンシーにより土粒子間の有効応力が減少し、これに伴い間隙水圧が上昇したとしても、排水管内に流入した地下水の過剰間隙水圧によって排水調整弁が押し上げられて開くことで、過剰間隙水が排水口より排水されることにより地盤中の過剰間隙水圧の上昇が抑制されるため、土粒子間の有効応力がゼロとなる100パーセント液状化状態に至るのを防止することができる。 Furthermore, even if the effective stress between the soil particles decreases due to the dilatancy during the earthquake, and the pore water pressure increases accordingly, the drainage adjustment valve is pushed up and opened by the excess pore water pressure flowing into the drain pipe. As a result, the excess pore water is drained from the drain port, so that the increase in the excess pore water pressure in the ground is suppressed, so that the effective stress between the soil particles is prevented from reaching 100% liquefaction. be able to.
これにより、地上の既設構造物の傾きや沈下、地盤中の上下水道管、電信ケーブルラック等の地中埋設管、さらにはマンホール、共同溝などの既設地中構造物の浮上等を防止することができる。 This will prevent the inclination and sinking of existing structures on the ground, underground pipes such as water and sewage pipes in the ground, telegraph cable racks, etc., as well as the floating of existing underground structures such as manholes and common grooves. Can do.
この場合、通常時においては、ばねやゴム等の弾性部材によって排水調整弁が排水管の管軸下方に押し下げられていることにより排水口は閉じているが、地震の際は、排水管内の間隙水圧が上昇して排水調整弁が押し上げられることにより排水口が開くことで、過剰間隙水圧の排水が可能になる。 In this case, under normal conditions, the drainage adjustment valve is pushed down below the pipe axis of the drainage pipe by an elastic member such as a spring or rubber, so that the drainage port is closed. When the water pressure rises and the drainage adjustment valve is pushed up, the drainage port is opened, so that excess pore water pressure can be drained.
また、地震がおさまって地盤中の過剰間隙水圧が低減するに伴い、排水調整弁は弾性部材によって管軸下方向に押し下げられて元の位置に自動的に戻り、排水口が閉じることにより排水口から間隙水が排水されることはない。 Also, as the excess water pressure in the ground decreases as the earthquake subsides, the drainage adjustment valve is pushed down by the elastic member downwards the pipe axis and automatically returns to its original position. There is no drainage of pore water.
また、本発明は、既設構造物に何ら手を加えることなく、既設構造物の周囲または直下の地盤中に削孔して排水管を敷設するのみでよい。 In the present invention, it is only necessary to drill the hole around the existing structure or in the ground directly below and lay the drain pipe without modifying the existing structure.
本発明では、排水調整弁を過剰間隙水圧の大きさに対応したばねやゴム等の弾性体の圧縮量になるように調整することができる。そして、その圧縮量に対応して排水口の開度を調整して地盤中の間隙水の排水量を制御することにより、地震時の液状化を抑制し、かつ通常時の地盤沈下を防止することができる。 In the present invention, the drainage adjustment valve can be adjusted so as to have a compression amount of an elastic body such as a spring or rubber corresponding to the magnitude of the excess pore water pressure. And by controlling the amount of drainage of pore water in the ground by adjusting the opening of the drain outlet corresponding to the compression amount, to suppress liquefaction during earthquakes and prevent subsidence during normal times Can do.
図7に図示するグラフは、過剰間隙水圧消散工法における地震時の過剰間隙水圧比の変化と液状化との関係を示したものであり、図7における過剰間隙水圧比を0〜1.0の範囲で調整することで、過剰間隙水圧が上昇しても1.0以下にしておくことにより、土粒子間の有効応力がゼロとなる100パーセントの液状化状態には至らないため、地盤の沈下等は生じないか、生じてもわずかと推測される。 The graph shown in FIG. 7 shows the relationship between the change in excess pore water pressure ratio and the liquefaction during an earthquake in the excess pore water pressure dissipation method. The excess pore water pressure ratio in FIG. By adjusting, even if the excess pore water pressure rises, it is not more than 1.0, so it does not reach a 100% liquefaction state where the effective stress between soil particles becomes zero, so subsidence of the ground does not occur Or even if it occurs, it is estimated that it is slight.
なお、弾性部材には圧縮コイルバネまたは弾性ゴム等を用いることができ、特に、当該弾性部材の弾発力(排水調整弁を押し下げる力)を調整して、排水口から排水される過剰間隙水の排水量を調整することにより、地盤中の過剰間隙水圧を調整して液状化を抑制することができる。また、排水口に排水管の外に排水された間隙水の逆流を阻止するための逆止弁を取りつけてもよい(図4(a),(b))。 The elastic member can be a compression coil spring, elastic rubber, or the like, and in particular, adjust the resilience of the elastic member (the force that pushes down the drainage adjustment valve) to remove excess pore water drained from the drainage port. By adjusting the amount of drainage, excess pore water pressure in the ground can be adjusted to suppress liquefaction. In addition, a check valve for preventing the backflow of the pore water drained out of the drain pipe may be attached to the drain port (FIGS. 4 (a) and (b)).
また、排水管の排水口より下方の外周に防砂マットや透水性マット、あるいはポリエチレン発砲体などの合成樹脂発砲体からなる吸水マットを設置して集水孔を覆うことにより、地震時における排水管の外周に接触している地盤中の地下水を全面にわたって集水孔から排水管内にとりこみ、排水管周囲の全面積の地盤中から間隙水を排水管内に満遍なく均一に集水することができ、また孔壁の土砂によって集水孔の目詰りを防止することができ、これにより構造物周囲の地盤中における間隙水圧の急激な上昇を抑制することができる。 In addition, by installing a water-absorbing mat consisting of a sandproof mat, a water-permeable mat, or a synthetic resin foam such as polyethylene foam on the outer periphery below the drain outlet of the drain pipe, the drain pipe in the event of an earthquake is covered. The ground water in contact with the outer periphery of the ground can be drawn into the drain pipe through the drainage hole over the entire surface, and pore water can be collected evenly and uniformly in the drain pipe from the entire area around the drain pipe. Clogging of the water collecting hole can be prevented by the earth and sand of the hole wall, and thereby a rapid increase in pore water pressure in the ground around the structure can be suppressed.
さらに、構造物と排水管の周囲に遮蔽壁(地中壁)を設置して、遮蔽壁より外側からの地下水の流入を遮断して地震時に遮蔽壁内への地下水の流入や地震力の伝播を低減させて過剰間隙水圧の上昇を抑えて液状化抑制機能を高めることができる。 In addition, a shielding wall (underground wall) is installed around the structure and drain pipe to block the inflow of groundwater from the outside of the shielding wall, and inflow of groundwater and propagation of seismic force into the shielding wall during an earthquake. The liquefaction suppression function can be enhanced by suppressing the increase in excess pore water pressure.
なお、排水管には鋼管または塩ビ管などからなる孔あき管を使用することができ、また排水調整弁は硬質ゴムまたは硬質合成樹脂、あるいは軟質ゴムなどから形成することができる。 In addition, a perforated pipe made of a steel pipe or a vinyl chloride pipe can be used as the drain pipe, and the drainage adjusting valve can be made of hard rubber, hard synthetic resin, soft rubber or the like.
また、排水管上端部の周囲に砕石または砂利からなる排水路が設けることにより地上に排水された過剰間隙水を速やかに排水することができる。また特に、排水管をマンホールの周囲に設置する場合、排水口とマンホールとの間に排水管を敷設して排水口から排水される間隙水をマンホール内に排水することもできる。 Further, by providing a drainage channel made of crushed stone or gravel around the upper end of the drainage pipe, excess pore water drained on the ground can be drained quickly. In particular, when a drain pipe is installed around the manhole, a drain pipe can be laid between the drain hole and the manhole, and the interstitial water drained from the drain port can be drained into the manhole.
さらに、地上に排水された過剰間隙水を地盤中に排水管を介して循環させることにより、既設構造物周囲の通常時の地盤沈下を抑制することができる。この方法を実現するには、排水管を介して地上に排水された過剰間隙水を一時的に溜めておくための貯水槽と地盤中の過剰間隙水圧の程度に応じて貯水槽内の過剰間隙水を地盤中に環流させるための環流ポンプ等を備えていればよい。 Furthermore, the ground subsidence at the normal time around the existing structure can be suppressed by circulating the excess pore water drained to the ground through the drain pipe in the ground. In order to realize this method, there is a reservoir for temporarily storing excess pore water drained to the ground via a drain pipe and an excess gap in the reservoir depending on the degree of excess pore water pressure in the ground. What is necessary is just to provide the circulating pump etc. for circulating water in the ground.
なお、この方法を既存のマンホールの周囲で実施する場合は、貯水槽を設ける代わりにマンホールと排水管とを横引き排水管で接続し、地震時における過剰間隙水をマンホールに排水し、また通常時にはマンホール内の水を横引き排水管と排水管を介してマンホール周囲の地盤中に循環させるようにしてもよい。 When this method is implemented around an existing manhole, the manhole and drainage pipe are connected by a horizontal drainage pipe instead of providing a water storage tank, and excess pore water during an earthquake is drained into the manhole. Sometimes, the water in the manhole may be circulated in the ground around the manhole through a horizontal drainage pipe and a drainage pipe.
本発明によれば、地盤中の土粒子間の間隙水を制御して液状化を抑制することにより、地震時の液状化に伴う地上の既設構造物の沈下や傾き、上下水道管、電信・電話ケーブルダクト等の地中埋設管、さらにはマンホールや共同溝などの既設地中構造物の液状化による浮上等を防止することができる。 According to the present invention, by controlling pore water between soil particles in the ground to suppress liquefaction, the subsidence and inclination of existing structures on the ground accompanying liquefaction during earthquakes, water and sewage pipes, telegraphs, It is possible to prevent underground underground pipes such as telephone cable ducts and the like from floating due to liquefaction of existing underground structures such as manholes and common grooves.
すなわち、既設地中構造物に何らの工作を加えることなく、そのままの状態で、既設地中構造物の周辺地盤中に本発明の排水管を削孔によって埋設するだけで、液状化を防止することができる−。また、排水管は、排水調整弁を閉ざして密閉状態とすることにより、地下水を地上に排水する排水管本来の排水機能を容易に停止させることができる。 That is, without adding any work to the existing underground structure, liquefaction can be prevented by simply burying the drain pipe of the present invention by drilling in the surrounding ground of the existing underground structure. Can- Moreover, the drainage pipe can easily stop the original drainage function of the drainage pipe for draining the groundwater to the ground by closing the drainage adjustment valve to be in a sealed state.
また、排水管の上端部に設けられた排水口は、通常時、排水調整弁によって閉ざされていることにより、地盤中の間隙水が排水管を介して地上に排水されることはないので、排水管は排水機能を有しないため通常時の地盤の異常な沈下等を防止することができる。したがって、地盤が粘性土を混在する場合や粘性土層を含む場合であっても、圧密現象を生じることはないので構造物の沈下等は生じない。 In addition, since the drain outlet provided at the upper end of the drain pipe is normally closed by the drain adjustment valve, the pore water in the ground is not drained to the ground via the drain pipe. Since the drainage pipe does not have a drainage function, it is possible to prevent abnormal subsidence of the ground during normal times. Therefore, even if the ground contains a cohesive soil or includes a cohesive soil layer, the consolidation phenomenon does not occur, so that the structure does not sink.
一方、地震時においては、ダイレイタンシーにより土粒子間の有効応力が減少し、間隙水圧が上昇したとしても、排水管内の過剰間隙水圧によって排水調整弁が押し上げられ、排水口が開いて過剰間隙水が排水されることにより地盤中の過剰間隙水圧の上昇が抑制されるため、土粒子間の有効応力がゼロとなる100パーセントの液状化状態に至るのを防止することができる。 On the other hand, in the event of an earthquake, even if the effective stress between soil particles decreases due to dilatancy and the pore water pressure rises, the drainage adjustment valve is pushed up by the excess pore water pressure in the drain pipe, and the drain port opens and the excess gap Since the increase in excess pore water pressure in the ground is suppressed by draining water, it is possible to prevent a 100% liquefaction state in which the effective stress between soil particles becomes zero.
さらにまた、過剰間隙水圧に対応して排水調整弁の開度を調整可能なことで、有効応力比を0〜1.0の間に調整することにより、少々の地盤変化が生じても上部構造物が被覆を生じない程度に変位を調整することができる。 Furthermore, by adjusting the opening of the drainage regulating valve in response to excess pore water pressure, the superstructure can be adjusted even if a slight ground change occurs by adjusting the effective stress ratio between 0 and 1.0. The displacement can be adjusted to the extent that no coating occurs.
これにより、地上の既存構造物の傾きや沈下、地盤中の上下水道管、電信・電話ケーブルラック等の地中埋設管、さらにはマンホール、共同溝などの既設地中構造物の浮上等の液状化に伴う被害を防止することができる。 As a result, liquids such as the tilting and sinking of existing structures on the ground, underground water pipes such as water and sewage pipes in the ground, telegraph and telephone cable racks, and the floating of existing underground structures such as manholes and common grooves The damage caused by the conversion can be prevented.
図1〜図5は、本発明の一実施形態であり、緩い砂質層が堆積する地盤中に埋設されたマンホールの周囲に敷設された液状化調整装置を図示したものである。 FIGS. 1-5 is one Embodiment of this invention, and illustrates the liquefaction adjustment apparatus laid around the manhole embed | buried in the ground where a loose sandy layer accumulates.
図において、マンホールAの周囲に複数の排水管1が鉛直にかつマンホールAの周方向に一定間隔おきに埋設されている。特に、軟弱地盤のような液状化しやすい地盤にあっては、複数の排水管1がマンホールAの周囲に同心円状に重ねて埋設される。
In the figure, around the manhole A, a plurality of
また、各排水管1の周囲および各排水管1と1との間における地盤の表層部に、砕石または砂利などからなる排水マット2が所定の厚さに敷設され、当該排水マット2より下方の各排水管1の周囲には防砂マットや透水性マット、あるいはポリエチレン発砲体などの合成樹脂発砲体などからなる集水マット3が排水管1の径方向に一定厚さに設置されている(図2、図3(b)及び図5参照)。
Further, a
排水管1は、鋼管または塩ビ管などの硬質合成樹脂管などから形成され、各排水管1の下端部および中間部の周壁に複数の集水孔1aが排水管1の管軸方向および周方に一定間隔おきに形成されている。また、各排水管1の上端部(中間部より上方部分)の周壁には複数の排水口1bか形成されている。
The
排水口1bは、排水管1の三方向乃至四方向の側面に集水孔1aよりやや大きめに形成され、かつ排水管1の周囲に敷設された排水マット2内に開放している。
The
排水口1bには、排水管1を介して地上に排水される過剰間隙水の排水を調整する排水調整弁4と、地上に排水された過剰間隙水の排水管1内への逆流を阻止する逆止弁5がそれぞれ取り付けられている。逆止弁5は排水管1の外周に排水口1bを覆うようにゴムチューブ等を取り付けることにより形成されている。
In the
排水調整弁4は、排水管1の上端部に排水管1内の一定範囲を上下移動するように挿入されている。また、当該排水調整弁4の上側に当該排水調整弁4を排水管1の管軸下方向に押し下げるように力を常時付与する弾性部材6(以下「バネ6」)および当該バネ6の反力受けとなるキャップ7がそれぞれ取り付けられている。バネ6には圧縮コイルバネが用いられ、バネ6の代わりに弾性ゴムが用いられることもある。
The drainage adjustment valve 4 is inserted into the upper end of the
排水調整弁4は、硬質ゴムまたは硬質合成樹脂などから排水管1の内周面に内接可能な短い円柱状に形成されている。また、排水調整弁4はバネ6によって排水口1bの位置まで押し下げられることにより、排水孔1bが排水調整弁4によって閉ざされ、通常、排水口1bは、排水調整弁4がバネ6によって排水口1bの位置まで押し下げられて閉じている。
The drainage adjustment valve 4 is formed in a short cylindrical shape that can be inscribed in the inner peripheral surface of the
また、地震の際には、排水管1の各集水孔1aから排水管1内に流入した過剰間隙水の水圧によって、排水調整弁4がバネ6の力に抗して排水管1の管軸上方向に押し上げられることにより排水口1bが開くようになっており、また、これにより、排水管1内の過剰間隙水が排水口1bから排水管1周囲の排水マット2内に排水されるようになっている。
Also, in the event of an earthquake, the drainage regulating valve 4 resists the force of the
バネ6は排水調整弁4とキャップ7との間に介在され、排水調整弁4を排水管1の管軸下方に常時押し下げるように作用している。これにより、通常、排水口1bは閉じ、排水管1内に流入した地盤中の間隙水が排水口1bより排水管1の外に排水されないようになっている。
The
また、地震時にダイレイタンシーにより土粒子間の有効応力が減少し、間隙水圧が上昇すると、排水管1内の過剰間隙水圧によって排水調整弁4が押し上げられ、排水口1bが開いて過剰間隙水が排水管1の外に排水されることにより地盤中の過剰間隙水圧の上昇が抑制されるようになっている。
Also, when the effective stress between soil particles decreases due to dilatancy and the pore water pressure rises during an earthquake, the drainage regulating valve 4 is pushed up by the excess pore water pressure in the
キャップ7は、排水調整弁4とバネ6を収納可能な短い筒状に形成され、上端面部がバネ6の反力受け7aになっている。また、キャップ7は、排水管1の上端部に外接可能な内径に形成され、排水管1の上端部にねじ式などによって脱着自在に取り付けられている。
The
このような構成において、各排水管1の上端部に取り付けられた排水調整弁4は、通常、バネ6によって排水管1の管軸下方向に押し下げられており、これにより排水口1bは閉ざされ、排水管1内に流入した地盤中の間隙水は排水口1bから地上に排水されることはないので、通常時の地下水の過剰な排水によるマンホールA周囲の地盤沈下を防止することができる。
In such a configuration, the drainage adjustment valve 4 attached to the upper end portion of each
一方、地震の発生と共にマンホールA周囲の地盤中において、地盤のダイレイタンシーにより土粒子間の有効応力が減少し、これに伴い間隙水圧が上昇したとしても、各排水管1内の過剰間隙水圧によって排水調整弁4が押し上げられることにより、排水口1bが開いて過剰間隙水が排水口1bより排水されることで(図5参照)、地盤中の過剰間隙水圧の上昇が抑制されるため、土粒子間の有効応力がゼロとなる100パーセント液状化状態に至るのを防止することができ、マンホールAの浮上を防止することができる(図7参照)。
On the other hand, in the ground around the manhole A with the occurrence of the earthquake, even if the effective stress between the soil particles decreases due to the ground dilatency, and the pore water pressure increases accordingly, the excess pore water pressure in each
この場合特に、排水管1の排水口1aより下方の外周に防砂マットや透水性マット、あるいはポリエチレン発砲体などの合成樹脂発砲体からなる吸水マット3を設置して集水孔1aが被覆されていることにより、地震時における排水管1の外周に接触している地盤中の地下水を全面にわたって集水孔1aから排水管1内にとりこみ、排水管1周囲の全面積の地盤中から間隙水を排水管1内に満遍なく均一に集水することができる(図5参照)。
In this case, in particular, a
また、孔壁の土砂によって集水孔1aの目詰りを防止することができ、これによりマンホールA周囲の地盤中における間隙水圧の急激な上昇を抑制することができる(図5参照)。
Moreover, clogging of the
また、地震が去って液状化が納まると、排水管1内の過剰間隙水は、集水孔1aより周囲の地盤中に徐々に浸透し、これに伴い排水管1内の過剰間隙水圧が徐々に低下する。同時に、排水調整弁5がバネ6によって元の位置まで押し戻されて排水口1bが閉じる。
In addition, when the earthquake has passed and the liquefaction has settled, excess pore water in the
なお、マンホールAの周囲に本発明の液状化抑制装置を敷設する場合、各排す管1の排水口1bからマンホールAに通じる横引きの排水管(図省略)を敷設して、排水管1を介して地上に排水される過剰間隙水を横引きの排水管を介してマンホールAに排水するようにすれば、地上の排水マット2を省略することができる。
When the liquefaction suppression device of the present invention is laid around the manhole A, a horizontal drainage pipe (not shown) that leads from the
図4(a),(b)は、排水孔に設けられた逆止弁の変形例を図示したものであり、図において、排水管1上端部の周壁に短い円柱状の突出部8が複数、排水管1の三方向乃至四方向に突出して形成されている。
4 (a) and 4 (b) illustrate a modification of the check valve provided in the drain hole. In the figure, there are a plurality of short
各突出部8の中央に円形状の穴部8aが所定深さに形成され、また周壁に排水孔8bが穴部8aと連通して形成されている。さらに、穴部8aの底部は凹曲面状に形成され、その中心部に排水管1内に連通する排水孔1bが形成されている。
A
また、穴部8a内に当該穴部8aの底部に内接する球体9またはコーン10が挿入され、その後から圧縮コイルバネ11が挿入され、さらに穴部8aの端部に圧縮コイルバネ11の反力受けとなるキャップ12が取り付けられている。
In addition, a
以上の構成により、球体9と圧縮コイルバネ11またはコーン10と圧縮コイルバネ11は穴部8a内に収納され、かつ球体9とコーン10はそれぞれ圧縮コイルバネ11によって穴部8aの底部に強く押し付けられている。
With the above configuration, the
これにより、排水口1bは、排水管1の外に排水された過剰間隙水が排水孔1bから排水管1内に逆流することはない。なお、キャップ12は突出部8の端部にねじ式などにより脱着自在に取り付けられ、これにより球体9またはコーン10と圧縮コイルバネ11はキャップ12と共に脱着自在に取り付けられている。
As a result, the
図6は、各排水管1の外周部に固化材からなる一または複数の塊状固結体13を、管軸方向に間隔をおいて、かつ排水管1と一体に形成して排水管1周囲の地盤を締め固めると共に、地盤中に排水管1を固定することにより、地震の際に排水管1が傾いたり浮上したりすることなく液状化抑制機能を確実に果たせるようにしたものである。
FIG. 6 shows the
この場合の塊状固結体13は、セメント系固化材などを排水管1の周囲に取り付けた袋体の中に注入することにより形成することができる。また、塊状ゲル(固化材)を排水管1の周囲に集水口1aを詰まらせることなく、塊状に部分的に形成することができる。
The massive
さらに、固化材の注入は排水管1内にダブルパッカーを装着した注入管(図省略)を挿入し、排水管1の周壁に設けられた集水孔1aを介して注入することができる。
Further, the solidifying material can be injected through a
図7は、地上に排水された過剰間隙水を地中に排水管を介して循環させることにより、既設構造物周囲の通常時の地盤沈下を抑制する方法を図示したものである。 FIG. 7 illustrates a method of suppressing ground subsidence around an existing structure by circulating excess pore water drained to the ground through a drain pipe.
この方法を実施するには、排水管1を介して地上に排水された過剰間隙水を一時的に溜めておくための貯水槽14と地盤中の過剰間隙水圧の程度に応じて貯水槽14内の過剰間隙水を地盤中に環流させるための環流ポンプ15等を備えていればよい。
In order to carry out this method, a
また特に、この方法を既存のマンホールAの周囲で実施する場合は、貯水槽を設ける代わりにマンホールと排水管とを横引き排水管(図省略)で接続し、地震時における過剰間隙水をマンホールに排水し、また通常時にはマンホール内の水を横引き排水管と排水管を介してマンホール周囲の地盤中に循環させるようにしてもよい。 In particular, when this method is carried out around the existing manhole A, the manhole and drainage pipe are connected by a horizontal drainage pipe (not shown) instead of providing a water storage tank, and excess pore water during an earthquake is manholed. In addition, the water in the manhole may be circulated in the ground around the manhole through a horizontal drainage pipe and a drainage pipe.
本発明は、緩い砂層が堆積する地盤などの液状化の恐れある地盤の上に建つ建物の異常な傾きや沈下、当該地盤中に埋設されたマンホール等の構造物の浮上等の液状化に伴う被害を防止することができる。 The present invention is accompanied by liquefaction such as abnormal inclination and subsidence of buildings built on the ground where there is a risk of liquefaction such as ground where a loose sand layer accumulates, and the rise of structures such as manholes embedded in the ground. Damage can be prevented.
A マンホール
1 排水管
1a 集水孔
1b 排水口
2 排水マット
3 集水マット
4 逆止弁
5 排水調整弁
6 バネ(弾性部材)
7 キャップ
7a 反力受け板
8 突出部
8a 穴部
8b 排水孔
9 球体
10 コーン
11 圧縮コイルバネ
12 キャップ
13 塊状固結体
14 貯水槽
15 間隙水圧測定センサー
16 循環ポンプ
A
1a Water collecting hole
7 Cap
7a Reaction
8a hole
10 cones
11 Compression coil spring
12 cap
13 Bulk consolidated body
14 Water tank
15 Pore water pressure sensor
16 Circulation pump
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014027438A JP5564676B1 (en) | 2014-02-17 | 2014-02-17 | Liquefaction suppression device and liquefaction suppression method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014027438A JP5564676B1 (en) | 2014-02-17 | 2014-02-17 | Liquefaction suppression device and liquefaction suppression method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5564676B1 true JP5564676B1 (en) | 2014-07-30 |
JP2015151789A JP2015151789A (en) | 2015-08-24 |
Family
ID=51417117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014027438A Active JP5564676B1 (en) | 2014-02-17 | 2014-02-17 | Liquefaction suppression device and liquefaction suppression method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5564676B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105386460A (en) * | 2015-12-19 | 2016-03-09 | 赵学坤 | Intelligent urban underground comprehensive pipe gallery |
CN105386464A (en) * | 2015-12-19 | 2016-03-09 | 赵学坤 | Inlet and outlet part for maintenance of intelligent urban underground comprehensive pipe gallery |
CN114541487A (en) * | 2022-03-22 | 2022-05-27 | 北京市地质工程有限责任公司 | Anti-floating structure of building and construction method |
CN114575362A (en) * | 2022-04-06 | 2022-06-03 | 衢州学院 | Efficient water sucking and draining device for slope rock soil and use method thereof |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105155592A (en) * | 2015-10-14 | 2015-12-16 | 中建八局第三建设有限公司 | Base plate pressure reducing device |
CN105544621A (en) * | 2015-12-11 | 2016-05-04 | 中衡设计集团股份有限公司 | Building structure for lowering designed anti-floating water level of heap slope building |
JP7367291B2 (en) * | 2019-04-24 | 2023-10-24 | 株式会社竹中工務店 | Ground liquefaction control method |
JP7367292B2 (en) * | 2019-04-24 | 2023-10-24 | 株式会社竹中工務店 | Method for suppressing uneven ground |
JP7559306B2 (en) * | 2019-04-24 | 2024-10-02 | 株式会社竹中工務店 | Methods for preventing ground liquefaction |
JP7559307B2 (en) * | 2019-04-24 | 2024-10-02 | 株式会社竹中工務店 | Methods for preventing ground liquefaction |
JP7265451B2 (en) * | 2019-08-22 | 2023-04-26 | 株式会社日水コン | Floating prevention method for underground buried objects |
JP6989900B2 (en) * | 2019-11-14 | 2022-01-12 | みらい建設工業株式会社 | Bamboo drain material and liquefaction countermeasure construction method |
JP7509366B2 (en) | 2020-06-19 | 2024-07-02 | 三井化学産資株式会社 | Frost heave prevention system and frost heave prevention method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008089094A (en) * | 2006-10-03 | 2008-04-17 | Sekisui Chem Co Ltd | Conduit liquefaction measure structure |
JP2011153498A (en) * | 2010-01-28 | 2011-08-11 | Japan Institute Of Wastewater Engineering Technology | Device for mounting water collecting pipe and method of mounting the same using the device in floating-preventing structure for underground construction |
JP5148001B1 (en) * | 2012-03-27 | 2013-02-20 | 美喜男 梅岡 | Steel pipe piles for preventing levitation of underground objects, and methods for preventing levitation of underground objects using the same |
-
2014
- 2014-02-17 JP JP2014027438A patent/JP5564676B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008089094A (en) * | 2006-10-03 | 2008-04-17 | Sekisui Chem Co Ltd | Conduit liquefaction measure structure |
JP2011153498A (en) * | 2010-01-28 | 2011-08-11 | Japan Institute Of Wastewater Engineering Technology | Device for mounting water collecting pipe and method of mounting the same using the device in floating-preventing structure for underground construction |
JP5148001B1 (en) * | 2012-03-27 | 2013-02-20 | 美喜男 梅岡 | Steel pipe piles for preventing levitation of underground objects, and methods for preventing levitation of underground objects using the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105386460A (en) * | 2015-12-19 | 2016-03-09 | 赵学坤 | Intelligent urban underground comprehensive pipe gallery |
CN105386464A (en) * | 2015-12-19 | 2016-03-09 | 赵学坤 | Inlet and outlet part for maintenance of intelligent urban underground comprehensive pipe gallery |
CN114541487A (en) * | 2022-03-22 | 2022-05-27 | 北京市地质工程有限责任公司 | Anti-floating structure of building and construction method |
CN114575362A (en) * | 2022-04-06 | 2022-06-03 | 衢州学院 | Efficient water sucking and draining device for slope rock soil and use method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2015151789A (en) | 2015-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5564676B1 (en) | Liquefaction suppression device and liquefaction suppression method | |
US6840710B2 (en) | Underground alluvial water storage reservoir and method | |
US20190153697A1 (en) | Self-drainage anchor cable system for slope protection and construction method thereof | |
US20160215515A1 (en) | Valve system for a fiberglass swimming pool body | |
US11105061B1 (en) | High-performance liquefaction-resistance treatment method for gravel pile of existing building foundation | |
JP5099558B2 (en) | Structure to prevent floating of underground structures | |
CN105308243B (en) | Gravity-based structures | |
JP4898233B2 (en) | Manhole floating prevention structure | |
JP5878402B2 (en) | Ground liquefaction countermeasure structure | |
JP6854479B2 (en) | Liquefaction countermeasure structure for underground structures | |
CN210002453U (en) | pressure relief device for basement in water-rich underground river area | |
JP2007063977A (en) | Equipment for seismically strengthening new or existing manhole | |
JP6037770B2 (en) | Drainage system and drainage method | |
JP5822201B2 (en) | Basic structure of the structure | |
JP2007092293A (en) | Burial structure of manhole conduit | |
US9416515B2 (en) | Device and method for keeping humidity/water away from concrete foundations and provide insulation | |
JP4809728B2 (en) | manhole | |
JP3622028B2 (en) | manhole | |
CN209353360U (en) | The anti-floating drainage arrangement of basement structure | |
JP3886127B2 (en) | How to install rainwater penetration pot | |
CN110616727A (en) | Depressurization well in deep foundation pit | |
CN118531778B (en) | Construction method of pit bottom bored pile combining depressurization and weight | |
JP6626692B2 (en) | Manhole and its installation structure | |
KR100561716B1 (en) | A drain at slope | |
JP2015010367A (en) | Liquefaction countermeasure structure of construction, and construction method of liquefaction countermeasure structure of construction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140520 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140521 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5564676 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |