JP5563966B2 - Resin modifier - Google Patents

Resin modifier Download PDF

Info

Publication number
JP5563966B2
JP5563966B2 JP2010271634A JP2010271634A JP5563966B2 JP 5563966 B2 JP5563966 B2 JP 5563966B2 JP 2010271634 A JP2010271634 A JP 2010271634A JP 2010271634 A JP2010271634 A JP 2010271634A JP 5563966 B2 JP5563966 B2 JP 5563966B2
Authority
JP
Japan
Prior art keywords
group
resin
carbon atoms
coating composition
resin modifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010271634A
Other languages
Japanese (ja)
Other versions
JP2012097243A5 (en
JP2012097243A (en
Inventor
博昭 北山
伸也 後藤
利樹 宗和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2010271634A priority Critical patent/JP5563966B2/en
Publication of JP2012097243A publication Critical patent/JP2012097243A/en
Publication of JP2012097243A5 publication Critical patent/JP2012097243A5/ja
Application granted granted Critical
Publication of JP5563966B2 publication Critical patent/JP5563966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、樹脂改質剤、該樹脂改質剤を用いたコーティング膜の製造方法、及び、該製造方法により得られるコーティング膜に関する。   The present invention relates to a resin modifier, a method for producing a coating film using the resin modifier, and a coating film obtained by the production method.

従来、塗装や印刷等の分野では、フィルム特性や表面特性を改善するために、樹脂改質剤が用いられている。   Conventionally, resin modifiers have been used in the fields of coating and printing in order to improve film characteristics and surface characteristics.

下記特許文献1〜4には、帯電防止効果を高めることを目的とした特定の構造を有する帯電防止剤が記載されている。例えば、特許文献1には、特定のサルフェートからなるアニオン部と、特定のアミンからなるカチオン部とからなる帯電防止剤が記載されている。特許文献2には、硝酸イオン又はアルキル基の炭素数が1〜4のアルキルスルホン酸イオンからなるアニオン部と、特定のアミンからなるカチオン部とからなる帯電防止剤が記載されている。また、特許文献3、及び特許文献4には、第4級アンモニウム塩構造単位を10〜100モル%含有するブロック(b)を有する樹脂組成物が記載されている。ブロック(b)は、帯電防止効果を得ることを目的として加えられたものである。なお、特許文献1の帯電防止剤は、カチオン部に重合性不飽和基を有していない。また、特許文献2の帯電防止剤は、アニオン部がサルフェートではない。更に特許文献5〜6には、耐擦傷性等に優れた帯電防止性樹脂組成物が記載されている。   The following Patent Documents 1 to 4 describe antistatic agents having a specific structure for the purpose of enhancing the antistatic effect. For example, Patent Document 1 describes an antistatic agent comprising an anion moiety comprising a specific sulfate and a cation moiety comprising a specific amine. Patent Document 2 describes an antistatic agent comprising an anion moiety comprising a nitrate ion or an alkyl sulfonate ion having 1 to 4 carbon atoms in the alkyl group and a cation moiety comprising a specific amine. Patent Document 3 and Patent Document 4 describe a resin composition having a block (b) containing 10 to 100 mol% of a quaternary ammonium salt structural unit. The block (b) is added for the purpose of obtaining an antistatic effect. In addition, the antistatic agent of patent document 1 does not have a polymerizable unsaturated group in a cation part. In the antistatic agent of Patent Document 2, the anion portion is not sulfate. Further, Patent Documents 5 to 6 describe antistatic resin compositions having excellent scratch resistance and the like.

特開2007−191684号公報JP 2007-191684 A 特開2004−123924号公報JP 2004-123924 A 特開平11−60855号公報Japanese Patent Laid-Open No. 11-60855 特開平11−60856号公報Japanese Patent Laid-Open No. 11-60856 特開2009−263627号公報JP 2009-263627 A 特開2009−287010号公報JP 2009-287010 A

近年、LCD(Liquid Crystal Display)等の普及に伴い、より高い基本性能を有するコーティング膜が要求されている。しがしながら、特許文献1〜4に記載の帯電防止剤では、充分な帯電防止効果が得られていない点で改善の余地があった。また、帯電防止性のみならず、得られるコーティング膜の耐水性、透明性等の基本性能の向上が切望されている。   In recent years, with the spread of LCD (Liquid Crystal Display) and the like, a coating film having higher basic performance is required. However, the antistatic agents described in Patent Documents 1 to 4 have room for improvement in that a sufficient antistatic effect is not obtained. In addition to antistatic properties, improvements in basic properties such as water resistance and transparency of the resulting coating film are eagerly desired.

本発明は、帯電防止性、耐水性、透明性等の基本性能が良好なコーティング膜を得ることができる樹脂改質剤、該樹脂改質剤を用いたコーティング膜の製造方法、及び、該製造方法により得られるコーティング膜を提供する。   The present invention relates to a resin modifier capable of obtaining a coating film having good basic properties such as antistatic properties, water resistance, transparency, a method for producing a coating film using the resin modifier, and the production A coating film obtained by the method is provided.

本発明の樹脂改質剤は、下記式(I)で表される樹脂改質剤である。

Figure 0005563966
(但し、式中、R1は炭素数1〜22の炭化水素基、AOは炭素数2〜4のアルキレンオキサイド基、nはAOの平均付加モル数であり、100以下の正の数、Bは重合性不飽和基を有するアンモニウムイオン(C)を示す。) The resin modifier of the present invention is a resin modifier represented by the following formula (I).
Figure 0005563966
(In the formula, R 1 is a hydrocarbon group having 1 to 22 carbon atoms, AO is an alkylene oxide group having 2 to 4 carbon atoms, n is an average added mole number of AO, a positive number of 100 or less, B + Represents an ammonium ion (C) having a polymerizable unsaturated group.)

本発明のコーティング組成物は、前記樹脂改質剤と有機溶媒とを含むコーティング組成物である。   The coating composition of the present invention is a coating composition containing the resin modifier and an organic solvent.

本発明のコーティング膜の製造方法は、前記コーティング組成物を基材にコーティングした後、活性エネルギー線を照射して、前記基材上にコーティング膜を形成するコーティング膜の製造方法である。   The method for producing a coating film of the present invention is a method for producing a coating film in which a coating film is formed on the substrate by irradiating active energy rays after coating the coating composition on the substrate.

本発明のコーティング膜は、前記製造方法により得られるコーティング膜である。   The coating film of this invention is a coating film obtained by the said manufacturing method.

また、本発明のコーティング膜は、少なくとも一部に下記式(IV)又は下記式(V)で表される構造を有するコーティング膜でもある。

Figure 0005563966
(但し、式中、R1は炭素数1〜22の炭化水素基、AOは炭素数2〜4のアルキレンオキサイド基、nはAOの平均付加モル数であり、100以下の正の数、R2、R3、R4はそれぞれ独立して水素原子または炭素数1〜8の炭化水素基、Rは炭素数2〜5のアルキレン基、Rは水素原子またはメチル基、XはOまたはNHを示す。) The coating film of the present invention is also a coating film having a structure represented by the following formula (IV) or the following formula (V) at least partially.
Figure 0005563966
(In the formula, R 1 is a hydrocarbon group having 1 to 22 carbon atoms, AO is an alkylene oxide group having 2 to 4 carbon atoms, n is an average added mole number of AO, a positive number of 100 or less, R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, R 5 is an alkylene group having 2 to 5 carbon atoms, R 6 is a hydrogen atom or methyl group, and X is O or NH is shown.)

Figure 0005563966
(但し、式中、R1は炭素数1〜22の炭化水素基、AOは炭素数2〜4のアルキレンオキサイド基、nはAOの平均付加モル数であり、100以下の正の数、R8は水素原子または炭素数1〜8の炭化水素基、R9は炭素数1〜8の炭化水素基を示す。)
Figure 0005563966
(In the formula, R 1 is a hydrocarbon group having 1 to 22 carbon atoms, AO is an alkylene oxide group having 2 to 4 carbon atoms, n is an average added mole number of AO, a positive number of 100 or less, R 8 represents a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and R 9 represents a hydrocarbon group having 1 to 8 carbon atoms.)

本発明の樹脂改質剤、及び、該樹脂改質剤を含むコーティング組成物を用いたコーティング膜の製造方法によれば、帯電防止性、耐水性、透明性等の基本性能に優れたコーティング膜を得ることができる。また、本発明のコーティング膜によれば、帯電防止性、耐水性、透明性等の優れた基本性能を有する。   According to the resin modifier of the present invention and the method for producing a coating film using the coating composition containing the resin modifier, the coating film having excellent basic performance such as antistatic property, water resistance and transparency Can be obtained. In addition, the coating film of the present invention has excellent basic performance such as antistatic properties, water resistance, and transparency.

[樹脂改質剤]
本発明の樹脂改質剤は、前記式(I)で表される樹脂改質剤(以下、「化合物(I)」ともいう)である。
[Resin modifier]
The resin modifier of the present invention is a resin modifier represented by the formula (I) (hereinafter also referred to as “compound (I)”).

前記式(I)において、有機溶媒に対する溶解性、工業的入手性の観点から、Rは炭素数1〜22の炭化水素基であり、炭素数1〜20の炭化水素基が好ましく、炭素数8〜20の炭化水素基がより好ましく、炭素数10〜18の炭化水素基がさらに好ましく、炭素数12〜18の炭化水素基がより更に好ましい。帯電防止性の観点から、AOは炭素数2〜4のアルキレンオキサイド基であり、(AO)はエチレンオキサイド、プロピレンオキサイド、及びブチレンオキサイドの単独付加、並びに2種類以上のアルキレンオキサイド基のランダム、ブロック、ランダム/ブロック付加などを示すが、帯電防止性や濡れ性の観点からエチレンオキサイドを含有することが好ましい。化合物(I)の帯電防止性の観点から、nは、平均付加モル数を示し、100以下の正の数であり、1〜80の数が好ましく、1〜70の数がより好ましく、1〜50の数が更に好ましく、1〜30の数がより更に好ましい。
前記アンモニウムイオン(C)は、耐水性、透明性の観点から、重合性不飽和基を有している。前記重合性不飽和基としては、(メタ)アクリルエステル基、(メタ)アクリルアミド基、マレイン酸エステル、マレイミド基などのα、β―不飽和カルボニルエステルまたはアミド基、α、β―不飽和ニトリル基、アリル基、スチリル基、ビニル基、イソプロペニル基等が挙げられるが、帯電防止性及び本発明の樹脂改質剤を含有するコーティング膜の基材に対する濡れ性の観点から、アリル基またはα、β不飽和カルボニル基が好ましい。前記濡れ性が高まることで、コーティング膜の乱反射が抑制され防曇効果も向上する。
In the formula (I), from the viewpoints of solubility in an organic solvent and industrial availability, R 1 is a hydrocarbon group having 1 to 22 carbon atoms, preferably a hydrocarbon group having 1 to 20 carbon atoms, A hydrocarbon group having 8 to 20 carbon atoms is more preferable, a hydrocarbon group having 10 to 18 carbon atoms is more preferable, and a hydrocarbon group having 12 to 18 carbon atoms is still more preferable. From the viewpoint of antistatic properties, AO is an alkylene oxide group having 2 to 4 carbon atoms, (AO) n is a single addition of ethylene oxide, propylene oxide, and butylene oxide, and a random number of two or more alkylene oxide groups, Although block, random / block addition, etc. are shown, it is preferable to contain ethylene oxide from the viewpoint of antistatic properties and wettability. From the viewpoint of antistatic properties of the compound (I), n represents an average number of added moles, is a positive number of 100 or less, preferably 1 to 80, more preferably 1 to 70, A number of 50 is further preferred, and a number of 1 to 30 is even more preferred.
The ammonium ion (C) has a polymerizable unsaturated group from the viewpoint of water resistance and transparency. Examples of the polymerizable unsaturated group include α, β-unsaturated carbonyl ester or amide group such as (meth) acrylic ester group, (meth) acrylamide group, maleic acid ester, maleimide group, α, β-unsaturated nitrile group. , Allyl group, styryl group, vinyl group, isopropenyl group, etc., from the viewpoint of antistatic property and wettability to the substrate of the coating film containing the resin modifier of the present invention, allyl group or α, A β unsaturated carbonyl group is preferred. By increasing the wettability, irregular reflection of the coating film is suppressed and the anti-fogging effect is improved.

また、前記アンモニウムイオン(C)は、帯電防止性の観点から、下記式(II)で表される化合物であることが好ましい。

Figure 0005563966
2、R3、R4は、それぞれ独立して水素原子または炭素数1〜8の炭化水素基を示すが、帯電防止性及び工業的入手性の観点から、炭素数1〜8の炭化水素基であることが好ましく、炭素数1又は2の炭化水素基であることがさらに好ましい。R5は炭素数2〜5のアルキレン基を示すが、帯電防止性及び工業的入手性の観点から、炭素数2〜3であることが好ましい。Rは水素原子またはメチル基、XはOまたはNHを示すが、帯電防止性の観点から、NHであることが好ましい。R、R、Rの合計炭素数は帯電防止性と工業的入手性の観点から2〜12が好ましく、より好ましくは3〜9であり、更に好ましくは3〜6である。 The ammonium ion (C) is preferably a compound represented by the following formula (II) from the viewpoint of antistatic properties.
Figure 0005563966
R 2 , R 3 and R 4 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, but from the viewpoint of antistatic properties and industrial availability, a hydrocarbon having 1 to 8 carbon atoms. It is preferably a group, more preferably a hydrocarbon group having 1 or 2 carbon atoms. R 5 represents an alkylene group having 2 to 5 carbon atoms, and preferably 2 to 3 carbon atoms from the viewpoint of antistatic properties and industrial availability. R 6 represents a hydrogen atom or a methyl group, and X represents O or NH. From the viewpoint of antistatic properties, NH is preferable. The total carbon number of R 2 , R 3 and R 4 is preferably 2 to 12 from the viewpoint of antistatic properties and industrial availability, more preferably 3 to 9, and even more preferably 3 to 6.

また、前記アンモニウムイオン(C)は、帯電防止性及び濡れ性の観点から、下記式(III)で表される化合物であることも好ましい。

Figure 0005563966
7、R8はそれぞれ独立して水素原子または炭素数1〜8の炭化水素基を示すが、帯電防止性及び工業的入手性の観点から、炭素数1〜8の炭化水素基であることが好ましく、炭素数1〜6の炭化水素基であることがより好ましく、炭素数1〜3の炭化水素基であることがさらに好ましい。また、R7が好ましくはアリル基であって、R8が好ましくは水素原子または炭素数1〜8の炭化水素基、より好ましくは炭素数1〜6の炭化水素基、更に好ましくは炭素数1〜3の炭化水素基であることも好ましい。具体的には、メチル基、エチル基、プロピル基(n-プロピル基、i−プロピル基)、ブチル基(n-ブチル基、i−ブチル基、t-ブチル基)、アリル基、ペンチル基、ヘキシル基、オクチル基、2−エチルヘキシル基等が挙げられる。
9は炭素数1〜8の炭化水素基を示すが、帯電防止性及び工業的入手性の観点から、炭素数1〜6の炭化水素基であることが好ましく、炭素数1〜2の炭化水素基であることがより好ましい。具体的には、メチル基、エチル基、プロピル基(n-プロピル基、i−プロピル基)、ブチル基(n-ブチル基、i−ブチル基、t-ブチル基)、ペンチル基、ヘキシル基、オクチル基、2−エチルヘキシル基等が挙げられる。
7、R、Rの合計炭素数は帯電防止性と工業的入手性の観点から2〜15が好ましく、より好ましくは2〜12であり、更に好ましくは2〜9である。 The ammonium ion (C) is preferably a compound represented by the following formula (III) from the viewpoint of antistatic properties and wettability.
Figure 0005563966
R 7 and R 8 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, but from the viewpoint of antistatic properties and industrial availability, it should be a hydrocarbon group having 1 to 8 carbon atoms. Is more preferable, it is a C1-C6 hydrocarbon group, and it is still more preferable that it is a C1-C3 hydrocarbon group. R 7 is preferably an allyl group, and R 8 is preferably a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, more preferably a hydrocarbon group having 1 to 6 carbon atoms, still more preferably 1 carbon atom. It is also preferable that it is ~ 3 hydrocarbon group. Specifically, methyl group, ethyl group, propyl group (n-propyl group, i-propyl group), butyl group (n-butyl group, i-butyl group, t-butyl group), allyl group, pentyl group, A hexyl group, an octyl group, 2-ethylhexyl group, etc. are mentioned.
R 9 represents a hydrocarbon group having 1 to 8 carbon atoms, but from the viewpoint of antistatic properties and industrial availability, a hydrocarbon group having 1 to 6 carbon atoms is preferable, and a carbon group having 1 to 2 carbon atoms. More preferably, it is a hydrogen group. Specifically, methyl group, ethyl group, propyl group (n-propyl group, i-propyl group), butyl group (n-butyl group, i-butyl group, t-butyl group), pentyl group, hexyl group, An octyl group, 2-ethylhexyl group, etc. are mentioned.
The total carbon number of R 7 , R 8 and R 9 is preferably 2 to 15 from the viewpoint of antistatic properties and industrial availability, more preferably 2 to 12 and even more preferably 2 to 9.

化合物(I)は、活性エネルギー線硬化性を有することが好ましい。活性エネルギー線硬化性とは紫外線、電子線、放射線、X線等の活性エネルギーの照射により、又は開始剤との併用により硬化が生じる性質を意味する。   Compound (I) preferably has active energy ray curability. The active energy ray curability means a property that cures by irradiation with active energy such as ultraviolet rays, electron beams, radiation, X-rays, or in combination with an initiator.

活性エネルギー線により硬化する(反応する)基としては、例えば、α、β不飽和カルボニル基、アリル基、α、β―不飽和ニトリル基、スチリル基、ビニル基、イソプロペニル基が挙げられる。活性エネルギー線としては、実用面から紫外線が好ましい。   Examples of groups that are cured (reacted) by active energy rays include α, β unsaturated carbonyl groups, allyl groups, α, β-unsaturated nitrile groups, styryl groups, vinyl groups, and isopropenyl groups. As the active energy ray, ultraviolet rays are preferable from the practical viewpoint.

化合物(I)は、帯電防止性を有する樹脂改質剤、すなわち帯電防止剤であることが好ましい。前記帯電防止剤としては、当該帯電防止剤を用いて製造されるコーティング膜の表面固有抵抗値が、5×1012Ω以下とすることができるものが挙げられる。 Compound (I) is preferably a resin modifier having antistatic properties, that is, an antistatic agent. Examples of the antistatic agent include those having a surface specific resistance value of 5 × 10 12 Ω or less of a coating film produced using the antistatic agent.

本発明において、化合物(I)は、樹脂改質剤として、単独で使用してもよく、帯電防止性、耐水性、透明性等を有する他の帯電防止性を有する樹脂改質剤と混合して使用してもよい。ただし、耐水性、透明性の観点から、樹脂改質剤の合計100重量部に対し、化合物(I)が50重量部以上であることが好ましく、70重量部以上であることがより好ましく、90重量部以上であることが更に好ましい。   In the present invention, the compound (I) may be used alone as a resin modifier, and is mixed with another antistatic resin modifier having antistatic properties, water resistance, transparency and the like. May be used. However, from the viewpoint of water resistance and transparency, the compound (I) is preferably 50 parts by weight or more, more preferably 70 parts by weight or more, with respect to 100 parts by weight of the total amount of the resin modifier. More preferably, it is at least part by weight.

[化合物(I)の製造方法]
化合物(I)は、R−O−(AO)−SO とアルカリ金属との塩と、重合性不飽和基を有するアンモニウムとハロゲンとの塩とを塩交換する方法や、R−O−(AO)−SOHを、重合性不飽和基を有するアミン又は重合性不飽和基を有するアンモニウムハイドロオキサイドと中和する方法などで得ることができる。水を含有した原料を使用する場合、合成の際に水を使用する場合、又は、生成物に水が含まれる場合には、脱水して有機溶媒に溶解する又は有機溶媒を添加したのちに脱水することにより、化合物(I)を含む樹脂改質剤の溶液を得ることができる。ただし、前記アンモニウムイオン(C)のアンモニウム基の置換基がすべて水素でない場合は、工業的な入手性、取り扱い性などの観点から前記の塩交換する方法により得ることが好ましい。また、前記アンモニウムイオン(C)のアンモニウム基の置換基の少なくとも1つが水素である場合は、脱水工程を省けるなどの工程の簡素化の観点から前記のアミンで中和する方法により得ることが好ましい。
[Production Method of Compound (I)]
Compound (I) is obtained by subjecting R 1 —O— (AO) n —SO 3 and an alkali metal salt to salt exchange with a salt of ammonium having a polymerizable unsaturated group and halogen, R 1 It can be obtained by a method of neutralizing —O— (AO) n —SO 3 H with an amine having a polymerizable unsaturated group or ammonium hydroxide having a polymerizable unsaturated group. When water-containing raw materials are used, when water is used during synthesis, or when water is included in the product, dehydration and dissolution in an organic solvent or addition of an organic solvent followed by dehydration As a result, a resin modifier solution containing compound (I) can be obtained. However, when all the substituents of the ammonium group of the ammonium ion (C) are not hydrogen, it is preferable to obtain by the above salt exchange method from the viewpoint of industrial availability, handleability and the like. Further, when at least one of the substituents of the ammonium group of the ammonium ion (C) is hydrogen, it is preferable to obtain by a method of neutralizing with the amine from the viewpoint of simplification of the process such as omitting the dehydration process. .

前記R−O−(AO)−SO とアルカリ金属との塩としては、Rとして、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ラウリル基、ミリスチル基、セシル基、ステアリル基、オレイル基、ベヘニル基、ノニルフェニル基などを挙げることができ、(AO)として、ポリオキシエチレン基、ポリオキシプロピレン基、ポリオキシブテン基、ポリオキシエチレンポリオキシプロピレン基などを挙げることができ、アルカリ金属として、リチウム、ナトリウム、カリウムを挙げることができる。具体的には、ポリオキシエチレンメチルエーテルサルフェートのリチウム塩、ナトリウム塩、カリウム塩、ポリオキシエチレンラウリルエーテルサルフェートのリチウム塩、ナトリウム塩、カリウム塩、ポリオキシエチレンオレイルエーテルサルフェートのリチウム塩、ナトリウム塩、カリウム塩を挙げることができる。
また、重合性不飽和基を有するアンモニウムとハロゲンとの塩としては、化学式(II)、及び(III)に該当するものとハロゲンとの塩が好ましく、工業的入手性から塩化物が好ましい。化学式(II)に関しては、R2、R3、R4について、R2、R3、R4のすべてがメチル基のもの、2つがメチル基で1つがエチル基であるもの、2つがメチル基で1つがベンジル基であるもの、2つがエチル基で1つがメチル基であるものを挙げることができ、化学式(II)のR2、R3、R4及びNを除いた部分については、2−(メタ)アクリルオキシエチル基、3−(メタ)アクリルオキシプロピル基、4−(メタ)アクリルオキシブチル基、5−(メタ)アクリルオキシペンチル基、6−(メタ)アクリルオキシヘキシル基、8−(メタ)アクリルオキシオクチル基、4−(メタ)アクリルアミドブチル基、5−(メタ)アクリルアミドペンチル基、6−(メタ)アクリルアミドヘキシル基、8−(メタ)アクリルアミドオクチル基、2−(メタ)アクリルアミドエチル基、3−(メタ)アクリルアミドプロピル基を挙げることができる。化学式(II)に該当するものとハロゲンとの塩の具体的例として、(3−(メタ)アクリルアミドプロピル)トリメチルアンモニウムクロライドなどを挙げることができる。また、化学式(III)に該当するものとしては、R7、R8、R9について、R7、R8、R9のすべてがメチル基のもの、すべてがエチル基のもの、すべてがプロピル基のもの、2つがメチル基で1つがエチル基であるもの、2つがメチル基で1つがプロピル基であるもの、2つがメチル基で1つがブチル基であるもの、2つがメチル基で1つがペンチル基、ヘキシル基、オクチル基又はベンジル基であるもの、1つがアリル基で2つがメチル基であるもの、1つがアリル基で2つがエチル基であるもの、1つがアリル基で2つがプロピル基であるもの、1つがアリル基で1つがメチル基で1つがエチル基、プロピル基、ブチル基、ヘキシル基、又は、オクチル基であるものを挙げることができる。化学式(III)に該当するものとハロゲンとの塩の具体的例としては、アリルトリメチルアンモニウムクロライド、ジアリルジメチルアンモニウムクロライドなどを挙げることができる。これらの塩は、市販品を用いることができる。
また、アルカリ金属塩の前駆体であるR−O−(AO)−SOHは、例えば、R−O−(AO)−Hで表される化合物をクロロスルホン酸や無水硫酸(SOガス)と反応させて硫酸化する方法により得ることができる。なお、R−O−(AO)−HのR、AO、及び、nは、前記化合物(I)におけるR、AO、及び、nと同様である。
また、R−O−(AO)−SOHと、重合性不飽和基を有するアミンとの中和に用いられるR−O−(AO)−SOHの具体例としては前述したR−O−(AO)−SO とアルカリ金属との塩の具体例のアルカリ金属イオン部分が水素イオンに置換されたものが挙げられる。
また、重合性不飽和基を有するアミンの具体例としては前述した重合性不飽和基を有するアンモニウムとハロゲンとの塩の具体例から、重合性を有さない炭化水素基の一つとハロゲンとを除いたアミンなどが挙げられる。具体的には、例えば、アリルトリメチルアンモニウムクロライドから、重合性を有さない炭化水素基であるメチル基と、ハロゲンであるクロライドとを除いたアリルジメチルアミンなどを挙げることができる。
Examples of the salt of R 1 —O— (AO) n —SO 3 and an alkali metal include R 1 as methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, and nonyl groups. Decyl group, undecyl group, lauryl group, myristyl group, cecil group, stearyl group, oleyl group, behenyl group, nonylphenyl group, and the like. (AO) n can be a polyoxyethylene group, a polyoxypropylene group , A polyoxybutene group, a polyoxyethylene polyoxypropylene group, and the like. Examples of the alkali metal include lithium, sodium, and potassium. Specifically, lithium salt, sodium salt, potassium salt of polyoxyethylene methyl ether sulfate, lithium salt of polyoxyethylene lauryl ether sulfate, sodium salt, potassium salt, lithium salt of sodium polyoxyethylene oleyl ether sulfate, sodium salt, Mention may be made of potassium salts.
Further, the salt of ammonium having a polymerizable unsaturated group and halogen is preferably a salt of halogen with those corresponding to the chemical formulas (II) and (III), and chloride is preferred from the viewpoint of industrial availability. Regarding R 2 , R 3 , and R 4 , R 2 , R 3 , and R 4 are all methyl groups, two are methyl groups, and one is an ethyl group, and two are methyl groups In which one is a benzyl group, two are ethyl groups, and one is a methyl group, and the portion excluding R 2 , R 3 , R 4 and N + in the chemical formula (II) 2- (meth) acryloxyethyl group, 3- (meth) acryloxypropyl group, 4- (meth) acryloxybutyl group, 5- (meth) acryloxypentyl group, 6- (meth) acryloxyhexyl group, 8- (meth) acryloxyoctyl group, 4- (meth) acrylamide butyl group, 5- (meth) acrylamide pentyl group, 6- (meth) acrylamide hexyl group, 8- (meth) acrylamide group Examples include a octyl group, a 2- (meth) acrylamidoethyl group, and a 3- (meth) acrylamidopropyl group. Specific examples of the salt of the halogen salt with the compound corresponding to the chemical formula (II) include (3- (meth) acrylamidopropyl) trimethylammonium chloride. In addition, as R 7 , R 8 , and R 9 , R 7 , R 8 , and R 9 are all methyl groups, all are ethyl groups, and all are propyl groups. , Two are methyl groups and one is an ethyl group, two are methyl groups and one is a propyl group, two are methyl groups and one is a butyl group, two are methyl groups and one is pentyl Group, hexyl group, octyl group or benzyl group, one allyl group, two methyl groups, one allyl group, two ethyl groups, one allyl group and two propyl groups There can be mentioned one in which one is an allyl group, one is a methyl group and one is an ethyl group, a propyl group, a butyl group, a hexyl group, or an octyl group. Specific examples of the salt of halogen corresponding to the chemical formula (III) include allyltrimethylammonium chloride and diallyldimethylammonium chloride. Commercially available products can be used for these salts.
In addition, R 1 —O— (AO) n —SO 3 H, which is a precursor of an alkali metal salt, is obtained by, for example, converting a compound represented by R 1 —O— (AO) n —H to chlorosulfonic acid or sulfuric anhydride. It can be obtained by a method of reacting with (SO 3 gas) and sulfating. Incidentally, R 1 -O- (AO) n -H in R 1, AO, and, n represents, R 1, AO in the compound (I), and are the same as n.
Further, the R 1 -O- (AO) n -SO 3 H , specific examples of R 1 -O- (AO) n -SO 3 H to be used in the neutralization of an amine having a polymerizable unsaturated group Specific examples of the aforementioned salt of R 1 —O— (AO) n —SO 3 and an alkali metal include those in which the alkali metal ion portion is substituted with a hydrogen ion.
In addition, specific examples of amines having a polymerizable unsaturated group include the above-described specific examples of the salt of ammonium and halogen having a polymerizable unsaturated group, one of hydrocarbon groups having no polymerizable property and halogen. Examples include amines removed. Specifically, for example, allyl dimethylamine obtained by removing a methyl group which is a non-polymerizable hydrocarbon group and a halogen chloride from allyltrimethylammonium chloride can be used.

前記化合物(I)の例としては、前述したR−O−(AO)−SO と前述した重合性不飽和基を有するアンモニウムとからなるものが挙げられ、具体的には、(メタ)アクリルアミドプロピルトリメチルアンモニウムポリ(1〜50)オキシエチレンメチルエーテルサルフェート、(メタ)アクリルアミドプロピルトリメチルアンモニウムポリ(1〜50)オキシエチレンラウリルエーテルサルフェート、(メタ)アクリルアミドプロピルトリメチルアンモニウムポリ(1〜50)オキシエチレンオレイルエーテルサルフェート、ジアリルジメチルアンモニウムポリ(1〜50)オキシエチレンラウリルエーテルサルフェート、アリルジメチルアンモニウムポリ(1〜50)オキシエチレンラウリルエーテルサルフェート、マレイミドプロピレントリメチルアンモニウムポリ(1〜50)オキシエチレンラウリルエーテルサルフェート、2−ビニルピリジニウムポリ(1〜50)オキシエチレンラウリルエーテルサルフェート、1−ビニルイミダソリウムポリ(1〜50)オキシエチレンラウリルエーテルサルフェート、スチリルメチレントリメチルアンモニウムポリ(1〜50)オキシエチレンラウリルエーテルサルフェートなどが挙げられる。なお、本発明において、ポリ(1〜50)オキシエチレンとは、エチレンオキサイド基の平均付加モル数であるnが1〜50であることを意味する。 Examples of the compound (I) include those composed of the aforementioned R 1 —O— (AO) n —SO 3 and the aforementioned ammonium having a polymerizable unsaturated group. (Meth) acrylamidopropyltrimethylammonium poly (1-50) oxyethylene methyl ether sulfate, (meth) acrylamidopropyltrimethylammonium poly (1-50) oxyethylene lauryl ether sulfate, (meth) acrylamidopropyltrimethylammonium poly (1-50) Oxyethylene oleyl ether sulfate, diallyldimethylammonium poly (1-50) oxyethylene lauryl ether sulfate, allyldimethylammonium poly (1-50) oxyethylene lauryl ether sulfate, male Midpropylenetrimethylammonium poly (1-50) oxyethylene lauryl ether sulfate, 2-vinylpyridinium poly (1-50) oxyethylene lauryl ether sulfate, 1-vinylimidazolium poly (1-50) oxyethylene lauryl ether sulfate, Examples include styrylmethylenetrimethylammonium poly (1-50) oxyethylene lauryl ether sulfate. In the present invention, poly (1-50) oxyethylene means that n, which is the average added mole number of ethylene oxide groups, is 1-50.

化合物(I)の製造に用いる前記有機溶媒としては、特に限定されないが、前記化学式(I)の化合物の溶解性の観点から溶解度パラメータ(POLYMER HANDBOOK THIRD EDITION 1989 by John Wiley & Sons, Incに記載のSP値)が、15.0〜30.0(MPa)1/2である有機溶媒が好ましく、20.0〜30.0(MPa)1/2である有機溶媒が更に好ましい。( )内は溶解度パラメータを示す。ヘキサンなどの脂肪族炭化水素類、メタノール、エタノール(26.0)、イソプロピルアルコール(23.5)、メトキシエタノール、エトキシエタノール、メトキシカルビトール、ベンジルアルコール(24.8)などのアルコール類;アセトン(20.3)、メチルエチルケトン(19.0)、メチルイソブチルケトン(17.2)などのケトン類;塩化メチレン、クロロホルムなどのハロゲン溶媒;ジエチルエーテルなどのエーテル類;トルエン(18.3)、キシレンなどの芳香族類;酢酸n−ブチル(17.4)、酢酸n−エチル(18.6)などのエステル類;メチルピロリドン、ジメチルスルフォキシドなどが挙げられるが、溶解性の観点からアルコール類、ケトン類、エステル類のような極性溶媒が好ましい。また、のちほど述べるコーティング組成物の他の成分、例えば樹脂単量体が液状でかつ、化学式(I)の化合物と相互溶解する場合、樹脂単量体を有機溶媒として用いてもよい。 Although it does not specifically limit as said organic solvent used for manufacture of compound (I), From a soluble viewpoint of the compound of the said Chemical formula (I), solubility parameter (POLYMER HANDBOOK THIRD EDITION 1989 by John Wiley & Sons, Inc. An organic solvent having an SP value of 15.0 to 30.0 (MPa) 1/2 is preferable, and an organic solvent having an SP value of 20.0 to 30.0 (MPa) 1/2 is more preferable. Figures in parentheses indicate solubility parameters. Aliphatic hydrocarbons such as hexane, alcohols such as methanol, ethanol (26.0), isopropyl alcohol (23.5), methoxyethanol, ethoxyethanol, methoxycarbitol, benzyl alcohol (24.8); acetone ( 20.3), methyl ethyl ketone (19.0), ketones such as methyl isobutyl ketone (17.2); halogen solvents such as methylene chloride and chloroform; ethers such as diethyl ether; toluene (18.3), xylene and the like Aromatic esters such as n-butyl acetate (17.4) and esters such as n-ethyl acetate (18.6); methyl pyrrolidone, dimethyl sulfoxide and the like. Polar solvents such as ketones and esters are preferred. Further, when other components of the coating composition described later, for example, the resin monomer is in a liquid state and is mutually dissolved with the compound of the chemical formula (I), the resin monomer may be used as an organic solvent.

[コーティング組成物]
本発明のコーティング組成物は、樹脂改質剤と有機溶媒とを含むことが好ましい。なお、樹脂改質剤は有機溶媒に溶解して使用することが好ましい。コーティング組成物に用いる有機溶媒としては、化合物(I)の製造に用いる前述の有機溶媒と同様のものが好ましく挙げられる。好適な溶解度パラメータ(POLYMER HANDBOOK THIRD EDITION 1989 by John Wiley & Sons, Incに記載のSP値)の範囲も前述のものと同じであり、15.0〜30.0(MPa)1/2である有機溶媒が好ましく、20.0〜30.0(MPa)1/2である有機溶媒が更に好ましい。樹脂改質剤の溶解性の観点から極性溶媒が好ましく、その中でも、前述のアルコール類、ケトン類、エステル類が好ましい。一方、前記コーティング組成物に用いられる樹脂単量体が液状である場合において、該樹脂単量体が本発明の樹脂改質剤を含む他の成分を溶解する場合には、取り扱い性向上、及び工程簡略化の観点から、該樹脂単量体を、有機溶媒として使用してもよい。
本発明のコーティング組成物中、樹脂改質剤の含有量は、帯電防止性、耐水性等の観点から、好ましくは0.5〜50重量%、より好ましくは0.5〜30重量%、更に好ましくは1〜25重量%が、より更に好ましくは2〜20重量%である。
本発明のコーティング組成物は、更に樹脂または樹脂単量体を含有することが好ましい。用いられる樹脂または樹脂単量体は、有機溶媒で溶液状にして、基材へのコーティングに用いるのに好適な樹脂または樹脂単量体であれば特に限定されず、例えば、活性エネルギー線硬化性樹脂または樹脂単量体であってもよく、熱硬化性樹脂または樹脂単量体であってもよいが、コーティング膜の硬度やコストの観点から、活性エネルギー線の照射により反応し得る樹脂又は樹脂単量体を使用することが好ましい。
活性エネルギー線の照射により反応し得る樹脂又は樹脂単量体とは紫外線や電子線のような活性エネルギーの照射により直接、又は開始剤の作用で間接的に硬化反応を生じる官能基を有する樹脂または樹脂単量体を示す。
[Coating composition]
The coating composition of the present invention preferably contains a resin modifier and an organic solvent. The resin modifier is preferably used after being dissolved in an organic solvent. As an organic solvent used for a coating composition, the thing similar to the above-mentioned organic solvent used for manufacture of compound (I) is mentioned preferably. The range of suitable solubility parameters (SP values described in POLYMER HANDBOOK THIRD EDITION 1989 by John Wiley & Sons, Inc) is also the same as described above, and the organic is 15.0 to 30.0 (MPa) 1/2 A solvent is preferable, and an organic solvent that is 20.0 to 30.0 (MPa) 1/2 is more preferable. From the viewpoint of the solubility of the resin modifier, a polar solvent is preferable, and among these, the alcohols, ketones, and esters described above are preferable. On the other hand, in the case where the resin monomer used in the coating composition is liquid, when the resin monomer dissolves other components including the resin modifier of the present invention, the handling property is improved, and From the viewpoint of process simplification, the resin monomer may be used as an organic solvent.
In the coating composition of the present invention, the content of the resin modifier is preferably 0.5 to 50% by weight, more preferably 0.5 to 30% by weight, further from the viewpoint of antistatic properties, water resistance, and the like. Preferably it is 1-25 weight%, More preferably, it is 2-20 weight%.
The coating composition of the present invention preferably further contains a resin or a resin monomer. The resin or resin monomer to be used is not particularly limited as long as it is a resin or resin monomer suitable for use in coating on a substrate in a solution form with an organic solvent. For example, active energy ray curable Resin or resin monomer may be used, and thermosetting resin or resin monomer may be used. From the viewpoint of the hardness and cost of the coating film, the resin or resin that can react by irradiation with active energy rays It is preferable to use a monomer.
Resin or resin monomer that can react by irradiation of active energy rays is a resin having a functional group that causes a curing reaction directly by irradiation of active energy such as ultraviolet rays or electron beams or indirectly by the action of an initiator or A resin monomer is shown.

活性エネルギー線硬化性樹脂または樹脂単量体は、透明性を保持する観点から、アクリル系樹脂またはその単量体が好ましい。また、コーティング膜の硬度を向上させる観点では樹脂または樹脂単量体は重合性官能基を2つ以上有する樹脂または樹脂単量体であることが望ましい。両者を加味した場合の例としてはエチレングリコール(メタ)アクリレート、ポリエチレンクリコール(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレートモノアルキルエステルなどのジ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどのトリ(メタ)アクリレート類;ペンタエリスリトールテトラ(メタ)アクリレートやジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスルトールEO付加物のペンタ(メタ)アクリレートなどの多官能(メタ)アクリレートやこれらの単量体が重合し生成した樹脂が挙げられる。
本発明のコーティング組成物中、活性エネルギー線の照射により反応し得る樹脂又は樹脂単量体の含有量は、取り扱い性、コストの観点から、好ましくは20〜80重量%であり、より好ましくは25〜80重量%であり、さらに好ましくは30〜75重量%である。とりわけ、コーティング組成物に活性エネルギー線の照射により反応し得る樹脂を使用し、且つ有機溶媒を使用する場合(すなわち、前記活性エネルギー線の照射により反応し得る樹脂を有機溶媒として使用しない場合)に前記の範囲が好ましい。
また、本発明のコーティング組成物中、活性エネルギー線の照射により反応し得る樹脂又は樹脂単量体100重量部に対し、樹脂改質剤量は、好ましくは1〜50重量部、より好ましくは2〜30重量部である。その場合、得られるコーティング膜中における、樹脂改質剤の含有量は、活性エネルギー線の照射により反応し得る樹脂又は樹脂単量体100重量部に対し、好ましくは1〜50重量部、より好ましくは2〜30重量部である。
本発明のコーティング組成物に、樹脂又は樹脂単量体を用いない場合、前記コーティング組成物中の樹脂改質剤の含有量は、帯電防止性、濡れ性の観点からは、コーティング組成物の固形分中50重量%〜100重量%が好ましい。
The active energy ray-curable resin or resin monomer is preferably an acrylic resin or a monomer thereof from the viewpoint of maintaining transparency. Further, from the viewpoint of improving the hardness of the coating film, the resin or resin monomer is preferably a resin or resin monomer having two or more polymerizable functional groups. Examples when both are taken into account include di (meth) acrylates such as ethylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol di (meth) acrylate monoalkyl ester; Tri (meth) acrylates such as trimethylolpropane tri (meth) acrylate and pentaerythritol tri (meth) acrylate; pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol EO adduct And polyfunctional (meth) acrylates such as penta (meth) acrylate and resins formed by polymerization of these monomers.
In the coating composition of the present invention, the content of the resin or resin monomer that can react by irradiation with active energy rays is preferably 20 to 80% by weight, more preferably 25%, from the viewpoints of handleability and cost. It is -80 weight%, More preferably, it is 30-75 weight%. In particular, when a resin that can be reacted by irradiation with active energy rays is used for the coating composition and an organic solvent is used (that is, a resin that can react by irradiation with active energy rays is not used as an organic solvent). The above range is preferred.
In the coating composition of the present invention, the amount of the resin modifier is preferably 1 to 50 parts by weight, more preferably 2 parts per 100 parts by weight of the resin or resin monomer that can react by irradiation with active energy rays. -30 parts by weight. In that case, the content of the resin modifier in the coating film to be obtained is preferably 1 to 50 parts by weight, more preferably 100 parts by weight of the resin or resin monomer that can react by irradiation with active energy rays. Is 2 to 30 parts by weight.
In the case where no resin or resin monomer is used in the coating composition of the present invention, the content of the resin modifier in the coating composition is determined from the viewpoint of antistatic properties and wettability. 50% to 100% by weight in the minute is preferred.

本発明のコーティング組成物中、有機溶媒の含有量は、塗工などの取り扱い性の観点から、10〜70重量%が好ましく、20〜60重量%がより好ましく、さらに好ましくは20〜55重量%である。コーティング組成物中の有機溶媒量は、樹脂改質剤溶液から持ち込まれる有機溶媒量も含まれる。   In the coating composition of the present invention, the content of the organic solvent is preferably 10 to 70% by weight, more preferably 20 to 60% by weight, and still more preferably 20 to 55% by weight from the viewpoint of handling properties such as coating. It is. The amount of organic solvent in the coating composition includes the amount of organic solvent brought from the resin modifier solution.

本発明のコーティング組成物は、耐水性及び透明性に加えて、低湿度下での帯電防止性の向上の観点から、イオン液体を含有することが好ましい。
ここでイオン液体とは、下記一般式(VI)で表わされる化合物が好ましい。X+、Y-は重合性不飽和基、即ち前述の活性エネルギー線により硬化する基を有さない。
The coating composition of the present invention preferably contains an ionic liquid from the viewpoint of improving antistatic properties under low humidity in addition to water resistance and transparency.
Here, the ionic liquid is preferably a compound represented by the following general formula (VI). X + and Y do not have a polymerizable unsaturated group, that is, a group that is cured by the aforementioned active energy ray.

Figure 0005563966
(但し、式中、X+はカチオン、Y-はアニオンを示す。)
Figure 0005563966
(In the formula, X + represents a cation and Y represents an anion.)

イオン液体の分子量は、低湿度下での帯電防止性の観点から、好ましくは分子量150〜1,000、さらに好ましくは分子量180〜800である。
また、低湿度下での帯電防止性の観点から、融点が100℃以下が好ましく、50℃以下がより好ましく、30℃以下が更に好ましい。本発明において融点はJIS K0064「化学製品の融点および融解範囲測定方法」で測定される融点、またはJIS K0065「化学製品の凝固点測定方法」で測定される凝固点を意味する。室温(20℃)で固体の化合物は融点を測定し、室温(20℃)で液体の化合物は凝固点を測定し、融点とした。
The molecular weight of the ionic liquid is preferably a molecular weight of 150 to 1,000, more preferably a molecular weight of 180 to 800, from the viewpoint of antistatic properties under low humidity.
Further, from the viewpoint of antistatic properties under low humidity, the melting point is preferably 100 ° C. or lower, more preferably 50 ° C. or lower, and further preferably 30 ° C. or lower. In the present invention, the melting point means a melting point measured by JIS K0064 “Method for measuring melting point and melting range of chemical product” or a freezing point measured by JIS K0065 “Method for measuring freezing point of chemical product”. The melting point of the compound that was solid at room temperature (20 ° C.) was measured, and the freezing point of the compound that was liquid at room temperature (20 ° C.) was measured as the melting point.

前記X+で表されるカチオンが、低湿度下での帯電防止性の観点から、下記式(a)〜(d)からなる群から選ばれる1種以上がより好ましい。 The cation represented by X + is more preferably one or more selected from the group consisting of the following formulas (a) to (d) from the viewpoint of antistatic properties under low humidity.

Figure 0005563966
(式(a)中、R11は、炭素数1〜20の炭化水素基を表し、R12は水素原子または炭素数1〜20の炭化水素基又はヒドロキシル基を表し、R13は、炭素数1〜20の炭化水素基または炭化水素基の一つの水素がヒドロシル基に置換した官能基を示す。)
(式(b)中、R14は水素原子または炭素数1〜20の炭化水素基又はヒドロキシル基を表し、R15は、炭素数1〜20の炭化水素基または炭化水素基の一つの水素がヒドロシル基に置換した官能基を示す。)
(式(c)中、R16およびR17は、それぞれ独立して、炭素数1〜20の炭化水素基または炭化水素基の一つの水素がヒドロシル基に置換した官能基を示す。)R11〜17の炭化水素基は、独立して、好ましくは炭素数1〜8、より好ましくは炭素数1〜5、更により好ましくは炭素数1〜3である。
(式(d)中、Xは、窒素原子、硫黄原子、又はリン原子を表し、R18は水素原子、炭素数1〜20の炭化水素基、または炭化水素基の一つの水素がヒドロシル基に置換した官能基を示す。R19、R20、およびR21、はそれぞれ独立して炭素数1〜20の炭化水素基、または炭化水素基の一つの水素がヒドロシル基に置換した官能基を表す。但しXが硫黄原子の場合、R21はない。)R18の炭化水素基は、好ましくは炭素数6〜18、より好ましくは炭素数8〜18である。R19〜21の炭化水素基は、独立して、好ましくは炭素数1〜12、より好ましくは炭素数2〜8である。
Figure 0005563966
(In the formula (a), R 11 represents a hydrocarbon group having 1 to 20 carbon atoms, R 12 represents a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms or a hydroxyl group, and R 13 represents 1 to 20 carbon atoms. Or a hydrocarbon group substituted with a hydrosyl group.)
(In the formula (b), R14 represents a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a hydroxyl group, and R15 represents a hydrosyl group in which one hydrogen atom of the hydrocarbon group or hydrocarbon group having 1 to 20 carbon atoms is substituted. Represents a substituted functional group.)
(In the formula (c), R16 and R17 each independently represent a hydrocarbon group having 1 to 20 carbon atoms or a functional group in which one hydrogen of a hydrocarbon group is substituted with a hydrosyl group.) The hydrocarbon group independently preferably has 1 to 8 carbon atoms, more preferably 1 to 5 carbon atoms, and even more preferably 1 to 3 carbon atoms.
(In the formula (d), X represents a nitrogen atom, a sulfur atom, or a phosphorus atom, and R18 represents a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or one hydrogen of the hydrocarbon group is substituted with a hydrosyl group. R19, R20, and R21 each independently represent a hydrocarbon group having 1 to 20 carbon atoms, or a functional group in which one hydrogen of the hydrocarbon group is substituted with a hydrosyl group, where X is In the case of a sulfur atom, there is no R21.) The hydrocarbon group of R18 preferably has 6 to 18 carbon atoms, more preferably 8 to 18 carbon atoms. The hydrocarbon group of R 19-21 is independently preferably 1 to 12 carbon atoms, more preferably 2 to 8 carbon atoms.

前記Y-で表されるアニオンは、低湿度下での帯電防止性の観点から、脂肪族(炭素数1〜20)カルボン酸、フルオロ脂肪族(炭素数1〜20)カルボン酸、ポリ(平均付加モル数1〜50)オキシアルキレンアルキル(炭素数1〜20)エーテルカルボン酸、アルキル(炭素数1〜20)硫酸エステル、ポリオキシアルキレンアルキル(炭素数1〜20)硫酸エステル、アルカン(炭素数1〜20)スルホン酸、フルオロアルカン(炭素数1〜20)スルホン酸、アルキル(炭素数1〜20)ベンゼンスルホン酸、アルキル(炭素数1〜20)リン酸エステル、ポリ(平均付加モル数1〜50)オキシアルキレンアルキル(炭素数1〜20)リン酸エステル、ビス(ペルフルオロアルキル(炭素数1〜5)スルホニル)イミド、トリス(ペルフルオロアルキル(炭素数1〜5)スルホニル)メタン、トリス(ペルフルオロアルキル(炭素数1〜5))トリフルオロホスフェートなどの有機酸のイオン、4フッ化ホウ素酸、過塩素酸、6フッ化リン酸、6フッ化アンチモン酸および6フッ化ヒ素酸、リン酸、硫酸、ホウ酸、ハロゲン、ジシアノアミド、トリシアノメチド、テトラシアノボレート、チオシアン酸、2蓚酸化ホウ酸などの無機酸のイオンなどが挙げられる。
具体的には、低湿度下での帯電防止性の観点から、[CFCOO-]、[CHSO -]、[CSO -] 、[CSO -]、[C13SO -]、[C17SO -] 、[CHO(CO)SO -](nは平均付加モル数を示し、1〜5)、[CHSO -]、[CSO -]、[CFSO -]、 [CSO -]、[CHSO -] 、[N(SOCF2 -]、 [(C3PF -] 、[BF -]、[PF -]、[HSO -] 、[Cl-]、[Br-]、[I-]、[N(CN) -]、[C(CN) -]、[B(CN) -]、[SCN-]、[B(C -]の群から選ばれる1種以上のイオン化合物が好ましい。
The anion represented by Y is aliphatic (carbon number 1 to 20) carboxylic acid, fluoroaliphatic (carbon number 1 to 20) carboxylic acid, poly (average) from the viewpoint of antistatic properties under low humidity. Addition mole number 1-50) oxyalkylene alkyl (carbon number 1-20) ether carboxylic acid, alkyl (carbon number 1-20) sulfate ester, polyoxyalkylene alkyl (carbon number 1-20) sulfate ester, alkane (carbon number) 1-20) sulfonic acid, fluoroalkane (1-20 carbon atoms) sulfonic acid, alkyl (1-20 carbon atoms) benzenesulfonic acid, alkyl (1-20 carbon atoms) phosphate ester, poly (average number of moles added 1) -50) oxyalkylene alkyl (1 to 20 carbon atoms) phosphate ester, bis (perfluoroalkyl (1 to 5 carbon atoms) sulfonyl) imide, tris (perfluoroalkyl (1 to 1 carbon atoms) ) Sulfonyl) methane, ions of organic acids such as tris (perfluoroalkyl (carbon number 1-5)) trifluorophosphate, tetrafluoroboric acid, perchloric acid, hexafluorophosphoric acid, hexafluoroantimonic acid and 6 Examples thereof include ions of inorganic acids such as arsenic fluoric acid, phosphoric acid, sulfuric acid, boric acid, halogen, dicyanoamide, tricyanomethide, tetracyanoborate, thiocyanic acid, and oxalic boric acid.
Specifically, from the viewpoint of antistatic properties under low humidity, [CF 3 COO ], [CH 3 SO 4 ], [C 2 H 5 SO 4 ], [C 4 H 9 SO 4 ], [C 6 H 13 SO 4 ], [C 8 H 17 SO 4 ], [CH 3 O (C 2 H 4 O) n SO 3 ] (n represents the average number of added moles, 1 to 5), [CH 3 SO 3 ], [C 2 H 5 SO 3 ], [CF 3 SO 3 ], [C 4 F 9 SO 3 ], [CH 3 C 6 H 4 SO 3 ] , [N (SO 2 CF 3 ) 2 ], [(C 2 F 5 ) 3 PF 3 ], [BF 4 ], [PF 6 ], [HSO 4 ], [Cl ], [Cl ], Br ], [I ], [N (CN) 2 ], [C (CN) 3 ], [B (CN) 4 ], [SCN ], [B (C 2 O 4 ) 2 - one or more ionic compound selected from the group consisting of] is preferred.

前記式(VI)で表されるイオン液体としては下記のものが好ましく挙げられる。
イミダゾリウム化合物(前記X+で表されるカチオンが前記式(a)で表される化合物)としては、1−エチル−3−メチルイミダゾリウム トリ(ペンタフルオロエチル)トリフルオロフォスフェート(融点(以下、「mp」ともいう):−1℃)、1−ブチル−3−メチルイミダゾリウム ジシアノアミド(mp:<-20℃)、1−ブチル−2,3−ジメチルイミダゾリウム テトラフルオロボレート(mp:40℃)、1−ブチル−2,3−ジメチルイミダゾリウム クロライド(mp:99℃)、1−ブチル−3−メチルイミダゾリウム トリフルオロメタンスルフォネート(mp:17℃)、1−ヘキシル−3−メチルイミダゾリウム ビス(トリフルオロメチルスルフォニル)イミド(mp:-9℃)、1−ブチル−2,3−ジメチルイミダゾリウム ヘキサフルオロフォスフェート(mp:42℃)、1−エチル−3メチルイミダゾリウム テトラフルオロボレート(mp:14℃)、1−エチル−3メチルイミダゾリウム ブロミド(mp:65℃)、1−ヘキシル−3メチルイミダゾリウム クロライド(mp:<-20℃)、1−ブチル−3メチルイミダゾリウム テトラフルオロボレート(mp:<-20℃)、1−ブチル−3メチルイミダゾリウム ヘキサフルオロフォスフェート(mp:12℃)、1−エチル−3−メチルイミダゾリウム クロライド(mp:88℃)、1−メチル−3−オクチルイミダゾリウム クロライド(mp:<-20℃)、1,3−ジメチルイミダゾリウム メチルサルフェート(mp:45℃)、1−エチル−3−メチルイミダゾリウム トリフルオロメタンスルホネート(mp:-12℃)、1−ブチル−3−メチルイミダゾリウム メチルサルフェート(mp:13℃)、1−ヘキシル−3−メチルイミダゾリウム テトラフルオロボレート(mp:<-20℃)、1−ヘキシル−3−メチルイミダゾリウム ヘキサフルオロフォスフェート(mp:<-20℃)、1−ヘキシル−3−メチルイミダゾリウム トリ(ペンタフルオロエチル)トリフルオロフォスフェート(mp:-14℃)、1−ブチル−3−メチルイミダゾリウム クロライド(mp:73℃)、1−ブチル−3−メチルイミダゾリウム ブロミド(mp:76℃)、1−ブチル−3−メチルイミダゾリウム ビス(トリフルオロメチルスルフォニル)イミド(mp:2℃)、1−ブチル−2,3−ジメチルイミダゾリウム トリフルオロメタンスルフォネート(mp:41℃)、1−エチル−3−メチルイミダゾリウム トリフルオロアセテート(mp:<-20℃)、1−ブチル−3−メチルイミダゾリウム トリフルオロアセテート(mp:<-20℃)、1−エチル−3−メチルイミダゾリウム ジシアンアミド(mp:<-20℃)、1−エチル−3−メチルイミダゾリウム メチルサルフェート(mp:<-20℃)、1−エチル−3−メチルイミダゾリウム パラトルエンスルホネート(mp:56℃)、1−ブチル−3−メチルイミダゾリウム オクチルサルフェート(mp:32℃)、1−ブチル−3−メチルイミダゾリウム アイオダイド(mp:<-20℃)、1−エチル−3−メチルイミダゾリウム ビス(トリフルオロメチルスルフォニル)イミド(mp:-15℃)、1−ブチル−2,3−ジメチルイミダゾリウム アイオダイド(mp:97℃)、1−エチル−3−メチルイミダゾリウム チオシアネート(mp:-20℃)、1−メチル−3−プロピルイミダゾリウム アイオダイド(mp:<-20℃)、1−エチル−3−メチルイミダゾリウム オクチルサルフェート(mp:11℃)、1−ブチル−3−メチルイミダゾリウム ハイドロゲンサルフェート(mp:38℃)、1−エチル−3−メチルイミダゾリウム テトラシアノボレート(mp:13℃)、1−ブチル−3−メチルイミダゾリウム トリ(ペンタフルオロエチル)トリフルオロフォスフェート(mp:3℃)、1−デシル−3−メチルイミダゾリウム テトラシアノボレート(mp:18℃)、1−シアノメチル−3−メチル−イミダゾリウム ビス(トリフルオロメチルスルフォニル)イミド(mp:<-20℃)、1−(2−ヒドロキシエチル)−3−メチルイミダゾリウム ビス(トリフルオロメチルスルフォニル)イミド(mp:<-20℃)、1−エチル−3−メチルイミダゾリウム メタンスルホネート(mp:35℃)、1−ブチル−3−メチルイミダゾリウム メタンスルホネート(mp:75℃)、1−エチル−3−メチルイミダゾリウム 2(2−メトキシエトキシ)エチルサルフェート(mp:15℃)、1−エチル−3−メチルイミダゾリウム ノルマルブチルサルフェート(mp:24℃)、1−エチル−3−メチルイミダゾリウム ノルマルヘキシルサルフェート(mp:7℃)、1−ブチル−3−メチルイミダゾリウム トリシアノメチド(mp:<-20℃)、1−(2−ヒドロキシエチル)−3−メチルイミダゾリウム トリ(ペンタフルオロエチル)トリフルオロフォスフェート(mp:<-20℃)、1−エチル−3−メチルイミダゾリウム アイオダイド(mp:69℃)、1−エチル−3−ヒドロキシエチルイミダゾリウム ブロミド(mp:<-20℃)、1−エチル−3−ヒドロキシプロピルイミダゾリウム ブロミド(mp:<-20℃)等が挙げられる。
Preferred examples of the ionic liquid represented by the formula (VI) include the following.
As the imidazolium compound (the compound in which the cation represented by X + is represented by the formula (a)), 1-ethyl-3-methylimidazolium tri (pentafluoroethyl) trifluorophosphate (melting point (hereinafter referred to as “melting point”) (Also referred to as “mp”): −1 ° C.), 1-butyl-3-methylimidazolium dicyanoamide (mp: <−20 ° C.), 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (mp: 40 ° C), 1-butyl-2,3-dimethylimidazolium chloride (mp: 99 ° C), 1-butyl-3-methylimidazolium trifluoromethanesulfonate (mp: 17 ° C), 1-hexyl-3-methyl Imidazolium bis (trifluoromethylsulfonyl) imide (mp: -9 ° C.), 1-butyl-2,3-dimethylimidazolium hexafluorophor Fate (mp: 42 ° C.), 1-ethyl-3methylimidazolium tetrafluoroborate (mp: 14 ° C.), 1-ethyl-3 methyl imidazolium bromide (mp: 65 ° C.), 1-hexyl-3 methyl imidazolium Chloride (mp: <-20 ° C), 1-butyl-3methylimidazolium tetrafluoroborate (mp: <-20 ° C), 1-butyl-3methylimidazolium hexafluorophosphate (mp: 12 ° C), 1 -Ethyl-3-methylimidazolium chloride (mp: 88 ° C), 1-methyl-3-octylimidazolium chloride (mp: <-20 ° C), 1,3-dimethylimidazolium methyl sulfate (mp: 45 ° C) 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (mp: -12 ° C.), 1-butyl-3-methylimidazolium methylsulfur (Mp: 13 ° C), 1-hexyl-3-methylimidazolium tetrafluoroborate (mp: <-20 ° C), 1-hexyl-3-methylimidazolium hexafluorophosphate (mp: <-20 ° C) ), 1-hexyl-3-methylimidazolium tri (pentafluoroethyl) trifluorophosphate (mp: -14 ° C), 1-butyl-3-methylimidazolium chloride (mp: 73 ° C), 1-butyl-3 -Methylimidazolium bromide (mp: 76 ° C), 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide (mp: 2 ° C), 1-butyl-2,3-dimethylimidazolium trifluoromethanesulfur Phonate (mp: 41 ° C.), 1-ethyl-3-methylimidazolium trifluoroacetate (mp: <−20 ° C.), 1-butyl-3-methyl Louis imidazolium trifluoroacetate (mp: <-20 ° C), 1-ethyl-3-methylimidazolium dicyanamide (mp: <-20 ° C), 1-ethyl-3-methylimidazolium methyl sulfate (mp: <- 20 ° C), 1-ethyl-3-methylimidazolium p-toluenesulfonate (mp: 56 ° C), 1-butyl-3-methylimidazolium octyl sulfate (mp: 32 ° C), 1-butyl-3-methylimidazolium Iodide (mp: <-20 ° C), 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide (mp: -15 ° C), 1-butyl-2,3-dimethylimidazolium iodide (mp: 97 ° C), 1-ethyl-3-methylimidazolium thiocyanate (mp: -20 ° C), 1-methyl-3-propylimidazolium (Mp: <-20 ° C), 1-ethyl-3-methylimidazolium octyl sulfate (mp: 11 ° C), 1-butyl-3-methylimidazolium hydrogen sulfate (mp: 38 ° C), 1-ethyl- 3-methylimidazolium tetracyanoborate (mp: 13 ° C), 1-butyl-3-methylimidazolium tri (pentafluoroethyl) trifluorophosphate (mp: 3 ° C), 1-decyl-3-methylimidazolium tetra Cyanoborate (mp: 18 ° C), 1-cyanomethyl-3-methyl-imidazolium bis (trifluoromethylsulfonyl) imide (mp: <-20 ° C), 1- (2-hydroxyethyl) -3-methylimidazolium Bis (trifluoromethylsulfonyl) imide (mp: <-20 ° C.), 1-ethyl-3-methylimidazolium methanesulfonate (Mp: 35 ° C.), 1-butyl-3-methylimidazolium methanesulfonate (mp: 75 ° C.), 1-ethyl-3-methylimidazolium 2 (2-methoxyethoxy) ethyl sulfate (mp: 15 ° C.) 1-ethyl-3-methylimidazolium normal butyl sulfate (mp: 24 ° C), 1-ethyl-3-methylimidazolium normal hexyl sulfate (mp: 7 ° C), 1-butyl-3-methylimidazolium tricyanomethide ( mp: <-20 ° C), 1- (2-hydroxyethyl) -3-methylimidazolium tri (pentafluoroethyl) trifluorophosphate (mp: <-20 ° C), 1-ethyl-3-methylimidazolium iodide (Mp: 69 ° C.), 1-ethyl-3-hydroxyethylimidazolium bromide (mp: <−20 ° C.), 1-ethyl-3-hy B propyl imidazolium bromide (mp: <- 20 ℃), and the like.

ピリジウム化合物(前記X+で表されるカチオンが前記式(b)で表される化合物)としては、N−ブチル−3−メチルピリジウム テトラフルオロボレート(mp:<-20℃)、N−ブチル−3−メチルピリジウム ヘキサフルオロフォスフェート(mp:46℃)、N−ヘキシル−4−ジメチルアミノ−ピリジウム ビス(トリメチルスルフォニル)イミド(mp:<-20℃)、N−(3−ヒドロキシプロピル)ピリジウム ビス(トリメチルスルフォニル)イミド(mp:<-20℃)、N−エチル−3−ヒドロキシメチルピリジウム エチルサルフェート(mp:<-20℃)、N−エチル−3−メチルピリジウム エチルサルフェート(mp:<-20℃)、N−ブチル−3−メチルピリジウム ジシアンアミド(mp:16℃)、N−(3−ヒドロキシプロピル)ピリジウム トリ(ペンタフルオロエチル)トリフルオロフォスフェート(mp:<-20℃)等が挙げられる。 Examples of the pyridium compound (the compound in which the cation represented by X + is represented by the formula (b)) include N-butyl-3-methylpyridinium tetrafluoroborate (mp: <−20 ° C.), N-butyl. -3-methylpyridinium hexafluorophosphate (mp: 46 ° C), N-hexyl-4-dimethylamino-pyridium bis (trimethylsulfonyl) imide (mp: <-20 ° C), N- (3-hydroxypropyl) Pyridinium bis (trimethylsulfonyl) imide (mp: <-20 ° C), N-ethyl-3-hydroxymethylpyridium ethyl sulfate (mp: <-20 ° C), N-ethyl-3-methylpyridium ethyl sulfate (mp : <-20 ° C.), N-butyl-3-methylpyridinum dicyanamide (mp: 16 ° C.), N- (3-hydroxypropyl) pyridium tri (pentafur) Roechiru) trifluoro phosphate (mp: <- 20 ℃), and the like.

ピロリジニウム化合物(前記X+で表されるカチオンが前記式(c)で表される化合物)としては、N−ブチル−1−メチルピロリジニウム ジシアノアミド(mp:<-20℃)、N−ブチル−1−メチルピロリジニウム ビス(トリフルオロメチルスルフォニル)イミド(mp:-6℃)、N−ブチル−1−メチルピロリジニウム トリ(ペンタフルオロエチル)トリフルオロフォスフェート(mp:4℃)、N−ブチル−1−メチルピロリジニウム テトラシアノボレート(mp:22℃)、N−(メトキシエチル)−1−メチルピロリジニウム ビス(トリメチルスルフォニル)イミド(mp:<-20℃)、N−ブチル−1−メチルピロリジニウム ビス(オキサレート(2−)−0,0‘)ボレート(mp:55℃)、N−(2−メトキシエチル)−1−メチルピロリジニウム トリ(ペンタフルオロエチル)トリフルオロフォスフェート(mp:<-20℃)等が挙げられる。 Examples of the pyrrolidinium compound (the compound in which the cation represented by X + is represented by the formula (c)) include N-butyl-1-methylpyrrolidinium dicyanoamide (mp: <−20 ° C.), N-butyl. -1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide (mp: -6 ° C), N-butyl-1-methylpyrrolidinium tri (pentafluoroethyl) trifluorophosphate (mp: 4 ° C), N -Butyl-1-methylpyrrolidinium tetracyanoborate (mp: 22 ° C), N- (methoxyethyl) -1-methylpyrrolidinium bis (trimethylsulfonyl) imide (mp: <-20 ° C), N-butyl -1-methylpyrrolidinium bis (oxalate (2-)-0,0 ′) borate (mp: 55 ° C.), N- (2-methoxyethyl) -1-methylpyrrolidinium Li (pentafluoroethyl) trifluorophosphate (mp: <-20 ° C) and the like.

アンモニウム化合物、ホスホニウム化合物(前記X+で表されるカチオンが前記式(d)で表される化合物)としては、トリヘキシル(テトラデシル)ホスホニウム トリ(ペンタフルオロエチル)トリフリオロフォスフェート(mp:<-20℃)、トリヘキシル(テトラデシル)ホスホニウム ビス(トリフルオロメチルスルフォニル)イミド(mp:<20℃)、テトラブチルアンモニウム ビス(トリフルオロメチルスルフォニル)イミド(mp:92℃)、エチル−ジメチル−プロピルアンモニウム ビス(トリフルオロメチルスルフォニル)イミド(mp:-11℃)、N−エチル−N,N−ジメチル−2−メトキシエチルアンモニウム トリ(ペンタフルオロエチル)トリフルオロフォスフェート(mp:<-20℃)、トリエチルアミン硝酸塩(mp:12℃)等が挙げられる。 Examples of ammonium compounds and phosphonium compounds (compounds in which the cation represented by X + is represented by the formula (d)) include trihexyl (tetradecyl) phosphonium tri (pentafluoroethyl) trifluorolophosphate (mp: <-20 ° C), trihexyl (tetradecyl) phosphonium bis (trifluoromethylsulfonyl) imide (mp: <20 ° C), tetrabutylammonium bis (trifluoromethylsulfonyl) imide (mp: 92 ° C), ethyl-dimethyl-propylammonium bis ( Trifluoromethylsulfonyl) imide (mp: −11 ° C.), N-ethyl-N, N-dimethyl-2-methoxyethylammonium tri (pentafluoroethyl) trifluorophosphate (mp: <− 20 ° C.), triethylamine nitrate ( mp: 12 ° C.).

本発明のコーティング組成物中、イオン液体の含有量は、低湿度下での帯電防止性の観点から、0.3〜20重量%が好ましく、0.5〜15重量%がより好ましく、さらに好ましくは1〜10重量%である。
本発明のコーティング組成物中の樹脂改質剤量とイオン液体との重量比(樹脂改質剤/イオン液体)は、低湿度下での帯電防止性の観点から、50/50〜99/1が好ましく、55/45〜95/5がより好ましく、60/40〜90/10が更に好ましい。また、本発明のコーティング組成物に用いられるイオン液体が本発明の樹脂改質剤を含む他の成分を溶解する場合には、取り扱い性向上、及び工程簡略化の観点から、該イオン液体を、有機溶媒として使用することもできる。
In the coating composition of the present invention, the content of the ionic liquid is preferably 0.3 to 20% by weight, more preferably 0.5 to 15% by weight, and still more preferably, from the viewpoint of antistatic properties under low humidity. Is 1 to 10% by weight.
The weight ratio of the resin modifier to the ionic liquid (resin modifier / ionic liquid) in the coating composition of the present invention is 50/50 to 99/1 from the viewpoint of antistatic properties under low humidity. Is preferable, 55/45 to 95/5 is more preferable, and 60/40 to 90/10 is still more preferable. In addition, when the ionic liquid used in the coating composition of the present invention dissolves other components including the resin modifier of the present invention, from the viewpoint of improving handleability and simplifying the process, It can also be used as an organic solvent.

本発明のコーティング組成物は、耐水性及び透明性に加えて、低湿度下での帯電防止性の向上の観点から、導電性高分子を含有することも好ましい。
本発明での導電性高分子とはπ共役系導電性高分子とσ共役系導電性高分子を指すが、工業的入手性の観点からπ共役系導電性高分子が好ましい。π共役系導電高分子としては、ポリチオフェン、ポリピロール、ポリイソチアナフテン、ポリアニリン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリチェニレンビニレンやそれらの誘導体などが挙げられる。これらの導電性高分子を単独または2種以上混合して用いることができる。
導電性高分子中、工業的入手性の観点から、ポリチオフェン、ポリピロール、ポリアニリン、ポリイソチアナフテン及びそれらの誘導体が好ましく、ポリチオフェン、ポリピロール、ポリアニリン及びそれらの誘導体がより好ましい。
ポリチオフェン誘導体の具体例としては、ポリ(3−メチルチオフェン)、ポリ(3−ヘキシルチオフェン)、ポリ(3−オクチルチオフェン)、ポリ(3−ドデシルチオフェン)などのアルキル基含有ポリチオフェン、ポリ(3−メトキシチオフェン)、ポリ(3−エトキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)などのエーテル基含有ポリチオフェン、ポリ(3−スルホエチルチオフェン)、ポリ(3−スルホブチルチオフェン)などのスルホン酸基含有ポリチオフェン、ポリ(3−カルボキシチオフェン)などのカルボン酸含有ポリチオフェンなどが挙げられる。
ポリピロール誘導体の具体例としては、ポリ(3−メチルピロール)、ポリ(3−ブチルピロール)、ポリ(3−デシルピロール)、ポリ(3、4−ジメチルピロール)などのアルキル基含有ポリピロール、ポリ(3−メトキシピロール)、ポリ(3−オクトキシピロール)などのエーテル基含有ポリピロール、ポリ(3−ヒドロキシピロール)などのヒドロキシ基含有ポリピロール、ポリ(3−カルボキシルピロール)、ポリ(3-メチル−4−カルボエトキシピロール)、ポリ(3-メチル−4−カルボブトキシピロール)などのカルボン酸またはカルボン酸エステル基含有ポリピロール含有などが挙げられる。
ポリイソチアナフテン誘導体の具体例としては、ポリ(4−スルホイソチアナフテン)などのスルホン酸基含有ポリイソチアナフテンなどが挙げられる。
ポリアニリン誘導体の具体例としては、ポリ(2−メチルアニリン)、ポリ(2−オクチルアニリン)などのアルキル基含有ポリアニリン、ポリ(2−スルホアニリン)、ポリ(2−スルホ−5−メトキシアニリン)などのスルホン酸基含有ポリアニリンなどが挙げられる。
導電性高分子の重量平均分子量は、低湿度下での帯電防止性の観点から、好ましくは200〜1000000、さらに好ましくは300〜500000であり、より好ましくは500〜300000である。
本発明のコーティング組成物中、導電性高分子の含有量は、低湿度下での帯電防止性、透明性の観点から、0.1〜20重量%が好ましく、0.5〜10重量%がより好ましく、さらに好ましくは1〜5重量%である。
本発明のコーティング組成物中の樹脂改質剤量と導電性高分子との重量比(樹脂改質剤/導電性高分子)は、低湿度下での帯電防止性の観点から、30/70〜99/1が好ましく、50/50〜99/1がより好ましく、60/40〜98/2が更に好ましい。
導電性高分子は、イオン液体と共に用いてもよく、イオン液体の代わりに導電性高分子を用いてもよい。
In addition to water resistance and transparency, the coating composition of the present invention preferably contains a conductive polymer from the viewpoint of improving antistatic properties under low humidity.
The conductive polymer in the present invention refers to a π-conjugated conductive polymer and a σ-conjugated conductive polymer, and is preferably a π-conjugated conductive polymer from the viewpoint of industrial availability. Examples of the π-conjugated conductive polymer include polythiophene, polypyrrole, polyisothianaphthene, polyaniline, polyacetylene, polyparaphenylene, polyphenylene vinylene, polychenylene vinylene, and derivatives thereof. These conductive polymers can be used alone or in admixture of two or more.
Among the conductive polymers, from the viewpoint of industrial availability, polythiophene, polypyrrole, polyaniline, polyisothianaphthene and derivatives thereof are preferable, and polythiophene, polypyrrole, polyaniline and derivatives thereof are more preferable.
Specific examples of the polythiophene derivative include alkyl group-containing polythiophenes such as poly (3-methylthiophene), poly (3-hexylthiophene), poly (3-octylthiophene), poly (3-dodecylthiophene), poly (3- Sulfone such as ether group-containing polythiophene such as methoxythiophene), poly (3-ethoxythiophene), poly (3,4-ethylenedioxythiophene), poly (3-sulfoethylthiophene), poly (3-sulfobutylthiophene) Examples thereof include carboxylic acid-containing polythiophenes such as acid group-containing polythiophene and poly (3-carboxythiophene).
Specific examples of the polypyrrole derivatives include alkyl group-containing polypyrrole such as poly (3-methylpyrrole), poly (3-butylpyrrole), poly (3-decylpyrrole), poly (3,4-dimethylpyrrole), poly ( 3-methoxypyrrole), ether group-containing polypyrrole such as poly (3-octoxypyrrole), hydroxy group-containing polypyrrole such as poly (3-hydroxypyrrole), poly (3-carboxylpyrrole), poly (3-methyl-4) -Carboethoxypyrrole), poly (3-methyl-4-carbobutoxypyrrole) and other carboxylic acid or carboxylic acid ester group-containing polypyrrole content.
Specific examples of the polyisothianaphthene derivative include sulfonic acid group-containing polyisothianaphthene such as poly (4-sulfoisothianaphthene).
Specific examples of the polyaniline derivatives include alkyl group-containing polyanilines such as poly (2-methylaniline) and poly (2-octylaniline), poly (2-sulfoaniline), poly (2-sulfo-5-methoxyaniline) and the like. And sulfonic acid group-containing polyaniline.
The weight average molecular weight of the conductive polymer is preferably 200 to 1000000, more preferably 300 to 500000, and more preferably 500 to 300000 from the viewpoint of antistatic properties under low humidity.
In the coating composition of the present invention, the content of the conductive polymer is preferably 0.1 to 20% by weight, and preferably 0.5 to 10% by weight from the viewpoint of antistatic property and transparency under low humidity. More preferably, it is 1 to 5% by weight.
The weight ratio of the resin modifier to the conductive polymer (resin modifier / conductive polymer) in the coating composition of the present invention is 30/70 from the viewpoint of antistatic properties under low humidity. -99/1 are preferable, 50 / 50-99 / 1 are more preferable, and 60 / 40-98 / 2 are still more preferable.
The conductive polymer may be used together with the ionic liquid, or a conductive polymer may be used instead of the ionic liquid.

本発明のコーティング組成物は水を含有することができるが、得られるコーティング膜の強度や透明性等のコーティング膜物性の低下を抑制する観点から、コーティング組成物中の水の含有量は5重量%未満が好ましく、1重量%未満がより好ましく、水を実質的に含まないことが更に好ましい。   Although the coating composition of the present invention can contain water, the content of water in the coating composition is 5% from the viewpoint of suppressing deterioration of the coating film properties such as strength and transparency of the resulting coating film. %, More preferably less than 1% by weight, and still more preferably substantially free of water.

本発明のコーティング組成物には、前記成分以外に、通常使われる開始剤、ジイソシアネート化合物等の硬化剤、顔料・染料、あるいはガラスビーズ、ポリマービーズ、無機ビーズ等のビーズ類や、炭酸カルシウム、タルク等の無機充填材類、レベリング剤などの表面調整剤、安定剤、紫外線吸収剤、分散剤などの添加剤を配合できる。
本発明のコーティング組成物には、硬化促進の観点からUV開始剤、光カチオン開始剤などの開始剤を含むことが好ましい。例えばアセトフェノン類、ベンゾフェノン類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物、2,3−ジアルキルシオン類化合物類、ジスルフィド化合物、チウラム化合物類、フルオロアミン化合物などが用いられる。より具体的には1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、2−メチルー1[4−(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、ベンジルジメチルケトン、1−(4−ドデシルフェニル)−2−ヒドロキシ-2−メチルプロパン−1−オン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、ベンゾフェノンなどが挙げられる。
In addition to the above components, the coating composition of the present invention includes commonly used initiators, curing agents such as diisocyanate compounds, pigments / dyes, beads such as glass beads, polymer beads, inorganic beads, calcium carbonate, talc. Additives such as inorganic fillers such as, surface conditioners such as leveling agents, stabilizers, UV absorbers, and dispersants can be blended.
The coating composition of the present invention preferably contains an initiator such as a UV initiator or a photocationic initiator from the viewpoint of curing acceleration. For example, acetophenones, benzophenones, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkylcion compounds, disulfide compounds, thiuram compounds, fluoroamine compounds and the like are used. More specifically, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one, benzyldimethylketone, 1- (4-dodecylphenyl) Examples include 2-hydroxy-2-methylpropan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, and benzophenone.

本発明のコーティング組成物は、本発明の樹脂改質剤、必要により、コーティング組成物に活性エネルギー線の照射により反応し得る樹脂又は樹脂単量体、有機溶媒、イオン液体、導電性高分子及び開始剤等の他の成分とを混合し、攪拌すれば製造することができる。各成分の混合順序は特に限定はないが、本発明の樹脂改質剤の溶解性の観点から、本発明の樹脂改質剤と有機溶媒とを最初に混合し、その他の成分を混合することが好ましい。混合する際の温度は、0〜50℃が好ましく、5〜40℃がより好ましい。   The coating composition of the present invention comprises the resin modifier of the present invention, if necessary, a resin or resin monomer that can react with the coating composition by irradiation with active energy rays, an organic solvent, an ionic liquid, a conductive polymer, and It can be produced by mixing with other components such as an initiator and stirring. The mixing order of each component is not particularly limited, but from the viewpoint of the solubility of the resin modifier of the present invention, the resin modifier of the present invention and the organic solvent are first mixed and the other components are mixed. Is preferred. 0-50 degreeC is preferable and the temperature at the time of mixing has more preferable 5-40 degreeC.

[コーティング膜の製造方法]
本発明のコーティング膜は、前述した本発明の樹脂改質剤を含むコーティング組成物を、基材にコーティングし、必要に応じて乾燥などを行った後、前記コーティング膜に活性エネルギー線を照射することにより得られる。コーティング組成物は、コーティング膜の硬度の観点から、さらに樹脂又は樹脂単量体を含んでいることが好ましい。
本発明のコーティング組成物を塗布する基材は特に制限されない。例えばガラス類、トリアセテートセルロース(TAC)ジアセチルセルロース、アセテートブチレートセルロースなどのセルロース系樹脂、ポリエチレンテレフタレート(PET)などのポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリスルホン樹脂、ポリエーテル樹脂、ポリオレフィン樹脂、ニトリル樹脂、ポリエーテルケトン樹脂、ポリアミド樹脂などが挙げられる。
前記コーティング方法としては、特に限定されないが、例えば、バーコート法、ロールコーター法、スクリーン法、フレキソ法、スピンコート法、ディップ法、スプレー法、スライドコート法等が挙げられる。また、コーティング後の乾燥条件としては、例えば、乾燥温度50〜150℃、乾燥時間0.5〜5分間の範囲内で行われる。
[Method for producing coating film]
In the coating film of the present invention, the coating composition containing the above-described resin modifier of the present invention is coated on a substrate, dried as necessary, and then irradiated with active energy rays. Can be obtained. The coating composition preferably further contains a resin or a resin monomer from the viewpoint of the hardness of the coating film.
The substrate on which the coating composition of the present invention is applied is not particularly limited. For example, glass, cellulose resin such as triacetate cellulose (TAC) diacetyl cellulose, acetate butyrate cellulose, polyester resin such as polyethylene terephthalate (PET), acrylic resin, polyurethane resin, polycarbonate resin, polysulfone resin, polyether resin, polyolefin resin , Nitrile resin, polyether ketone resin, polyamide resin and the like.
The coating method is not particularly limited, and examples thereof include a bar coating method, a roll coater method, a screen method, a flexo method, a spin coating method, a dip method, a spray method, and a slide coating method. Moreover, as drying conditions after coating, for example, the drying temperature is 50 to 150 ° C., and the drying time is 0.5 to 5 minutes.

前記活性エネルギー線の照射量としては、前記コーティング組成物を塗布する樹脂基材の損傷を抑制する観点から、活性エネルギー線として紫外線を用いる場合には、10〜500mJとすることが好ましい。   The irradiation amount of the active energy ray is preferably 10 to 500 mJ when ultraviolet rays are used as the active energy ray from the viewpoint of suppressing damage to the resin base material to which the coating composition is applied.

[コーティング膜]
本発明のコーティング膜は、前述した製造方法により得られるコーティング膜が好ましい。
[Coating film]
The coating film of the present invention is preferably a coating film obtained by the production method described above.

また、本発明のコーティング膜は、少なくとも一部に前記式(IV)で表される構造を有するコーティング膜でもある。なお、式(IV)中、R、R2、R3、R4、R、R、n、及びAOは、前記化合物(I)、(II)の場合と同様である。 The coating film of the present invention is also a coating film having a structure represented by the above formula (IV) at least partially. In the formula (IV), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , n, and AO are the same as in the case of the compounds (I) and (II).

コーティング膜に、前記式(IV)で表される構造が存在するかについては、コーティング膜を有機溶媒で抽出し、その抽出物をNMR,IRなどで分析を行ったり、コーティング膜表面を直接TOF−SIMSで質量分析を行うことにより、確認することができる。   Whether the structure represented by the formula (IV) exists in the coating film is extracted with an organic solvent, and the extract is analyzed by NMR, IR, or the surface of the coating film is directly TOF. -It can confirm by performing a mass spectrometry by SIMS.

また、本発明のコーティング膜は、少なくとも一部に前記式(V)で表される構造を有するコーティング膜でもある。なお、式(V)中、R、R8、R9、n、及びAOは、前記化合物(I)、(III)の場合と同様である。 The coating film of the present invention is also a coating film having a structure represented by the above formula (V) at least partially. In the formula (V), R 1 , R 8 , R 9 , n, and AO are the same as those in the compounds (I) and (III).

コーティング膜に、前記式(V)で表される構造が存在するかについては、前述と同様の方法により判断することができる。   Whether the structure represented by the formula (V) is present in the coating film can be determined by the same method as described above.

本発明のコーティング膜の表面固有抵抗値は、帯電防止性を維持する観点から、好ましくは5×1012Ω以下であり、より好ましくは1×1012Ω以下である。なお、表面固有抵抗値は実施例記載の方法に従って測定することができる。 The surface resistivity of the coating film of the present invention is preferably 5 × 10 12 Ω or less, more preferably 1 × 10 12 Ω or less, from the viewpoint of maintaining antistatic properties. The surface resistivity can be measured according to the method described in the examples.

また、本発明のコーティング膜の水洗後の表面固有抵抗値は、耐水性を維持する観点から、好ましくは1×1013Ω以下であり、より好ましくは5×1012Ω以下であり、さらにより好ましくは1×1012Ω以下である。 Further, the surface specific resistance value after washing of the coating film of the present invention is preferably 1 × 10 13 Ω or less, more preferably 5 × 10 12 Ω or less, and more preferably from the viewpoint of maintaining water resistance. Preferably it is 1 × 10 12 Ω or less.

また、本発明のコーティング膜のヘイズ値は、透明性の観点から、好ましくは1%以下である。尚、ヘイズ値は実施例記載の方法に従って測定することができる。   Further, the haze value of the coating film of the present invention is preferably 1% or less from the viewpoint of transparency. The haze value can be measured according to the method described in the examples.

また、本発明のコーティング膜の水に対する接触角は、防曇性を維持する観点から、好ましくは30度以下である。尚、接触角は実施例記載の方法に従って測定することができる。   Moreover, the contact angle with respect to the water of the coating film of this invention is 30 degrees or less from a viewpoint of maintaining anti-fogging property. The contact angle can be measured according to the method described in the examples.

本発明のコーティング膜は、各種画像装置、例えばLCD(液晶表示体)、タッチパネル、PDP(プラズマディスプレイパネル)、EL(エレクトロルミネッセンス)、光ディスクの表面保護、各種レンズのコーティング等に用いることができる。   The coating film of the present invention can be used for various image devices such as LCD (liquid crystal display), touch panel, PDP (plasma display panel), EL (electroluminescence), optical disk surface protection, and various lens coatings.

以下、本発明を具体的に示す実施例等について説明する。なお、実施例等における評価項目は下記のようにして測定を行った。   Examples and the like specifically showing the present invention will be described below. In addition, the evaluation item in an Example etc. measured as follows.

[樹脂改質剤溶液の調製]
本実施例においては、まず、樹脂改質剤溶液を調製し、調製した樹脂改質剤溶液と、樹脂単量体と、硬化剤(UV開始剤)と、有機溶媒とを混合して、実施例1〜30、及び、比較例1〜20のコーティング組成物を製造した。但し、実施例15〜25、比較例12〜18については更にイオン液体を混合した。また、実施例26〜30、比較例19〜20については更に導電性高分子を混合した。この際、本実施例に係る樹脂改質剤溶液は、特定のサルフェート塩水溶液またはサルフェート組成物と、特定のアンモニウム塩またはアミンとを用い、塩交換または中和により得た。以下では、まず、サルフェート塩水溶液の製造方法について説明し、次に、製造されたサルフェート塩水溶液と、アンモニウム塩とを用い塩交換により樹脂改質剤溶液を調製する方法について説明する。その後、サルフェート塩水溶液の製造中間物であるサルフェート組成物とアミンの中和による樹脂改質剤溶液を調製する方法について説明する。なお、表1では、製造する樹脂改質剤a〜j、m、n、及びoのアニオン部の原料と、カチオン部の原料との組合せを示している。
<1.サルフェート塩水溶液の製造>
(製造例1)
炭素数12の脂肪族アルコール(花王社製、製品名:カルコール2098)500gおよびKOH0.75gを攪拌装置、温度制御装置、自動導入装置を備えたオートクレーブに仕込み、110℃、13hPaにて30分間脱水を行った。脱水後窒素置換を行い、120℃まで昇温した後、エチレンオキサイド(EO)を355g仕込んだ。120℃にて付加反応・熟成を4時間かけて行った後、80℃まで冷却し、40hPaで未反応のEOを30分間除去した。未反応EOを除去後、0.8gの酢酸をオートクレーブ内に加え、80℃で30分間攪拌した後、抜き出しを行い、平均EO付加モル数が3モルのアルコキシレートを得た。
得られたアルコキシレートを、SOガスを用いて下降薄膜式反応機にて硫酸化し、ポリ(3)オキシエチレンラウリルエーテルサルフェート組成物を得た。該組成物100g(A)を3.1重量%NaOH水溶液322gに滴下中和し、ポリ(3)オキシエチレンラウリルエーテルサルフェートナトリウム水溶液を得た。有効分濃度(重量%)は、エプトン法(JIS K3306)により測定した結果25重量%であった。なお、本発明において、ポリ(3)オキシエチレンとは、エチレンオキサイド基の平均付加モル数であるnが3であることを意味する。以下同様である。
(製造例2)
炭素数12の脂肪族アルコール(花王社製、製品名:カルコール2098)500g、KOHを0.75g、EOを2011g、酢酸を0.8g使用し、製造例1と同様な操作を行い、ポリ(17)オキシエチレンラウリルエーテルサルフェートナトリウム水溶液(有効分25重量%)を得た。
(製造例3)
炭素数12の脂肪族アルコール(花王社製、製品名:カルコール2098)300g、KOHを0.45g、EOを3550g、酢酸を0.48g使用し、製造例1と同様な操作を行い、ポリ(50)オキシエチレンラウリルエーテルサルフェートナトリウム水溶液(有効分25重量%)を得た。
(製造例4)
炭素数18のオレイルアルコール(和光純薬工業社製、試薬)300g、KOHを0.31g、EOを1133g、酢酸を0.33g使用し、製造例1と同様な操作を行い、ポリ(23)オキシエチレンオレイルエーテルサルフェートナトリウム水溶液(有効分25重量%)を得た。
(製造例5)
アルコキシレートとしてポリ(3)オキシエチレンメチルエーテル(日本乳化剤社製、製品名メチルトリグリコール)を500g用い、製造例1と同様の硫酸化、中和の操作を行い、ポリ(3)オキシエチレンメチルエーテルサルフェートナトリウム水溶液を得た。ただし、該化合物の有効分は70℃、200hPa、5時間減圧乾燥を行った残留分(固形分)52重量%を有効分とした。
(製造例6)
炭素数16のパルミチルアルコール(花王社製、製品名:カルコール6098)300g、KOHを0.35g、EOを55g、酢酸を0.38g使用し、製造例1と同様な操作を行い、ポリ(1)オキシエチレンパルミチルエーテルサルフェートナトリウム水溶液(有効分10重量%)を得た。
(製造例7)
炭素数10のデシルアルコール(花王社製、製品名:カルコール1098)300g、KOHを0.53g、EOを167g、酢酸を0.57g使用し、製造例1と同様な操作を行い、ポリ(2)オキシエチレンデシルエーテルサルフェートナトリウム水溶液(有効分25重量%)を得た。
<2.樹脂改質剤溶液の調製>
下記の方法に従って樹脂改質剤溶液a〜j、m、n、及びoを得た。各配合量は、表1に示す通り。
[製造方法1]
(樹脂改質剤溶液a)
製造例1で得られたポリ(3)オキシエチレンラウリルエーテルサルフェートナトリウム水溶液100gと1−(アクリルアミドプロピル)トリメチルアンモニウムクロライド16.4gをナスフラスコに入れ、ロータリーエバポレーター(TOKYO RIKAKIKAI CO.,LTD製 ROTARY EBAPORATOR N−1000)にセットし、5分間室温(25℃)にて常圧(1013hPa)にて回転攪拌(回転数:SPEED 4)を行った。その後、40℃、300hPaにてリークした空気をサンプルにあてながら、水分除去を行い、さらにその後、40℃、1hPaにて2時間水分除去を行った。その後、イソプロピルアルコール45gを前記ナスフラスコに添加したのちに、ロータリーエパポレーターで、常圧30分間室温にて回転攪拌を行った。得られた懸濁液を0.2μmメンブランろ過し、樹脂改質剤溶液aを得た(固形分43重量%)。
(樹脂改質剤溶液b〜d,f〜i,m,n,o)
ポリ(3)オキシエチレンラウリルエーテルサルフェートナトリウム水溶液100gと、1−(アクリルアミドプロピル)トリメチルアンモニウムクロライド16.4gとを表1における材料に変え、且つ、表1における使用量とした以外は樹脂改質剤溶液aと同様の調製方法にて樹脂改質剤溶液b〜d、f〜i、m、n、及び、oを得た。
[製造方法2]
(樹脂改質剤溶液e)
製造例1の中間体として得られたポリ(3)オキシエチレンラウリルエーテルサルフェート組成物を有効分100重量%として使用した。イソプロピルアルコール50gとアリルジメチルアミン8.8gを仕込んだ攪拌装置を備えた4口フラスコに窒素気流下、氷冷しながらポリ(3)オキシエチレンラウリルエーテルサルフェート組成物41.2gを20分かけて滴下した。更に10分間熟成を行い、樹脂改質剤溶液eを得た。120℃、200hPa、5時間減圧乾燥を行った残留分(固形分)は50重量%であった。
(樹脂改質剤溶液j)
アリルジメチルアミン8.8gをトリエタノールアミン15.4gに変えた以外は樹脂改質剤溶液eと同様の調製方法にて樹脂改質剤溶液jを得た。
<3.イオン液体の製造>
本実施例においては、1−エチル−3−ヒドロキシエチルイミダゾリウムブロミド以外はすべて市販試薬を用いた。
(製造例8)1−エチル−3−ヒドロキシエチルイミダゾリウムブロミドの製造
2−ブロモエタノール(和光純薬工業社製試薬)を150g仕込んだ、攪拌装置を備えた4口フラスコに、窒素気流下、氷冷しながら1−エチルイミダゾール(東京化成工業製試薬)173gを2時間かけて滴下した。次いで、氷冷を外して反応系内温度を室温(25℃)にした。室温に戻したあと10分経過後、60℃のウオーターバスにて加熱した。15時間加熱後ウオーターバスを外して室温に戻した。反応物を分液ロートに移し、500mlのジエチルエーテルで5回洗浄し、更に酢酸エチル500mlにて5回洗浄した。得られた洗浄物を70℃、10hPaにて溶解した溶媒の除去を行い、目的の1−エチル−3−ヒドロキシエチルイミダゾリウムブロミド238gを得た。
[Preparation of resin modifier solution]
In this example, first, a resin modifier solution is prepared, and the prepared resin modifier solution, a resin monomer, a curing agent (UV initiator), and an organic solvent are mixed, and the process is performed. The coating compositions of Examples 1-30 and Comparative Examples 1-20 were prepared. However, in Examples 15 to 25 and Comparative Examples 12 to 18, an ionic liquid was further mixed. Moreover, about Examples 26-30 and Comparative Examples 19-20, the conductive polymer was further mixed. At this time, the resin modifier solution according to this example was obtained by salt exchange or neutralization using a specific sulfate salt aqueous solution or sulfate composition and a specific ammonium salt or amine. Below, the manufacturing method of sulfate salt aqueous solution is demonstrated first, and the method of preparing resin modifier solution by salt exchange using manufactured sulfate salt aqueous solution and ammonium salt first is demonstrated. Thereafter, a method for preparing a sulfate composition as a production intermediate of an aqueous sulfate salt solution and a resin modifier solution by neutralization of amine will be described. Table 1 shows combinations of the raw material for the anion part and the raw material for the cation part of the resin modifiers a to j, m, n, and o to be produced.
<1. Production of sulfate salt aqueous solution>
(Production Example 1)
500 g of aliphatic alcohol having 12 carbon atoms (product name: Calcoal 2098) and 0.75 g of KOH were charged into an autoclave equipped with a stirrer, temperature controller, and automatic introduction device, and dehydrated at 110 ° C. and 13 hPa for 30 minutes. Went. After dehydration, nitrogen substitution was performed, the temperature was raised to 120 ° C., and 355 g of ethylene oxide (EO) was charged. After addition reaction and ripening at 120 ° C. for 4 hours, the mixture was cooled to 80 ° C., and unreacted EO was removed at 40 hPa for 30 minutes. After removing unreacted EO, 0.8 g of acetic acid was added to the autoclave, and the mixture was stirred at 80 ° C. for 30 minutes, and then extracted to obtain an alkoxylate having an average EO addition mole number of 3 mol.
The resulting alkoxylate was sulfated in a falling film reactor using SO 3 gas to obtain a poly (3) oxyethylene lauryl ether sulfate composition. 100 g (A) of the composition was neutralized dropwise to 322 g of a 3.1 wt% NaOH aqueous solution to obtain a poly (3) sodium oxyethylene lauryl ether sulfate aqueous solution. The effective component concentration (% by weight) was 25% by weight as measured by the Epton method (JIS K3306). In the present invention, poly (3) oxyethylene means that n, which is the average number of added moles of ethylene oxide groups, is 3. The same applies hereinafter.
(Production Example 2)
The same operation as in Production Example 1 was performed using 500 g of aliphatic alcohol having 12 carbon atoms (product name: Calcoal 2098), 0.75 g of KOH, 2011 g of EO, and 0.8 g of acetic acid. 17) A sodium oxyethylene lauryl ether sulfate aqueous solution (effective content 25% by weight) was obtained.
(Production Example 3)
The same operation as in Production Example 1 was carried out using 300 g of aliphatic alcohol having 12 carbon atoms (product name: Calcoal 2098), 0.45 g of KOH, 3550 g of EO, and 0.48 g of acetic acid. 50) An aqueous sodium oxyethylene lauryl ether sulfate solution (effective content: 25% by weight) was obtained.
(Production Example 4)
The same operation as in Production Example 1 was carried out using 300 g of oleyl alcohol having 18 carbon atoms (reagent) manufactured by Wako Pure Chemical Industries, Ltd., 0.31 g of KOH, 1133 g of EO, and 0.33 g of acetic acid. A sodium oxyethylene oleyl ether sulfate aqueous solution (effective weight 25% by weight) was obtained.
(Production Example 5)
Using 500 g of poly (3) oxyethylene methyl ether (manufactured by Nippon Emulsifier Co., Ltd., product name methyl triglycol) as the alkoxylate, the same sulfation and neutralization operations as in Production Example 1 were performed, and poly (3) oxyethylene methyl was obtained. A sodium ether sulfate aqueous solution was obtained. However, the effective content of the compound was the residual content (solid content) 52% by weight after drying under reduced pressure at 70 ° C., 200 hPa for 5 hours.
(Production Example 6)
The same procedure as in Production Example 1 was performed using 300 g of palmityl alcohol having 16 carbon atoms (product name: Calcoal 6098), 0.35 g of KOH, 55 g of EO, and 0.38 g of acetic acid. 1) An aqueous sodium oxyethylene palmityl ether sulfate solution (effective content: 10% by weight) was obtained.
(Production Example 7)
Using 300 g of decyl alcohol having 10 carbon atoms (product name: Calcoal 1098), 0.53 g of KOH, 167 g of EO, and 0.57 g of acetic acid, the same operation as in Production Example 1 was performed, and poly (2 ) An aqueous sodium oxyethylene decyl ether sulfate solution (effective content 25% by weight) was obtained.
<2. Preparation of resin modifier solution>
Resin modifier solutions aj, m, n, and o were obtained according to the following method. Each compounding amount is as shown in Table 1.
[Production Method 1]
(Resin modifier solution a)
100 g of the poly (3) oxyethylene lauryl ether sulfate aqueous solution obtained in Production Example 1 and 16.4 g of 1- (acrylamidopropyl) trimethylammonium chloride were placed in an eggplant flask, and a rotary evaporator (ROTARY EBAPORATOR manufactured by TOKYO RIKAKIKAI CO., LTD. N-1000), and rotating and stirring (rotation speed: SPEED 4) at room temperature (25 ° C.) and normal pressure (1013 hPa) for 5 minutes. Thereafter, moisture was removed while applying air leaked at 40 ° C. and 300 hPa to the sample, and then moisture was removed at 40 ° C. and 1 hPa for 2 hours. Thereafter, 45 g of isopropyl alcohol was added to the eggplant flask, and then the mixture was rotationally stirred with a rotary evaporator at room temperature for 30 minutes. The obtained suspension was subjected to 0.2 μm membrane filtration to obtain a resin modifier solution a (solid content: 43% by weight).
(Resin modifier solutions b to d, f to i, m, n, o)
Resin modifier except that 100 g of poly (3) oxyethylene lauryl ether sulfate aqueous solution and 16.4 g of 1- (acrylamidopropyl) trimethylammonium chloride were changed to the materials in Table 1 and the amounts used in Table 1 were used. Resin modifier solutions b to d, f to i, m, n, and o were obtained by the same preparation method as that for solution a.
[Production Method 2]
(Resin modifier solution e)
The poly (3) oxyethylene lauryl ether sulfate composition obtained as an intermediate of Production Example 1 was used as an effective content of 100% by weight. 41.2 g of poly (3) oxyethylene lauryl ether sulfate composition was dropped into a 4-neck flask equipped with a stirrer charged with 50 g of isopropyl alcohol and 8.8 g of allyldimethylamine over 20 minutes while cooling with ice in a nitrogen stream. did. Further, aging was performed for 10 minutes to obtain a resin modifier solution e. The residue (solid content) after drying under reduced pressure at 120 ° C. and 200 hPa for 5 hours was 50% by weight.
(Resin modifier solution j)
A resin modifier solution j was obtained by the same preparation method as the resin modifier solution e except that 8.8 g of allyldimethylamine was changed to 15.4 g of triethanolamine.
<3. Production of ionic liquid>
In this example, commercially available reagents were used except for 1-ethyl-3-hydroxyethylimidazolium bromide.
(Production Example 8) Production of 1-ethyl-3-hydroxyethylimidazolium bromide A 4-necked flask equipped with a stirrer and charged with 150 g of 2-bromoethanol (a reagent manufactured by Wako Pure Chemical Industries, Ltd.) under a nitrogen stream, While cooling with ice, 173 g of 1-ethylimidazole (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise over 2 hours. Next, ice cooling was removed, and the temperature inside the reaction system was brought to room temperature (25 ° C.). 10 minutes after returning to room temperature, it heated in the 60 degreeC water bath. After heating for 15 hours, the water bath was removed and the temperature was returned to room temperature. The reaction product was transferred to a separatory funnel and washed 5 times with 500 ml of diethyl ether and further 5 times with 500 ml of ethyl acetate. The solvent which melt | dissolved the obtained washing | cleaning material at 70 degreeC and 10 hPa was removed, and 238g of the target 1-ethyl-3-hydroxyethyl imidazolium bromide was obtained.

Figure 0005563966
Figure 0005563966

次に、コーティング組成物の調製について説明する。表2〜表6、表9は、コーティング組成物(実施例1〜30、及び、比較例1〜20)の組成と、その物性を示した表である。表2〜表6、表9中、樹脂改質剤a〜j、m、n、及びoは、表1に示した組合せにより製造した樹脂改質剤を示している。
[コーティング組成物の調製]
活性エネルギー線の照射により反応し得る樹脂としてのアクリル系樹脂(ダイセル・サイテック社製DPHA[ジペンタエリスリトールヘキサアクリレート])と、硬化剤としてのイルガキュア184(チバ・スペシャルティ・ケミカルズ社製)と、有機溶媒と、樹脂改質剤としての前述の樹脂改質剤溶液とを混合して、表2〜表4に示す組成の樹脂改質剤を含むコーティング組成物を実施例1〜14、及び、比較例1〜10として調製した。実施例15〜25、及び、比較例11〜18については、上記に加えて更にイオン液体を混合して表5、表6に示す組成の樹脂改質剤を含むコーティング組成物を調製した。また、実施例26〜30、及び、比較例19〜20については、更に導電性高分子を混合して表9に示す組成の樹脂改質剤を含むコーティング組成物を調製した。
有機溶媒は、実施例1〜30、及び、比較例1〜4、7、8、10〜14、17〜20においては、イソプロピルアルコールを用い、比較例5、6、9、15、16においては、メタノールを用いた。各配合量は、表2〜表6、表9に示す通りとした。なお、表2〜表4に示す各配合量は、活性エネルギー線の照射により反応し得る樹脂と硬化剤と樹脂改質剤の有効分との合計重量(固形分)を100重量部としたときの各重量部数を示す。また、表5、表6に示す各配合量は、活性エネルギー線の照射により反応し得る樹脂と硬化剤と樹脂改質剤の有効分とイオン液体との合計重量(固形分)を100重量部としたときの各重量部数を示す。また、表9に示す各配合量は、活性エネルギー線の照射により反応し得る樹脂と硬化剤と樹脂改質剤の有効分と導電性高分子との合計重量(固形分)を100重量部としたときの各重量部数を示す。
Next, preparation of the coating composition will be described. Tables 2 to 6 and Table 9 are tables showing the compositions of the coating compositions (Examples 1 to 30 and Comparative Examples 1 to 20) and their physical properties. In Tables 2 to 6 and Table 9, resin modifiers a to j, m, n, and o represent resin modifiers produced by the combinations shown in Table 1.
[Preparation of coating composition]
Acrylic resin (DPHA [dipentaerythritol hexaacrylate] manufactured by Daicel-Cytec Corp.) as a resin that can react upon irradiation with active energy rays, Irgacure 184 (Ciba Specialty Chemicals Corp.) as a curing agent, and organic Examples 1 to 14 and comparison of coating compositions containing the resin modifiers having the compositions shown in Tables 2 to 4 by mixing the solvent and the aforementioned resin modifier solution as a resin modifier Prepared as Examples 1-10. For Examples 15 to 25 and Comparative Examples 11 to 18, in addition to the above, an ionic liquid was further mixed to prepare a coating composition containing a resin modifier having the composition shown in Tables 5 and 6. Moreover, about Examples 26-30 and Comparative Examples 19-20, the conductive polymer was further mixed and the coating composition containing the resin modifier of the composition shown in Table 9 was prepared.
In Examples 1 to 30 and Comparative Examples 1 to 4, 7, 8, 10 to 14, and 17 to 20, isopropyl alcohol is used as the organic solvent, and in Comparative Examples 5, 6, 9, 15, and 16, , Methanol was used. Each blending amount was as shown in Tables 2 to 6 and Table 9. In addition, each compounding amount shown in Tables 2 to 4 is when the total weight (solid content) of the resin, the curing agent, and the effective component of the resin modifier that can react by irradiation with active energy rays is 100 parts by weight. Each part by weight is shown. Each compounding amount shown in Tables 5 and 6 is 100 parts by weight of the total weight (solid content) of the resin, the curing agent, the effective part of the resin modifier, and the ionic liquid that can be reacted by irradiation with active energy rays. The parts by weight are shown. Moreover, each compounding amount shown in Table 9 is 100 parts by weight of the total weight (solid content) of the resin, the curing agent, the effective component of the resin modifier, and the conductive polymer that can react by irradiation with active energy rays. The parts by weight are shown.

[コーティング膜の作製]
得られた各コーティング組成物を、セルローストリアセテート(TAC)フィルム(幅10cm×長さ12cm×厚み80μm)にUV照射後のコーティング膜が厚み4μmになるように、バーコーター(ギャップ:9〜13μm)を用いてほぼ一面に塗布し、表2〜表4、表7、表8、表10に示す乾燥条件で乾燥させた。乾燥後のフィルムを、UV照射装置(ハイテック社製HTE−505HA、UVランプはUSH−500MB)にて、窒素気流下、UV照射(200mJ)し、コーティング膜(厚み4μm)を得た。なお、塗工厚は塗工面の幅の中央線上の上部、中央、下部の3点を測定し、その平均値を用いた。
[Production of coating film]
Each coating composition obtained was coated on a cellulose triacetate (TAC) film (width 10 cm × length 12 cm × thickness 80 μm) so that the coating film after UV irradiation had a thickness of 4 μm (bar coater (gap: 9-13 μm)) Was applied to almost one surface and dried under the drying conditions shown in Tables 2 to 4, Table 7, Table 8, and Table 10. The dried film was subjected to UV irradiation (200 mJ) under a nitrogen stream with a UV irradiation apparatus (HTE-505HA, manufactured by Hitec Co., Ltd., UV lamp is USH-500 MB) to obtain a coating film (thickness 4 μm). In addition, the coating thickness measured three points, the upper part, the center, and the lower part on the center line of the width | variety of a coating surface, and used the average value.

[コーティング膜の表面固有抵抗値(帯電防止性)]
コーティング膜(実施例1〜11、実施例15〜30、比較例1〜7、及び、比較例11〜20)について、温度25℃、相対湿度45%に調整した室内で、A−4329型ハイレジスタンスメータ(横河YHP社製)により、膜の中央部の表面固有抵抗値を測定した。なお、表面固有抵抗値は、数値が小さいほど帯電防止性が優れることを示す。
結果を表2、表3、表7、表8、表10に示す。
[Surface specific resistance value of coating film (antistatic property)]
The coating films (Examples 1 to 11, Examples 15 to 30, Comparative Examples 1 to 7 and Comparative Examples 11 to 20) were adjusted to a temperature of 25 ° C. and a relative humidity of 45%, and the A-4329 type high Using a resistance meter (manufactured by Yokogawa YHP), the surface specific resistance value at the center of the membrane was measured. The surface specific resistance value indicates that the smaller the value, the better the antistatic property.
The results are shown in Table 2, Table 3, Table 7, Table 8, and Table 10.

[コーティング膜の表面固有抵抗値(低湿帯電防止性)]
コーティング膜(実施例15〜30、及び、比較例11〜20)について、温度25℃、露点温度を−60℃〜−70℃に調整したドライルーム(五和工業株式会社製)で、72時間保管した後、ドライルーム内で、前記の方法にて測定した。
結果を表7、表8、表10に示す。
[Surface specific resistance value of coating film (low-humidity antistatic property)]
About coating films (Examples 15 to 30 and Comparative Examples 11 to 20), in a dry room (manufactured by Gowa Industry Co., Ltd.) having a temperature of 25 ° C. and a dew point temperature adjusted to −60 ° C. to −70 ° C., 72 hours After storage, the measurement was performed in the dry room by the method described above.
The results are shown in Table 7, Table 8, and Table 10.

[コーティング膜の水洗後の表面固有抵抗値(耐水性)]
コーティング膜(実施例1〜11、実施例15〜30、比較例1〜7、及び、比較例11〜20)について、水洗し、その後、表面固有抵抗値を測定した。水洗の条件は、水道水を内径14mmの水道の蛇口から流速10L/minの流量で流しつつ、その蛇口の直下10cmに試験フィルムを水道水が垂直に当たるように設置し、30秒間コーティング面に均一にかかるように動かしながら行った。その後、日本製紙クレシア社製ハイパードライペーパータオルにてコーティング面の水分を除去し、温度25℃、湿度45%にて送風し水滴がなくなるまで乾燥した。なお、表面固有抵抗値は、数値が小さいほど耐水性が優れることを示す。
結果を表2、表3、表7、表8、表10に示す。
[Surface specific resistance value after washing of coating film (water resistance)]
The coating films (Examples 1 to 11, Examples 15 to 30, Comparative Examples 1 to 7, and Comparative Examples 11 to 20) were washed with water, and then the surface resistivity was measured. The water washing conditions were as follows: tap water was passed from a tap with an inner diameter of 14 mm at a flow rate of 10 L / min, and a test film was placed 10 cm directly below the tap so that the tap water hits vertically, and the coating surface was uniform for 30 seconds. It went while moving as if taking. Thereafter, the moisture on the coating surface was removed with a hyper dry paper towel manufactured by Nippon Paper Crecia Co., Ltd., and air was blown at a temperature of 25 ° C. and a humidity of 45% until the water droplets disappeared. In addition, a surface specific resistance value shows that water resistance is excellent, so that a numerical value is small.
The results are shown in Table 2, Table 3, Table 7, Table 8, and Table 10.

[コーティング膜のヘイズ値(透明性)]
コーティング膜(実施例1〜11、実施例15〜30、比較例1〜7、及び、比較例11〜20)について、JIS K 7105 プラスチックの光学的特性試験法(5.5及び6.4)に従い、ムラカミカラーリサーチラボラトリー製ヘイズメーターHM−150にてヘイズ値を求めた。具体的には、積分球式光線透過率測定装置を用いて、拡散透過率及び全光線透過率を測定し、その比によって表した。なお、ヘイズ値は、数値が小さい方ほど透明性があることを示す。
結果を表2、表3、表7、表8、表10に示す。
[Haze value of coating film (transparency)]
For coating films (Examples 1 to 11, Examples 15 to 30, Comparative Examples 1 to 7, and Comparative Examples 11 to 20), JIS K 7105 Plastic Optical Properties Test Method (5.5 and 6.4) The haze value was determined with a haze meter HM-150 manufactured by Murakami Color Research Laboratory. Specifically, the diffuse transmittance and the total light transmittance were measured using an integrating sphere light transmittance measuring device, and expressed by the ratio. In addition, a haze value shows that it is transparent, so that a numerical value is small.
The results are shown in Table 2, Table 3, Table 7, Table 8, and Table 10.

[コーティング膜の接触角]
コーティング膜(実施例12〜14、及び、比較例8〜10)について協和界面化学社製接触角計CA−Aを用い、水に対する接触角を測定した。なお、水に対する接触角は、値が小さいほど水が凝析した際に濡れ広がるため、乱反射が起こらなくなり、その結果、防曇効果が得られることになる。
結果を表4に示す。
[Contact angle of coating film]
For the coating films (Examples 12 to 14 and Comparative Examples 8 to 10), the contact angle with water was measured using a contact angle meter CA-A manufactured by Kyowa Interface Chemical Co., Ltd. Note that the smaller the value of the contact angle with respect to water, the more wet and spreads when water coagulates, so that irregular reflection does not occur, and as a result, an antifogging effect is obtained.
The results are shown in Table 4.

Figure 0005563966
Figure 0005563966

Figure 0005563966
Figure 0005563966

Figure 0005563966
Figure 0005563966

Figure 0005563966
Figure 0005563966

Figure 0005563966
Figure 0005563966

Figure 0005563966
Figure 0005563966

Figure 0005563966
Figure 0005563966

Figure 0005563966
Figure 0005563966

Figure 0005563966
Figure 0005563966

Claims (10)

下記式(I)で表される帯電防止剤である樹脂改質剤。
Figure 0005563966

(但し、式中、R1は炭素数1〜22の炭化水素基、AOは炭素数2〜のアルキレンオキサイド基、nはAOの平均付加モル数であり、100以下の正の数、Bは重合性不飽和基を有するアンモニウムイオン(C)を示す。)
A resin modifier which is an antistatic agent represented by the following formula (I).
Figure 0005563966

(In the formula, R 1 is a hydrocarbon group having 1 to 22 carbon atoms, AO is an alkylene oxide group having 2 to 3 carbon atoms, n is an average added mole number of AO, a positive number of 100 or less, B + Represents an ammonium ion (C) having a polymerizable unsaturated group.)
活性エネルギー線硬化性を有する請求項1に記載の樹脂改質剤。   The resin modifier according to claim 1, which has active energy ray curability. 前記アンモニウムイオン(C)が、下記式(II)又は下記式(III)で表される請求項1又は2記載の樹脂改質剤。
Figure 0005563966

(但し、式中、R2、R3、R4はそれぞれ独立して水素原子または炭素数1〜8の炭化水素基、Rは炭素数2〜5のアルキレン基、Rは水素原子またはメチル基、XはOまたはNHを示す。)
Figure 0005563966

(但し、式中、R7、R8はそれぞれ独立して水素原子または炭素数1〜8の炭化水素基、R9は炭素数1〜8の炭化水素基を示す。)
The resin modifier according to claim 1 or 2, wherein the ammonium ion (C) is represented by the following formula (II) or the following formula (III).
Figure 0005563966

(In the formula, R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, R 5 is an alkylene group having 2 to 5 carbon atoms, and R 6 is a hydrogen atom or (Methyl group, X represents O or NH)
Figure 0005563966

(In the formula, R 7 and R 8 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and R 9 represents a hydrocarbon group having 1 to 8 carbon atoms.)
請求項1〜3のいずれかに記載の樹脂改質剤と有機溶媒とを含むコーティング組成物。   The coating composition containing the resin modifier and organic solvent in any one of Claims 1-3. 更に、活性エネルギー線の照射により反応し得る樹脂又は樹脂単量体を含む請求項4記載のコーティング組成物。   Furthermore, the coating composition of Claim 4 containing the resin or resin monomer which can react by irradiation of an active energy ray. 更に、イオン液体を含む請求項4又は5記載のコーティング組成物。   Furthermore, the coating composition of Claim 4 or 5 containing an ionic liquid. 更に、導電性高分子を含む請求項4〜6のいずれかに記載のコーティング組成物。   Furthermore, the coating composition in any one of Claims 4-6 containing a conductive polymer. 前記導電性高分子の導電率が3×10The conductivity of the conductive polymer is 3 × 10 3 S/cm以上である請求項7に記載のコーティング組成物。The coating composition according to claim 7, which is S / cm or more. 請求項4〜のいずれかに記載のコーティング組成物を基材にコーティングした後、活性エネルギー線を照射して、前記基材上にコーティング膜を形成するコーティング膜の製造方法。 After coating the coating composition according to the substrate in any one of claims 4-8, by irradiation with active energy rays, the production method of the coating film to form a coating film on the substrate. 請求項記載の製造方法により得られるコーティング膜。 A coating film obtained by the production method according to claim 9 .
JP2010271634A 2009-12-16 2010-12-06 Resin modifier Active JP5563966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010271634A JP5563966B2 (en) 2009-12-16 2010-12-06 Resin modifier

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2009285276 2009-12-16
JP2009285276 2009-12-16
JP2010225891 2010-10-05
JP2010225891 2010-10-05
JP2010271634A JP5563966B2 (en) 2009-12-16 2010-12-06 Resin modifier

Publications (3)

Publication Number Publication Date
JP2012097243A JP2012097243A (en) 2012-05-24
JP2012097243A5 JP2012097243A5 (en) 2014-01-09
JP5563966B2 true JP5563966B2 (en) 2014-07-30

Family

ID=46389516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010271634A Active JP5563966B2 (en) 2009-12-16 2010-12-06 Resin modifier

Country Status (1)

Country Link
JP (1) JP5563966B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6624731B2 (en) * 2015-04-06 2019-12-25 花王株式会社 Antistatic agent
JP6686551B2 (en) * 2015-04-06 2020-04-22 花王株式会社 Antistatic agent
KR102588716B1 (en) * 2015-04-06 2023-10-12 카오카부시키가이샤 Antistatic agent
KR102586318B1 (en) 2015-04-06 2023-10-06 카오카부시키가이샤 Antistatic agent
JP7330784B2 (en) * 2019-07-04 2023-08-22 日本乳化剤株式会社 Wettability improver, resin composition and molded article
WO2024058031A1 (en) * 2022-09-12 2024-03-21 荒川化学工業株式会社 Actinic-ray-curable resin composition, cured object, and multilayered object

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249632A (en) * 2000-12-20 2002-09-06 Achilles Corp Paste sol composition of acrylic resin
JP4625255B2 (en) * 2002-12-27 2011-02-02 三洋化成工業株式会社 Antistatic agent and antistatic resin composition
JP4780269B2 (en) * 2004-03-11 2011-09-28 日清紡ホールディングス株式会社 Solvent-free liquid composition
JP4778274B2 (en) * 2005-06-30 2011-09-21 三光化学工業株式会社 Antistatic polymer composition and molded article using the same
JP5079292B2 (en) * 2005-12-21 2012-11-21 花王株式会社 Antistatic agent for coating resin
JP5214490B2 (en) * 2008-03-31 2013-06-19 三洋化成工業株式会社 Active energy ray-curable antistatic resin composition

Also Published As

Publication number Publication date
JP2012097243A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
WO2011074515A1 (en) Resin modifier
JP5563966B2 (en) Resin modifier
KR102390683B1 (en) Ionic Compositions and Crosslinked Products
JP5840610B2 (en) Non-flammable solvents and surface treatment agents
JP2012177111A (en) Fluorinated copolymer consisting of acrylate for high solid content coating as base material
JP5563967B2 (en) Resin modifier with active energy ray curability
US20110210295A1 (en) Conductive silica sol composition, and molded article produced using the same
TWI577789B (en) Antistatic coating composition
EP3870664A1 (en) Polyacrylic pfpe derivatives
JP5563968B2 (en) Resin modifier with active energy ray curability
Jiang et al. Fabrication of new transparent and hydrophilic hybrid anti-fog coating from silane coupler modified by polyethylene glycols
JP6093547B2 (en) Mixed solvent and surface treatment agent
JP5463169B2 (en) Antistatic composition
JP6569049B2 (en) Crosslinked fluorine-containing polystyrene derivative coating film, crosslinking group-containing fluorine-containing polystyrene derivative and crosslinkable resin composition solution
JP7280963B2 (en) Composition for forming hard coat layer, hard coat film, method for producing hard coat film, and article containing hard coat film
Sun et al. Preparation and properties of an organic–inorganic hybrid materials based on fluorinated block copolymer
EP3110853B1 (en) Fluorinated polymer additives derived using hydrophilic chain transfer agents for architectural coatings
KR101752460B1 (en) Water-repellent coating composition and manufacturing the same
CN107188869B (en) Fluorine-containing epoxy resin monomer, prepolymer and preparation and application of initiator thereof
JP5825982B2 (en) Mixed solvent and surface treatment agent using the same
JP2016204646A (en) Water-soluble copolymer and method for producing the same
JP2016196628A (en) Antistatic agent
JP2022187087A (en) Liquid composition and method for producing the same
KR20220140171A (en) Fluorinated polymers, composition including the same and their films
KR20160119706A (en) Antistatic agent

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131113

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20131113

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140613

R151 Written notification of patent or utility model registration

Ref document number: 5563966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250