JP5564022B2 - Method for evaluating hydrogen cracking resistance of forged steel - Google Patents

Method for evaluating hydrogen cracking resistance of forged steel Download PDF

Info

Publication number
JP5564022B2
JP5564022B2 JP2011194042A JP2011194042A JP5564022B2 JP 5564022 B2 JP5564022 B2 JP 5564022B2 JP 2011194042 A JP2011194042 A JP 2011194042A JP 2011194042 A JP2011194042 A JP 2011194042A JP 5564022 B2 JP5564022 B2 JP 5564022B2
Authority
JP
Japan
Prior art keywords
hydrogen
steel
forged
test
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011194042A
Other languages
Japanese (ja)
Other versions
JP2012137476A (en
Inventor
潤一郎 衣笠
亘 漆原
正裕 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011194042A priority Critical patent/JP5564022B2/en
Publication of JP2012137476A publication Critical patent/JP2012137476A/en
Application granted granted Critical
Publication of JP5564022B2 publication Critical patent/JP5564022B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、例えば、船舶・発電機等の動力伝達部品、または反応容器などに適用される鍛造部品の製造時に鍛造鋼材品中に含有される水素により突然割れが生じる現象(水素割れ)について評価する鍛造鋼材の耐水素割れ性評価方法に関する。   The present invention evaluates a phenomenon (hydrogen cracking) in which sudden cracking occurs due to hydrogen contained in a forged steel product when manufacturing forged parts applied to power transmission parts such as ships and generators, or reaction vessels, for example. The present invention relates to a method for evaluating hydrogen cracking resistance of a forged steel material.

一般に、船舶や発電機用等の動力伝達用部品等に使用される鍛造用鋼として、従来からISO規格の36CrNiMo、DIN規格の32CrMo12、またはISO規格の42CrMoに代表される、いわゆるCr−Mo鋼が使用されている。また、船舶のエンジンや発電機の高性能化に伴い、より軽量で高性能の品質、つまりより高疲労強度を示す製品が求められている。前記した鋼材あるいは製品は、その使用中に過酷な繰り返し応力が付加される。よって、疲労強度を高める改善策として、疲労破壊の起点となる介在物(MnS等)の極力低減された高清浄なCr−Mo鋼を用いることが挙げられる。
しかし、この様なCr−Mo鋼に高清浄度化を進めると、水素割れが発生しやすいといった問題がある。また反応容器などに使用される鍛造用鋼として、アメリカ機械工学会規格のASME508,Cl3(Mn−Mo−Ni鋼)等が適用されているが、水素割れが発生しやすいといった問題がある。
Generally, as forging steel used for power transmission parts such as for ships and generators, conventionally, so-called Cr represented by ISO standard 36CrNiMo 6 , DIN standard 32CrMo 12 , or ISO standard 42CrMo 4 is used. -Mo steel is used. Further, as the performance of marine engines and generators increases, there is a demand for products that are lighter and have higher performance, that is, products that exhibit higher fatigue strength. The steel material or product described above is subjected to severe repeated stress during use. Therefore, as an improvement measure for increasing the fatigue strength, it is possible to use highly clean Cr—Mo steel in which inclusions (MnS or the like) that are the starting points of fatigue fracture are reduced as much as possible.
However, there is a problem that hydrogen cracking is likely to occur when the cleanliness of such Cr-Mo steel is increased. In addition, ASME508, Cl3 (Mn-Mo-Ni steel), etc. of the American Society of Mechanical Engineers is applied as the forging steel used for the reaction vessel and the like, but there is a problem that hydrogen cracking is likely to occur.

そこで、これらの大型の鍛造鋼材品の水素割れを抑制すべく、製錬技術改善、鋼の材質改善、および水素性欠陥防止のための熱扱いなど、多方面から技術的な検討が行われている。精錬技術の改善として、例えば、溶鋼の精錬時における水素量の上限値を規制し、それを超える時には脱水素処理することが行われている。また、鋼の材質の改善として、鋼中に水素トラップサイトとなるような物質を存在させるなどが知られている。さらに、水素性欠陥防止のための熱扱いとして、例えば、非特許文献1に記載の様に鍛錬段階での高温長時間加熱により鋼中水素を十分に拡散させ局部的な水素濃化の抑制が行われている。現在これらの技術を適用することにより、耐水素割れ性のより高いCr−Mo鋼からなる大型の鍛造加工品(鍛鋼品)が製造されている。   Therefore, in order to suppress hydrogen cracking of these large forged steel products, technical studies have been conducted from various aspects such as smelting technology improvement, steel material improvement, and heat treatment to prevent hydrogen defects. Yes. As an improvement of the refining technology, for example, an upper limit value of the hydrogen amount at the time of refining molten steel is regulated, and dehydrogenation treatment is performed when the upper limit is exceeded. Further, as an improvement in the material of steel, it is known that a substance that becomes a hydrogen trap site is present in the steel. Furthermore, as heat treatment for preventing hydrogen defects, for example, as described in Non-Patent Document 1, hydrogen in steel is sufficiently diffused by high-temperature and long-time heating in the forging stage to suppress local hydrogen concentration. Has been done. Currently, by applying these techniques, large forged products (forged steel products) made of Cr-Mo steel having higher hydrogen cracking resistance are manufactured.

前記した様に、大型な鍛造鋼材品の耐水素割れ性の改善技術は、製錬、材質改善の観点から進んでいる。またこれら方法を用いて製造された鋼の水素割れ性を判定する評価技術は、例えば、特許文献1等に提案されている方法によって比較的精度良く判断することができる。また、高強度鋼の水素割れ性(水素脆化)の判定方法として、例えば非特許文献2等にその手法が紹介されている。   As described above, the technology for improving the hydrogen cracking resistance of large forged steel products is progressing from the viewpoints of smelting and material improvement. Moreover, the evaluation technique which determines the hydrogen cracking property of the steel manufactured using these methods can be judged comparatively accurately, for example with the method proposed by patent document 1. Further, as a method for determining the hydrogen cracking property (hydrogen embrittlement) of high-strength steel, for example, the method is introduced in Non-Patent Document 2.

特開2010−54494号公報JP 2010-54494 A

水素性欠陥防止のための熱扱い法データ集 日本鋳鍛鋼会 鍛鋼研究部会 平成8年2月(発行) pp25‐28Data on heat treatment methods for preventing hydrogen defects Japan Casting and Forging Society Forging Steel Research Group February 1996 (issued) pp25-28 N. Suzuki et al. : WIRE JOURNAL INTERNATIONAL, Vol.19, (1986),pp.36‐47N. Suzuki et al.: WIRE JOURNAL INTERNATIONAL, Vol.19, (1986), pp.36-47

しかし、前記した従来のそれぞれの判定方法では、以下に示すような問題点が存在していた。
特許文献1に記載の方法では、鋼材の耐水素割れ性に対する優劣の評価にも数十時間以上と多大な時間を要してしまうこと、また、大型の鍛造鋼材品の製造時に行う熱扱いに対して生成する組織や、それらに対しての水素分配を考慮することができない。
However, the conventional determination methods described above have the following problems.
In the method described in Patent Document 1, it takes a long time of several tens of hours or more to evaluate the superiority or inferiority of the hydrogen cracking resistance of the steel material, and the heat treatment is performed when manufacturing a large forged steel product. In contrast, it is not possible to consider the structures that are generated and the hydrogen distribution to them.

非特許文献1に記載の方法では、鍛造・焼鈍工程での水素性欠陥防止のための熱扱い法が紹介されているが、鋼材の水素割れ性感受性に応じて種々の熱扱い例が紹介されているだけであり、どの熱扱い法が水素割れ性の適切な方法か判断ができない。
非特許文献2に記載の方法では、鋼材を酸に浸漬して水素チャージするため、任意の拡散性水素量を鋼中に侵入させることが難しいこと、及び、試験を大気中で実施するため、チャージされた拡散性水素が時間の経過と共に減少し、試験時に希望する拡散性水素量を確保することが難しい。
In the method described in Non-Patent Document 1, heat treatment methods for preventing hydrogen defects in the forging and annealing processes are introduced, but various examples of heat treatment are introduced depending on the sensitivity to hydrogen cracking of steel materials. However, it is not possible to determine which heat handling method is appropriate for hydrogen cracking.
In the method described in Non-Patent Document 2, since the steel material is immersed in an acid and charged with hydrogen, it is difficult to allow an arbitrary amount of diffusible hydrogen to enter the steel, and the test is performed in the atmosphere. The charged diffusible hydrogen decreases with time, and it is difficult to ensure the desired amount of diffusible hydrogen during the test.

