JP5562932B2 - Mobile terminal apparatus, radio communication method, and radio communication system - Google Patents

Mobile terminal apparatus, radio communication method, and radio communication system Download PDF

Info

Publication number
JP5562932B2
JP5562932B2 JP2011287466A JP2011287466A JP5562932B2 JP 5562932 B2 JP5562932 B2 JP 5562932B2 JP 2011287466 A JP2011287466 A JP 2011287466A JP 2011287466 A JP2011287466 A JP 2011287466A JP 5562932 B2 JP5562932 B2 JP 5562932B2
Authority
JP
Japan
Prior art keywords
srs
transmission
mobile terminal
bit information
periodic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011287466A
Other languages
Japanese (ja)
Other versions
JP2012100320A (en
Inventor
大祐 西川
和晃 武田
哲士 阿部
祥久 岸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2011287466A priority Critical patent/JP5562932B2/en
Publication of JP2012100320A publication Critical patent/JP2012100320A/en
Application granted granted Critical
Publication of JP5562932B2 publication Critical patent/JP5562932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、移動端末装置、無線通信方法及び無線通信システムに関し、特に、次世代無線通信システムにおける移動端末装置、無線通信方法及び無線通信システムに関する。   The present invention relates to a mobile terminal device, a radio communication method, and a radio communication system, and more particularly, to a mobile terminal device, a radio communication method, and a radio communication system in a next-generation radio communication system.

UMTS(Universal Mobile Telecommunications System)ネットワークにおいては、周波数利用効率の向上、データレートの向上を目的として、HSDPA(High Speed Downlink Packet Access)やHSUPA(High Speed Uplink Packet Access)を採用することにより、W-CDMA(Wideband Code Division Multiple Access)をベースとしたシステムの特徴を最大限に引き出すことが行われている。このUMTSネットワークについては、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が検討されている(例えば、非特許文献1参照)。   In a UMTS (Universal Mobile Telecommunications System) network, HSDPA (High Speed Downlink Packet Access) and HSUPA (High Speed Uplink Packet Access) are adopted for the purpose of improving frequency utilization efficiency and data rate. A system based on CDMA (Wideband Code Division Multiple Access) is maximally extracted. For this UMTS network, Long Term Evolution (LTE) has been studied for the purpose of further high data rate and low delay (for example, see Non-Patent Document 1).

第3世代のシステムは、概して5MHzの固定帯域を用いて、下り回線で最大2Mbps程度の伝送レートを実現できる。一方、LTE方式のシステム(LTEシステム)においては、1.4MHz〜20MHzの可変帯域を用いて、下り回線で最大300Mbps及び上り回線で75Mbps程度の伝送レートを実現できる。また、UMTSネットワークにおいては、更なる広帯域化及び高速化を目的として、LTEの後継のシステムも検討されている(例えば、LTEアドバンスト(LTE−A))。LTE−Aにおいては、LTE仕様の最大システム帯域である20MHzを、下り回線で100MHz程度、上り回線で40−60MHz程度まで拡張することが予定されている。   The third generation system can realize a transmission rate of about 2 Mbps at the maximum on the downlink using a fixed band of 5 MHz in general. On the other hand, in an LTE system (LTE system), a transmission rate of about 300 Mbps at the maximum on the downlink and about 75 Mbps on the uplink can be realized using a variable band of 1.4 MHz to 20 MHz. In addition, in the UMTS network, a successor system of LTE is also being studied for the purpose of further increasing the bandwidth and speed (for example, LTE Advanced (LTE-A)). In LTE-A, it is planned to expand the maximum system band of LTE specifications, 20 MHz, to about 100 MHz on the downlink and to about 40-60 MHz on the uplink.

ところで、LTEシステムにおいては、無線基地局装置(BS:Base Station)が、移動端末装置(UE:User Equipment)から送信されるチャネル品質測定用のSRS(Sounding Reference Signal)に基づいて上りリンクのチャネル品質を測定することが検討されている(例えば、非特許文献2参照)。この場合、無線基地局装置は、チャネル品質の測定結果に基づいて、移動端末装置が上りリンク共有チャネル(PUSCH:Physical Uplink Shared Channel)信号を送信するためのスケジューリングを行い、下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel)を用いて指示する。Release 8 LTEにおいて、SRSは、上りリンクの無線フレームを構成するサブフレームの最終シンボルに多重され、周期的に移動端末装置から無線基地局装置に送信される。   By the way, in the LTE system, a radio base station apparatus (BS: Base Station) uses an uplink channel based on a channel quality measurement SRS (Sounding Reference Signal) transmitted from a mobile terminal apparatus (UE: User Equipment). Measuring quality has been studied (see, for example, Non-Patent Document 2). In this case, the radio base station apparatus performs scheduling for the mobile terminal apparatus to transmit an uplink shared channel (PUSCH) signal based on the measurement result of the channel quality, and a downlink control channel (PDCCH) : Instruct using Physical Downlink Control Channel). In Release 8 LTE, the SRS is multiplexed on the last symbol of the subframe that configures the uplink radio frame, and is periodically transmitted from the mobile terminal apparatus to the radio base station apparatus.

3GPP, TR25.912 (V7.1.0), "Feasibility study for Evolved UTRA and UTRAN", Sept. 20063GPP, TR25.912 (V7.1.0), "Feasibility study for Evolved UTRA and UTRAN", Sept. 2006 3GPP, TS36.213 (V8.7.0), "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 8)", May. 20093GPP, TS36.213 (V8.7.0), "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 8)", May. 2009

しかしながら、LTEシステムにおいては、移動端末装置から上りリンクで送信するPUSCH信号が存在しない場合においても、SRSが周期的に無線基地局装置に送信されている。このため、PUSCH信号の有無とは無関係にSRSの送信に用いられる無線リソースが固定的に使用され、無線リソースを効率的に使用することが困難であるという問題がある。   However, in the LTE system, the SRS is periodically transmitted to the radio base station apparatus even when there is no PUSCH signal transmitted from the mobile terminal apparatus in the uplink. For this reason, radio resources used for SRS transmission are fixedly used regardless of the presence or absence of the PUSCH signal, and there is a problem that it is difficult to use radio resources efficiently.

図12は、LTEシステムにおけるSRSの送信方法について説明するための図である。図12に示すように、LTEシステムにおいて、チャネル品質測定用のSRSは、上りリンク(UL:Uplink)の無線フレームを構成するサブフレーム(サブフレーム#n〜#n+9)の最終シンボルに多重され、周期的に移動端末装置から無線基地局装置に送信される。図12においては、SRS送信周期を5msecとしてサブフレーム#n+1、#n+6の最終シンボルにSRSが多重された場合を示している。   FIG. 12 is a diagram for explaining a transmission method of SRS in the LTE system. As shown in FIG. 12, in the LTE system, the SRS for channel quality measurement is multiplexed on the final symbols of subframes (subframes #n to # n + 9) constituting an uplink (UL) radio frame, It is periodically transmitted from the mobile terminal apparatus to the radio base station apparatus. FIG. 12 shows a case where SRS is multiplexed on the last symbol of subframes # n + 1 and # n + 6 with an SRS transmission cycle of 5 msec.

一方、PUSCH信号は、PDCCHに含まれる上りリンク(UL)スケジューリンググラントの通知を受けた後、4TTI(Transmission Time Interval:伝送時間間隔)後に上りリンクで送信される。なお、上りリンクスケジューリンググラントには、上りリンク共有チャネルに関し、上りリンクのリソースブロック(Resource Block)の割り当て情報、UEのID、データサイズ、変調方式、上りリンクの送信電力情報、Uplink MIMOにおけるデモジュレーション レファレンス シグナル(Demodulation Reference Signal)の情報等が含まれる。   On the other hand, the PUSCH signal is transmitted on the uplink after 4 TTIs (Transmission Time Interval) after receiving the notification of the uplink (UL) scheduling grant included in the PDCCH. The uplink scheduling grant includes uplink resource block (Resource Block) allocation information, UE ID, data size, modulation scheme, uplink transmission power information, and uplink MIMO demodulation for the uplink shared channel. Reference signal (Demodulation Reference Signal) information and the like are included.

サブフレームは、誤り訂正符号化(チャネル符号化)された1データ・パケットの送信時間単位であり、1TTIに等しい。このため、ULスケジューリンググラントの通知を受けると、4サブフレーム後にPUSCHが送信される。図12においては、下りリンク(DL:Downlink)の無線フレームを構成するサブフレーム(サブフレーム#m〜#m+9)のうち、サブフレーム#m〜#m+2及び#m+4でULスケジューリンググラントが通知され、これらのULスケジューリンググラントに応じて上りリンク(UL)のサブフレーム#n+4〜#n+6及び#n+8でPUSCH信号が送信される場合を示している。   The subframe is a transmission time unit of one data packet subjected to error correction coding (channel coding), and is equal to 1 TTI. For this reason, when receiving a UL scheduling grant notification, PUSCH is transmitted after 4 subframes. In FIG. 12, UL scheduling grant is notified in subframes #m to # m + 2 and # m + 4 among subframes (subframes #m to # m + 9) constituting a downlink (DL) radio frame, A case is shown in which PUSCH signals are transmitted in uplink (UL) subframes # n + 4 to # n + 6 and # n + 8 in accordance with these UL scheduling grants.

図12に示すように、SRSは、各サブフレームで送信されるPUSCH信号の有無とは無関係に送信されることから、仮にULスケジューリンググラントの通知がなく、PUSCH信号が送信されない場合においても、上りリンク(UL)で周期的に無線基地局装置に送信されることとなる。無線リソースを効率的に使用する観点からすると、無線基地局装置におけるチャネル品質測定を目的とするSRSは、PUSCH信号が送信される場合に測定されることが好ましい。しかしながら、LTEシステムにおいては、PUSCH信号の有無とは無関係にSRSの送信に用いられる無線リソースが固定的に使用されることから、無線リソースを効率的に使用することが困難となっている。さらに、LTE−Aにおいては、複数のアンテナを備えた移動端末装置によるULマルチアンテナ伝送が検討されているため、複数アンテナ分のSRSリソースが必要となることから、より効率的な無線リソースの使用が要求されることが想定される。   As shown in FIG. 12, the SRS is transmitted regardless of the presence or absence of the PUSCH signal transmitted in each subframe. Therefore, even if there is no UL scheduling grant notification and the PUSCH signal is not transmitted, the uplink is not performed. The data is periodically transmitted to the radio base station apparatus through a link (UL). From the viewpoint of efficiently using radio resources, it is preferable that the SRS for channel quality measurement in the radio base station apparatus is measured when a PUSCH signal is transmitted. However, in the LTE system, since radio resources used for SRS transmission are fixedly used regardless of the presence or absence of the PUSCH signal, it is difficult to efficiently use radio resources. Furthermore, in LTE-A, since UL multi-antenna transmission by a mobile terminal apparatus having a plurality of antennas is being studied, SRS resources for a plurality of antennas are required, and thus more efficient use of radio resources is possible. Is assumed to be required.

この問題を解決するために、例えば、LTE−Aにおいて任意のタイミングでSRSの送信タイミングを制御する非周期SRS(Aperiodic SRS)の適用が考えられる。   In order to solve this problem, for example, application of aperiodic SRS (Aperiodic SRS) for controlling SRS transmission timing at an arbitrary timing in LTE-A is conceivable.

しかしながら、非周期SRSを適用する場合には、SRSのトリガーの有無(送信タイミング)を制御する情報や、SRSを送信する場合の具体的な送信条件を制御するSRSパラメータ(Comb、周波数位置、サイクリックシフト(Cyclic shift)番号、帯域幅等)等のSRS送信制御情報を移動端末装置に対して適切に通知することが必要となる。   However, when aperiodic SRS is applied, information for controlling the presence / absence of SRS trigger (transmission timing) and SRS parameters (Comb, frequency position, size for controlling specific transmission conditions when transmitting SRS) are used. It is necessary to appropriately notify the mobile terminal apparatus of SRS transmission control information such as a click shift (Cyclic shift number, bandwidth, etc.).

本発明は、このような問題点に鑑みてなされたものであり、非周期SRSを適用する場合において、移動端末装置に対してSRSの送信タイミングやSRSパラメータを適切に通知し、SRSの送信に用いられる無線リソースを効率的に使用することができる移動端末装置、無線通信方法及び無線通信システムを提供することを目的の一とする。   The present invention has been made in view of such problems, and when applying aperiodic SRS, the mobile terminal apparatus is appropriately notified of SRS transmission timing and SRS parameters, and is used for SRS transmission. An object is to provide a mobile terminal device, a radio communication method, and a radio communication system that can efficiently use radio resources to be used.

本発明の移動端末装置の一態様は、周期SRS(Sounding Reference Signal)と非周期SRSの送信を行う移動端末装置であって、非周期SRSをトリガーしないことを指示するビット情報、及び所定のデフォルトSRSパラメータを用いて非周期SRSを送信することをそれぞれ指示する複数のビット情報の中から選択された特定のビット情報を下り制御チャネルで受信する受信部と、前記特定のビット情報に基づいて非周期SRSの送信タイミングを制御すると共に、所定の周期で周期SRSの送信タイミングを制御するSRS送信設定部と、を有し、前記SRS送信設定部は、前記非周期SRSの送信タイミングと前記周期SRSの送信タイミングが同一サブフレームで重なる場合に、非周期SRSの送信を優先して行い、周期SRSの送信を行わないことを特徴とする。   One aspect of the mobile terminal apparatus of the present invention is a mobile terminal apparatus that performs transmission of a periodic SRS (Sounding Reference Signal) and an aperiodic SRS, bit information that indicates that the aperiodic SRS is not triggered, and a predetermined default A receiving unit that receives, on a downlink control channel, specific bit information selected from a plurality of pieces of bit information that respectively instruct to transmit an aperiodic SRS using an SRS parameter; and a non-reception based on the specific bit information An SRS transmission setting unit that controls the transmission timing of the periodic SRS and controls the transmission timing of the periodic SRS at a predetermined period, and the SRS transmission setting unit includes the transmission timing of the non-periodic SRS and the periodic SRS. When the transmission timings of the two frames overlap in the same subframe, transmission of the non-periodic SRS is performed with priority and transmission of the periodic SRS Characterized in that it does not take place.

この構成によれば、SRS送信制御情報を柔軟に設定して移動端末装置に通知できると共にSRSの送信に用いられる無線リソースを効率的に使用することができる。   According to this configuration, the SRS transmission control information can be flexibly set and notified to the mobile terminal apparatus, and radio resources used for SRS transmission can be efficiently used.

本発明の無線通信方法の一態様は、移動端末装置の周期SRSと非周期SRSの送信を制御する無線通信方法であって、無線基地局装置が、非周期SRSをトリガーしないことを指示するビット情報、及び所定のデフォルトSRSパラメータを用いて非周期SRSを送信することをそれぞれ指示する複数のビット情報の中から選択した特定のビット情報を下りリンク制御チャネルを用いて前記移動端末装置に通知するステップと、前記移動端末装置が、前記特定のビット情報に基づいて非周期SRSの送信を行うと共に、所定の周期で周期SRSの送信を行うステップと、を有し、前記移動端末装置は、非周期SRSと周期SRSの送信タイミングが同一サブフレームで重なる場合に、非周期SRSの送信を優先して行い、周期SRSの送信を行わないことを特徴とする。   One aspect of the wireless communication method of the present invention is a wireless communication method for controlling transmission of a periodic SRS and an aperiodic SRS of a mobile terminal apparatus, and a bit for instructing that the wireless base station apparatus does not trigger an aperiodic SRS. Information and specific bit information selected from a plurality of bit information respectively instructing to transmit an aperiodic SRS using a predetermined default SRS parameter are notified to the mobile terminal apparatus using a downlink control channel And a step of transmitting the non-periodic SRS based on the specific bit information and transmitting the periodic SRS at a predetermined period. When the transmission timings of the periodic SRS and the periodic SRS overlap in the same subframe, transmission of the aperiodic SRS is performed with priority, and transmission of the periodic SRS is performed. Characterized in that it does not take place.

本発明の無線通信システムの一態様は、移動端末装置の周期SRSと非周期SRSの送信を制御する無線通信システムであって、前記移動端末装置は、非周期SRSをトリガーしないことを指示するビット情報、及び所定のデフォルトSRSパラメータを用いて非周期SRSを送信することをそれぞれ指示する複数のビット情報の中から選択された特定のビット情報を下り制御チャネルで受信する受信部と、前記特定のビット情報に基づいて非周期SRSの送信タイミングを制御すると共に、所定の周期で周期SRSの送信タイミングを制御するSRS送信設定部と、を有し、前記SRS送信設定部は、前記非周期SRSの送信タイミングと前記周期SRSの送信タイミングが同一サブフレームで重なる場合に、非周期SRSの送信を優先して行い、周期SRSの送信を行わないことを特徴とする。   One aspect of the wireless communication system of the present invention is a wireless communication system that controls transmission of a periodic SRS and an aperiodic SRS of a mobile terminal apparatus, wherein the mobile terminal apparatus is a bit that indicates that an aperiodic SRS is not triggered. A receiving unit that receives specific bit information selected from a plurality of bit information respectively indicating information and a non-periodic SRS using a predetermined default SRS parameter by a downlink control channel; and An SRS transmission setting unit that controls the transmission timing of the aperiodic SRS based on the bit information and that controls the transmission timing of the periodic SRS at a predetermined period, and the SRS transmission setting unit includes: When the transmission timing and the transmission timing of the periodic SRS overlap in the same subframe, priority is given to the transmission of the aperiodic SRS. Performed, characterized in that it does not perform transmission of the periodic SRS.

本発明によれば、非周期SRSを適用する場合において、移動端末装置に対してSRSの送信タイミングやSRSパラメータを適切に通知し、SRSの送信に用いられる無線リソースを効率的に使用することができる。   According to the present invention, when applying aperiodic SRS, it is possible to appropriately notify the mobile terminal device of SRS transmission timing and SRS parameters, and to efficiently use radio resources used for SRS transmission. it can.

非周期SRSの送信方法について説明するための図である。It is a figure for demonstrating the transmission method of aperiodic SRS. ULスケジューリンググラントにSRSトリガーの有無に関する1ビット情報のみを含める場合のマッピングテーブルを示す図である。It is a figure which shows the mapping table in the case of including only 1 bit information regarding the presence or absence of an SRS trigger in UL scheduling grant. ULスケジューリンググラントにSRSトリガーの有無に関する1ビット情報のみを含めた場合の非周期SRSの送信方法について説明するための図である。It is a figure for demonstrating the transmission method of aperiodic SRS at the time of including only 1 bit information regarding the presence or absence of an SRS trigger in UL scheduling grant. 本発明の実施の態様に係るSRS送信制御において、SRSトリガーの有無とSRSパラメータに関する情報の一部をジョイントコーディングしたマッピングテーブルの一例を示す図である。In SRS transmission control which concerns on the aspect of this invention, it is a figure which shows an example of the mapping table which carried out the joint coding of the part of the information regarding the presence or absence of an SRS trigger and an SRS parameter. 本発明の実施の態様に係るSRS送信制御において、SRSトリガーの有無とSRSパラメータに関する情報の一部をジョイントコーディングしたマッピングテーブルの一例を示す図である。In SRS transmission control which concerns on the aspect of this invention, it is a figure which shows an example of the mapping table which carried out the joint coding of the part of the information regarding the presence or absence of an SRS trigger and an SRS parameter. 本発明の実施の形態に係るSRS送信制御の手順を説明するための図である。It is a figure for demonstrating the procedure of SRS transmission control which concerns on embodiment of this invention. 本発明の実施の形態に係る無線通信システムの構成を説明するための図である。It is a figure for demonstrating the structure of the radio | wireless communications system which concerns on embodiment of this invention. 本発明の実施の形態に係る無線基地局装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the wireless base station apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る無線基地局装置が有するベースバンド信号処理部の機能ブロック図の一例を示す図である。It is a figure which shows an example of the functional block diagram of the baseband signal processing part which the wireless base station apparatus which concerns on embodiment of this invention has. 本発明の実施の形態に係る移動端末装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the mobile terminal device which concerns on embodiment of this invention. 本発明の実施の形態に係る移動端末装置が有するベースバンド信号処理部の機能ブロック図の一例を示す図である。It is a figure which shows an example of the functional block diagram of the baseband signal processing part which the mobile terminal device which concerns on embodiment of this invention has. LTEシステムにおける従来のSRSの送信方法について説明するための図である。It is a figure for demonstrating the transmission method of the conventional SRS in a LTE system. 本発明の実施の態様に係るSRS送信制御において、異なるDCIフォーマットに適用するマッピングテーブルの一例を示す図である。It is a figure which shows an example of the mapping table applied to a different DCI format in the SRS transmission control which concerns on the aspect of this invention. 本発明の実施の態様に係るSRS送信制御において、同一のDCIフォーマットに適用するビット数が異なるマッピングテーブルの一例を示す図である。It is a figure which shows an example of the mapping table from which the number of bits applied to the same DCI format differs in SRS transmission control which concerns on the aspect of this invention. 非周期SRSと周期SRSを組み合わせた送信方法について説明するための図である。It is a figure for demonstrating the transmission method which combined the non-period SRS and the period SRS.

(実施の形態1)
非周期SRSについて図1を参照して説明する。図1は、無線基地局装置において、サブフレーム#m、#m+4のULスケジューリンググラントが、SRSの送信指示(すなわち、SRSの送信オンの識別ビット)を含むULスケジューリンググラントとして選択された場合を示している。移動端末装置は、SRSの送信指示を含むULスケジューリンググラントの通知を受けると、これに応じて、例えば、4サブフレーム後のサブフレーム#n+4、#n+8で送信するPUSCH信号と共にSRSを無線基地局装置に送信することができる。
(Embodiment 1)
The aperiodic SRS will be described with reference to FIG. FIG. 1 shows a case where, in a radio base station apparatus, UL scheduling grants of subframes #m and # m + 4 are selected as UL scheduling grants including SRS transmission instructions (that is, SRS transmission ON identification bits). ing. When receiving the notification of the UL scheduling grant including the SRS transmission instruction, the mobile terminal apparatus responds to this by, for example, transmitting the SRS together with the PUSCH signal to be transmitted in subframes # n + 4 and # n + 8 after 4 subframes to the radio base station. Can be sent to the device.

この場合、SRSは、送信指示を含むULスケジューリンググラントで送信が指示されるPUSCH信号と同一のサブフレームで送信されることから、サブフレーム#n+4、#n+8の最終シンボルに多重される。すなわち、SRSは、サブフレーム#n+4、#n+8に割り当てられたPUSCHの後に連続して多重される。無線基地局装置においては、このようにPUSCHに連続して多重されるSRSに基づいてチャネル品質を測定し、移動端末装置におけるPUSCH信号の送信のためのスケジューリングを行う。このため、実際にPUSCH信号が送信されるタイミングにおけるチャネル品質を測定することができるので、実際のチャネル状態を反映してスケジューリングを行うことが可能となる。   In this case, the SRS is transmitted in the same subframe as the PUSCH signal for which transmission is instructed by the UL scheduling grant including the transmission instruction, and is thus multiplexed on the final symbols of subframes # n + 4 and # n + 8. That is, SRS is continuously multiplexed after PUSCH assigned to subframes # n + 4 and # n + 8. In the radio base station apparatus, channel quality is measured based on the SRS continuously multiplexed on the PUSCH in this way, and scheduling for transmission of the PUSCH signal in the mobile terminal apparatus is performed. For this reason, since the channel quality at the timing when the PUSCH signal is actually transmitted can be measured, it is possible to perform scheduling reflecting the actual channel state.

このように、任意のタイミングでSRSの送信を制御することにより、SRSの送信に用いられる無線リソースを柔軟に設定することが可能となる。しかしながら、その一方で、非周期SRSの送信を行う場合には、上述したようにSRSの送信タイミングを制御する情報(SRSトリガーの有無)やSRSを送信する場合の具体的な送信条件を制御するSRSパラメータ(comb、周波数位置、サイクリックシフト番号、帯域幅等)等のSRS送信制御情報を、移動端末装置に対して適切に通知することが必要となる。   Thus, by controlling SRS transmission at an arbitrary timing, it is possible to flexibly set radio resources used for SRS transmission. However, on the other hand, when transmitting non-periodic SRS, as described above, information for controlling the transmission timing of SRS (the presence or absence of an SRS trigger) and specific transmission conditions for transmitting SRS are controlled. It is necessary to appropriately notify the mobile terminal apparatus of SRS transmission control information such as SRS parameters (comb, frequency position, cyclic shift number, bandwidth, etc.).

例えば、上述したようにULスケジューリンググラントにSRSの送信指示の情報を含めて、つまり下りリンク制御チャネルを用いて、SRSのトリガーの有無を制御する場合、SRSの送信条件を規定するSRSパラメータ等の他の情報の通知をどのように制御して行うか等のシグナリング方法については具体的に決まっておらず、今後の検討課題となっている。そこで、本発明者は、移動端末装置に対してSRSの送信制御情報の適切な通知方法を検討し、本願発明に至った。   For example, as described above, when the information on the SRS transmission instruction is included in the UL scheduling grant, that is, when the presence or absence of the SRS trigger is controlled using the downlink control channel, the SRS parameter that defines the SRS transmission condition, etc. The signaling method, such as how to control the notification of other information, has not been specifically determined, and is a subject for future study. Therefore, the present inventor studied an appropriate notification method of SRS transmission control information to the mobile terminal apparatus, and reached the present invention.

まず、本発明者は、SRSの送信制御情報の通知方法として、ULスケジューリンググラントに、SRSのトリガーの有無に関する情報(1ビット情報)のみを含めて移動端末装置に通知し、具体的な送信条件を規定するSRSパラメータ(以下単に「SRSパラメータ」と記す)等の他の情報をRRCシグナリングで通知する場合について検討した。   First, as a notification method of SRS transmission control information, the present inventors notify the mobile terminal apparatus including only information (1 bit information) regarding the presence or absence of an SRS trigger in the UL scheduling grant, and specify specific transmission conditions. The case where other information such as an SRS parameter (hereinafter, simply referred to as “SRS parameter”) is specified by RRC signaling was examined.

本発明者が検討を行ったところ、ULスケジューリンググラントにSRSのトリガーの有無に関する1ビット情報のみを含めて移動端末装置に通知する場合(図2参照)、無線リソースを十分に有効活用できないおそれがあることを見出した。   As a result of studies by the present inventor, when notifying the mobile terminal apparatus including only 1-bit information related to the presence or absence of the SRS trigger in the UL scheduling grant (see FIG. 2), there is a possibility that the radio resources cannot be effectively utilized. I found out.

図2の場合、各移動端末装置が送信する非周期SRSのリソースはあらかじめ上位レイヤにおいて決められているため、異なる移動端末装置間でリソースの衝突を避けるように設定する場合には、SRSの送信を行わない移動端末装置に対してもリソースを確保することとなる(図3(a)参照)。その結果、SRSの送信において無線リソースの有効活用ができなくなる。   In the case of FIG. 2, since the resource of the aperiodic SRS transmitted by each mobile terminal apparatus is determined in advance in the upper layer, when setting so as to avoid resource collision between different mobile terminal apparatuses, the transmission of SRS is performed. Resources are also secured for the mobile terminal devices that do not perform (see FIG. 3A). As a result, radio resources cannot be effectively used in SRS transmission.

一方で、SRSの送信において無線リソースを有効活用するために、上位レイヤで決定される割当てリソースを複数の移動端末装置が共有するように設定する場合には、異なる移動端末装置間でSRSの送信タイミングが衝突する場合がある。この場合、SRSを任意のタイミングで送信できなくなることや、SRSの送信が大きく遅延してしまう等の問題が考えられる(図3(b)参照)。   On the other hand, in order to effectively use radio resources in SRS transmission, when setting so that a plurality of mobile terminal apparatuses share the allocation resource determined in the upper layer, SRS transmission between different mobile terminal apparatuses Timing may collide. In this case, problems such as the inability to transmit the SRS at an arbitrary timing and a significant delay in the transmission of the SRS are conceivable (see FIG. 3B).

また、SRSの送信制御情報の通知方法として、下りリンク制御チャネルに、トリガーの有無に関する情報やSRSパラメータ等の全てのSRS送信制御情報を含めて移動端末装置に通知する方法が考えられる。しかし、この場合には、下りリンク制御チャネルのシグナリングオーバヘッドが著しく増大する問題が考えられる。   Further, as a method for notifying the SRS transmission control information, a method may be considered in which the downlink control channel includes all the SRS transmission control information such as information on the presence / absence of a trigger and SRS parameters, and notifies the mobile terminal apparatus. However, in this case, there may be a problem that the signaling overhead of the downlink control channel is remarkably increased.

そこで、本発明者は、下りリンク制御チャネル(例えば、ULスケジューリンググラント又はDLスケジューリンググラント)に2ビット以上のビットフィールドを設け、SRSのトリガーの有無に加えてSRSパラメータに関する情報の一部を組み合わせてビット情報として規定(ジョイントコーディング)して移動端末装置に通知し、残りのSRSパラメータ情報は上位レイヤにて通知することを見出した。これにより、SRSのトリガーの有無及びSRSパラメータ等のSRS送信制御情報を柔軟に設定して移動端末装置に適切に通知することができる。また、SRSパラメータに関する情報の一部を下りリンク制御チャネルを用いて通知することにより、各移動端末装置が送信する非周期SRSのリソースの一部を下位レイヤにおいて制御することができるため、無線リソースを有効に活用することが可能となる。   Therefore, the present inventor provides a bit field of 2 bits or more in the downlink control channel (for example, UL scheduling grant or DL scheduling grant), and combines a part of information on the SRS parameter in addition to the presence or absence of the SRS trigger. It was found that the bit information is specified (joint coding) and notified to the mobile terminal apparatus, and the remaining SRS parameter information is notified in the upper layer. Thereby, SRS transmission control information, such as the presence or absence of an SRS trigger and SRS parameters, can be flexibly set and appropriately notified to the mobile terminal apparatus. In addition, by reporting a part of the information regarding the SRS parameter using the downlink control channel, it is possible to control a part of the resources of the aperiodic SRS transmitted by each mobile terminal apparatus in the lower layer. Can be effectively utilized.

また、本発明者は、SRSのトリガーの有無と組み合わせてビット情報として規定するSRSパラメータに関する情報やビット数を、移動端末装置の通信状況(例えば、移動端末装置のアンテナ数、セル内における移動端末装置の位置(無線基地局装置との距離)、セル内の移動端末装置の数等)に基づいて選択することを見出した。これにより、移動端末装置の通信状況に応じて、SRS送信制御情報を柔軟に設定し、移動端末装置に対してSRS送信制御情報を適切に通知することができる。   In addition, the present inventor determines the information regarding the SRS parameter and the number of bits defined as bit information in combination with the presence or absence of an SRS trigger, the communication status of the mobile terminal device (for example, the number of antennas of the mobile terminal device, the mobile terminal in the cell) It has been found that the selection is based on the position of the device (distance from the radio base station device), the number of mobile terminal devices in the cell, and the like. Thereby, according to the communication condition of a mobile terminal device, SRS transmission control information can be set flexibly and SRS transmission control information can be appropriately notified to the mobile terminal device.

以下に、無線通信を行う移動端末装置に対して無線基地局装置がSRS送信制御情報を通知し、移動端末装置のSRSの送信を制御する場合の非周期SRSの送信制御に関して説明する。なお、本実施の形態においては、LTE−Aに適用した例について説明するが、本発明はLTE−Aに適用した場合に限定されるものではない。   A non-periodic SRS transmission control when the radio base station apparatus notifies SRS transmission control information to a mobile terminal apparatus that performs radio communication and controls SRS transmission of the mobile terminal apparatus will be described below. In this embodiment, an example applied to LTE-A will be described, but the present invention is not limited to the case applied to LTE-A.

本実施の形態に係る非周期SRSの送信制御は、無線基地局装置において、SRSのトリガーの有無とSRSパラメータに関する情報の一部とが組合わされて規定されたビット情報を、下りリンク制御チャネルを用いて移動端末装置に通知して、移動端末装置の非周期SRSの送信を制御する。なお、SRSパラメータに関する情報の一部とは、comb、周波数位置、サイクリックシフト番号、帯域幅等のSRSの送信に必要となる条件(SRSパラメータそのものの一部)、あらかじめ設定されたデフォルトSRSパラメータからの差分値に関する情報、又はあらかじめ設定された複数のデフォルトSRSパラメータからいずれを選択するか(選択情報)等のSRSパラメータに関する情報をいう。   In the non-periodic SRS transmission control according to the present embodiment, in the radio base station apparatus, bit information defined by combining the presence / absence of an SRS trigger and a part of information related to SRS parameters is transmitted using a downlink control channel. And notifies the mobile terminal device to control transmission of the aperiodic SRS of the mobile terminal device. The part of the information related to the SRS parameter is a condition necessary for SRS transmission such as comb, frequency position, cyclic shift number, bandwidth, etc. (part of the SRS parameter itself), a preset default SRS parameter Or information on SRS parameters such as which one to select from a plurality of preset default SRS parameters (selection information).

具体的には、無線基地局装置は、SRSのトリガーの有無とSRSパラメータに関する情報の一部とが組み合わされてビット情報として規定されたSRSトリガーフォーマットを設定し、当該SRSトリガーフォーマット中から移動端末装置のSRSの送信制御に適用する所定のビット情報を選択する。そして、選択した所定のビット情報を下りリンク制御チャネルを用いて移動端末装置に通知する。なお、設定したSRSトリガーフォーマットは、移動端末装置に対してあらかじめRRCシグナリング等を用いて通知する。   Specifically, the radio base station apparatus sets the SRS trigger format defined as bit information by combining the presence / absence of the SRS trigger and a part of the information regarding the SRS parameter, and sets the mobile terminal from the SRS trigger format. Predetermined bit information to be applied to SRS transmission control of the device is selected. Then, the selected predetermined bit information is notified to the mobile terminal apparatus using the downlink control channel. The set SRS trigger format is notified to the mobile terminal device in advance using RRC signaling or the like.

また、移動端末装置は、無線基地局装置から通知されるSRSトリガーフォーマットをRRCシグナリング等により受信する。また、下りリンク制御チャネルに割当てられた所定のビット情報も受信する。そして、移動端末装置は、受信したSRSトリガーフォーマット及び所定のビット情報等に基づいてSRSの送信内容(SRSのトリガーの有無、SRSの送信条件等)を特定し、SRSの送信制御を行う。なお、SRSの送信制御情報の中で下りリンク制御チャネルに割当てられない情報(SRSトリガーフォーマットに規定されないSRSパラメータに関する情報等)は、RRCシグナリング等により別途移動端末装置に対して通知する構成とすることができる。   Also, the mobile terminal apparatus receives the SRS trigger format notified from the radio base station apparatus by RRC signaling or the like. Also, predetermined bit information allocated to the downlink control channel is received. Then, the mobile terminal device specifies SRS transmission contents (whether or not SRS is triggered, SRS transmission conditions, and the like) based on the received SRS trigger format and predetermined bit information, and performs SRS transmission control. Note that information that is not allocated to the downlink control channel in the SRS transmission control information (information on SRS parameters not specified in the SRS trigger format) is separately notified to the mobile terminal device by RRC signaling or the like. be able to.

無線基地局装置は、SRSトリガーフォーマットの設定法として、互いに異種のSRSパラメータが規定された複数のSRSトリガーフォーマット(「マッピングテーブル」ともいう)の中から特定のマッピングテーブルを選択する構成とすることができる。複数のマッピングテーブルは、SRSパラメータの種類に応じて設定され、無線基地局装置は、移動端末装置に適用する特定のマッピングテーブルを選択して、RRCシグナリング等により移動端末装置に通知する。   The radio base station apparatus is configured to select a specific mapping table from a plurality of SRS trigger formats (also referred to as “mapping tables”) in which different types of SRS parameters are defined as a method for setting the SRS trigger format. Can do. The plurality of mapping tables are set according to the type of the SRS parameter, and the radio base station apparatus selects a specific mapping table to be applied to the mobile terminal apparatus and notifies the mobile terminal apparatus by RRC signaling or the like.

あるいは、無線基地局装置は、SRSトリガーフォーマットの設定法として、デフォルトのSRSパラメータをRRCシグナリング等により移動端末装置に通知すると共に、デフォルトのSRSパラメータからの差分をSRSトリガーの有無と組み合わせて規定し、下りリンク制御チャネルを用いて通知する手法としてもよい。この場合、マッピングテーブルは、デフォルトのSRSパラメータからの差分として記載され、差分の具体的内容はRRCシグナリングにより柔軟に変更できる構成としてもよい。   Alternatively, the radio base station apparatus notifies the mobile terminal apparatus of the default SRS parameter by RRC signaling or the like as a setting method of the SRS trigger format, and defines the difference from the default SRS parameter in combination with the presence or absence of the SRS trigger. Alternatively, a notification method using a downlink control channel may be used. In this case, the mapping table may be described as a difference from the default SRS parameter, and the specific content of the difference may be configured to be flexibly changed by RRC signaling.

あるいは、無線基地局装置は、SRSトリガーフォーマットの設定法として、複数のデフォルトのSRSパラメータをRRCシグナリング等により移動端末装置に通知すると共に、どのデフォルトSRSパラメータを用いるか(デフォルトSRSパラメータの選択情報)をSRSトリガーの有無と組み合わせて規定し、下りリンク制御チャネルを用いて通知する手法としてもよい。以下に、図4〜図5を参照してマッピングテーブルの具体例について説明する。   Alternatively, as a method for setting the SRS trigger format, the radio base station apparatus notifies the mobile terminal apparatus of a plurality of default SRS parameters by RRC signaling or the like, and which default SRS parameter to use (default SRS parameter selection information) May be defined in combination with the presence or absence of an SRS trigger and notified using a downlink control channel. A specific example of the mapping table will be described below with reference to FIGS.

図4は、SRSトリガーフォーマット(マッピングテーブル)を2ビットのビット情報で規定する場合を示している。図4(a)〜(c)では、複数のマッピングテーブルとして、それぞれ異種のSRSパラメータが規定された3つのマッピングテーブルを示している。図4(a)は、PDCCHで通知するSRSパラメータとして「Comb」を用いる場合を示し、図4(b)は、PDCCHで通知するSRSパラメータとして「周波数位置」を用いる場合を示し、図4(c)は、PDCCHで通知するSRSパラメータとして「サイクリックシフト番号(CS)」を用いる場合を示している。   FIG. 4 shows a case where the SRS trigger format (mapping table) is defined by 2-bit bit information. 4A to 4C show three mapping tables each defining different types of SRS parameters as a plurality of mapping tables. 4A shows a case where “Comb” is used as an SRS parameter notified by PDCCH, and FIG. 4B shows a case where “frequency position” is used as an SRS parameter notified by PDCCH. c) shows a case where “cyclic shift number (CS)” is used as the SRS parameter notified by PDCCH.

また、図4(d)、(e)は、PDCCHで通知する内容として「デフォルトのSRSパラメータからの差分」を用いる場合を示し、図4(f)は、PDCCHで通知する内容として「複数のデフォルトのSRSパラメータからの選択」を用いる場合を示している。以下に、各マッピングテーブルについて具体的に説明する。   FIGS. 4D and 4E show the case where “difference from default SRS parameters” is used as the content to be notified on the PDCCH, and FIG. This shows a case where “selection from default SRS parameters” is used. Below, each mapping table is demonstrated concretely.

図4(a)に示すマッピングテーブルは、少なくともSRSを未送信とするビット情報と、SRSを送信するCombが規定されたビット情報とを有している。より具体的には、ビット情報「00」は、SRSを未送信とする(SRSをトリガーしない)ことを示し、ビット情報「01」は、SRSをComb0で送信する(SRSをトリガーする)ことを示し、ビット情報「10」は、SRSをComb1で送信する(SRSをトリガーする)ことを示し、ビット情報「11」は、何も設定しない、あるいは将来の拡張用として予約しておくことを示している。なお、Combは、SRSを送信するサブキャリア位置を規定するパラメータであり、2種類の状態をとり得る。   The mapping table shown in FIG. 4A includes at least bit information indicating that the SRS is not transmitted and bit information defining a comb for transmitting the SRS. More specifically, bit information “00” indicates that SRS is not transmitted (SRS is not triggered), and bit information “01” indicates that SRS is transmitted with Comb0 (SRS is triggered). Bit information “10” indicates that SRS is transmitted in Comb1 (SRS is triggered), and bit information “11” indicates that nothing is set or reserved for future expansion. ing. Comb is a parameter that defines the subcarrier position for transmitting the SRS, and can take two states.

また、本実施の形態では、SRSのトリガーの有無に関する情報と、SRSパラメータ(ここでは、Comb)に関する情報を別々に規定するのでなく、組み合わせてビット情報として規定(ジョイントコーディング)している。このように、SRSのトリガーの有無に関する情報と、SRSパラメータに関する情報をジョイントコーディングすることにより、PDCCHのビット数の増加を抑制し無線リソースを有効に利用することができる。   Also, in the present embodiment, the information regarding the presence / absence of the SRS trigger and the information regarding the SRS parameter (Comb here) are not separately defined, but are combined and defined as bit information (joint coding). As described above, by jointly coding the information regarding the presence / absence of the SRS trigger and the information regarding the SRS parameter, an increase in the number of bits of the PDCCH can be suppressed and the radio resource can be used effectively.

図4(b)に示すマッピングテーブルは、少なくともSRSを未送信とするビット情報と、SRSを送信する周波数位置が規定されたビット情報とを有している。より具体的には、ビット情報「00」は、SRSを未送信とすることを示し、ビット情報「01」は、SRSを周波数位置0で送信することを示し、ビット情報「10」は、SRSを周波数位置1で送信することを示し、ビット情報「11」は、SRSを周波数位置2で送信することを示している。なお、周波数位置は、SRSを送信する周波数の位置を規定するパラメータであり、周波数位置の数はシステム帯域幅とユーザ毎のSRS帯域幅に基づいて設定される。   The mapping table shown in FIG. 4B includes at least bit information indicating that the SRS is not transmitted and bit information defining a frequency position where the SRS is transmitted. More specifically, bit information “00” indicates that SRS is not transmitted, bit information “01” indicates that SRS is transmitted at frequency position 0, and bit information “10” indicates SRS. Is transmitted at frequency position 1, and bit information “11” indicates that SRS is transmitted at frequency position 2. The frequency position is a parameter that defines the position of the frequency at which the SRS is transmitted, and the number of frequency positions is set based on the system bandwidth and the SRS bandwidth for each user.

また、図4(b)においても、図4(a)と同様にSRSの送信有無に関する情報と、SRSパラメータ(ここでは、周波数位置)に関する情報をジョイントコーディングしており、PDCCHのビット数の増加が抑制されている。   Also in FIG. 4 (b), as in FIG. 4 (a), information on whether or not SRS is transmitted and information on SRS parameters (here, frequency position) are jointly coded, and the number of bits of PDCCH increases. Is suppressed.

図4(c)に示すマッピングテーブルは、少なくともSRSを未送信とするビット情報と、SRSを送信する際に適用するサイクリックシフト番号が規定されたビット情報とを有している。より具体的には、ビット情報「00」は、SRSを未送信とすることを示し、ビット情報「01」は、SRSをCS0で送信することを示し、ビット情報「10」は、SRSをCS1で送信することを示し、ビット情報「11」は、SRSをCS2で送信することを示している。なお、サイクリックシフト番号は、サイクリックシフトを用いて直交多重を行う際に、サイクリックシフト量を規定するパラメータであり、8通りの状態を有する。マッピングテーブルにおけるサイクリックシフト番号の規定は、例えば図4(c)の例のように連続する並び(CS0、CS1、CS1)としても良いし、離散的なマッピング(例えば、CS0、CS3、CS6)としても良い。   The mapping table shown in FIG. 4C includes at least bit information indicating that the SRS has not been transmitted and bit information defining a cyclic shift number to be applied when transmitting the SRS. More specifically, bit information “00” indicates that SRS is not transmitted, bit information “01” indicates that SRS is transmitted by CS0, and bit information “10” indicates that SRS is CS1. The bit information “11” indicates that SRS is transmitted by CS2. The cyclic shift number is a parameter that defines the cyclic shift amount when orthogonal multiplexing is performed using cyclic shift, and has eight states. The definition of the cyclic shift number in the mapping table may be a continuous arrangement (CS0, CS1, CS1) as in the example of FIG. 4C, for example, or a discrete mapping (for example, CS0, CS3, CS6). It is also good.

また、図4(c)においても、図4(a)、(b)と同様に、SRSの送信有無に関する情報と、SRSパラメータ(ここでは、サイクリックシフト番号)に関する情報をジョイントコーディングしており、PDCCHのビット数の増加が抑制されている。   Also in FIG. 4 (c), similar to FIGS. 4 (a) and 4 (b), information on whether or not SRS is transmitted and information on SRS parameters (here, cyclic shift numbers) are jointly coded. , The increase in the number of bits of PDCCH is suppressed.

図4(d)に示すマッピングテーブルは、少なくともSRSを未送信とするビット情報と、RRCシグナリングによって別途通知されるデフォルトのSRSパラメータにて送信することを指示するビット情報と、デフォルトパラメータからのサイクリックシフト差分を通知するサイクリックシフト量が規定されたビット情報とを有している。より具体的には、ビット情報「00」は、SRSを未送信とすることを示し、ビット情報「01」は、SRSをデフォルトのSRSパラメータで送信することを示し、ビット情報「10」は、SRSをデフォルトのSRSパラメータからサイクリックシフト量をx値シフトして送信することを示し、ビット情報「11」は、SRSをデフォルトのSRSパラメータからサイクリックシフト量をy値シフトして送信することを示す。ここで、サイクリックシフト量のx値、y値は予め決められていても良いし、RRCシグナリングで柔軟に変更されるようにしても良い。   The mapping table shown in FIG. 4 (d) includes at least bit information indicating that SRS has not been transmitted, bit information instructing transmission using a default SRS parameter separately notified by RRC signaling, and a sign from the default parameter. Bit information defining a cyclic shift amount for notifying a click shift difference. More specifically, bit information “00” indicates that SRS is not transmitted, bit information “01” indicates that SRS is transmitted with a default SRS parameter, and bit information “10” is The SRS is transmitted by shifting the cyclic shift amount by x value from the default SRS parameter, and the bit information “11” is transmitted by shifting the cyclic shift amount by y value from the default SRS parameter. Indicates. Here, the x value and the y value of the cyclic shift amount may be determined in advance, or may be flexibly changed by RRC signaling.

図4(e)に示すマッピングテーブルは、少なくともSRSを未送信とするビット情報と、RRCシグナリングによって別途通知されるデフォルトのSRSパラメータにて送信することを指示するビット情報と、デフォルトパラメータからのCombの違い、あるいはサイクリックシフト差分を通知するサイクリックシフト量が規定されたビット情報とを有している。より具体的には、ビット情報「00」は、SRSを未送信とすることを示し、ビット情報「01」は、SRSをデフォルトのSRSパラメータで送信することを示し、ビット情報「10」は、SRSをデフォルトのSRSパラメータとは異なるCombにて送信することを示し、ビット情報「11」は、SRSをデフォルトのSRSパラメータからサイクリックシフト量をx値シフトして送信することを示す。ここで、サイクリックシフト量のx値は予め決められていても良いし、RRCシグナリングで柔軟に変更されるようにしても良い。   The mapping table shown in FIG. 4 (e) includes at least bit information indicating that SRS has not been transmitted, bit information instructing transmission using a default SRS parameter separately notified by RRC signaling, and a comb from the default parameter. Or bit information in which a cyclic shift amount for notifying a cyclic shift difference is defined. More specifically, bit information “00” indicates that SRS is not transmitted, bit information “01” indicates that SRS is transmitted with a default SRS parameter, and bit information “10” is The SRS is transmitted using a different Comb from the default SRS parameter, and the bit information “11” indicates that the SRS is transmitted by shifting the cyclic shift amount by x value from the default SRS parameter. Here, the x value of the cyclic shift amount may be determined in advance, or may be flexibly changed by RRC signaling.

図4(f)に示すマッピングテーブルは、少なくともSRSを未送信とするビット情報と、RRCシグナリングによって別途通知される複数のデフォルトのSRSパラメータのいずれかを用いて送信することを指示するビット情報とを有している。より具体的には、ビット情報「00」は、SRSを未送信とすることを示し、ビット情報「01」は、SRSをデフォルトaのSRSパラメータで送信することを示し、ビット情報「10」は、SRSをデフォルトbのSRSパラメータで送信することを示し、ビット情報「11」は、SRSをデフォルトcのSRSパラメータで送信することを示す。   The mapping table shown in FIG. 4 (f) includes at least bit information indicating that SRS has not been transmitted, and bit information indicating transmission using any of a plurality of default SRS parameters separately notified by RRC signaling. have. More specifically, bit information “00” indicates that the SRS is not transmitted, bit information “01” indicates that the SRS is transmitted with the SRS parameter of default a, and bit information “10” is , SRS is transmitted with the SRS parameter of default b, and bit information “11” indicates that the SRS is transmitted with the SRS parameter of default c.

また、本実施の形態において、SRSトリガーフォーマットに規定するSRSパラメータやビット数の選択方法として、移動端末装置の通信状況(移動端末装置のアンテナ数、セル内における移動端末装置の位置(無線基地局装置との距離)、セル内の移動端末装置の数等)に基づいて行う構成とすることができる。   Also, in this embodiment, as a method for selecting the SRS parameter and the number of bits defined in the SRS trigger format, the communication status of the mobile terminal device (the number of antennas of the mobile terminal device, the position of the mobile terminal device in the cell (radio base station It is possible to adopt a configuration based on the distance to the device), the number of mobile terminal devices in the cell, and the like.

例えば、無線基地局装置が、上記図4(a)〜(c)等に示すような互いに異種のSRSパラメータが規定された複数のマッピングテーブルから任意のマッピングテーブルを選択する場合には、各マッピングテーブルに設定されているSRSパラメータと移動端末装置の通信状況との関係に基づいて選択することができる。   For example, when the radio base station apparatus selects an arbitrary mapping table from a plurality of mapping tables in which different types of SRS parameters are specified as shown in FIGS. The selection can be made based on the relationship between the SRS parameters set in the table and the communication status of the mobile terminal apparatus.

具体的には、移動端末装置の通信状況によりSRSパラメータの設定範囲が影響を受けにくいSRSパラメータが規定されたマッピングテーブルを優先的に選択することが好ましい。   Specifically, it is preferable to preferentially select the mapping table in which the SRS parameters are less affected by the communication status of the mobile terminal device.

例えば、移動端末装置が複数のアンテナを使用する場合には、アンテナの多重に用いるパラメータ(例えば、サイクリックシフト番号)以外のSRSパラメータが規定されたマッピングテーブル(図4(a)、(b))を選択することが好ましい。これは、アンテナの多重にサイクリックシフト番号が用いられている場合に、SRSトリガーフォーマットに対してもサイクリックシフト番号を用いると、アンテナ多重とユーザ多重の双方に用いられることに起因して、SRS送信制御情報の自由度が少なくなるおそれがあるからである。   For example, when the mobile terminal apparatus uses a plurality of antennas, a mapping table in which SRS parameters other than the parameters used for antenna multiplexing (for example, cyclic shift numbers) are defined (FIGS. 4A and 4B). Is preferred. This is because when a cyclic shift number is used for antenna multiplexing, if the cyclic shift number is also used for the SRS trigger format, it is used for both antenna multiplexing and user multiplexing. This is because the degree of freedom of the SRS transmission control information may be reduced.

また、広帯域でSRSを送信する移動端末装置(例えば、セル近傍の移動端末装置)に対しては、周波数に関連するSRSパラメータ(周波数位置、帯域等)以外のSRSパラメータが規定されたマッピングテーブル(図4(a)、(c))を選択することが好ましい。これは、広帯域でSRSを送信する移動端末装置に対しては、周波数位置によるユーザ間多重の効果が得られないためである。   In addition, for mobile terminal devices that transmit SRS in a wide band (for example, mobile terminal devices in the vicinity of a cell), a mapping table in which SRS parameters other than SRS parameters related to frequency (frequency position, band, etc.) are defined ( It is preferable to select FIG. 4 (a), (c)). This is because the effect of inter-user multiplexing by frequency position cannot be obtained for a mobile terminal device that transmits SRS in a wide band.

また、セル内の移動端末装置の数が多い場合には、マッピングテーブルにSRSパラメータ等の情報を詳細に規定することが好ましい。そのため、この場合には、ビット数が多いマッピングテーブルを選択することが好ましい。   In addition, when the number of mobile terminal devices in a cell is large, it is preferable to specify information such as SRS parameters in the mapping table in detail. Therefore, in this case, it is preferable to select a mapping table having a large number of bits.

図5は、SRSトリガーフォーマット(マッピングテーブル)を3ビットのビット情報で規定する場合を示している。ここでは、複数のマッピングテーブルとして、それぞれ異種のSRSパラメータを2つ(Comb、周波数位置又はサイクリックシフト番号のうち少なくとも2つ)規定する場合を示している。具体的に、図5(a)は、Comb及び周波数位置を用いる場合を示し、図5(b)は、Comb及びサイクリックシフト番号を用いる場合を示し、図5(c)は、周波数位置及びサイクリックシフト番号を用いる場合を示している。以下に、各マッピングテーブルについて具体的に説明する。   FIG. 5 shows a case where the SRS trigger format (mapping table) is defined by 3-bit bit information. Here, a case is shown in which two different SRS parameters (at least two of comb, frequency position, and cyclic shift number) are defined as a plurality of mapping tables. Specifically, FIG. 5A shows a case where Comb and frequency position are used, FIG. 5B shows a case where Comb and cyclic shift number are used, and FIG. 5C shows frequency position and frequency position. The case where a cyclic shift number is used is shown. Below, each mapping table is demonstrated concretely.

図5(a)に示すマッピングテーブルは、少なくともSRSを未送信とするビット情報と、SRSを送信するComb及び周波数位置が組合わされて規定されたビット情報とを有している。より具体的には、ビット情報「000」は、SRSを未送信とすることを示し、ビット情報「001」は、SRSをComb0及び周波数位置0で送信することを示し、ビット情報「010」は、SRSをComb0及び周波数位置1で送信することを示し、ビット情報「011」は、SRSをComb0及び周波数位置2で送信することを示し、ビット情報「100」は、SRSをComb1及び周波数位置0で送信することを示し、ビット情報「101」は、SRSをComb1及び周波数位置1で送信することを示し、ビット情報「110」は、SRSをComb1及び周波数位置2で送信することを示し、ビット情報「111」は、何も設定しない、あるいは将来の拡張用として予約しておくことを示している。   The mapping table shown in FIG. 5A includes at least bit information indicating that SRS is not transmitted, and bit information defined by combining a Comb that transmits SRS and a frequency position. More specifically, bit information “000” indicates that SRS is not transmitted, bit information “001” indicates that SRS is transmitted at Comb 0 and frequency position 0, and bit information “010” is , SRS is transmitted at Comb0 and frequency position 1, bit information “011” indicates that SRS is transmitted at Comb0 and frequency position 2, and bit information “100” is SRS transmitted at Comb1 and frequency position 0. Bit information “101” indicates that SRS is transmitted at Comb1 and frequency position 1, and bit information “110” indicates that SRS is transmitted at Comb1 and frequency position 2, Information “111” indicates that nothing is set or reserved for future expansion.

つまり、SRSのトリガーの有無に関する情報と、SRSパラメータ(ここでは、Comb、周波数位置)に関する情報を別々に規定するのでなく、組み合わせてビット情報として規定(ジョイントコーディング)している。このように、SRSのトリガーの有無に関する情報と、複数のSRSパラメータに関する情報をジョイントコーディングすることにより、PDCCHのビット数の増加を効果的に抑制することができる。   That is, the information regarding the presence / absence of the SRS trigger and the information regarding the SRS parameter (here, Comb, frequency position) are not separately defined, but are combined and defined as bit information (joint coding). As described above, by jointly coding the information on the presence / absence of the SRS trigger and the information on the plurality of SRS parameters, an increase in the number of bits of the PDCCH can be effectively suppressed.

図5(b)に示すマッピングテーブルは、少なくともSRSを未送信とするビット情報と、SRSを送信するComb及びサイクリックシフト番号が組合わされて規定されたビット情報とを有している。より具体的には、ビット情報「000」は、SRSを未送信とすることを示し、ビット情報「001」、「010」、「011」は、SRSをComb0で送信すると共にそれぞれCS0〜CS2で送信することを示し、ビット情報「100」、「101」、「110」は、SRSをComb1で送信すると共にそれぞれCS0〜CS2で送信することを示し、ビット情報「111」は、何も設定しない、あるいは将来の拡張用として予約しておくことを示している。   The mapping table shown in FIG. 5B includes at least bit information indicating that the SRS has not been transmitted, and bit information defined by combining a Comb that transmits the SRS and a cyclic shift number. More specifically, the bit information “000” indicates that the SRS is not transmitted, and the bit information “001”, “010”, and “011” are transmitted by the Comb0 and the CS0 to CS2 respectively. Bit information “100”, “101”, and “110” indicate that SRS is transmitted in Comb 1 and transmitted in CS0 to CS 2 respectively, and bit information “111” does not set anything. Or reserved for future expansion.

図5(c)に示すマッピングテーブルは、少なくともSRSを未送信とするビット情報と、SRSを送信する周波数位置及びサイクリックシフト番号が組合わされて規定されたビット情報とを有している。より具体的には、ビット情報「000」は、SRSを未送信とすることを示し、ビット情報「001」、「010」、「011」は、SRSを周波数位置0で送信すると共にそれぞれCS0〜CS2で送信することを示し、ビット情報「100」、「101」、「110」は、SRSを周波数位置1で送信すると共にそれぞれCS0〜CS2で送信することを示し、ビット情報「111」は、何も設定しない、あるいは将来の拡張用として予約しておくことを示している。   The mapping table shown in FIG. 5C includes at least bit information indicating that SRS is not transmitted and bit information defined by combining a frequency position and a cyclic shift number for transmitting SRS. More specifically, the bit information “000” indicates that the SRS is not transmitted, and the bit information “001”, “010”, and “011” transmit the SRS at the frequency position 0 and each of CS0 to CS0. The bit information “100”, “101”, “110” indicates that the SRS is transmitted at the frequency position 1 and is transmitted at CS0 to CS2, and the bit information “111” is Indicates that nothing is set or reserved for future expansion.

複数のマッピングテーブルとして、上記図5(a)〜(c)が規定されている場合には、無線基地局装置は移動端末装置毎に任意のマッピングテーブルを選択し、SRSトリガーフォーマットとして移動端末装置に通知する。   5A to 5C are defined as a plurality of mapping tables, the radio base station apparatus selects an arbitrary mapping table for each mobile terminal apparatus and uses the mobile terminal apparatus as the SRS trigger format. Notify

また、無線基地局装置が、上記図5(a)〜(c)等に示すような互いに異種のSRSパラメータが規定された複数のマッピングテーブルから任意のマッピングテーブルを選択する場合には、上述したように移動端末装置の通信状況に基づいて行うことができる。   In addition, when the radio base station apparatus selects an arbitrary mapping table from a plurality of mapping tables in which different types of SRS parameters are defined as shown in FIGS. Thus, it can carry out based on the communication condition of a mobile terminal device.

上記図5では、複数のマッピングテーブルとして、それぞれ異種のSRSパラメータを2つ(Comb、周波数位置又はサイクリックシフト番号のうち少なくとも2つ)規定する場合を示したが、図4(a)〜(c)の構成のように1種類のSRSパラメータで規定してもよいし、3種類以上のSRSパラメータで規定してもよい。あるいは、図4(d)〜(f)の構成のように、デフォルトパラメータをRRCシグナリングで通知することを前提とした構成にしてもよい。   FIG. 5 shows a case where two different types of SRS parameters (at least two of comb, frequency position and cyclic shift number) are defined as a plurality of mapping tables. It may be defined by one type of SRS parameter as in the configuration of c), or may be defined by three or more types of SRS parameters. Alternatively, as in the configurations of FIGS. 4D to 4F, it may be configured on the assumption that the default parameters are notified by RRC signaling.

なお、複数のマッピングテーブルは、無線基地局装置の記憶部に記憶させて当該記憶部から選択する構成としてもよいし、他の無線通信装置に記憶されたマッピングテーブルから選択する構成としてもよい。また、図4、図5に示したマッピングテーブルは一例であり、マッピングテーブルに設定するSRSパラメータに関する情報やその組み合わせもこれらに限られない。また、設定するビット数も2以上であれば限られない。   The plurality of mapping tables may be stored in the storage unit of the radio base station apparatus and selected from the storage unit, or may be selected from the mapping tables stored in other radio communication apparatuses. Moreover, the mapping table shown in FIG. 4, FIG. 5 is an example, The information regarding the SRS parameter set to a mapping table and its combination are not restricted to these. Further, the number of bits to be set is not limited as long as it is 2 or more.

次に、上述したSRSトリガーフォーマットの下りリンク制御チャネル(PDCCH)への適用について具体的に説明する。PDCCHには、送信モードや送信情報に応じて複数の異なるDCI(Downlink Control information)フォーマットが規定されている。例えば、DCI format0は上りリンク共有チャネル(PUSCH)のスケジューリング情報の通知(ULスケジューリンググラント)に用いられる。   Next, the application of the above-described SRS trigger format to the downlink control channel (PDCCH) will be specifically described. In the PDCCH, a plurality of different DCI (Downlink Control Information) formats are defined according to the transmission mode and transmission information. For example, DCI format 0 is used for notification of scheduling information (UL scheduling grant) of the uplink shared channel (PUSCH).

本実施の形態では、SRSトリガーフォーマット中の所定のビット情報を、複数のDCIフォーマットの中でSRSに関する情報が規定されるいずれかのDCIフォーマットに含めて前記移動端末装置へ通知する。また、SRSに関する情報は複数のDCIフォーマットに規定することができ、例えば、第1のDCIフォーマットと第2のDCIフォーマットに少なくともSRSに関する情報を規定する。なお、SRSに関する情報を規定するDCIフォーマットの数は2つに限られない。   In the present embodiment, predetermined bit information in the SRS trigger format is included in any DCI format in which information related to SRS is defined in a plurality of DCI formats, and is notified to the mobile terminal apparatus. Further, information regarding SRS can be defined in a plurality of DCI formats. For example, at least information regarding SRS is defined in the first DCI format and the second DCI format. Note that the number of DCI formats that define information on SRS is not limited to two.

複数のDCIフォーマットにSRSに関する情報を規定する場合には、各DCIフォーマットに対応するSRSトリガーフォーマット間で割当てのビット数や指示するSRS送信内容が異なる場合がある。例えば、DCI format0では、SRSに関して1ビットの割当てが検討されている。また、ULマルチアンテナ伝送用のULスケジューリンググラントとしてDCI format4が規定されることが検討されており、DCI format4では、SRSに関して2ビット以上(2ビット又は3ビット)の割当てが検討されている。   When information about SRS is defined in a plurality of DCI formats, the number of bits to be allocated and the SRS transmission content to be instructed may differ between SRS trigger formats corresponding to each DCI format. For example, in DCI format 0, 1-bit allocation is considered for SRS. Further, it is considered that DCI format 4 is defined as UL scheduling grant for UL multi-antenna transmission. In DCI format 4, allocation of 2 bits or more (2 bits or 3 bits) is considered for SRS.

この場合、SRSパラメータに関する情報としてDCI format0では1通り規定でき、DCI format4では3通り(2ビットの場合)又は7通り(3ビットの場合)規定できることとなる。つまり、DCI format0とDCI format4において規定できる内容が異なる。   In this case, as the information regarding the SRS parameter, one can be defined in DCI format 0, and three (in the case of 2 bits) or seven (in the case of 3 bits) can be defined in DCI format 4. That is, the contents that can be defined in DCI format 0 and DCI format 4 are different.

例えば、DCI format0に対して、図13(a)に示すように、SRSを未送信とするビット情報「0」と、RRCシグナリングによって別途通知されるデフォルトXのSRSパラメータを用いて送信することを指示するビット情報「1」とを有するSRSトリガーフォーマットを用いる。また、DCI format4に対しては、図13(b)に示すように、SRSを未送信とするビット情報「00」と、複数のデフォルトa、b、cのSRSパラメータのいずれかを用いて送信することを指示するビット情報「01」、「10」、「11」とを有するSRSトリガーフォーマットを用いる。なお、複数のデフォルトa、b、cのSRSパラメータは、RRCシグナリングによって別途通知される。   For example, for DCI format0, as shown in FIG. 13A, transmission is performed using bit information “0” indicating that SRS is not transmitted and an SRS parameter of default X separately notified by RRC signaling. An SRS trigger format having bit information “1” to indicate is used. Also, for DCI format 4, as shown in FIG. 13B, transmission is performed using bit information “00” indicating that SRS is not transmitted and a plurality of default SRS parameters a, b, and c. An SRS trigger format having bit information “01”, “10”, and “11” instructing to perform is used. Note that the SRS parameters of a plurality of defaults a, b, and c are separately notified by RRC signaling.

このようにSRSに関する情報が規定された各DCIフォーマットに対してSRSトリガーフォーマットを設定する際、DCIフォーマット毎に異なる送信内容を規定する(Xがa、b、cのいずれとも異なる)と、1ユーザの中でDCIフォーマット毎に割り当てるSRSリソースを異なる構成とすることができるが、一方でDCIフォーマット毎に独立にSRSリソース割り当てを構成する必要があるためSRSのリソース設計が複雑なものとなってしまう。   When the SRS trigger format is set for each DCI format in which information related to SRS is defined in this way, different transmission contents are defined for each DCI format (X is different from any of a, b, and c). Although the SRS resource allocated for each DCI format can be configured differently in the user, the SRS resource design becomes complicated because it is necessary to configure the SRS resource allocation independently for each DCI format. End up.

したがって、SRSに関する情報が規定されるDCIフォーマットを複数規定する場合には、各DCIフォーマットに対応するSRSトリガーフォーマットのSRS送信内容を共通に設定することが、RRCシグナリングオーバヘッドの削減の観点から好ましい。例えば、図13においては、Xがa、b、cのいずれかと同一になるように設定する。このように、異なるDCIフォーマットに対応するSRSトリガーフォーマットの送信内容を共通に設定することにより、RRCシグナリングオーバヘッドを削減することが可能となる。   Therefore, when a plurality of DCI formats in which information related to SRS is defined, it is preferable from the viewpoint of reducing RRC signaling overhead to set the SRS transmission contents of the SRS trigger format corresponding to each DCI format in common. For example, in FIG. 13, X is set to be the same as any one of a, b, and c. As described above, it is possible to reduce the RRC signaling overhead by commonly setting the transmission contents of the SRS trigger format corresponding to different DCI formats.

SRSに関する情報が規定される複数のDCIフォーマット間で割当てビット数が異なる場合には、図13に示すように、ビット数の小さいSRSトリガーフォーマットに規定された送信内容がビット数の大きいSRSトリガーフォーマットに規定された送信内容に含まれるように規定すればよい。   When the number of allocated bits is different among a plurality of DCI formats in which information related to SRS is defined, as shown in FIG. 13, the transmission content defined in the SRS trigger format with a small number of bits is the SRS trigger format with a large number of bits. It may be specified so as to be included in the transmission content specified in.

なお、図13は、SRSに関する情報が規定されるDCIフォーマットとして、ULスケジューリンググラントとなるDCI format0とDCI format4を例に挙げて説明したが、その他のDCIフォーマットにSRSに関する情報を規定する構成としてもよい。例えば、DLスケジューリンググラントとなるDCIフォーマット(例えば、DCI format1A等)にSRSに関する情報を規定してもよい。この場合も、複数のDLスケジューリンググラントのDCIフォーマットにSRSに関する情報が規定する際に、各DCIフォーマットに対応するSRSトリガーフォーマットのSRS送信内容を共通に設定することが好ましい。   In FIG. 13, DCI format 0 and DCI format 4 serving as UL scheduling grants have been described as examples of DCI formats in which information related to SRS is specified. However, other DCI formats may be configured to specify information related to SRS. Good. For example, information related to SRS may be defined in a DCI format (for example, DCI format 1A) that becomes a DL scheduling grant. Also in this case, when information about SRS is defined in the DCI formats of a plurality of DL scheduling grants, it is preferable to commonly set the SRS transmission contents of the SRS trigger format corresponding to each DCI format.

また、SRSに関する情報が規定される所定のDCIフォーマットにおいて、ビット数が異なる複数のSRSトリガーフォーマットを設定し、所定の条件に基づいて適用するSRSトリガーフォーマットを適宜選択する構成としてもよい。   Further, in a predetermined DCI format in which information related to SRS is defined, a plurality of SRS trigger formats having different numbers of bits may be set, and an SRS trigger format to be applied may be appropriately selected based on a predetermined condition.

例えば、DCI format4において、設定するビット数(2ビット又は3ビット)を考慮してSRSトリガーフォーマットに規定するSRS送信内容を設定することが好ましい。具体的には、相対的に少ないビット数(例えば、2ビット)に対応するSRSトリガーフォーマットでは、SRSデフォルトのパラメータを通知する内容とする(図14(a)参照)。これにより、ネットワーク側が指示できるリソースの自由度を大きくすることができる。   For example, in DCI format 4, it is preferable to set the SRS transmission content defined in the SRS trigger format in consideration of the number of bits to be set (2 bits or 3 bits). Specifically, in the SRS trigger format corresponding to a relatively small number of bits (for example, 2 bits), the SRS default parameter is notified (see FIG. 14A). Thereby, the freedom degree of the resource which the network side can instruct | indicate can be enlarged.

一方、相対的に多いビット数(例えば、3ビット)に対応するSRSトリガーフォーマットでは、SRSデフォルトのパラメータから一部のパラメータをシフトする内容とする(図14(b)参照)。これにより、RRCシグナリングのオーバーヘッドを低減することが可能となる。   On the other hand, in the SRS trigger format corresponding to a relatively large number of bits (for example, 3 bits), some parameters are shifted from the SRS default parameters (see FIG. 14B). Thereby, it becomes possible to reduce the overhead of RRC signaling.

また、図14に示すように異なるビット数に対応してSRSトリガーフォーマットの送信内容を設定する場合には、選択するビット数に関してRRCシグナリングを用いて適宜通知することにより、状況に応じて適宜制御する構成とすることができる。例えば、ユーザ数が少ない場合には、相対的に少ないビット数(例えば、2ビット)で規定されたSRSトリガーフォーマットを適用して2ビット情報をPDSCHで通知する。また、ユーザ数が所定数以上である場合には、相対的に多いビット(例えば、3ビット)で規定されたSRSトリガーフォーマットを適用して3ビット情報をPDSCHで通知する構成とすることができる。   Also, as shown in FIG. 14, when setting the transmission contents of the SRS trigger format corresponding to different number of bits, by appropriately reporting the number of bits to be selected using RRC signaling, it is controlled as appropriate according to the situation. It can be set as the structure to do. For example, when the number of users is small, 2-bit information is notified by PDSCH by applying an SRS trigger format defined by a relatively small number of bits (for example, 2 bits). In addition, when the number of users is equal to or greater than a predetermined number, it is possible to apply a SRS trigger format defined by a relatively large number of bits (for example, 3 bits) to notify 3-bit information by PDSCH. .

このように、ビット数に応じてSRSトリガーフォーマットのSRS送信内容を設定し、所定の条件に基づいて通知するビット数を選択することにより、SRS送信制御情報を柔軟に設定し、無線リソースを効率的に使用することができる。   Thus, by setting the SRS transmission contents in the SRS trigger format according to the number of bits, and selecting the number of bits to be notified based on a predetermined condition, the SRS transmission control information is flexibly set, and the radio resource is efficiently Can be used.

以下に、非周期SRSの送信制御の具体的な手順について図6を参照して説明する。   Below, the specific procedure of transmission control of aperiodic SRS is demonstrated with reference to FIG.

まず、無線基地局装置が、SRSのトリガーの有無とSRSパラメータに関する情報の一部とが組み合わされてビット情報として規定されたSRSトリガーフォーマットを設定し、移動端末装置に通知する(step11)。例えば、無線基地局装置は、上記図4、図5に示したような互いに異種のSRSパラメータが規定された複数のマッピングテーブルの中から移動端末装置に対して所定のマッピングテーブルを選択し、SRSトリガーフォーマットとして移動端末装置に通知する。移動端末装置への通知は、RRCシグナリングを用いて行うことができる。また、図4(d)−(f)のように、デフォルトのSRSパラメータを必要とする手法の場合は、併せてデフォルトのSRSパラメータを通知する。   First, a radio base station apparatus sets the SRS trigger format prescribed | regulated as bit information combining the presence or absence of the trigger of SRS, and a part of information regarding an SRS parameter, and notifies to a mobile terminal device (step11). For example, the radio base station apparatus selects a predetermined mapping table for the mobile terminal apparatus from among a plurality of mapping tables in which different types of SRS parameters are defined as shown in FIGS. Notify the mobile terminal device as a trigger format. The notification to the mobile terminal apparatus can be performed using RRC signaling. Further, as shown in FIGS. 4D to 4F, in the case of a method that requires a default SRS parameter, the default SRS parameter is notified together.

なお、無線基地局装置が、複数のマッピングテーブルから任意のマッピングテーブルを選択する場合には、上述したように、移動端末装置の通信状況に基づいて行うことができる。   When the radio base station apparatus selects an arbitrary mapping table from a plurality of mapping tables, it can be performed based on the communication status of the mobile terminal apparatus as described above.

次に、無線基地局装置は、設定したSRSトリガーフォーマット(マッピングテーブル)の中から移動端末装置に対して適用する所定のビット情報を選択し、下りリンク制御チャネルを用いて移動端末装置に通知する(step12)。移動端末装置への通知は、ULスケジューリンググラント又はDLスケジューリンググラントに含めて行うことができる。   Next, the radio base station apparatus selects predetermined bit information to be applied to the mobile terminal apparatus from the set SRS trigger format (mapping table), and notifies the mobile terminal apparatus using the downlink control channel. (Step 12). The notification to the mobile terminal apparatus can be performed by being included in the UL scheduling grant or the DL scheduling grant.

次に、移動端末装置は、無線基地局装置から通知されるSRSトリガーフォーマットと、下りリンク制御チャネルを用いて通知される所定のビット情報を受信し、これらの情報に基づいてSRSの送信内容を特定する(step13)。なお、下りリンク制御チャネルに割当てられない他のSRSの送信制御情報は、RRCシグナリング等により別途移動端末装置に対して通知される。   Next, the mobile terminal apparatus receives the SRS trigger format notified from the radio base station apparatus and the predetermined bit information notified using the downlink control channel, and based on these information, transmits the SRS transmission content. Specify (step 13). Note that the transmission control information of other SRSs not allocated to the downlink control channel is separately notified to the mobile terminal apparatus by RRC signaling or the like.

次に、移動端末装置は、特定したSRSの送信内容に基づいて、SRSの送信を制御する(step14)。特定したSRSの送信内容がSRSを未送信とする(SRSをトリガーしない)情報である場合には、SRSの送信は行わない(step15)。一方、特定したSRSの送信内容がSRSをトリガーする情報を含んでいる場合には、移動端末装置に通知されたSRSパラメータが規定する送信条件に基づいてSRSの送信を行う(step16)。具体的には、特定したSRSの送信内容やRRCシグナリングにより通知された他のSRS送信制御情報を用いて所定の条件でSRSを送信する。   Next, the mobile terminal apparatus controls SRS transmission based on the identified SRS transmission content (step 14). When the identified SRS transmission content is information indicating that the SRS has not been transmitted (no SRS is triggered), the SRS is not transmitted (step 15). On the other hand, when the transmission content of the specified SRS includes information that triggers the SRS, the SRS is transmitted based on the transmission condition defined by the SRS parameter notified to the mobile terminal apparatus (step 16). Specifically, the SRS is transmitted under a predetermined condition using the specified SRS transmission content and other SRS transmission control information notified by RRC signaling.

(実施の形態2)
本実施の形態では、周期的に移動端末装置に送られる周期SRS(Periodic SRS)と非周期SRS(Aperiodic SRS)を組み合わせて適用する場合のSRSの送信制御に関して説明する。
(Embodiment 2)
This Embodiment demonstrates the transmission control of SRS in the case of applying combining the period SRS (Periodic SRS) and Aperiodic SRS (Aperiodic SRS) periodically sent to a mobile terminal device.

周期SRSと非周期SRSを組み合わせて適用する場合、周期SRSは所定の送信間隔で送信されるが、非周期SRSは無線基地局装置から通知されるSRS送信制御情報に基づいて送信が行われる。例えば、図15に示すように、周期SRSは、送信周期を5msecとして各サブフレームの最終シンボルに多重される。一方で、非周期SRSは、例えば、非周期SRSの送信指示を含むULスケジューリンググラントの通知を受けた4サブフレーム後のサブフレームで送信するPUSCH信号と共に送信される。   When applying combining a periodic SRS and an aperiodic SRS, the period SRS is transmitted at a predetermined transmission interval, but the aperiodic SRS is transmitted based on SRS transmission control information notified from the radio base station apparatus. For example, as shown in FIG. 15, the cycle SRS is multiplexed with the final symbol of each subframe with a transmission cycle of 5 msec. On the other hand, the non-periodic SRS is transmitted together with the PUSCH signal transmitted in the subframe after four subframes that received the UL scheduling grant notification including the transmission instruction of the aperiodic SRS, for example.

この場合、ULスケジューリンググラントの通知されるタイミングによっては、周期SRSと非周期SRSの送信タイミングが重なる場合が考えられる。その結果、SRSの送信が大きく遅延してしまう等のおそれがある。   In this case, the transmission timing of the periodic SRS and the non-periodic SRS may overlap depending on the timing at which the UL scheduling grant is notified. As a result, there is a risk that transmission of SRS will be greatly delayed.

そのため、周期SRSと非周期SRSを組み合わせて適用する場合に、周期SRSと非周期SRSの送信タイミングが重なった際に、送信タイミングが重なるサブフレームにおいて、いずれか一方のSRSの送信を優先して行い、他方のSRSの送信を行わない構成とする。これにより、周期SRSと非周期SRSを組み合わせて適用する場合であっても、周期SRSと非周期SRSの送信タイミングが重なることによるSRS送信遅延することを抑制することができる。   Therefore, when applying a combination of periodic SRS and aperiodic SRS, when transmission timings of periodic SRS and aperiodic SRS overlap, priority is given to transmission of either SRS in the subframe where the transmission timing overlaps. And the other SRS is not transmitted. Thereby, even if it is a case where combining and applying period SRS and non-period SRS, it can suppress that SRS transmission delay by the transmission timing of period SRS and non-period SRS overlaps.

一例としては、PUSCH信号が送信されるタイミングにおけるチャネル品質を測定できる非周期SRSを優先する構成とする。この場合、周期SRSと非周期SRSの送信タイミングが重なった際には周期SRSの送信を行わずに非周期SRSの送信を優先して行う。なお、通信環境に応じて周期SRSを優先してもよく、優先するSRSはRRCシグナリングで通知する構成とすることができる。   As an example, a non-periodic SRS that can measure channel quality at a timing at which a PUSCH signal is transmitted is given priority. In this case, when the transmission timings of the periodic SRS and the non-periodic SRS overlap, transmission of the non-periodic SRS is preferentially performed without transmitting the periodic SRS. The period SRS may be prioritized according to the communication environment, and the priority SRS can be notified by RRC signaling.

また、他の方法として、周期SRSと非周期SRSの送信タイミングを異なるサブフレームに分散して設定することにより、周期SRSと非周期SRSの送信タイミングの衝突自体を回避する構成としてもよい。   As another method, the transmission timing of the periodic SRS and the non-periodic SRS may be set to be distributed in different subframes to avoid a collision between the transmission timing of the periodic SRS and the aperiodic SRS itself.

この場合、あるサブフレームは周期SRSのみを設定し、別のサブフレームに非周期SRSを設定する。例えば、送信周期が5msecの周期SRSは、5×nサブフレーム(nは1以上の整数)にのみ設定し、非周期SRSを5×n以外のサブフレームのいずれかに設定する構成とする。   In this case, only a periodic SRS is set in a certain subframe, and an aperiodic SRS is set in another subframe. For example, a cycle SRS with a transmission cycle of 5 msec is set only in a 5 × n subframe (n is an integer equal to or greater than 1), and a non-cycle SRS is set in any subframe other than 5 × n.

なお、本実施の形態において、非周期SRSの送信制御に関しては、上記実施の形態1で示した構成を適用することができる。この場合、移動端末装置が、無線基地局装置から通知されるSRS送信制御情報に基づいて非周期のSRSを無線基地局に対して送信すると共に、所定の周期で周期SRSを送信する。   In the present embodiment, the configuration shown in the first embodiment can be applied to the transmission control of the aperiodic SRS. In this case, the mobile terminal apparatus transmits the aperiodic SRS to the radio base station based on the SRS transmission control information notified from the radio base station apparatus, and transmits the periodic SRS at a predetermined period.

(実施の形態3)
以下に、上述した参照信号の送信制御を適用する無線基地局装置及び移動端末装置の構成等について説明する。ここでは、LTE−A方式のシステム(LTE−Aシステム)に対応する無線基地局装置及び移動端末装置を用いる場合について説明する。
(Embodiment 3)
Hereinafter, configurations of a radio base station apparatus and a mobile terminal apparatus to which the above-described reference signal transmission control is applied will be described. Here, a case where a radio base station apparatus and a mobile terminal apparatus corresponding to an LTE-A system (LTE-A system) is used will be described.

まず、図7を参照しながら、移動端末装置100及び無線基地局装置200を有する無線通信システム10について説明する。図7は、本発明の一実施の形態に係る移動端末装置100及び無線基地局装置200を有する無線通信システム10の構成を説明するための図である。なお、図7に示す無線通信システム10は、例えば、LTEシステム又はSUPER 3Gが包含されるシステムである。また、この無線通信システム1は、IMT−Advancedと呼ばれても良いし、4Gと呼ばれても良い。   First, the radio communication system 10 including the mobile terminal device 100 and the radio base station device 200 will be described with reference to FIG. FIG. 7 is a diagram for explaining a configuration of a radio communication system 10 including mobile terminal apparatus 100 and radio base station apparatus 200 according to an embodiment of the present invention. Note that the radio communication system 10 illustrated in FIG. 7 is a system including, for example, an LTE system or SUPER 3G. Moreover, this radio | wireless communications system 1 may be called IMT-Advanced, and may be called 4G.

図7に示すように、無線通信システム10は、無線基地局装置200と、この無線基地局装置200と通信する複数の移動端末装置100(100、100、100、・・・100、nはn>0の整数)とを含んで構成されている。無線基地局装置200は、上位局装置30と接続され、この上位局装置30は、コアネットワーク40と接続される。移動端末装置100は、セル50において無線基地局装置200と通信を行っている。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)等が含まれるが、これに限定されるものではない。 As illustrated in FIG. 7, the radio communication system 10 includes a radio base station apparatus 200 and a plurality of mobile terminal apparatuses 100 (100 1 , 100 2 , 100 3 ,... 100 n that communicate with the radio base station apparatus 200. , N is an integer of n> 0). The radio base station apparatus 200 is connected to the higher station apparatus 30, and the higher station apparatus 30 is connected to the core network 40. The mobile terminal apparatus 100 communicates with the radio base station apparatus 200 in the cell 50. The upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.

無線通信システム10においては、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が、上りリンクについてはSC−FDMA(シングルキャリア−周波数分割多元接続)又はクラスタ化DFT拡散OFDM(Clustered DFT-Spread OFDM)が適用される。   In the radio communication system 10, as a radio access scheme, OFDMA (orthogonal frequency division multiple access) is used for the downlink, and SC-FDMA (single carrier-frequency division multiple access) or clustered DFT spread OFDM (Clustered) is used for the uplink. DFT-Spread OFDM) is applied.

OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC−FDMAは、システム帯域を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。クラスタ化DFT拡散OFDMは、非連続的なクラスタ化されたサブキャリアのグループ(クラスタ)を1台の移動端末UEに割り当て、各クラスタに離散フーリエ変換拡散OFDMを適用することにより、上りリンクの多元接続を実現する方式である。   OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier. SC-FDMA is a single carrier transmission scheme that reduces interference between terminals by dividing a system band into bands each consisting of one or continuous resource blocks for each terminal, and a plurality of terminals using different bands. . Clustered DFT spread OFDM assigns non-contiguous clustered subcarrier groups (clusters) to one mobile terminal UE, and applies discrete Fourier transform spread OFDM to each cluster, thereby providing uplink multiples. This is a method for realizing connection.

ここで、LTEシステムにおける通信チャネルについて説明する。下りリンクについては、各移動端末装置100で共有されるPDSCHと、下りL1/L2制御チャネル(PDCCH、PCFICH、PHICH)とが用いられる。このPDSCHにより、ユーザデータ、すなわち、通常のデータ信号が伝送される。送信データは、このユーザデータに含まれる。なお、送信識別ビットを含むULスケジューリンググラントやDLスケジューリンググラントは、L1/L2制御チャネル(PDCCH)により移動端末装置100に通知される。   Here, a communication channel in the LTE system will be described. For the downlink, PDSCH shared by each mobile terminal apparatus 100 and downlink L1 / L2 control channels (PDCCH, PCFICH, PHICH) are used. User data, that is, a normal data signal is transmitted by this PDSCH. Transmission data is included in this user data. Note that the UL scheduling grant and the DL scheduling grant including the transmission identification bit are notified to the mobile terminal apparatus 100 through the L1 / L2 control channel (PDCCH).

上りリンクについては、各移動端末装置100で共有して使用されるPUSCHと、上りリンクの制御チャネルであるPUCCHとが用いられる。このPUSCHにより、ユーザデータが伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)等が伝送される。   For the uplink, PUSCH that is shared and used by each mobile terminal apparatus 100 and PUCCH that is an uplink control channel are used. User data is transmitted by this PUSCH. Also, downlink radio quality information (CQI: Channel Quality Indicator) and the like are transmitted by PUCCH.

次に、図8を参照して、無線基地局装置の機能構成について説明する。図8は、無線基地局装置の機能ブロック図の一例である。   Next, the functional configuration of the radio base station apparatus will be described with reference to FIG. FIG. 8 is an example of a functional block diagram of the radio base station apparatus.

図8に示すように、無線基地局装置200は、送受信アンテナ202と、アンプ部204と、送受信部206と、ベースバンド信号処理部208と、呼処理部210と、伝送路インターフェース212とを備えて構成されている。送受信アンテナ202は複数有していてもよい。   As illustrated in FIG. 8, the radio base station apparatus 200 includes a transmission / reception antenna 202, an amplifier unit 204, a transmission / reception unit 206, a baseband signal processing unit 208, a call processing unit 210, and a transmission path interface 212. Configured. A plurality of transmission / reception antennas 202 may be provided.

上りリンクのデータについては、送受信アンテナ202で受信した無線周波数信号がアンプ部204において、AGCの下で受信電力が一定電力に補正されるように増幅される。増幅された無線周波数信号は、送受信部206においてベースバンド信号へ周波数変換される。このベースバンド信号は、ベースバンド信号処理部208で所定の処理(誤り訂正、複合など)がなされた後、伝送路インターフェース212を介して図示しないアクセスゲートウェイ装置に転送される。アクセスゲートウェイ装置は、コアネットワークに接続されており、各移動端末を管理している。   For the uplink data, the radio frequency signal received by the transmission / reception antenna 202 is amplified by the amplifier unit 204 so that the received power is corrected to a constant power under AGC. The amplified radio frequency signal is frequency converted into a baseband signal in the transmission / reception unit 206. The baseband signal is subjected to predetermined processing (error correction, composite, etc.) by the baseband signal processing unit 208, and then transferred to an access gateway device (not shown) via the transmission path interface 212. The access gateway device is connected to the core network and manages each mobile terminal.

下りリンクのデータについては、上位装置から伝送路インターフェース212を介してベースバンド信号処理部208に入力される。ベースバンド信号処理部208では、再送制御(H-ARQ(Hybrid ARQ))の処理、スケジューリング、伝送フォーマット選択、チャネル符号化等がなされて送受信部206に転送される。送受信部206では、ベースバンド信号処理部208から出力されたベースバンド信号を無線周波数信号へ周波数変換する。周波数変換された信号は、その後、アンプ部204で増幅されて送受信アンテナ202から送信される。   Downlink data is input from the host device to the baseband signal processing unit 208 via the transmission path interface 212. The baseband signal processing unit 208 performs retransmission control (H-ARQ (Hybrid ARQ)) processing, scheduling, transmission format selection, channel coding, and the like, and transfers the result to the transmission / reception unit 206. The transmission / reception unit 206 converts the frequency of the baseband signal output from the baseband signal processing unit 208 into a radio frequency signal. The frequency-converted signal is then amplified by the amplifier unit 204 and transmitted from the transmission / reception antenna 202.

呼処理部210は、上位装置の無線制御局との間で呼処理制御信号を送受信し、無線基地局装置200の状態管理やリソース割り当てをする。なお、レイヤ1処理部2081とMAC処理部2082における処理は、呼処理部210において設定されている、無線基地局装置200と移動端末装置100との間の通信状態に基づいてなされる。 The call processing unit 210 transmits / receives a call processing control signal to / from a radio control station of the host device, and manages the state of the radio base station device 200 and allocates resources. Note that the processing in the layer 1 processing unit 2081 and the MAC processing unit 2082 is performed based on the communication state between the radio base station apparatus 200 and the mobile terminal apparatus 100 n set in the call processing unit 210.

次に、図9を参照して、ベースバンド処理部の機能構成について説明する。図9は、無線基地局装置のベースバンド信号処理部の機能ブロック図である。   Next, the functional configuration of the baseband processing unit will be described with reference to FIG. FIG. 9 is a functional block diagram of the baseband signal processing unit of the radio base station apparatus.

図9に示すように、ベースバンド信号処理部208は、レイヤ1処理部2081と、MAC(Medium Access Control)処理部2082と、RLC処理部2083と、SRSトリガーフォーマット設定部2084と、SRS設定部2085と、下りリンクチャネル設定通知部2086とを有している。   As illustrated in FIG. 9, the baseband signal processing unit 208 includes a layer 1 processing unit 2081, a MAC (Medium Access Control) processing unit 2082, an RLC processing unit 2083, an SRS trigger format setting unit 2084, and an SRS setting unit. 2085 and a downlink channel setting notification unit 2086.

レイヤ1処理部2081は、主に物理レイヤに関する処理を行う。レイヤ1処理部2081では、例えば、上りリンクで受信した信号に対して、チャネル復号化、離散フーリエ変換(DFT)、周波数デマッピング、逆フーリエ変換(IFFT)、データ復調等の処理が行われる。また、下りリンクで送信する信号に対して、チャネル符号化、データ変調、周波数マッピング、逆フーリエ変換(IFFT)等の処理を行う。   The layer 1 processing unit 2081 mainly performs processing related to the physical layer. In the layer 1 processing unit 2081, for example, processing such as channel decoding, discrete Fourier transform (DFT), frequency demapping, inverse Fourier transform (IFFT), and data demodulation is performed on the signal received on the uplink. In addition, processing such as channel coding, data modulation, frequency mapping, and inverse Fourier transform (IFFT) is performed on a signal transmitted on the downlink.

MAC処理部2082は、上りリンクで受信した信号に対するMACレイヤでの再送制御(HARQ)、上り/下りリンクに対するスケジューリング、PUSCH/PDSCHの伝送フォーマットの選択、PUSCH/PDSCHのリソースブロックの選択等の処理を行う。   The MAC processing unit 2082 performs processing such as retransmission control (HARQ) in the MAC layer for signals received in the uplink, scheduling for uplink / downlink, selection of PUSCH / PDSCH transmission format, selection of PUSCH / PDSCH resource block, and the like. I do.

RLC処理部2083は、上りリンクで受信したパケット/下りリンクで送信するパケットに対して、パケットの分割、パケットの結合、RLCレイヤでの再送制御等を行う。   The RLC processing unit 2083 performs packet division, packet combination, retransmission control in the RLC layer, and the like on packets received on the uplink / packets transmitted on the downlink.

SRSトリガーフォーマット設定部2084は、SRSのトリガーの有無とSRSパラメータに関する情報の一部とが組み合わされてビット情報として規定されたSRSトリガーフォーマットを設定する。設定されたSRSトリガーフォーマットは、RRCシグナリング等により移動端末装置に通知される。また、SRSトリガーフォーマット設定部2084は、移動端末装置の通信状況に基づいてSRSトリガーフォーマットに設定するSRSパラメータに関する情報を選択する。   The SRS trigger format setting unit 2084 sets the SRS trigger format defined as bit information by combining the presence or absence of an SRS trigger and a part of information regarding the SRS parameter. The set SRS trigger format is notified to the mobile terminal apparatus by RRC signaling or the like. Also, the SRS trigger format setting unit 2084 selects information related to the SRS parameter to be set to the SRS trigger format based on the communication status of the mobile terminal device.

また、SRSトリガーフォーマット設定部2084は、互いに異種のSRSパラメータが規定された複数のSRSトリガーフォーマット(マッピングテーブル)の中から移動端末装置の通信状況に基づいて、特定のSRSトリガーフォーマットを選択することにより、SRSトリガーフォーマットを設定することができる。この場合、上記図4、図5で示したマッピングテーブル等を用いることができる。なお、複数のマッピングテーブルは、SRSトリガーフォーマット設定部2084内に記憶する構成としてもよいし、無線基地局装置内の記憶部に記憶させて当該記憶部から選択する構成としてもよい。また、他の無線通信装置に記憶されたマッピングテーブルから選択する構成としてもよい。   Further, the SRS trigger format setting unit 2084 selects a specific SRS trigger format based on the communication status of the mobile terminal device from a plurality of SRS trigger formats (mapping tables) in which different SRS parameters are defined. Thus, the SRS trigger format can be set. In this case, the mapping tables shown in FIGS. 4 and 5 can be used. The plurality of mapping tables may be stored in the SRS trigger format setting unit 2084, or may be stored in the storage unit in the radio base station apparatus and selected from the storage unit. Moreover, it is good also as a structure selected from the mapping table memorize | stored in the other radio | wireless communication apparatus.

SRS設定部2085は、SRSトリガーフォーマット設定部2085において設定されたSRSトリガーフォーマット中から、移動端末装置に通知する所定のビット情報を選択する。つまり、SRS設定部2085は、移動端末装置に適用するSRS送信内容(SRSのトリガーの有無や、SRSを送信する場合の具体的な送信条件の一部)について設定する。   The SRS setting unit 2085 selects predetermined bit information to be notified to the mobile terminal device from the SRS trigger format set by the SRS trigger format setting unit 2085. That is, the SRS setting unit 2085 sets the SRS transmission contents (the presence / absence of an SRS trigger and a part of specific transmission conditions when transmitting the SRS) applied to the mobile terminal device.

下りリンクチャネル設定通知部2086は、移動端末装置に対するSRS設定部2085で選択された所定のビット情報の通知を、下りリンク制御チャネルを用いて制御する。また、下りリンクチャネル設定通知部2086は、所定のビット情報を、下りリンク制御チャネルの複数のDCIフォーマットの中でSRSに関する情報が規定されるいずれかのDCIフォーマット(上りリンクスケジューリンググラント又は下りリンクスケジューリンググラント)に含めて移動端末装置へ通知することができる。   The downlink channel setting notification unit 2086 controls notification of the predetermined bit information selected by the SRS setting unit 2085 to the mobile terminal apparatus using the downlink control channel. Also, the downlink channel setting notifying unit 2086 converts the predetermined bit information into any DCI format (uplink scheduling grant or downlink scheduling) in which information on SRS is defined among a plurality of DCI formats of the downlink control channel. It is possible to notify the mobile terminal device by including it in the grant.

次に、図10を参照して、移動端末装置の機能構成について説明する。図10は、本実施の形態における移動端末装置の機能ブロック図の一例である。   Next, a functional configuration of the mobile terminal apparatus will be described with reference to FIG. FIG. 10 is an example of a functional block diagram of the mobile terminal device in the present embodiment.

図10に示すように、移動端末装置100は、送受信アンテナ102と、送受信アンテナ102に対応したアンプ部104と、送受信部106と、ベースバンド信号処理部108と、呼処理部110と、アプリケーション部112とを備えて構成されている。 As illustrated in FIG. 10, the mobile terminal device 100 n includes a transmission / reception antenna 102, an amplifier unit 104 corresponding to the transmission / reception antenna 102, a transmission / reception unit 106, a baseband signal processing unit 108, a call processing unit 110, an application Unit 112.

上りリンクのデータについては、アプリケーション部112からベースバンド信号処理部108に入力される。ベースバンド信号処理部108では、再送制御(H-ARQ(Hybrid ARQ))の処理、スケジューリング、伝送フォーマット選択、チャネル符号化、送信電力設定などがなされて、アンテナ毎に送受信部106に転送される。送受信部106では、ベースバンド信号処理部108から出力されたベースバンド信号をアンテナ毎に無線周波数信号へ周波数変換する。周波数変換された信号は、その後、アンプ部104で増幅されて送受信アンテナ102からアンテナ毎に送信される。   Uplink data is input from the application unit 112 to the baseband signal processing unit 108. The baseband signal processing unit 108 performs retransmission control (H-ARQ (Hybrid ARQ)) processing, scheduling, transmission format selection, channel coding, transmission power setting, and the like, and forwards them to the transmission / reception unit 106 for each antenna. . The transmission / reception unit 106 converts the baseband signal output from the baseband signal processing unit 108 into a radio frequency signal for each antenna. The frequency-converted signal is then amplified by the amplifier unit 104 and transmitted from the transmission / reception antenna 102 for each antenna.

下りリンクのデータについては、送受信アンテナ102で受信した無線周波数信号がアンプ部104において、AGC(Auto Gain Control)の下で受信電力が一定電力に補正されるように増幅される。増幅された無線周波数信号は、送受信部106においてベースバンド信号へ周波数変換される。このベースバンド信号は、ベースバンド信号処理部108で所定の処理(誤り訂正、複合など)がなされた後、呼処理部110及びアプリケーション部112に転送される。呼処理部110は、無線基地局装置との通信の管理等を行い、アプリケーション部112は、物理レイヤやMACレイヤより上位のレイヤに関する処理等を行う。   As for downlink data, a radio frequency signal received by the transmission / reception antenna 102 is amplified by the amplifier unit 104 so that the received power is corrected to a constant power under AGC (Auto Gain Control). The amplified radio frequency signal is frequency-converted into a baseband signal by the transmission / reception unit 106. The baseband signal is subjected to predetermined processing (error correction, composite, etc.) by the baseband signal processing unit 108 and then transferred to the call processing unit 110 and the application unit 112. The call processing unit 110 manages communication with the radio base station apparatus, and the application unit 112 performs processing related to a layer higher than the physical layer and the MAC layer.

次に、図11を参照して、上記図10に示した移動端末装置のベースバンド処理部の機能構成について説明する。   Next, the functional configuration of the baseband processing unit of the mobile terminal apparatus shown in FIG. 10 will be described with reference to FIG.

ベースバンド信号処理部108は、レイヤ1処理部1081と、MAC処理部1082と、RLC処理部1083と、SRSトリガーフォーマット受信部1084と、下りリンク制御チャネル受信部1085と、SRS送信設定部1086とを有している。   The baseband signal processing unit 108 includes a layer 1 processing unit 1081, a MAC processing unit 1082, an RLC processing unit 1083, an SRS trigger format receiving unit 1084, a downlink control channel receiving unit 1085, and an SRS transmission setting unit 1086. have.

レイヤ1処理部1081は、主に物理レイヤに関する処理をする。レイヤ1処理部1081では、例えば、下りリンクで受信した信号に対して、チャネル復号化、離散フーリエ変換(DFT)周波数デマッピング、逆フーリエ変換(IFFT)、データ復調等の処理が行われる。また、上りリンクで送信する信号に対して、チャネル符号化、データ変調、周波数マッピング、逆フーリエ変換(IFFT)等の処理を行う。   The layer 1 processing unit 1081 mainly performs processing related to the physical layer. In the layer 1 processing unit 1081, for example, processing such as channel decoding, discrete Fourier transform (DFT) frequency demapping, inverse Fourier transform (IFFT), and data demodulation is performed on a signal received on the downlink. In addition, processing such as channel coding, data modulation, frequency mapping, and inverse Fourier transform (IFFT) is performed on a signal transmitted on the uplink.

MAC処理部1082は、下りリンクで受信した信号に対するMACレイヤでの再送制御(HARQ)、下りリンクに対するスケジューリング情報の解析(PDSCHの伝送フォーマットの特定、PDSCHのリソースブロックの特定)等を行う。また、MAC処理部1082は、上りリンクで送信する信号に対するMAC再送制御、上りスケジューリング情報の解析(PUSCHの伝送フォーマットの特定、PUSCHのリソースブロックの特定等の処理)等を行う。   The MAC processing unit 1082 performs retransmission control (HARQ) at the MAC layer for a signal received in the downlink, analysis of scheduling information for the downlink (specification of PDSCH transmission format, identification of PDSCH resource block), and the like. Also, the MAC processing unit 1082 performs MAC retransmission control on signals transmitted on the uplink, analysis of uplink scheduling information (processing such as specifying a PUSCH transmission format, specifying a PUSCH resource block, and the like).

RLC処理部1083は、上りリンクで受信したパケット、およびアプリケーション部112から受け取る下りリンクで送信するパケットに対して、パケットの分割、パケットの結合、RLCレイヤでの再送制御等をする。   The RLC processing unit 1083 performs packet division, packet combination, retransmission control in the RLC layer, and the like on packets received on the uplink and packets transmitted on the downlink received from the application unit 112.

SRSトリガーフォーマット受信部1084は、無線基地局装置で設定された前記SRSのトリガーの有無とSRSパラメータに関する情報の一部とが組合わされてビット情報として規定されたSRSトリガーフォーマットを受信する。また、SRSトリガーフォーマットはRRCシグナリング等により受信することができる。   The SRS trigger format receiving unit 1084 receives the SRS trigger format defined as bit information by combining the presence or absence of the SRS trigger set in the radio base station apparatus and a part of the information regarding the SRS parameter. The SRS trigger format can be received by RRC signaling or the like.

下りリンク制御チャネル受信部1085は、下りリンク制御チャネルに割当てられたSRSの送信内容(SRSのトリガーの有無やSRSの送信条件等)が規定された所定のビット情報を受信する。そして、SRSトリガーフォーマット受信部1084で受信したSRSトリガーフォーマットに基づいて、SRSの送信内容を特定する。   The downlink control channel receiving unit 1085 receives predetermined bit information in which the transmission contents of the SRS assigned to the downlink control channel (whether there is an SRS trigger, SRS transmission conditions, etc.) are defined. Then, based on the SRS trigger format received by the SRS trigger format receiving unit 1084, the transmission content of the SRS is specified.

SRS送信設定部1086は、下りリンク制御チャネル受信部1085において特定したSRSの送信内容に基づいて、SRSの送信を制御する。具体的には、特定したSRSの送信内容がSRSを未送信とする(SRSをトリガーしない)情報である場合には、SRSの送信は行わない。一方、特定したSRSの送信内容がSRSをトリガーする情報である場合には、移動端末装置に通知されたSRSパラメータが規定する送信条件に基づいてSRSの送信を行う。   The SRS transmission setting unit 1086 controls SRS transmission based on the SRS transmission content specified by the downlink control channel receiving unit 1085. Specifically, when the transmission content of the specified SRS is information indicating that the SRS has not been transmitted (the SRS is not triggered), the SRS is not transmitted. On the other hand, when the transmission content of the specified SRS is information that triggers the SRS, the SRS is transmitted based on the transmission condition defined by the SRS parameter notified to the mobile terminal apparatus.

なお、ここでは、下りリンク制御チャネル受信部1085においてSRSの送信内容を特定する構成を示しているが、SRS送信設定部1086でSRSの送信内容を特定する構成としてもよい。この場合、下りリンク制御チャネル受信部1085で受信した所定のビット情報をSRS送信設定部1086に供給し、SRS送信設定部1086でSRSの送信内容を特定すると共に、SRSの送信を制御する。   In addition, although the structure which specifies the transmission content of SRS in the downlink control channel receiving part 1085 is shown here, it is good also as a structure which specifies the transmission content of SRS in the SRS transmission setting part 1086. In this case, the predetermined bit information received by the downlink control channel receiving unit 1085 is supplied to the SRS transmission setting unit 1086, and the SRS transmission setting unit 1086 specifies the transmission content of the SRS and controls the transmission of the SRS.

また、上記実施の形態2で示したように、周期SRSと非周期SRSを組み合わせて適用する場合、SRS送信設定部1086は、無線基地局装置から通知されるSRS送信制御情報に基づいて非周期のSRSを無線基地局装置に対して送信すると共に、所定の周期で無線基地局装置に対して周期SRSを送信する。さらに、SRS送信設定部1086は、周期SRSと非周期SRSの送信タイミングの衝突を回避するため、周期SRSと非周期SRSの送信タイミングが同一サブフレームで重なる場合に、いずれか一方のSRSの送信を優先的に行う。又は、SRS送信設定部1086は、周期SRSと非周期SRSの送信タイミングを異なるサブフレームに設定する。   Moreover, as shown in the said Embodiment 2, when applying combining a periodic SRS and an aperiodic SRS, the SRS transmission setting part 1086 is aperiodic based on the SRS transmission control information notified from a wireless base station apparatus. The SRS is transmitted to the radio base station apparatus, and the cycle SRS is transmitted to the radio base station apparatus at a predetermined cycle. Furthermore, the SRS transmission setting unit 1086 transmits one of the SRSs when the transmission timings of the periodic SRS and the aperiodic SRS overlap in the same subframe in order to avoid a collision between the transmission timings of the periodic SRS and the aperiodic SRS. Is given priority. Alternatively, the SRS transmission setting unit 1086 sets the transmission timings of the periodic SRS and the non-periodic SRS in different subframes.

なお、今回開示された実施の形態は、全ての点で例示であってこの実施の形態に制限されるものではない。本発明の範囲は、上記した実施の形態のみの説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。   The embodiment disclosed this time is illustrative in all respects and is not limited to this embodiment. The scope of the present invention is shown not by the above description of the embodiments but by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.

100 移動端末装置
102 送受信アンテナ
104 アンプ部
106 送受信部
108 ベースバンド信号処理部
110 呼処理部
112 アプリケーション部
1081 レイヤ1処理部
1082 MAC処理部
1083 RLC処理部
1084 SRSトリガーフォーマット受信部
1085 下りリンク制御チャネル受信部
1086 SRS送信設定部
200 無線基地局装置
202 送受信アンテナ
204 アンプ部
206 送受信部
208 ベースバンド信号処理部
210 呼処理部
212 伝送路インターフェース
2081 レイヤ1処理部
2082 MAC処理部
2083 RLC処理部
2084 SRSトリガーフォーマット設定部
2085 SRS設定部
2086 下りリンク制御チャネル設定通知部
DESCRIPTION OF SYMBOLS 100 Mobile terminal apparatus 102 Transmission / reception antenna 104 Amplifier part 106 Transmission / reception part 108 Baseband signal processing part 110 Call processing part 112 Application part 1081 Layer 1 processing part 1082 MAC processing part 1083 RLC processing part 1084 SRS trigger format receiving part 1085 Downlink control channel Reception unit 1086 SRS transmission setting unit 200 Radio base station device 202 Transmission / reception antenna 204 Amplifier unit 206 Transmission / reception unit 208 Baseband signal processing unit 210 Call processing unit 212 Transmission path interface 2081 Layer 1 processing unit 2082 MAC processing unit 2083 RLC processing unit 2084 SRS Trigger format setting unit 2085 SRS setting unit 2086 Downlink control channel setting notification unit

Claims (6)

周期SRS(Sounding Reference Signal)と非周期SRSの送信を行う移動端末装置であって、
非周期SRSをトリガーしないことを指示するビット情報、及び所定のデフォルトSRSパラメータを用いて非周期SRSを送信することをそれぞれ指示する複数のビット情報の中から選択された特定のビット情報を下り制御チャネルで受信する受信部と、
前記特定のビット情報に基づいて非周期SRSの送信タイミングを制御すると共に、所定の周期で周期SRSの送信タイミングを制御するSRS送信設定部と、を有し、
前記SRS送信設定部は、前記非周期SRSの送信タイミングと前記周期SRSの送信タイミングが同一サブフレームで重なる場合に、非周期SRSの送信を優先して行い、周期SRSの送信を行わないことを特徴とする移動端末装置。
A mobile terminal device that transmits periodic SRS (Sounding Reference Signal) and aperiodic SRS,
Downlink control of specific bit information selected from a plurality of bit information respectively instructing to transmit aperiodic SRS using a predetermined default SRS parameter and bit information instructing not to trigger aperiodic SRS A receiver for receiving on a channel;
An SRS transmission setting unit for controlling the transmission timing of the non-periodic SRS based on the specific bit information and controlling the transmission timing of the periodic SRS at a predetermined period;
When the transmission timing of the non-periodic SRS and the transmission timing of the periodic SRS overlap in the same subframe, the SRS transmission setting unit prioritizes transmission of the non-periodic SRS and does not transmit the periodic SRS. A mobile terminal device.
前記所定のデフォルトSRSパラメータが上位レイヤで通知されることを特徴とする請求項1に記載の移動端末装置。   The mobile terminal apparatus according to claim 1, wherein the predetermined default SRS parameter is notified in an upper layer. 移動端末装置の周期SRS(Sounding Reference Signal)と非周期SRSの送信を制御する無線通信方法であって、
無線基地局装置が、非周期SRSをトリガーしないことを指示するビット情報、及び所定のデフォルトSRSパラメータを用いて非周期SRSを送信することをそれぞれ指示する複数のビット情報の中から選択した特定のビット情報を下りリンク制御チャネルを用いて前記移動端末装置に通知するステップと、
前記移動端末装置が、前記特定のビット情報に基づいて非周期SRSの送信を行うと共に、所定の周期で周期SRSの送信を行うステップと、を有し、
前記移動端末装置は、非周期SRSと周期SRSの送信タイミングが同一サブフレームで重なる場合に、非周期SRSの送信を優先して行い、周期SRSの送信を行わないことを特徴とする無線通信方法。
A wireless communication method for controlling transmission of a periodic SRS (Sounding Reference Signal) and an aperiodic SRS of a mobile terminal device,
A specific information selected from the bit information instructing that the radio base station apparatus does not trigger the aperiodic SRS and the plurality of bit information respectively instructing to transmit the aperiodic SRS using a predetermined default SRS parameter Notifying the mobile terminal apparatus of bit information using a downlink control channel;
The mobile terminal apparatus transmits a non-periodic SRS based on the specific bit information, and transmits a periodic SRS at a predetermined period.
The mobile terminal apparatus preferentially performs non-periodic SRS transmission and does not perform periodic SRS transmission when the transmission timings of the non-periodic SRS and the periodic SRS overlap in the same subframe. .
前記無線基地局装置は、前記移動端末装置に対して、前記所定のデフォルトSRSパラメータを上位レイヤで通知することを特徴とする請求項3に記載の無線通信方法。   The radio communication method according to claim 3, wherein the radio base station apparatus notifies the predetermined default SRS parameter to the mobile terminal apparatus in an upper layer. 移動端末装置の周期SRS(Sounding Reference Signal)と非周期SRSの送信を制御する無線通信システムであって、
前記移動端末装置は、非周期SRSをトリガーしないことを指示するビット情報、及び所定のデフォルトSRSパラメータを用いて非周期SRSを送信することをそれぞれ指示する複数のビット情報の中から選択された特定のビット情報を下り制御チャネルで受信する受信部と、前記特定のビット情報に基づいて非周期SRSの送信タイミングを制御すると共に、所定の周期で周期SRSの送信タイミングを制御するSRS送信設定部と、を有し、
前記SRS送信設定部は、前記非周期SRSの送信タイミングと前記周期SRSの送信タイミングが同一サブフレームで重なる場合に、非周期SRSの送信を優先して行い、周期SRSの送信を行わないことを特徴とする無線通信システム。
A wireless communication system for controlling transmission of periodic SRS (Sounding Reference Signal) and aperiodic SRS of a mobile terminal device,
The mobile terminal apparatus is selected from among a plurality of bit information instructing not to trigger the aperiodic SRS and a plurality of bit information instructing to transmit the aperiodic SRS using a predetermined default SRS parameter, respectively. A receiving unit that receives the bit information of the non-periodic SRS based on the specific bit information, and an SRS transmission setting unit that controls the transmission timing of the periodic SRS at a predetermined period; Have
When the transmission timing of the non-periodic SRS and the transmission timing of the periodic SRS overlap in the same subframe, the SRS transmission setting unit prioritizes transmission of the non-periodic SRS and does not transmit the periodic SRS. A wireless communication system.
前記移動端末装置は、前記所定のデフォルトSRSパラメータを上位レイヤから通知されることを特徴とする請求項5に記載の無線通信システム。   The wireless communication system according to claim 5, wherein the mobile terminal apparatus is notified of the predetermined default SRS parameter from an upper layer.
JP2011287466A 2010-10-04 2011-12-28 Mobile terminal apparatus, radio communication method, and radio communication system Active JP5562932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011287466A JP5562932B2 (en) 2010-10-04 2011-12-28 Mobile terminal apparatus, radio communication method, and radio communication system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010225227 2010-10-04
JP2010225227 2010-10-04
JP2011287466A JP5562932B2 (en) 2010-10-04 2011-12-28 Mobile terminal apparatus, radio communication method, and radio communication system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010249764A Division JP4938123B1 (en) 2010-10-04 2010-11-08 Radio base station apparatus, mobile terminal apparatus, radio communication method, and radio communication system

Publications (2)

Publication Number Publication Date
JP2012100320A JP2012100320A (en) 2012-05-24
JP5562932B2 true JP5562932B2 (en) 2014-07-30

Family

ID=46391638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011287466A Active JP5562932B2 (en) 2010-10-04 2011-12-28 Mobile terminal apparatus, radio communication method, and radio communication system

Country Status (2)

Country Link
JP (1) JP5562932B2 (en)
IN (1) IN2014KN02767A (en)

Also Published As

Publication number Publication date
IN2014KN02767A (en) 2015-05-08
JP2012100320A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
JP4938123B1 (en) Radio base station apparatus, mobile terminal apparatus, radio communication method, and radio communication system
JP6224358B2 (en) Wireless base station, user terminal, and wireless communication method
JP5132723B2 (en) Reference signal transmission method, mobile station apparatus and base station apparatus
JP6105672B2 (en) User terminal and wireless communication method
US20180323949A1 (en) Radio base station, user terminal and radio communication method
EP3051903A1 (en) User terminal, base station, and wireless communication method
JP5269236B2 (en) Reference signal transmission method, mobile station apparatus, base station apparatus, and radio communication system
US8983485B2 (en) Base station apparatus, mobile terminal apparatus and scheduling method
JP5325841B2 (en) Reference signal transmission method, mobile terminal apparatus and radio base station apparatus
AU2014265044B2 (en) Radio base station apparatus, mobile terminal apparatus and radio communication method
JP5562932B2 (en) Mobile terminal apparatus, radio communication method, and radio communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140611

R150 Certificate of patent or registration of utility model

Ref document number: 5562932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250