つまり、従来技術で示されている手法は、いずれも最終製品に対して陰極チャージや強酸に浸漬する等の方法により外部から強制的に鋼中に水素を導入して鋼材を脆化させ、破断までに要する時間や破断強度で判断しているため、実際の製造過程における鍛造鋼材品中に存在する水素が製造中の熱履歴に応じて生じる組織形成、およびそれに伴って生じる各相や粒界への分配、介在物周りへの水素集積を再現できていない。また従来技術の評価では数十時間以上と多大な時間を要してしまう。   In other words, all of the techniques shown in the prior art are forced to introduce hydrogen into the steel from the outside by a method such as cathodic charging or immersing in a strong acid with respect to the final product, causing the steel to become brittle and fractured. Since the time required for the process and the breaking strength are determined, hydrogen is present in the forged steel product in the actual production process, and the formation of the structure that occurs according to the thermal history during production, and the phases and grain boundaries that accompany it. Distribution of hydrogen and accumulation of hydrogen around inclusions cannot be reproduced. In addition, the evaluation of the prior art takes a long time of several tens of hours or more.

本発明は、前記した問題点に鑑み創案されたものであり、鍛造鋼材品中での降温過程における鋼組織への水素分配、および介在物等への水素集積によって生じると考えられる水素割れを簡便、迅速、高感度に評価する鍛造鋼材の耐水素割れ性評価方法を提供することを課題とする。   The present invention was devised in view of the above-mentioned problems, and it is possible to simplify hydrogen cracking that is considered to occur due to hydrogen distribution to the steel structure in the temperature-lowering process in the forged steel product and accumulation of hydrogen in the inclusions. It is an object of the present invention to provide a method for evaluating hydrogen cracking resistance of a forged steel material that is evaluated quickly and with high sensitivity.

上記課題を解決するために本発明の発明者等は、実際の製造過程における鍛造鋼材品中に存在する水素が製造中の熱履歴に応じて生じる組織形成、およびそれに伴って生じる各相や粒界への配分、介在物周りへの水素集積を再現できないこと、また評価に数十時間以上と多大な時間を要すること、低歪み速度試験機等の特別な試験機が必要といった問題に対して、鍛造鋼材品の製造工程で行われる熱扱いに応じた鋼材の水素割れ性の評価方法を確立する必要があることに着目し、例えば、大型な鍛造鋼材品の製造時に生じる水素割れについて、熱扱いとそれに伴うフェライト、パーライト、ベイナイトなどの組織の形成、形成した組織への水素分配、および介在物等への水素集積の観点から、水素割れ性を精度良く迅速かつ簡便に評価する方法を確立すべく鋭意研究を行った。   In order to solve the above-mentioned problems, the inventors of the present invention have found that the hydrogen present in the forged steel product in the actual production process is formed in accordance with the thermal history during the production, and each phase and grain produced in association therewith. For problems such as distribution to the boundary, inability to reproduce hydrogen accumulation around the inclusions, and the time required for evaluations of several tens of hours or more, and the need for special testing machines such as low strain rate testing machines Focusing on the need to establish a method for evaluating the hydrogen cracking property of steel materials according to the heat treatment performed in the manufacturing process of forged steel products, for example, A method to evaluate hydrogen cracking accurately, quickly and easily from the viewpoints of handling and formation of the structure of ferrite, pearlite, bainite, etc., hydrogen distribution to the formed structure, and hydrogen accumulation in inclusions. It was carried out in order to establish intensive research.

具体的には、まず従来法である最終製品から採取した試験片に対して一定、もしくは一定周期の変動応力を負荷しながら陰極チャージや強酸浸漬等の方法により外部から水素を侵入させる評価試験では、上述の通り形成する各相や相界面、介在物周りに水素が飽和状態で分配されない、といった問題を解消すべく研究を行った。その結果、大型な鍛造鋼材品の製造時において熱扱いにより造塊時に含有されている鋼中の水素が、その後の降温過程において生成するフェライト、パーライト、ベイナイトなどの各組織やこれらの相界面、および生成する介在物周りに飽和状態で水素を分配させ、その水素分配状態で破断特性の評価を行えば良いことを見出した。   Specifically, in an evaluation test in which hydrogen is penetrated from the outside by a method such as cathodic charging or strong acid immersion while applying a constant or constant period of fluctuation stress to a test piece collected from the final product, which is a conventional method. Research was conducted to solve the problem that hydrogen was not distributed in a saturated state around each phase, phase interface, and inclusions formed as described above. As a result, hydrogen in the steel contained during ingot formation by heat treatment during the production of large forged steel products, each structure such as ferrite, pearlite, bainite and their phase interfaces generated in the subsequent cooling process, It has also been found that hydrogen may be distributed in a saturated state around the inclusions to be produced, and the fracture characteristics evaluated in the hydrogen distributed state.

したがって、前記の知見に鑑み本発明に係る方法は、以下のような手順で行っている。すなわち、鍛造鋼材の耐水素割れ性評価方法であって、鍛造用鋼材の造塊を鍛造して鍛造鋼材の供試材を形成する工程と、前記供試材を、水素濃度30%以上100%以下の水素濃度範囲、300℃以上1500℃未満の温度雰囲気下で熱処理することにより鋼中に水素を導入する工程と、前記水素を導入した供試材の割れ特性について評価試験を行い評価する工程を含む手順とした。また、鍛造鋼材の耐水素割れ性評価方法において、前記鋼中に水素を導入する工程は、前記鍛造用鋼材が予め設定された複合組織の前記鍛造鋼材となるように、300℃以上1500℃未満の前記熱処理の範囲内において、任意の加熱速度及び冷却速度で行うようにしてもよい。   Therefore, in view of the above knowledge, the method according to the present invention is performed in the following procedure. That is, a method for evaluating hydrogen cracking resistance of a forged steel material, the step of forging a forging steel material to form a test material of the forged steel material, and a hydrogen concentration of 30% or more and 100% The following hydrogen concentration range, a step of introducing hydrogen into the steel by heat treatment in a temperature atmosphere of 300 ° C. or more and less than 1500 ° C., and a step of performing an evaluation test and evaluating the cracking characteristics of the test material into which the hydrogen has been introduced The procedure included. Moreover, in the method for evaluating hydrogen cracking resistance of a forged steel material, the step of introducing hydrogen into the steel is performed at 300 ° C. or more and less than 1500 ° C. so that the forging steel material becomes the forged steel material having a preset composite structure. The heating may be performed at any heating rate and cooling rate within the range of the heat treatment.

なお、鍛造用鋼材の代表的な組織形態であるベイナイト単相組織の鍛造材である場合には、前記鋼中に水素を導入する工程として、前記鍛造用鋼材が予め設定されたベイナイト単相組織の前記鍛造材となるように、Ac1以上1500℃未満、水素濃度30%以上100%以下の雰囲気で保持した後、5℃/min以上の冷却速度でBs点以下まで冷却し、そのBs点以下の温度で保持するようにしている。   In addition, in the case of a forged material having a bainite single-phase structure, which is a typical structural form of the steel for forging, as the step of introducing hydrogen into the steel, the bainite single-phase structure in which the forged steel is preset. After being held in an atmosphere of Ac1 or higher and lower than 1500 ° C and a hydrogen concentration of 30% or higher and 100% or lower so as to become the forged material, it is cooled to a Bs point or lower at a cooling rate of 5 ° C / min or higher, and the Bs point or lower. It keeps at the temperature of.

かかる手順により、鍛造鋼材の耐水素割れ性評価方法では、任意の条件により鍛造して供試材を形成し、水素を導入する工程により、所定の温度範囲で、所定の水素濃度雰囲気下で熱処理することで鋼中に水素を導入しているので、高温となる所定の温度範囲では鋼中での水素固溶度や水素拡散係数が増加して、従来法の常温での水素導入よりも短時間で均一に多量の水素を鋼中に導入することができる。次いで予め設定した実機での熱扱いを考慮した任意の加熱速度及び冷却速度となる降温過程を取ることにより、最終製品の代表的な組織形態であるフェライト、パーライト、ベイナイトなどの各相を形成させる。そして、鋼温度の低下により水素の固溶度が低下するため、生成した各相や相界面、介在物周りでは飽和量の水素が分配されることになる。以上のことにより、水素導入工程で導入する水素を擬似的に大型な鍛造鋼材品の本来の水素割れメカニズムである「内部起因型水素」とすることができる。なお、鍛造鋼材の耐水素割れ性評価方法では、場合によっては各相の生成に伴い固溶し切れない水素により鋼材の割れ、すなわち水素割れが生じることを確認することができる。   According to such a procedure, in the method for evaluating hydrogen cracking resistance of a forged steel material, a test material is formed by forging under arbitrary conditions, and heat treatment is performed at a predetermined temperature range and in a predetermined hydrogen concentration atmosphere by introducing hydrogen. As a result, hydrogen is introduced into the steel, so the hydrogen solubility and hydrogen diffusion coefficient in the steel increase at a high temperature range, which is shorter than the conventional hydrogen introduction at room temperature. A large amount of hydrogen can be introduced into the steel uniformly over time. Next, by taking a temperature-decreasing process that takes an arbitrary heating rate and cooling rate in consideration of heat treatment in a preset actual machine, each phase such as ferrite, pearlite, and bainite, which is a typical structure form of the final product, is formed. . And since the solid solubility of hydrogen falls by the fall of steel temperature, a saturated amount of hydrogen will be distributed around each produced | generated phase, phase interface, and inclusions. As described above, the hydrogen introduced in the hydrogen introduction step can be made “internally caused hydrogen”, which is the original hydrogen cracking mechanism of a pseudo-large forged steel product. In addition, in the method for evaluating hydrogen cracking resistance of a forged steel material, it can be confirmed that cracking of the steel material, that is, hydrogen cracking occurs due to hydrogen that does not completely dissolve with the generation of each phase.

本発明に係る鍛造鋼材の耐水素割れ性評価方法は、以下に示すような優れた効果を奏するものである。
鍛造鋼材の耐水素割れ性評価方法は、鍛造した鍛造鋼材を所定範囲の水素濃度で、所定温度範囲の雰囲気下で熱処理することで鋼中に水素を導入して、鍛造時から温度が下がる降温過程で形成される組織や相界面あるいは生成する介在物周りに飽和状態で水素を分配させ、その水素分配状態で評価試験により破断特性の評価を行っている。そのため、鍛造鋼材の耐水素割れ性評価方法では、導入した水素を擬似的に製品本来の水素割れメカニズムである内部起因型水素とすることができ、供試材の水素割れ性を簡便、迅速、高感度に実質的な製品状態と同等に評価することが可能となる。また、この方法では、高温で水素を導入することにより水素の導入に要する時間を短縮し、評価試験を迅速に行うことができる。
The method for evaluating hydrogen cracking resistance of a forged steel material according to the present invention has the following excellent effects.
The hydrogen cracking resistance evaluation method for forged steel is a temperature drop in which the forged forged steel is introduced into the steel by heat-treating the forged forged steel at a predetermined range of hydrogen concentration in an atmosphere of a predetermined temperature range, and the temperature decreases from the time of forging. Hydrogen is distributed in a saturated state around the structure formed in the process, the phase interface, or the generated inclusions, and the fracture characteristics are evaluated by an evaluation test in the hydrogen distribution state. Therefore, in the hydrogen cracking resistance evaluation method for forged steel materials, the introduced hydrogen can be simulated as internally derived hydrogen, which is the original hydrogen cracking mechanism of the product, and the hydrogen cracking property of the test material can be simply and quickly. It becomes possible to evaluate with high sensitivity equivalent to the actual product state. Further, in this method, by introducing hydrogen at a high temperature, the time required for introducing hydrogen can be shortened, and the evaluation test can be performed quickly.

鍛造鋼材の水素割れ性評価方法は、水素導入工程において鍛造時から所定範囲内において温度を下げる範囲や速度を変えることで、例えば、大型な鍛造鋼材品での一般的な組織形態であるフェライト、パーライト、ベイナイト、あるいは、残留γなどの複合組織からなる鍛造鋼材を対象とすることが可能であるので、完成品と同等の品質において水素割れ性評価を行うことが可能となる。   The hydrogen cracking evaluation method of the forged steel material is, for example, ferrite, which is a general structural form in a large forged steel product, by changing the range and speed of lowering the temperature within a predetermined range from the time of forging in the hydrogen introduction process. Since it is possible to target a forged steel material having a composite structure such as pearlite, bainite, or residual γ, it is possible to perform hydrogen cracking evaluation with the same quality as the finished product.

本発明に係る鍛造鋼材の耐水素割れ性評価方法の各工程を模式的に示す模式図である。It is a schematic diagram which shows typically each process of the hydrogen cracking resistance evaluation method of the forged steel materials which concerns on this invention. (a)は本発明の水素の導入状態を模式的に示し、(b)は従来技術の水素の導入状態を模式的に示し、本発明に係る鍛造鋼材の水素の導入および水素の分配状態を従来技術の状態と並べて比較する模式図である。(A) schematically shows the hydrogen introduction state of the present invention, (b) schematically shows the hydrogen introduction state of the prior art, and shows the hydrogen introduction and hydrogen distribution state of the forged steel material according to the present invention. It is a schematic diagram compared with the state of a prior art side by side.

以下、本発明に係る鍛造鋼材の耐水素割れ性評価方法について図面を参照して説明する。
図1に示すように、鍛造鋼材の耐水素割れ性評価方法Sは、例えば、船舶、発電機用等の動力伝達用部品、反応容器を含む鍛造鋼材部品に用いられる鍛造鋼材の耐水素割れ性についての評価方法である。この鍛造鋼材の耐水素割れ性評価方法Sは、製銑工程S1と、製鋼工程S2と、鍛造・供試材形成工程S3と、水素導入工程S4と、評価工程S5と、を行う手順により構成されている。
Hereinafter, the method for evaluating hydrogen cracking resistance of a forged steel material according to the present invention will be described with reference to the drawings.
As shown in FIG. 1, the hydrogen cracking resistance evaluation method S of a forged steel material is, for example, a hydrogen cracking resistance of a forged steel material used for power transmission parts such as ships and generators, and forged steel parts including a reaction vessel. It is the evaluation method about. This forging steel material hydrogen cracking resistance evaluation method S is composed of a procedure for performing a steelmaking step S1, a steelmaking step S2, a forging / test material forming step S3, a hydrogen introduction step S4, and an evaluation step S5. Has been.

製銑工程S1は、電気炉で銑鉄を製造する工程である。この製銑工程S1は、鉄スクラプ等から銑鉄を溶銑として取り出す一般的な工程により行われる。
製鋼工程S2は、製銑工程S1により製造された銑鉄から鋼材を製造する工程である。この製鋼工程S2は、例えば、溶銑を転炉等により溶銑予備処理を行い、その後、二次精錬を行って鋼材を製造する工程である。この製鋼工程S2により鍛造鋼材を鍛造することができる鍛造用鋼の形状とする。
The iron making process S1 is a process for producing pig iron in an electric furnace. This iron making process S1 is performed by a general process in which pig iron is taken out as molten iron from an iron scrap.
The steel making process S2 is a process for producing a steel material from the pig iron produced in the iron making process S1. This steelmaking process S2 is a process which manufactures steel materials, for example, performing hot metal preliminary processing of hot metal with a converter etc., and performing secondary refining after that. It is set as the shape of the forging steel which can forge a forged steel material by this steelmaking process S2.

鍛造・供試材形成工程S3は、鍛造用鋼を鍛造して鍛造鋼材とし評価工程S5で評価するときの供試材の形状に形成する工程である。この鍛造・供試材形成工程S3では、鍛造した形状が供試材の形状であってもよく、鍛造した鍛造鋼材から切り出して供試材としても構わない。なお、供試材の形状は、評価工程S5における評価実験に対応して形成されることが望ましい。例えば、評価工程S5において引張試験を行うのであれば、供試材は、引張試験に対応した引張試験片の形状に形成される。また、試験片となる供試材は、試験前に砥粒番号#600以上の研削材を用いて表面仕上げを行い、焼鈍時に不要な反応物の生成を避けるためにアセトンやエタノール等で脱脂を行うことが好ましい。この様に供試材は、表面仕上げ(表面仕上げ工程)を行うことによって、表面状態の影響(例えば試験片作製時の切り出しキズ、不要な表面生成物による鋼材中への水素侵入の抑制)を低減できる。   The forging / specimen forming step S3 is a step of forging the forging steel into a forged steel material and forming it into the shape of the test material when evaluated in the evaluation step S5. In this forging / test material forming step S3, the forged shape may be the shape of the test material, or the forged steel material may be cut out from the forged steel material. In addition, it is desirable that the shape of the test material is formed corresponding to the evaluation experiment in the evaluation step S5. For example, if a tensile test is performed in the evaluation step S5, the specimen is formed in the shape of a tensile test piece corresponding to the tensile test. In addition, the test material to be used as a test piece is surface-finished with an abrasive of abrasive grain number # 600 or more before the test, and degreased with acetone or ethanol to avoid generation of unnecessary reactants during annealing. Preferably it is done. In this way, the surface of the specimen is subjected to surface finishing (surface finishing process), thereby reducing the influence of the surface condition (for example, cut-out scratches during test piece preparation, suppression of hydrogen intrusion into the steel due to unnecessary surface products). Can be reduced.

なお、前記した製銑工程S1、製鋼工程S2及び鍛造・供試材形成工程S3において、水素割れ性評価の対象である鋼材の成分、強度および製法ならびに供試材の形状、寸法は、特に限定されるものではない。例えば、一般的な船舶や発電機用等の動力伝達用部品に使用される鍛造用鋼、または反応容器等に使用される鍛造用鋼の製法として提案されている各種製法にて製造すれば良い。また、例えば、動力伝達部品ではISO規格の36CrNiMo、圧力容器鋼ではJIS G 3120で規格化されているSQV2A、アメリカ機械工学会規格のASME508,Cl3等を用い、これらを真空誘導熔解や電極アーク加熱機能を備える溶鋼処理設備によって溶製し、凝固した鋼塊を脱型した後、約1200℃まで加熱を施し鍛造材とし、その後鍛造材から耐水素割れ性の評価用の供試材である試験片を適宜採取すれば良い。 In addition, in the above-mentioned iron making process S1, steel making process S2, and forging / test material forming process S3, the components, strength and manufacturing method of the steel material that is the object of hydrogen cracking evaluation, and the shape and dimensions of the test material are particularly limited. Is not to be done. For example, what is necessary is just to manufacture with the various manufacturing methods proposed as a manufacturing method of the forging steel used for power transmission parts, such as a general ship and a generator, or the forging steel used for reaction vessels etc. . In addition, for example, ISO standard 36CrNiMo 6 is used for power transmission parts, SQV2A standardized by JIS G 3120 is used for pressure vessel steel, ASME508, Cl3, etc., American Society of Mechanical Engineers standard, and these are used for vacuum induction melting and electrode arc. It is a test material for evaluating hydrogen cracking resistance from a forged material after it is melted by a molten steel processing facility having a heating function and demolded from a solidified steel ingot and then heated to about 1200 ° C. to produce a forged material. What is necessary is just to extract | collect a test piece suitably.

評価に供する供試材(試験片)の形状と寸法も、本発明では特に限定されないが、破断特性から耐水素割れ性を評価するため、例えば、試験片形状としては引張試験片形状とする。なお従来法のような常温での水素導入とは異なり、後記するように本発明では高温水素ガス雰囲気で鋼中に平衡量に達するまで水素を導入し、その後の降温過程で鋼材温度の低下に伴い固溶仕切れない水素が鋼中に放出される。このことから、供試材の鋼中の各組織、およびこれら相界面、介在物周りに水素が飽和量で分布しているので、従来法で使用するJIS Z 2201(4号試験片等)に規定されているようなダンベル状の試験片よりも、丸棒の中央部にVまたはU字状の切り欠きとなる溝を周方向に有する様な形状の引張試験片とすることがさらに好ましい。   The shape and dimensions of the test material (test piece) used for evaluation are not particularly limited in the present invention, but in order to evaluate the hydrogen cracking resistance from the fracture characteristics, for example, the test piece shape is a tensile test piece shape. Unlike the conventional method of introducing hydrogen at normal temperature, as will be described later, in the present invention, hydrogen is introduced into the steel in a high-temperature hydrogen gas atmosphere until the equilibrium amount is reached, and the temperature of the steel is lowered in the subsequent temperature-decreasing process. Along with this, hydrogen that is not solid solution partition is released into the steel. From this, hydrogen is distributed in a saturated amount around each structure in the steel of the test material, these phase interfaces, and inclusions. Therefore, in JIS Z 2201 (No. 4 test piece etc.) used in the conventional method It is more preferable to use a tensile test piece having a shape having a V-shaped or U-shaped cutout in the center of the round bar in the circumferential direction, rather than a dumbbell-shaped test piece as defined.

図1に示すように、水素導入工程S4は、試験片として形成した供試材に水素を導入する工程である。この水素導入工程S4は、水素濃度30%以上100%以下で、導入温度として300℃以上1500℃未満の雰囲気下で熱処理することにより鋼中に水素を導入している。水素導入工程S4では、水素濃度を設定する場合に、窒素あるいはアルゴン等の未反応ガスを併せて用い、その水素濃度を維持できる、例えば、熱処理炉を使用することにより行うことができる。この水素導入工程S4において、300℃以上1500℃未満の温度範囲での熱扱いとすることにより、大型な鍛造鋼材品の鍛錬段階で適用される水素性欠陥防止のための熱扱いを考慮することができる。   As shown in FIG. 1, the hydrogen introduction step S4 is a step of introducing hydrogen into the test material formed as a test piece. In this hydrogen introduction step S4, hydrogen is introduced into the steel by heat treatment in an atmosphere having a hydrogen concentration of 30% or more and 100% or less and an introduction temperature of 300 ° C. or more and less than 1500 ° C. In the hydrogen introduction step S4, when the hydrogen concentration is set, it can be performed by using an unreacted gas such as nitrogen or argon and maintaining the hydrogen concentration, for example, using a heat treatment furnace. In this hydrogen introduction process S4, heat treatment in the temperature range of 300 ° C. or more and less than 1500 ° C. is taken into consideration, and heat treatment for preventing hydrogen defects that is applied in the forging stage of large forged steel products is taken into consideration. Can do.

なお、水素導入工程S4において、300℃未満では水素ガス雰囲気下での鋼中への水素導入が促進されず、また水素量のバラツキが大きいこと、1500℃以上では鋼が溶融してしまい後の評価が実施できなくなるおそれがある。そして、好ましくは、実際の大型な鍛造鋼材品の鍛錬で適用される温度範囲であり、水素吸蔵量の多いオーステナイト組織が形成し始めるAc1以上1500℃未満とする。さらに好ましくは、水素吸蔵量の多いオーステナイト組織単相となるAc3以上1200℃未満とする。水素導入工程S4では、導入温度と併せて、保持温度においても300℃以上1500℃未満の範囲内としている。この水素導入工程S4で導入から保持までの熱処理における時間は、鍛鋼材のサイズなどに応じて適宜設定すればよいが、例えば、1時間〜24時間であることが望ましい。   In addition, in hydrogen introduction process S4, if it is less than 300 degreeC, hydrogen introduction | transduction to the steel in a hydrogen gas atmosphere will not be accelerated | stimulated, and the dispersion | variation in the amount of hydrogen is large. There is a risk that evaluation cannot be performed. And preferably, it is a temperature range applied by forging of an actual large forged steel product, and is set to Ac1 or higher and lower than 1500 ° C. at which an austenite structure having a large hydrogen storage amount starts to form. More preferably, it is set to Ac3 or higher and lower than 1200 ° C. which is a single phase of austenite structure having a large amount of hydrogen storage. In the hydrogen introduction step S4, in addition to the introduction temperature, the holding temperature is within the range of 300 ° C. or more and less than 1500 ° C. The time in the heat treatment from the introduction to the holding in the hydrogen introduction step S4 may be appropriately set according to the size of the forged steel material, but is preferably, for example, 1 hour to 24 hours.

また、水素導入工程S4において、前記の熱扱いを行う水素ガス雰囲気については、ガス中の水素濃度を30%以上100%以下とすることにより、鋼中への水素導入を効率よく行うことができる。ここで、水素導入工程S4において、水素濃度が30%未満であると、鋼中へ十分な水素を導入することができないおそれがある。したがって、水素導入工程S4により効率的に鋼中に水素を導入するために、ガス中の水素濃度を50%以上とするのが好ましい。なお、水素導入工程S4において、安全上の観点および試験片表面に不要なスケールの付着を防止する観点から、雰囲気の残部は未反応ガス(NやArなど)とするのが好ましい。 In addition, in the hydrogen introduction step S4, the hydrogen gas atmosphere in which the heat treatment is performed can efficiently introduce hydrogen into the steel by setting the hydrogen concentration in the gas to 30% or more and 100% or less. . Here, in the hydrogen introduction step S4, if the hydrogen concentration is less than 30%, sufficient hydrogen may not be introduced into the steel. Therefore, in order to efficiently introduce hydrogen into the steel through the hydrogen introduction step S4, the hydrogen concentration in the gas is preferably 50% or more. In the hydrogen introduction step S4, it is preferable that the remainder of the atmosphere be an unreacted gas (N 2 , Ar, etc.) from the viewpoint of safety and the prevention of unnecessary scale adhesion to the test piece surface.

また、水素導入工程S4において、前記した温度領域、及び、水素濃度雰囲気の範囲中で鋼材を300℃以上1500℃未満の範囲において任意の保持温度で保持し、あるいは、300℃以上1500℃未満の範囲において、任意の加熱速度で加熱、任意の冷却速度で冷却することにより、フェライト、パーライトからなる組織、ベイナイトや残留オーステナイトを含む組織、及び、高強度鋼で代表的なマルテンサイト組織とすることができる。なお、大型な鍛造鋼材品に対する水素割れ性を評価するにあたっては、好ましくはフェライト、パーライトやベイナイト、一部残留オーステナイトを有する組織になるように供試材の保持温度及び加熱・冷却速度を調整する。   Further, in the hydrogen introduction step S4, the steel material is held at an arbitrary holding temperature in the range of 300 ° C. or higher and lower than 1500 ° C. in the temperature range and the hydrogen concentration atmosphere, or 300 ° C. or higher and lower than 1500 ° C. In the range, by heating at an arbitrary heating rate and cooling at an arbitrary cooling rate, a structure composed of ferrite and pearlite, a structure including bainite and retained austenite, and a martensitic structure typical of high-strength steel Can do. In evaluating hydrogen cracking properties for large forged steel products, the holding temperature and heating / cooling rate of the test material are preferably adjusted so as to have a structure having ferrite, pearlite, bainite, and partially retained austenite. .

例えば、オーステナイト単相(Ac3点)以上に数℃/分程度で加熱後、パーライト変態開始温度(Ps)を通らないように急冷すれば、マルテンサイト組織とすることができる。それに対してパーライト変態開始温度(Ps)を通る様に、冷却速度を数℃/分程度で鋼塊を冷却すれば、フェライト−パーライト混合組織を得ることができる。また冷却の途中でパーライト変態開始温度を避けながらベイナイト変態開始温度(Bs)で一定時間以上保持すれば、ベイナイト組織を得ることができる。一例としては、5℃/min以上(例えば5〜20℃/min)の冷却速度でBs点以下まで冷却しその冷却した温度で一定時間(例えば1時間)保持することで、ベイナイト組織を得る。
For example, if the austenite single phase (Ac3 point) or more is heated at about several degrees Celsius / minute and then cooled rapidly so as not to pass the pearlite transformation start temperature (Ps), a martensitic structure can be obtained. On the other hand, if the steel ingot is cooled at a cooling rate of about several degrees Celsius / min so as to pass the pearlite transformation start temperature (Ps), a ferrite-pearlite mixed structure can be obtained. In addition, a bainite structure can be obtained by maintaining the bainite transformation start temperature (Bs) for a predetermined time or more while avoiding the pearlite transformation start temperature during cooling. As an example, a bainite structure is obtained by cooling to a Bs point or less at a cooling rate of 5 ° C./min or more (for example, 5 to 20 ° C./min) and holding at the cooled temperature for a certain time (for example, 1 hour).

また、前記した水素雰囲気で焼鈍(設定温度範囲の温度)を行うには、水素、窒素、アルゴンなど各種ガスで雰囲気調整が可能な熱処理炉を用いればよい。したがって、予め設定された複合材料の組織となるように、水素導入工程S4において加熱速度、冷却速度等を設定することで、本製品と同じ素材の組織で後記する評価を行うことができる。   Further, in order to perform annealing (temperature in the set temperature range) in the hydrogen atmosphere described above, a heat treatment furnace capable of adjusting the atmosphere with various gases such as hydrogen, nitrogen, and argon may be used. Therefore, by setting the heating rate, the cooling rate, etc. in the hydrogen introduction step S4 so as to have a preset composite material structure, the evaluation described later can be performed with the same material structure as the product.

なお、後記する評価工程S5において例えば、引張試験を行う場合であれば、引張試験片を高温水素ガス雰囲気で焼鈍することにより鋼中に水素を導入した水素導入工程S4の終了後、試験片を冷却するため水中で室温まで急冷し、その後、試験片の腐食を避けるため速やかに水中から試験片を引き上げ乾燥させる。なお乾燥の際、鋼中に導入した水素の逃散を避けるため、乾燥時間は出来る限り短くし、さらに試験片の温度が上がらない様に冷風乾燥するのが好ましい。   In the evaluation step S5 described later, for example, if a tensile test is to be performed, the test piece is removed after the hydrogen introduction step S4 in which hydrogen is introduced into the steel by annealing the tensile test piece in a high-temperature hydrogen gas atmosphere. In order to cool, it is rapidly cooled to room temperature in water, and then the specimen is quickly pulled up from the water and dried to avoid corrosion of the specimen. During drying, in order to avoid escape of hydrogen introduced into the steel, it is preferable to shorten the drying time as much as possible and further dry with cold air so that the temperature of the test piece does not rise.

この様に、水素導入工程S4までを行うことで、高温水素ガス雰囲気で鋼中に水素を導入することにより、図2(a)に示すように、高温では鋼中での水素固溶度や水素拡散係数が増加するため、従来法の常温での水素導入よりも短時間で均一に多量の水素を鋼中に導入することができる(図2(a)左図参照)。次いで、水素導入工程S4において、実機での熱扱いを考慮した降温過程を取ることにより、最終製品の代表的な組織形態であるフェライト、パーライト、ベイナイトなどの各相を形成させる。そして、水素導入工程S4において、鋼温度の低下により水素の固溶度が低下するため、生成した各相や相界面、介在物周りでは飽和量の水素が分配されることになる(図2(a)右図参照)。図2(a)(b)において、右図の黒色部分と白色部分は混合組織の状態を模式的に示している。   In this way, by performing hydrogen introduction step S4, by introducing hydrogen into the steel in a high temperature hydrogen gas atmosphere, as shown in FIG. Since the hydrogen diffusion coefficient increases, a large amount of hydrogen can be uniformly introduced into the steel in a shorter time than the conventional method of introducing hydrogen at room temperature (see the left figure in FIG. 2 (a)). Next, in the hydrogen introduction step S4, each phase such as ferrite, pearlite, and bainite, which is a typical structural form of the final product, is formed by taking a temperature lowering process in consideration of heat treatment in an actual machine. In the hydrogen introduction step S4, the solid solubility of hydrogen decreases due to a decrease in the steel temperature, so that a saturated amount of hydrogen is distributed around the generated phases, phase interfaces, and inclusions (FIG. 2 ( a) See right figure). 2A and 2B, the black part and the white part in the right diagram schematically show the state of the mixed tissue.

なお、従来法の常温での水素導入方法では、図2(b)に示すように、水素が常温で導入されるので時間がかかる上に(図2(b)左図参照)、組織に対して不均一な導入状態(図2(b)の右図参照)となってしまう。以上のことにより、水素導入工程S4では、導入した水素を擬似的に大型な鍛造鋼材品の本来の水素割れメカニズムである「内部起因型水素」とすることができる。したがって、製品の耐水素割れ性評価を本来の製品と同等に行うことができる。また場合によっては各相の生成に伴い固溶し切れない水素により鋼材の割れ、すなわち水素割れが生じることの評価を行うこともできる。   In addition, in the conventional method for introducing hydrogen at room temperature, as shown in FIG. 2B, hydrogen is introduced at room temperature, so it takes time (see the left figure in FIG. 2B) and the structure And non-uniform introduction state (see the right figure in FIG. 2B). As described above, in the hydrogen introduction step S4, the introduced hydrogen can be changed to “internally caused hydrogen” which is an original hydrogen cracking mechanism of a large forged steel product. Therefore, the hydrogen cracking resistance evaluation of the product can be performed in the same manner as the original product. Moreover, depending on the case, it can also evaluate that the crack of steel materials, ie, a hydrogen crack, arises with the hydrogen which does not completely dissolve with the production | generation of each phase.

評価工程S5は、水素導入工程S4で供試材に水素を導入したものを引張試験、曲げ試験等の評価試験をそれぞれの試験機を使用して行い評価する工程である。この評価工程S5は、室温になった供試材を例えば引張試験により破断特性の評価を行う場合、水素導入工程S4で水素を導入した供試材について、一般的な試験機において一般的な形状大きさの供試材である引張試験片を用いて引張試験を行えば良い。なお、引張速度については鋼中に含有する水素の逃散を防止するため、0.1mm/min以上とする。評価時間の観点からは0.5mm/min以上とするのが好ましい。また、引張速度の上限については特に規定しないが、一般的な引張試験と同等である1mm/min程度とすればよい。なお、評価工程S5では、従来法で使用するような特別な試験装置(低歪み速度引張試験機や疲労試験機)を使用する必要はない。   The evaluation step S5 is a step in which an evaluation test such as a tensile test and a bending test is performed on each of the test materials introduced with hydrogen in the hydrogen introduction step S4 by using respective test machines. In the evaluation step S5, when evaluating the fracture characteristics of the test material at room temperature by, for example, a tensile test, the test material introduced with hydrogen in the hydrogen introduction step S4 has a general shape in a general testing machine. What is necessary is just to perform a tensile test using the tensile test piece which is a test material of a magnitude | size. The tensile speed is set to 0.1 mm / min or more in order to prevent escape of hydrogen contained in the steel. From the viewpoint of evaluation time, it is preferably 0.5 mm / min or more. The upper limit of the tensile speed is not particularly specified, but may be about 1 mm / min, which is equivalent to a general tensile test. In the evaluation step S5, it is not necessary to use a special test apparatus (a low strain rate tensile tester or a fatigue tester) as used in the conventional method.

評価工程S5において、鋼中水素量の評価については、所定の水素ガス雰囲気で任意の熱扱いを行った後に試験片を取り出し、評価を行えば良い。水素量の定量方法については、鋼材を溶融させることにより鋼材中に含有される水素量を測定する方法を取ってもよいし、水素脆化に影響を及ぼすと言われる拡散性水素(室温付近で結晶格子内を比較的自由に移動できる水素)を昇温脱離分析などで分析してもよい。   In the evaluation step S5, the evaluation of the amount of hydrogen in the steel may be performed by taking out a test piece after performing arbitrary heat treatment in a predetermined hydrogen gas atmosphere. The method for determining the amount of hydrogen may be a method of measuring the amount of hydrogen contained in the steel by melting the steel, or diffusible hydrogen that is said to affect hydrogen embrittlement (at around room temperature). Hydrogen that can move relatively freely in the crystal lattice may be analyzed by thermal desorption analysis or the like.

以上説明したように、鍛造鋼材の耐水素割れ性評価方法Sでは、鍛造・供試材形成工程S3、水素導入工程S4、評価工程S5を行うことで、例えば大型な鍛造鋼材品の製造に用いる鍛造用鋼等の熱扱いと耐水素割れ性の関係を、精度良く迅速かつ簡便に評価することができる。また、水素導入工程S4は、例えば、供試材を炉中に入れて加熱する導入過程、加熱した供試材を、炉温度を下げて降温させる降温過程、降温の所定温度の状態で保持する保持過程までをいう。その後、供試材を溶媒中につけて冷却する溶媒中冷却過程については評価試験を行うまでに鋼中から水素が発散しないように行う過程であり、組織の形成に影響を及ぼすものではないものとしている。さらに、水素導入工程S4は、導入過程から保持過程までを複数繰り架す過程をとる場合であることや、導入過程から保持過程まで本発明となる所定範囲内の同じ温度で行い、その後、水焼入れにより冷却することであっても構わない。   As described above, in the hydrogen cracking resistance evaluation method S of the forged steel material, the forging / test material forming step S3, the hydrogen introduction step S4, and the evaluation step S5 are performed, for example, for manufacturing a large forged steel product. The relationship between the heat treatment of forging steel and the like and the resistance to hydrogen cracking can be evaluated accurately and quickly. In addition, in the hydrogen introduction step S4, for example, an introduction process in which the test material is put in a furnace and heated, a heated test material is lowered in a temperature lowering process in which the temperature is lowered by lowering the furnace temperature, and the temperature is maintained at a predetermined temperature. Until the holding process. After that, the process of cooling in the solvent in which the sample material is cooled in the solvent is a process that prevents hydrogen from escaping from the steel before the evaluation test, and does not affect the formation of the structure. Yes. Further, the hydrogen introduction step S4 is a case where a plurality of processes from the introduction process to the holding process are taken, or from the introduction process to the holding process is performed at the same temperature within a predetermined range according to the present invention. It may be cooled by quenching.

以下、本発明における一実施例を説明する。なお、本発明は、以下の実施例に限定されるものではない。
表1に示す化学成分を含有した150kgの鍛造用鋼を真空炉でスラグ塩基度を3.0に調整して溶製し、鋳造してインゴットを得た。各インゴットを鍛造して鍛造鋼材とし冷却後に供試材を得た。なお、供試材のそれぞれの鋼種A〜Dの耐水素割れ性については、経験的にA→D→B→Cの順で優れていることが分かっている。
Hereinafter, an embodiment of the present invention will be described. The present invention is not limited to the following examples.
150 kg of forging steel containing chemical components shown in Table 1 was melted in a vacuum furnace with a slag basicity adjusted to 3.0, and cast to obtain an ingot. Each ingot was forged into a forged steel material, and a specimen was obtained after cooling. In addition, about the hydrogen cracking resistance of each steel types AD of a test material, it has been empirically known that it is excellent in order of A->D->B-> C.

Figure 0005564022
Figure 0005564022

次いで鋼種A〜Dの各鋼から丸棒型、長さ100mm、中心部にKt=3となる切り欠きを設けた試験片(供試材)を作製し表2に記載の水素導入温度および保持温度で1時間保持する熱扱いを行った(実験No.1〜10)。なお、実験No.5については850℃で水素導入後、すぐに水焼き入れを行った。つまり、実験No.5は導入温度と保持温度が同じ温度になるように温度条件が設定された。実験No.1〜4、および実験No.6、7についてはフェライト−パーライト混合組織となる熱処理条件であり、No.5はマルテンサイト単相組織となる熱処理条件である。   Next, a test piece (test material) having a round bar shape, a length of 100 mm, and a notch with Kt = 3 at the center was prepared from each steel of steel types A to D, and the hydrogen introduction temperature and holding shown in Table 2 were made. The heat treatment which hold | maintains at temperature for 1 hour was performed (experiment No. 1-10). Experiment No. For No. 5, water was quenched immediately after introduction of hydrogen at 850 ° C. That is, Experiment No. The temperature condition of No. 5 was set so that the introduction temperature and the holding temperature were the same. Experiment No. 1-4, and experiment no. Nos. 6 and 7 are heat treatment conditions for forming a ferrite-pearlite mixed structure. 5 is a heat treatment condition for forming a martensite single phase structure.

なお、所定の熱扱いとなる水素導入工程S4を行った後は試験片に侵入した鋼中水素の逃散防止のため、破断特性の評価まで液体窒素中にて保管した。次いで破断特性の評価は試験片を液体窒素から取り出し、エタノールにて試験片温度を常温まで戻した後、引張速度1mm/minにて引張試験を行なった。
また、破断強度の比較は100%窒素雰囲気下で同様の熱処理を行った試験片との比(本試験での値/窒素雰囲気下での値)とした(破断強度比=1は脆化しない意味で、数値が下がるほど脆化、すなわち水素割れしやすいことを示している)。これらの評価に要した時間は水素雰囲気下での焼鈍を含めても合計8時間未満であった。
In addition, after performing hydrogen introduction | transduction process S4 used as predetermined | prescribed heat treatment, in order to prevent escape of the hydrogen in steel which penetrate | invaded the test piece, it stored in liquid nitrogen until evaluation of a fracture | rupture characteristic. Next, for the evaluation of the breaking property, the test piece was taken out of liquid nitrogen, the temperature of the test piece was returned to room temperature with ethanol, and then a tensile test was performed at a tensile speed of 1 mm / min.
In addition, the comparison of the breaking strength was made to be the ratio (value in this test / value in the nitrogen atmosphere) with a specimen subjected to the same heat treatment in a 100% nitrogen atmosphere (breaking strength ratio = 1 is not brittle) In the sense, the lower the value, the more likely it becomes brittle, that is, hydrogen cracks). The time required for these evaluations was less than 8 hours in total including annealing in a hydrogen atmosphere.

参考までに、比較のため従来法(特開2010‐54494号)により、表2において実験No.11〜13について、従来法の記載の方法で評価した。実験No.11およびNo.12は、実験No.4と同様の熱処理を100%窒素雰囲気下で行い、実験No.4と同じ材料を用いた。実験No.13については、熱処理時の鋼中への水素侵入の防止および実験No.5と同等の鋼組織を得るために、鋼材を100%窒素中で850℃で1時間保持後、すぐに水焼き入れを行った。なお、実験No.11〜13は、いずれも1M(mol/l)の硫酸と、0.01M(mol/l)のKSCN(チオシアン酸のカリウム塩)の酸性溶液中に、試験片を陰極として用い電流密度を0.05mA/mmで水素をチャージ(水素導入)する陰極チャージにより行った。そして、陰極チャージした試験片をSSRTで破断強度比、あるいは定荷重試験で試験片が割れるまでの時間を求めた。これらの結果を合わせて、鋼材の水素割れ性の評価が行えたものを○、評価が行えなかったもの、または評価に長時間(50時間以上)要したものを×として表2に示す。 For reference, in comparison with the conventional method (Japanese Patent Laid-Open No. 2010-54494), the experiment No. About 11-13, it evaluated by the method of description of a conventional method. Experiment No. 11 and no. 12 is an experiment no. 4 was performed in a 100% nitrogen atmosphere. The same material as 4 was used. Experiment No. For No. 13, prevention of hydrogen intrusion into the steel during heat treatment and Experiment No. In order to obtain a steel structure equivalent to 5, the steel material was kept in 100% nitrogen at 850 ° C. for 1 hour, and then immediately quenched with water. Experiment No. Nos. 11 to 13 each have a current density of 0 using a test piece as a cathode in an acidic solution of 1 M (mol / l) sulfuric acid and 0.01 M (mol / l) KSCN (potassium thiocyanate). It was performed by cathodic charging in which hydrogen was charged (hydrogen introduction) at 0.05 mA / mm 2 . And the time until a test piece cracks by a fracture strength ratio or a constant load test was calculated | required for the test piece which carried out the cathode charge. Together with these results, Table 2 shows the case where the evaluation of the hydrogen cracking property of the steel material was possible, the case where the evaluation could not be performed, or the case where the evaluation took a long time (50 hours or more) as x.

なお、表2において、SSRTとは、低歪み速度で応力を負荷して試験片(高強度鋼)を強制破断させ、該高強度鋼の遅れ破壊を迅速に評価する(SlowStrain Rate Technique)法(低歪み速度引張試験法)を示す。また、表2中における定荷重とは、定荷重試験を示し、てこ式定荷重試験機を用い、おもりとてこの原理で試験片の細径部に、狙い付加応力(200〜400MPa)が付与されるように調整して行った。そして、この定荷重試験では、試験片に割れが生じるまでの時間を求めた。   In Table 2, SSRT is a method in which stress is applied at a low strain rate to forcibly break a test piece (high strength steel), and delayed fracture of the high strength steel is rapidly evaluated (Slow Strain Rate Technique) method ( Low strain rate tensile test method). Moreover, the constant load in Table 2 indicates a constant load test, and a target additional stress (200 to 400 MPa) is applied to the small diameter portion of the test piece using a lever-type constant load tester by this principle. Adjusted to be done. And in this constant load test, time until a crack generate | occur | produces in the test piece was calculated | required.

Figure 0005564022
Figure 0005564022

実験No.1〜7については適切な雰囲気温度条件、水素濃度で試験を行ったため、適切に評価を行うことができた。それに対して実験No.8は雰囲気中の水素濃度が低すぎたため鋼中に水素が十分侵入せず、適切な評価が行えなかった。実験No.9は雰囲気温度が高すぎたために試験片が溶解してしまい評価が行えなかった。実験No.10は雰囲気温度が低すぎたため鋼中に水素が十分侵入せず、適切な評価が行えなかった。   Experiment No. About 1-7, since it tested by appropriate atmospheric temperature conditions and hydrogen concentration, it was able to evaluate appropriately. In contrast, Experiment No. In No. 8, since the hydrogen concentration in the atmosphere was too low, hydrogen did not sufficiently penetrate into the steel, and appropriate evaluation could not be performed. Experiment No. No. 9 could not be evaluated because the test piece was dissolved because the ambient temperature was too high. Experiment No. In No. 10, the ambient temperature was too low, so that hydrogen did not sufficiently penetrate into the steel, and appropriate evaluation could not be performed.

実験No.11〜13は従来技術を用いた評価である。実験No.11〜No.13は、いずれも試験に長時間(数十時間以上)を要し、迅速な評価が行えなかったり、結果の順列の逆転が生じたりするなどの問題が生じた。実験No.13については、窒素を導入するときの熱処理により、水素割れ感受性の高い焼入れのままマルテンサイト組織、つまり、組織形態が水素割れ感受性の高い組織となっていたため、陰極チャージ定荷重振幅による水素導入時点で鋼中に多量の水素が導入されることで試験片が破断してしまい、評価を行えなかった。   Experiment No. 11 to 13 are evaluations using a conventional technique. Experiment No. 11-No. No. 13 required a long time (several tens of hours or more) for the test, causing problems such as inability to make a quick evaluation or inversion of the result permutation. Experiment No. For No. 13, the heat treatment when introducing nitrogen resulted in a martensite structure with high hydrogen cracking susceptibility, that is, the structure was a structure with high hydrogen cracking sensitivity. Thus, the test piece was broken when a large amount of hydrogen was introduced into the steel, and evaluation could not be performed.

次に、表3で示す成分について同様の実験を行い、表4で示す試験結果を得た。
すなわち、母材組織がベイナイトである鍛造用鋼材について、前記したように所定の条件下において一実施例を説明する。
この実施例では、表3に示す化学成分を含有した150kgの鍛造用鋼を真空炉でスラグ塩基度を3.0に調整して溶製し、鋳造してインゴットを得た。各インゴットを鍛造して鍛造鋼材とし冷却後に供試材を得た。なお、供試材のそれぞれの鋼種B,E,Fの耐水素割れ性については、経験的にB→F→Eの順で優れていることが分かっている。
Next, the same experiment was conducted for the components shown in Table 3, and the test results shown in Table 4 were obtained.
That is, an embodiment will be described for a forging steel material whose base material structure is bainite under predetermined conditions as described above.
In this example, 150 kg of forging steel containing chemical components shown in Table 3 was melted in a vacuum furnace with a slag basicity adjusted to 3.0, and cast to obtain an ingot. Each ingot was forged into a forged steel material, and a specimen was obtained after cooling. In addition, about the hydrogen cracking resistance of each steel types B, E, and F of the specimen, it has been empirically found that B → F → E in this order.

Figure 0005564022
Figure 0005564022

次いで鋼種B,E,Fの各鋼から丸棒型、長さ100mm、中心部にKt=3となる切り欠きを設けた試験片(供試材)を作製し表4に記載の水素導入温度および冷却速度でBs点以下まで冷却、当該冷却した温度以下である保持温度で1時間保持する熱扱いを行った(実験No.14,15)。実験No.14,15についてはベイナイト単相となる熱処理条件である。   Next, a test piece (test material) having a round bar shape, a length of 100 mm, and a notch with Kt = 3 in the center was prepared from each steel of steel types B, E, and F, and the hydrogen introduction temperatures listed in Table 4 were used. Then, cooling was performed at a cooling rate to the Bs point or lower, and heat treatment was performed for 1 hour at a holding temperature that is lower than the cooled temperature (Experiment Nos. 14 and 15). Experiment No. Nos. 14 and 15 are heat treatment conditions for a bainite single phase.

なお、所定の熱扱いとなる水素導入工程S4を行った後は試験片に侵入した鋼中水素の逃散防止のため、破断特性の評価まで液体窒素中にて保管した。次いで破断特性の評価は試験片を液体窒素から取り出し、エタノールにて試験片温度を常温まで戻した後、引張速度1mm/minにて引張試験を行なった。
また、破断強度の比較は100%窒素雰囲気下で同様の熱処理を行った試験片との比(本試験での値/窒素雰囲気下での値)とした(破断強度比=1は脆化しない意味で、数値が下がるほど脆化、すなわち水素割れしやすいことを示している)。これらの評価に要した時間は水素雰囲気下での焼鈍を含めても合計8時間未満であった。
In addition, after performing hydrogen introduction | transduction process S4 used as predetermined | prescribed heat treatment, in order to prevent escape of the hydrogen in steel which penetrate | invaded the test piece, it stored in liquid nitrogen until evaluation of a fracture | rupture characteristic. Next, for the evaluation of the breaking property, the test piece was taken out of liquid nitrogen, the temperature of the test piece was returned to room temperature with ethanol, and then a tensile test was performed at a tensile speed of 1 mm / min.
In addition, the comparison of the breaking strength was made to be the ratio (value in this test / value in the nitrogen atmosphere) with a specimen subjected to the same heat treatment in a 100% nitrogen atmosphere (breaking strength ratio = 1 is not brittle) In the sense, the lower the value, the more likely it becomes brittle, that is, hydrogen cracks). The time required for these evaluations was less than 8 hours in total including annealing in a hydrogen atmosphere.

参考までに、比較のため従来法(特開2010‐54494)により、表4において実験No.16,17について、従来法の記載の方法で評価した。実験No.16、17については実験No.14と同様の熱処理を100%窒素雰囲気下で行い、実験No.14と同じ材料を用いた。なお、実験No.16,17は、いずれも1M(mol/l)の硫酸と、0.01M(mol/l)のKSCN(チオシアン酸のカリウム塩)の酸性溶液中に、試験片を陰極として用い電流密度を0.05mA/mmで水素をチャージする陰極チャージにより行った。そして、陰極チャージした試験片をSSRTで破断強度比、あるいは定荷重試験で試験片が割れるまでの時間を求めた。これらの結果を合わせて、鋼材の水素割れ性の評価が行えたものを○、評価が行えなかったもの、または評価に長時間(50時間以上)要したものを×として表4に示す。 For reference, in comparison with the conventional method (Japanese Patent Laid-Open No. 2010-54494), the experiment No. 16 and 17 were evaluated by the method described in the conventional method. Experiment No. For Experiments 16 and 17, Experiment No. The same heat treatment as in No. 14 was performed in a 100% nitrogen atmosphere. The same material as 14 was used. Experiment No. Nos. 16 and 17 both have a current density of 0 using a test piece as a cathode in an acidic solution of 1 M (mol / l) sulfuric acid and 0.01 M (mol / l) KSCN (potassium thiocyanate). This was done by cathodic charging with hydrogen at 0.05 mA / mm 2 . And the time until a test piece cracks by a fracture strength ratio or a constant load test was calculated | required for the test piece which carried out the cathode charge. Together with these results, Table 4 shows the case where the evaluation of the hydrogen cracking property of the steel material was ○, the case where the evaluation could not be performed, or the case where the evaluation took a long time (50 hours or more) as x.

Figure 0005564022
Figure 0005564022

実験No.14,15については適切な雰囲気温度条件、冷却速度、水素濃度で試験を行ったため、適切に評価を行うことができた。
実験No.16,17は従来技術を用いた評価である。これらはいずれも試験に長時間(数十時間以上)を要し、迅速な評価が行えなかったり、結果の順列の逆転が生じたりするなどの問題が生じた。
Experiment No. For 14 and 15, tests were performed under appropriate atmospheric temperature conditions, cooling rate, and hydrogen concentration, and therefore, evaluation could be performed appropriately.
Experiment No. 16 and 17 are evaluations using a conventional technique. All of these required a long period of time (several tens of hours) for the test, resulting in problems such as inability to make a quick evaluation and inversion of the result permutation.

以上説明したように、本発明を適用することにより、鍛造用鋼等の熱扱いと耐水素割れ性の関係を、精度良く迅速かつ簡便に評価することができる。したがって、本発明は、例えば船舶、発電機用等の動力伝達用部品、反応容器などの大型(例えば質量10t以上)の鍛造鋼材部品に用いられる鍛造鋼材の評価試験に特に好適である。   As described above, by applying the present invention, the relationship between the heat treatment of forging steel and the like and the hydrogen cracking resistance can be evaluated accurately and quickly. Therefore, the present invention is particularly suitable for an evaluation test of a forged steel material used for a large-sized (for example, a mass of 10 t or more) forged steel material component such as a power transmission component such as a ship or a generator, or a reaction vessel.

S 鍛造鋼材の耐水素割れ性評価方法
S1 製銑工程
S2 製鋼工程
S3 鍛造・供試材形成工程(鍛造鋼材の供試材を形成する工程)
S4 水素導入工程(鋼中に水素を導入する工程)
S5 評価工程(評価試験を行い評価する工程)
S Method for evaluating hydrogen cracking resistance of forged steel S1 Steelmaking process S2 Steelmaking process S3 Forging and specimen formation process (process for forming specimen of forged steel)
S4 Hydrogen introduction process (process to introduce hydrogen into steel)
S5 Evaluation process (process to evaluate and evaluate)

Claims (3)

船舶、発電機用等の動力伝達用部品、反応容器を含む鍛造鋼材部品に用いられる鍛造鋼材の耐水素割れ性評価方法であって、
鍛造用鋼材の造塊を鍛造して鍛造鋼材の供試材を形成する工程と、
前記供試材を、水素濃度30%以上100%以下の水素濃度範囲、300℃以上1500℃未満の温度雰囲気下で熱処理することにより鋼中に水素を導入する工程と、
前記水素を導入した供試材の割れ特性について評価試験を行い評価する工程を含むことを特徴とする鍛造鋼材の耐水素割れ性評価方法。
A method for evaluating hydrogen cracking resistance of a forged steel material used for power transmission parts for ships, generators, etc., and forged steel parts including reaction vessels,
Forging the ingot of the forging steel material to form a test material of the forged steel material; and
A step of introducing hydrogen into the steel by heat-treating the test material in a hydrogen concentration range of hydrogen concentration of 30% to 100% and a temperature atmosphere of 300 ° C to less than 1500 ° C;
A method for evaluating hydrogen cracking resistance of a forged steel material, comprising a step of performing an evaluation test and evaluating the cracking characteristics of the test material into which hydrogen is introduced.
前記鋼中に水素を導入する工程は、前記鍛造用鋼材が予め設定された複合組織の前記鍛造鋼材となるように、300℃以上1500℃未満の前記熱処理の範囲内において、任意の加熱速度及び冷却速度で行うことを特徴とする請求項1に記載の鍛造鋼材の耐水素割れ性評価方法。   The step of introducing hydrogen into the steel includes an arbitrary heating rate within the range of the heat treatment of 300 ° C. or more and less than 1500 ° C. so that the forging steel material becomes the forged steel material having a preset composite structure. The method for evaluating hydrogen cracking resistance of a forged steel material according to claim 1, wherein the method is performed at a cooling rate. 前記鋼中に水素を導入する工程は、前記鍛造用鋼材が予め設定されたベイナイト単相組織の前記鍛造材となるように、Ac1以上1500℃未満、水素濃度30%以上100%以下の雰囲気で保持した後、5℃/min以上の冷却速度でBs点以下まで冷却し、そのBs点以下の温度で保持することを特徴とする請求項1に記載の鍛造鋼材の耐水素割れ性評価方法。   The step of introducing hydrogen into the steel is performed in an atmosphere of Ac1 or higher and lower than 1500 ° C. and hydrogen concentration of 30% or higher and 100% or lower so that the steel for forging becomes the forged material having a preset bainite single phase structure. 2. The method for evaluating hydrogen cracking resistance of a forged steel material according to claim 1, wherein after being held, the steel is cooled to a Bs point or lower at a cooling rate of 5 ° C./min or higher and held at a temperature equal to or lower than the Bs point.
JP2011194042A 2010-12-10 2011-09-06 Method for evaluating hydrogen cracking resistance of forged steel Expired - Fee Related JP5564022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011194042A JP5564022B2 (en) 2010-12-10 2011-09-06 Method for evaluating hydrogen cracking resistance of forged steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010275395 2010-12-10
JP2010275395 2010-12-10
JP2011194042A JP5564022B2 (en) 2010-12-10 2011-09-06 Method for evaluating hydrogen cracking resistance of forged steel

Publications (2)

Publication Number Publication Date
JP2012137476A JP2012137476A (en) 2012-07-19
JP5564022B2 true JP5564022B2 (en) 2014-07-30

Family

ID=46674992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011194042A Expired - Fee Related JP5564022B2 (en) 2010-12-10 2011-09-06 Method for evaluating hydrogen cracking resistance of forged steel

Country Status (1)

Country Link
JP (1) JP5564022B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112345378B (en) * 2020-10-26 2022-03-04 北京科技大学 Semi-solid liquid core forging thermal simulation device and method
CN113369811A (en) * 2021-06-04 2021-09-10 成都日进冶金锻造有限公司 Production process of hydrogen sulfide corrosion resistant forge piece

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5277648B2 (en) * 2007-01-31 2013-08-28 Jfeスチール株式会社 High strength steel sheet with excellent delayed fracture resistance and method for producing the same
JP2008203218A (en) * 2007-02-22 2008-09-04 Kobe Steel Ltd Method for evaluating delayed fracture resistance of high-strength molten zinc plated steel plate
ES2522904T3 (en) * 2007-04-05 2014-11-19 Kabushiki Kaisha Kobe Seiko Sho Forge, forged and crankshaft steel
JP5081175B2 (en) * 2008-07-28 2012-11-21 株式会社神戸製鋼所 Method for evaluating hydrogen cracking resistance of steel
JP5192991B2 (en) * 2008-11-12 2013-05-08 株式会社神戸製鋼所 Method for producing high-strength galvannealed steel sheet and high-strength galvannealed steel sheet

Also Published As

Publication number Publication date
JP2012137476A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
JP5135557B2 (en) High-strength steel material and high-strength bolt excellent in delayed fracture resistance
KR101781792B1 (en) Abrasion-resistant steel material excellent in fatigue characteristics and method for manufacturing same
Zhang et al. Effect of deformation microstructures on hydrogen embrittlement sensitivity and failure mechanism of 304 austenitic stainless steel: the significant role of rolling temperature
Gu et al. An experimental study on the impact of deoxidation methods on the fatigue properties of bearing steels
NO155202B (en) PROCEDURE FOR HEAT TREATMENT OF STEEL.
Huang et al. Measurement and analysis of SHCCT diagram for CLAM steel
Dalcin et al. Response of a DIN 18MnCrSiMo6-4 continuous cooling bainitic steel to plasma nitriding with a nitrogen rich gas composition
JP5564022B2 (en) Method for evaluating hydrogen cracking resistance of forged steel
Wang et al. A comparison on isothermal and thermomechanical fatigue behavior of 316LN stainless steel with various tension dwell time
Albert et al. Hydrogen-assisted cracking susceptibility of modified 9Cr-1 Mo steel and its weld metal
Avery et al. Effect of temperature cycle on thermomechanical fatigue life of a high silicon molybdenum ductile cast iron
CN114182167B (en) Hot-rolled steel bar with stable aging performance and production method thereof
RU2567409C2 (en) Heat treatment of martensite stainless steel after electric slag remelting (esr)
Colla et al. Assessment of Critical Hydrogen Concentration in As‐Cast and Hot‐Rolled Billets in Medium Carbon Steels
McMurtrey Report on the FY18 creep rupture and creep-fatigue tests on the first commercial heat of Alloy 709
JP5868859B2 (en) Homogenization of martensitic stainless steel after remelting under slag layer
JP3398254B2 (en) High-strength steel rod excellent in delayed fracture resistance and method of manufacturing the same
KR102139255B1 (en) Steel wire with excellent delay resistance
Shi et al. Cyclic stress response and microcrack initiation mechanism of modified 9Cr‐1Mo steel under low cycle fatigue at room temperature and 350° C
Morra et al. Stress accelerated grain boundary oxidation of incoloy alloy 908 in high temperature oxygenous atmospheres
Urzendowski et al. An Investigative Analysis of the Properties of Severely Segregated A441 Bridge Steel
JPH07300653A (en) High strength steel bar excellent in delayed fracture resistance and its production
Iacoviello et al. Degenerated graphite nodules influence on fatigue crack paths in a ferritic ductile cast iron
AU2021102151A4 (en) Method to identify the influence of non-metallic inclusions in segregated banded-zone during plate groove butt joint welding
Calitz et al. The effect of decarburization on the fatigue life of overhead line hardware

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140613

R150 Certificate of patent or registration of utility model

Ref document number: 5564022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees