JP5562206B2 - Ship bow structure - Google Patents

Ship bow structure Download PDF

Info

Publication number
JP5562206B2
JP5562206B2 JP2010242445A JP2010242445A JP5562206B2 JP 5562206 B2 JP5562206 B2 JP 5562206B2 JP 2010242445 A JP2010242445 A JP 2010242445A JP 2010242445 A JP2010242445 A JP 2010242445A JP 5562206 B2 JP5562206 B2 JP 5562206B2
Authority
JP
Japan
Prior art keywords
bow
hull
ship
upward
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010242445A
Other languages
Japanese (ja)
Other versions
JP2012091740A (en
Inventor
晴彦 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010242445A priority Critical patent/JP5562206B2/en
Publication of JP2012091740A publication Critical patent/JP2012091740A/en
Application granted granted Critical
Publication of JP5562206B2 publication Critical patent/JP5562206B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

本発明は、船舶の船首構造に関し、特に、波浪中航行における船体のピッチング運動を抑制する船首構造に関する。   The present invention relates to a bow structure of a ship, and more particularly to a bow structure that suppresses pitching motion of a hull during sailing in waves.

船舶の船首構造として、満載吃水線の上方位置に設定された前部上方甲板と、該前部上方甲板より前方に突出し航行時吃水線位置より若干高く且つ前記前部上方甲板よれ下方位置に設定された前部下方甲板とを有する二段前部甲板構造のものが知られている(例えば、特許文献1)。   As the ship's bow structure, set the front upper deck set above the full flooding line, project forward from the upper upper deck, slightly higher than the navigational dredging line position, and set below the front upper deck The thing of the two-stage front part deck structure which has the made front lower deck is known (for example, patent document 1).

この二段前部甲板構造の船舶では、航行中に船舶が向かい波と遭遇すると、船首部が波中に入ることにより、航行時吃水線より上側にあった体積分の浮力が船首部に新たに生じ、浮力増加によって船首が上昇しようとするが、前部下方甲板が波中に浸かることにより、前部甲板が波中に浸からない場合に比して船首部の浮力増加が抑えられ。しかも、前部下方甲板が波中に浸かることにより、波の圧力(水圧)が前部下方甲板の平らな上面に下向きに作用し、船首が上昇しようとする運動が抑制される。これらのことにより、波浪時航行における船首の浮き上がりが抑制され、船体のピッチング運動を抑制することができる。   In this two-stage front deck structure ship, when the ship encounters a heading wave during navigation, the bow part enters the wave, and the buoyancy of the volume above the inundation line during navigation is newly added to the bow part. The bow tends to rise due to an increase in buoyancy, but the front lower deck is immersed in the waves, so that the increase in buoyancy at the bow is suppressed compared to when the front deck is not immersed in the waves. Moreover, when the front lower deck is immersed in the wave, the wave pressure (water pressure) acts downward on the flat upper surface of the front lower deck, and the movement of the bow to rise is suppressed. By these things, the lift of the bow at the time of wave navigation is suppressed, and the pitching motion of the hull can be suppressed.

特開平3−224889号公報JP-A-3-224889

二段前部甲板構造の船舶では、前部下方甲板上を船体の左右方向の片側から反対側に横断する海水(水)の流れが生じことがあり、この流れは船体のローリング運動を誘発する原因になり、ピッチング性能が改善されても、ローリング性能が悪化することがある。また、前部下方甲板部分は、水没するため、当該前部下方甲板部分を有効利用することが難しく、デッドスペースとなる甲板面積が大きい。また、前部下方甲板の後部形状が不適切であるため、この後部部分においてスプラッシュが発生し、船体抵抗(航行抵抗)の増加を招くことになる。   In a ship with a two-stage front deck structure, there may be a flow of seawater (water) across the front lower deck from one side of the hull to the other side, and this flow induces a rolling motion of the hull. Even if the pitching performance is improved, the rolling performance may be deteriorated. Further, since the front lower deck portion is submerged, it is difficult to effectively use the front lower deck portion, and the deck area that becomes a dead space is large. Further, since the rear shape of the front lower deck is inappropriate, splash occurs in the rear portion, resulting in an increase in hull resistance (navigation resistance).

本発明が解決しようとする課題は、船体のローリング性能の悪化、船体抵抗の増加を招くことがなく、デッドスペースとなる甲板面積を作ることもなく、波浪中航行における船体のピッチング運動を抑制することである。   The problem to be solved by the present invention is that the rolling performance of the hull does not deteriorate, the resistance of the hull does not increase, the deck area that becomes a dead space is not created, and the pitching motion of the hull during sailing in waves is suppressed. That is.

本発明による船舶の船首構造は、船首部分の左右両側に船体外側面より窪んだ凹部を有し、前記凹部は、吃水線の上方に位置する上向き面と、前記上向き面に上方から対向する下向き面と、前記上向き面と前記下向き面との間に延在する横向き面とにより画定されている。   The bow structure of a ship according to the present invention has recesses recessed from the outer surface of the hull on both the left and right sides of the bow part, the recesses being an upward surface located above the floodline and a downward facing the upward surface from above. A surface and a lateral surface extending between the upward surface and the downward surface.

この構成によれば、波浪中航行により、海面(水面)上に露呈していた凹部の上向き面が海中(水中)に没すると、凹部内に海水(水)が流れ込み、凹部内に流れ込んだ海水は凹部の横向き面に衝突することにより渦を生じる。この渦の生成によって船首上下動の運動エネルギが消費され、船首の上下揺動が小さくなる。また、凹部は船首部が波中に入ることによる船首部の浮力増加を少なくする働きもし、浮力増加による船首の浮き上がりが抑制される。これらのことにより、波浪中航行における船体のピッチング運動が抑制される。   According to this configuration, when the upward surface of the concave portion exposed on the sea surface (water surface) is submerged in the sea (underwater) due to navigating in the waves, seawater (water) flows into the concave portion, and the seawater that flows into the concave portion Causes a vortex by colliding with the lateral surface of the recess. This vortex generation consumes the kinetic energy of the bow up and down movement, and the bow up and down is reduced. The concave portion also serves to reduce an increase in the buoyancy of the bow due to the bow entering the wave, and the lift of the bow due to the increase in buoyancy is suppressed. As a result, the pitching motion of the hull during sailing in the waves is suppressed.

凹部は、船首の左右両側に独立して存在し、左右の凹部が連通していないので、船体の左右方向の片側から反対側に横断する海水の流れが生じことがなく、船体のローリング性能を悪化することがない。また、凹部は上側に下向き面を有する窪みであるので、凹部がデッドスペースとなる甲板面積を作ることもない。   The recesses exist independently on the left and right sides of the bow, and the left and right recesses do not communicate with each other, so there is no flow of seawater from one side of the hull to the other side, and the hull rolling performance is reduced. There is no deterioration. Further, since the recess is a recess having a downward surface on the upper side, the deck does not form a deck area that becomes a dead space.

本発明による船舶の船首構造は、好ましくは、前記横向き面は、船首船尾方向の全体に亘って滑らかに連続する面により構成され、船尾側において滑らかに前記船体外側面に接続される。   In the bow structure of a ship according to the present invention, preferably, the lateral surface is constituted by a surface that continues smoothly over the entire bow stern direction, and is smoothly connected to the outer surface of the hull on the stern side.

この構成によれば、横向き面が船首船尾方向の全体に亘って滑らかに連続する面により構成されることと、船尾側において滑らかに前記船体外側面に接続されていることにより、凹部内を流れる海水の船首船尾方向の流線は理想船形における流線に近い滑らかなものになる。これにより、ピッチング運動低減のための凹部が、スプレー波やスプラッシュが生成する原因になることがなく、船体抵抗(航行抵抗)を増加することがない。   According to this configuration, the laterally facing surface is configured by a surface that is smoothly continuous over the entire bow and stern direction, and is smoothly connected to the outer surface of the hull on the stern side, thereby flowing in the recess. The streamline of seawater at the bow and stern direction becomes smoother than the streamline in the ideal hull form. Thereby, the concave portion for reducing the pitching motion does not cause the generation of the spray wave and the splash, and does not increase the hull resistance (navigation resistance).

本発明による船舶の船首構造は、好ましくは、前記上向き面と前記横向き面とは円弧面によって滑らかに接続されている。   In the bow structure of a ship according to the present invention, preferably, the upward surface and the lateral surface are smoothly connected by an arc surface.

この構成によれば、凹部内に流れ込んだ海水は円弧面に沿って流れることにより、凹部内における渦の生成がよくなり、これに伴い船首上下運動のエネルギ消費が大きくなる。   According to this configuration, the seawater that has flowed into the concave portion flows along the circular arc surface, so that vortices are generated in the concave portion, and the energy consumption of the bow vertical motion increases accordingly.

本発明による船舶の船首構造は、好ましくは、前記下向き面と前記横向き面とは円弧面によって滑らかに接続されており、より好ましくは、前記下向き面と前記横向き面とを接続する円弧面の曲率は、前記上向き面と前記横向き面とを接続する円弧面の曲率より大きい。   In the bow structure of a ship according to the present invention, preferably, the downward surface and the lateral surface are smoothly connected by an arc surface, and more preferably, the curvature of the arc surface connecting the downward surface and the lateral surface. Is larger than the curvature of the arc surface connecting the upward surface and the lateral surface.

この構成によれば、大きい波によって凹部の横向き面に衝突して跳ね上がって下向き面に到達する海水は、円弧面に案内されて滑らかな流線をもって凹部外に排出されるので、凹部の下向き面に海水が激しく衝突することがない。これにより、凹部の下向き面に海水が激しく衝突したことによる叩き音、振動を生じることもがない。特に、下向き面と横向き面とを接続する円弧面の曲率が、上向き面と横向き面とを接続する円弧面の曲率より大きいことにより、その効果が顕著になる。   According to this configuration, the seawater that collides with the lateral surface of the recess by a large wave and jumps up and reaches the downward surface is guided by the arc surface and discharged out of the recess with a smooth streamline. Seawater does not collide violently. As a result, no tapping sound or vibration is generated due to the violent collision of seawater with the downward surface of the recess. In particular, since the curvature of the arc surface connecting the downward surface and the lateral surface is larger than the curvature of the arc surface connecting the upward surface and the lateral surface, the effect becomes remarkable.

本発明による船舶の船首構造は、好ましくは、前記上向き面は、船首船尾方向に水平に延在する平坦面を含んでいる。   In the bow structure of a ship according to the present invention, preferably, the upward surface includes a flat surface extending horizontally in the bow / stern direction.

凹部の上向き面が船首船尾方向に水平に延在する平坦面を含んでいることにより、凹部に進入した波の圧力(水圧)が下向きに作用し、このことによっても船首が上昇しようとする運動が抑制される。   The upward surface of the recess includes a flat surface that extends horizontally in the bow stern direction, so that the pressure of the wave that entered the recess (water pressure) acts downward, and this also causes the bow to move up. Is suppressed.

本発明による船舶の船首構造は、好ましくは、メインハルとデミハルとを有する複胴の船舶であって、前記凹部は前記メインハルと前記デミハルの少なくとも何れか一方に設けられている。   The bow structure of a ship according to the present invention is preferably a multi-hull ship having a main hull and a demi-hull, and the recess is provided in at least one of the main hull and the demi-hull.

ピッチング運動低減のための凹部は、単胴船以外に、メインハルとデミハルとを有する複胴船でも有効であり、複胴船の場合、凹部はメインハルとデミハルの少なくとも何れか一方に設けられればよい。   The recess for reducing the pitching motion is also effective for a double hull having a main hull and a demi-hull in addition to a single hull. In the case of a double hull, the recess may be provided in at least one of the main hull and the demi hull. .

本発明による船舶の船首構造によれば、波浪中航行により凹部の上向き面が海中(水中)に没すると、凹部内に海水(水)が流れ込み、凹部内に流れ込んだ海水は凹部の横向き面に衝突することになって渦を生じ、当該渦の生成によって船首上下動の運動エネルギが消費される。これにより、ダンピング効果が得られて船首の上下揺動が小さくなる。また、凹部は船首部が波中に入ることによる浮力の増加を少なくする働きもし、浮力増加による船首の浮き上がりが抑制される。これらのことにより、波浪中航行における船体のピッチング運動が抑制され、波浪中航行の乗り心地がよくなり、船酔いし難くなる。   According to the bow structure of the ship according to the present invention, when the upward surface of the concave portion is submerged in the sea (underwater) due to sailing in the waves, seawater (water) flows into the concave portion, and the seawater that has flowed into the concave portion is directed to the lateral surface of the concave portion. The vortex is generated by the collision, and the kinetic energy of the bow motion is consumed by the generation of the vortex. As a result, a damping effect is obtained, and the vertical swing of the bow is reduced. The concave portion also serves to reduce the increase in buoyancy due to the bow entering the wave, and the bow lift due to the increase in buoyancy is suppressed. As a result, the pitching motion of the hull during sailing in the waves is suppressed, the ride comfort in the waves is improved, and sea sickness is less likely to occur.

凹部は、船首の左右両側に独立して存在し、左右の凹部が連通していないので、船体の左右方向の片側から反対側に横断する海水(水)の流れが生じことがなく、船体のローリング性能を悪化することがない。特に、デミハルに凹部を設けることにより、船体のローリング性能が改善される。また、凹部は上側に下向き面を有する窪みであるので、凹部がデッドスペースとなる甲板面積を作ることもない。   The recesses exist independently on the left and right sides of the bow, and the left and right recesses do not communicate with each other, so there is no flow of seawater (water) crossing from one side of the hull to the other side of the hull. Rolling performance is not deteriorated. In particular, the rolling performance of the hull is improved by providing a recess in the demi-hull. Further, since the recess is a recess having a downward surface on the upper side, the deck does not form a deck area that becomes a dead space.

本発明による船首構造を取り入れた船舶の一つの実施例を示す側面図。The side view which shows one Example of the ship which took in the bow structure by this invention. 本実施例による船首構造を取り入れた船舶の斜視図。The perspective view of the ship which adopted the bow structure by a present Example. 本実施例による船首構造を取り入れた船舶の正面図。The front view of the ship which adopted the bow structure by a present Example. 図1の線IV−IVに沿った平断面図。FIG. 4 is a plan sectional view taken along line IV-IV in FIG. 1. 図1の線V−Vに沿った縦断面図。FIG. 5 is a longitudinal sectional view taken along line VV in FIG. 1. 本発明による船首構造を取り入れた船舶の他の実施例を示す斜視図。The perspective view which shows the other Example of the ship which took in the bow structure by this invention. 他の実施例を船首構造。Another embodiment of the bow structure. 本発明による船首構造を取り入れた船舶と従来型の船舶との出会周波数−船首加速度特性を示すグラフ。The graph which shows the encounter frequency-bow acceleration characteristic of the ship which took in the bow structure by this invention, and the conventional type ship. 船首加速度特性試験に用いたトリマラン船の寸法諸元を示す図。The figure which shows the dimension specification of the trimaran ship used for the bow acceleration characteristic test.

以下に、本発明による船舶の船首構造の一つの実施例を、図1〜図5を参照して説明する。   Below, one Example of the bow structure of the ship by this invention is described with reference to FIGS.

本実施例による船舶は、メインハル(センタハル)10と、メインハル10の左右両側にデミハル(サイドハル)12を有するトリマラン船(三胴船)である。   The ship according to this embodiment is a trimaran ship (trimaran ship) having a main hull (center hull) 10 and demi-hulls (side hulls) 12 on both left and right sides of the main hull 10.

メインハル(船体)10の船首において左右の船体外側面10L、10Rを互いに接続する船首最先端部11は、船底14側が甲板16側より船尾方向に傾斜した直線状をなしている。   The foremost tip 11 that connects the left and right hull outer surfaces 10L, 10R to each other at the bow of the main hull (hull) 10 has a straight shape in which the bottom 14 side is inclined in the stern direction from the deck 16 side.

メインハル10の船首部分の左右両側には、各々、船体外側面10L、10Rより窪んだ凹部20が船体外板により左右個別に形成されている。凹部20は、航行時吃水線Wの少し上方に位置する略水平な上向き面22と、上向き面22に上方から対向する略水平な下向き面24と、上向き面22と下向き面24との間に略鉛直に延在する横向き面26とによる3個の壁によって画定され、船首最先端部11の近傍より船尾方向に延びた横長形状をしている。   On the left and right sides of the bow portion of the main hull 10, recessed portions 20 recessed from the hull outer side surfaces 10L and 10R are respectively formed on the left and right sides of the hull outer plate. The recess 20 is formed between a substantially horizontal upward surface 22 positioned slightly above the drowning water line W, a substantially horizontal downward surface 24 facing the upward surface 22 from above, and the upward surface 22 and the downward surface 24. It is demarcated by three walls formed by a laterally extending surface 26 that extends substantially vertically, and has a horizontally long shape that extends in the stern direction from the vicinity of the bow leading edge 11.

換言すると、凹部20の上向き面22と下向き面24は、各々、船首船尾方向(船体前後方向)に略水平に延在しており、同方向に水平に延在する平坦面22A、24A(図5参照)を含んでいる。   In other words, the upward surface 22 and the downward surface 24 of the recess 20 extend substantially horizontally in the bow stern direction (the hull longitudinal direction), and are flat surfaces 22A and 24A extending horizontally in the same direction (see FIG. 5).

航行時吃水線Wと上向き面22との上下方向の距離Dは、波が穏やかで、メインハル10が大きいピッチング運動をすることがない定常航行時には、上向き面22の全体が海上(水上)に露呈し、波浪航行時に、メインハル10の船首が波を被った際には、上向き面22の少なくとも一部が海中(水中)に沈む距離(高さ)であり、この距離Dは、メインハル10自体のピッチング性能や船舶のコンセプトに応じて適正値に設定されればよい。   The distance D in the vertical direction between the drowning line W and the upward surface 22 during navigation is that the waves are gentle and the entire upward hull 22 is exposed to the sea (water) during steady navigation when the main hull 10 does not perform a large pitching motion. When the bow of the main hull 10 is subjected to waves during wave navigation, at least part of the upward surface 22 is a distance (height) that sinks into the sea (underwater), and this distance D is the distance of the main hull 10 itself. What is necessary is just to set to an appropriate value according to pitching performance or the concept of a ship.

凹部20の横向き面26は、図4に示されているように、船首側において屈曲部材や段差を含むことなく船首最先端部11に滑らかに接続され、船首船尾方向で見て区間Aに亘って直線状に延在する平坦面26Aと、船首側において平坦面26Aの船尾側に屈曲部材や段差を含むことなく滑らかに連続する半径Rbによる凹面状で、船首船尾方向で見て区間Bに亘って延在する前側円弧面26Bと、船首側において前側円弧面26Bの船尾側に屈曲部材や段差を含むことなく滑らかに連続し、且つ船尾側において船体外側面10L(10R)に接続される半径Rcによる凸面状で、船首船尾方向で見て区間Cに亘って延在する後側円弧面26Cとにより、全体に亘って滑らかに連続する流線型の面により構成されている。   As shown in FIG. 4, the laterally facing surface 26 of the concave portion 20 is smoothly connected to the bow leading end portion 11 without including a bending member or a step on the bow side, and extends over the section A when viewed in the bow stern direction. A flat surface 26A that extends in a straight line and a concave surface with a radius Rb that smoothly continues without including a bending member or a step on the stern side of the flat surface 26A on the bow side. The front arc surface 26B extending over the stern side of the front arc surface 26B on the bow side smoothly without any bending member or step, and connected to the hull outer surface 10L (10R) on the stern side. A convex surface with a radius Rc, and a rear arc surface 26C extending over the section C when viewed in the bow / stern direction, is constituted by a streamlined surface that is smoothly continuous over the entire surface.

凹部20の上向き面22と横向き面26とは円弧面(R面)28(図5参照)によって滑らかに接続されている。また、凹部20の下向き面24と横向き面26も円弧面(R面)30(図5参照)によって滑らかに接続されている。下向き面24と横向き面26とを接続する円弧面30の曲率は、上向き面22と横向き面26とを接続する円弧面28の曲率より大きい値に設定されている。   The upward surface 22 and the lateral surface 26 of the recess 20 are smoothly connected by an arc surface (R surface) 28 (see FIG. 5). Further, the downward surface 24 and the lateral surface 26 of the recess 20 are also smoothly connected by an arc surface (R surface) 30 (see FIG. 5). The curvature of the arcuate surface 30 that connects the downward surface 24 and the lateral surface 26 is set to a value larger than the curvature of the arcuate surface 28 that connects the upward surface 22 and the lateral surface 26.

上述の構成によれば、波が穏やかで、メインハル10が大きいピッチング運動をすることがない定常航行時には、図5(A)に示されているように、左右の凹部20の各々の上向き面22の全体が海上(水上)に露呈している。   According to the above-described configuration, during steady sailing in which the waves are gentle and the main hull 10 does not perform a large pitching motion, as shown in FIG. Is exposed to the sea (water).

波浪中航行において、船首が波の山部に進入することにより、海面上に露呈していた左右の凹部20の上向き面22が海中に没すると、図5(B)に示されているように、凹部20内に海水が流れ込む。凹部20内に流れ込んだ海水は、凹部20の横向き面26に衝突することにより渦Vを生じる。この渦Vの生成によって船首上下動の運動エネルギが消費され、船首の上下揺動が小さくなる。   As shown in FIG. 5 (B), when the ship's bow enters the peak of the wave and the upward surfaces 22 of the left and right recesses 20 exposed on the sea surface are submerged in the sea during the wave navigation. The seawater flows into the recess 20. Seawater that flows into the recess 20 collides with the laterally facing surface 26 of the recess 20, thereby generating a vortex V. The generation of the vortex V consumes the kinetic energy of the bow vertical movement, and the vertical swing of the bow is reduced.

凹部20の上向き面22と横向き面26とが円弧面28によって滑らかに接続されていることにより、凹部20内に流れ込んだ海水は円弧面28に沿って流れることになり、凹部20内における渦Vの生成がよくなる。このようにして、渦Vの生成がよくなることに伴ってい船首上下運動のエネルギ消費が大きくなり、船首の上下揺動を抑制する効果が顕著になる。   Since the upward surface 22 and the lateral surface 26 of the recess 20 are smoothly connected by the arc surface 28, the seawater flowing into the recess 20 flows along the arc surface 28, and the vortex V in the recess 20. The generation of is improved. In this way, the energy consumption of the bow vertical motion increases with the generation of the vortex V, and the effect of suppressing the vertical swing of the bow becomes significant.

また、凹部20は、船首部が波中に入ることによる船首部の浮力増加を少なくする働きもし、浮力増加による船首の浮き上がりを抑制する作用もする。   The concave portion 20 also serves to reduce an increase in buoyancy at the bow portion due to the bow portion entering the wave, and also serves to suppress lift of the bow due to an increase in buoyancy.

凹部20の上向き面22が船首船尾方向に水平に延在する平坦面22Aを含んでいることにより、進入した波の圧力(水圧)が平坦面22Aに下向きに作用し、このことによっても船首が上昇しようとする運動が抑制される。   Since the upward surface 22 of the recess 20 includes a flat surface 22A extending horizontally in the bow / stern direction, the pressure (water pressure) of the wave that has entered acts downward on the flat surface 22A. The movement to rise is suppressed.

そして、船首が波の谷部に進入すると、図5(C)に示されているように、左右の凹部20の上向き面22の全体が海上に露呈し、凹部20に流れ込んでいた海水が凹部20に流れ出し、このような動作が、船体が向かい波中を航行中、波の出会周波数に応じて繰り返し行われることになる。   When the bow enters the wave trough, as shown in FIG. 5C, the entire upward surface 22 of the left and right recesses 20 is exposed to the sea, and the seawater that has flowed into the recesses 20 is recessed. This operation is repeated according to the encounter frequency of the wave while the hull is navigating in the opposite wave.

なお、波の出会周波数は、下式ににより定義される。   The wave encounter frequency is defined by the following equation.

Fec=V+C/λ     Fec = V + C / λ

但し、Fec:出会周波数、V:波速、λ:波長   Where Fec: encounter frequency, V: wave velocity, λ: wavelength

これらのことにより、波浪中航行における船体のピッチング運動が抑制され、波浪中航行の乗り心地がよくなり、船酔いし難くなる。   As a result, the pitching motion of the hull during sailing in the waves is suppressed, the ride comfort in the waves is improved, and sea sickness is less likely to occur.

凹部20は、船首の左右両側に独立して存在し、左右の凹部20が連通していないので、船体の左右方向の片側から反対側に横断する海水の流れが生じことがない。このことにより、船体のローリング性能が悪化することがない。また、凹部20は上側に下向き面24を有する窪みであるので、凹部20がデッドスペースとなる甲板面積を作ることもない。 Recess 20 is present independently of the right and left sides of the bow, because the left and right recesses 20 are not in communication, there is no possibility arising seawater flow which crosses from one side in the lateral direction of the hull. As a result, the rolling performance of the hull does not deteriorate. Moreover, since the recessed part 20 is a hollow which has the downward surface 24 on the upper side, the recessed part 20 does not make the deck area used as a dead space.

左右の凹部20の横向き面26が船首船尾方向の全体に亘って滑らかに連続する面により構成され、船尾側において滑らかに船体外側面10L、10Rに接続されていることにより、凹部20内を流れる海水の船首船尾方向の流線は理想船形における流線に近い滑らかなものになる。これにより、ピッチング運動低減のための凹部20が、スプレー波やスプラッシュが生成する原因なることがなく、船体抵抗(航行抵抗)を増加することがない。   The laterally facing surfaces 26 of the left and right recesses 20 are constituted by surfaces that continue smoothly over the entire bow stern direction, and are smoothly connected to the hull outer surfaces 10L and 10R on the stern side, thereby flowing in the recesses 20. The streamline of seawater at the bow and stern direction becomes smoother than the streamline in the ideal hull form. Thereby, the recessed part 20 for pitching movement reduction does not become a cause which a spray wave or a splash produces | generates, and hull resistance (navigation resistance) does not increase.

特に、横向き面26の船尾側に存在して横向き面26と船体外側面10L、10Rとを接続する後側円弧面26Cが凸面状で円弧面であることにより、横向き面26の船尾側における海流の剥離が少ないことにより、スプレー波の発生が効果的に抑えられる。   In particular, since the rear arc surface 26C that exists on the stern side of the lateral surface 26 and connects the lateral surface 26 and the hull outer surfaces 10L, 10R is a convex and circular arc surface, the ocean current on the stern side of the lateral surface 26 The occurrence of spray waves can be effectively suppressed due to a small amount of peeling.

また、左右の凹部20の下向き面24と横向き面26とが円弧面30によって滑らかに接続されていることにより、大きい波によって凹部20の横向き面26に衝突して跳ね上がって下向き面24に到達する海水は、円弧面30に案内されて滑らかな流線をもって凹部20外に排出されるので、凹部20の下向き面24に海水が激しく衝突することがない。   Further, since the downward surface 24 and the lateral surface 26 of the left and right recesses 20 are smoothly connected by the circular arc surface 30, the large wave collides with the lateral surface 26 of the recess 20 and jumps up to reach the downward surface 24. Since the seawater is guided to the arc surface 30 and discharged out of the recess 20 with a smooth streamline, the seawater does not collide violently with the downward surface 24 of the recess 20.

これにより、凹部20の下向き面24に海水が激しく衝突したことによる叩き音、振動を生じることが回避される。特に、下向き面24と横向き面26とを接続する円弧面30の曲率が、上向き面22と横向き面26とを接続する円弧面28の曲率より大きいことにより、その効果が顕著になる。   Thereby, it is avoided that the tapping sound and the vibration are generated due to the seawater violently colliding with the downward surface 24 of the recess 20. In particular, since the curvature of the arcuate surface 30 connecting the downward surface 24 and the lateral surface 26 is larger than the curvature of the arcuate surface 28 connecting the upward surface 22 and the lateral surface 26, the effect becomes remarkable.

なお、上向き面22と横向き面26とを接続する円弧面28の曲率が比較的小さいことは、効率のよい渦Vの生成のために有利である。   In addition, it is advantageous for the efficient production | generation of the vortex V that the curvature of the circular arc surface 28 which connects the upward surface 22 and the horizontal surface 26 is comparatively small.

左右の凹部20の下向き面24と船体外側面10L、10とが、図6、図7に示されているように、円弧面30に変曲点をもって接続される円弧面32によって滑らかに接続されていてもよい。この場合には、凹部20の下向き面24に沿って凹部20外に流れ出る海水がスプレー波を作ることがない。   The downward surfaces 24 of the left and right recesses 20 and the hull outer surfaces 10L, 10 are smoothly connected by an arc surface 32 connected to the arc surface 30 with an inflection point, as shown in FIGS. It may be. In this case, seawater flowing out of the recess 20 along the downward surface 24 of the recess 20 does not create a spray wave.

図8は、上述の実施例による船首構造を取り入れたと従来型のトリマラン船との出会周波数−船首加速度特性を示すグラフである。このグラフは、20kt相当のトリマラン船で、凹部20を有するもの(実施例)と凹部20を有さないもの(従来例)を、波高60mmの同じ条件で行った試験結果であり、実線が凹部20を有するもの(実施例)の船首加速度特性を、一点鎖線が凹部20を有さないもの(従来例)の船首加速度特性を各々示している。   FIG. 8 is a graph showing encounter frequency-bow acceleration characteristics with a conventional trimaran ship when the bow structure according to the above-described embodiment is incorporated. This graph is a test result of a 20 kt equivalent Trimaran ship having a recess 20 (Example) and not having a recess 20 (conventional example) under the same conditions with a wave height of 60 mm. 20 shows the bow acceleration characteristic of the one having the example (example), and the bow acceleration characteristic of the one having the dash-dot line having no recess 20 (conventional example).

なお、当該試験に用いたトリマラン船の寸法諸元を図9に示している。凹部20の寸法諸元は、船底より950mm高さ位置より高さ寸法1000mm、前後全長(区間A+B+C)4500mm、区間Bの半径Rb=3000mm、区間Cの半径Rc=2000mmとした。   The dimensions of the trimaran ship used in the test are shown in FIG. The dimensions of the recess 20 were 950 mm above the ship bottom, 1000 mm in height, 4500 mm in the longitudinal length (section A + B + C), section B radius Rb = 3000 mm, and section C radius Rc = 2000 mm.

このグラフからも明らかなように、凹部20を有するトリマラン船のほうが、凹部20を有さないトリマラン船に比して船首加速度が低く、船体のピッチング運動が抑制されていることが分かる。   As is clear from this graph, it is understood that the trimaran ship having the recess 20 has a lower bow acceleration than the trimaran ship not having the recess 20 and the pitching motion of the hull is suppressed.

上述の実施例では、凹部20はメインハル10の左右両側に設けられているが、凹部20は、メインハル10に加えて、図1に仮想線により示されているように、デミハル12の船首部分の左右両側にも設けられても、デミハル12の船首部分の左右両側にのみ設けられてもよい。特に、デミハルに凹部を設けることにより、船体のローリング性能が改善される。また、凹部20は、トリマラン船に限られることはなく、カタマラン(二胴船)、モノハル(単胴船)にも適用可能である。   In the embodiment described above, the recesses 20 are provided on both the left and right sides of the main hull 10, but the recesses 20 are formed on the bow portion of the demi-hull 12 in addition to the main hull 10 as indicated by phantom lines in FIG. 1. It may be provided on both the left and right sides, or may be provided only on the left and right sides of the bow portion of the demihull 12. In particular, the rolling performance of the hull is improved by providing a recess in the demi-hull. Moreover, the recessed part 20 is not restricted to a trimaran ship, It is applicable also to a catamaran (two hulls) and a monohull (single hull).

10 メインハル
10L、10R 船体外側面
11 船首最先端部
12 デミハル
14 船底
16 甲板
20 凹部
22 上向き面
24 下向き面
24A 平坦面
26 横向き面
26A 平坦面
28、30、32 円弧面
DESCRIPTION OF SYMBOLS 10 Main hull 10L, 10R Hull outer surface 11 Bow most advanced part 12 Demihal 14 Bottom of ship 16 Deck 20 Recessed part 22 Upward surface 24 Downward surface 24A Flat surface 26 Lateral surface 26A Flat surface 28, 30, 32 Arc surface

Claims (7)

船首部分の左右両側に船体外側面より窪んだ凹部を有し、
前記凹部は、吃水線より上方位置にあって波浪中航行において船首が波の山部に進入すると海中に没し且つ船首が波の谷部に進入すると海上に露呈する上向き面と、前記上向き面に上方から対向する下向き面と、前記上向き面と前記下向き面との間に延在する横向き面とにより画定されている船舶の船首構造。
Has recesses recessed from the outer side of the hull on the left and right sides of the bow part,
The concave portion is located above the inundation line , and when navigating in the waves, when the bow enters the peak of the wave, it sinks into the sea, and when the bow enters the valley of the wave, the upward surface is exposed to the sea, and the upward surface A ship bow structure defined by a downward surface facing from above and a lateral surface extending between the upward surface and the downward surface.
前記横向き面は、船首船尾方向の全体に亘って滑らかに連続する面により構成され、且つ船首側と船尾側の双方において滑らかに前記船体外側面に接続される請求項1に記載の船舶の船首構造。   2. The bow of a ship according to claim 1, wherein the laterally facing surface is configured by a surface that is smoothly continuous over the entire bow stern direction, and is smoothly connected to the outer surface of the hull on both the bow side and the stern side. Construction. 前記上向き面と前記横向き面とは円弧面によって滑らかに接続されている請求項1または2に記載の船舶の船首構造。 The bow structure of a ship according to claim 1 or 2, wherein the upward surface and the lateral surface are smoothly connected by an arc surface. 前記下向き面と前記横向き面とは円弧面によって滑らかに接続されている請求項1から3の何れか一項に記載の船舶の船首構造。   The bow structure of a ship according to any one of claims 1 to 3, wherein the downward surface and the lateral surface are smoothly connected by an arc surface. 前記下向き面と前記横向き面とを接続する円弧面の曲率は、前記上向き面と前記横向き面とを接続する円弧面の曲率より大きい請求項4に記載の船舶の船首構造。   The bow structure of a ship according to claim 4, wherein a curvature of an arc surface connecting the downward surface and the lateral surface is larger than a curvature of an arc surface connecting the upward surface and the lateral surface. 前記上向き面は、船首船尾方向に水平に延在する平坦面を含んでいる請求項1から5の何れか一項に記載の船舶の船首構造。 The ship's bow structure according to any one of claims 1 to 5, wherein the upward surface includes a flat surface extending horizontally in a bow / stern direction. メインハルとデミハルとを有する複胴の船舶であって、前記凹部は前記メインハルと前記デミハルの少なくとも何れか一方に設けられている請求項1から6の何れか一項に記載の船舶の船首構造。 The ship's bow structure according to any one of claims 1 to 6, wherein the ship is a multiple hull having a main hull and a demi-hull, and the recess is provided in at least one of the main hull and the demi-hull.
JP2010242445A 2010-10-28 2010-10-28 Ship bow structure Expired - Fee Related JP5562206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010242445A JP5562206B2 (en) 2010-10-28 2010-10-28 Ship bow structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010242445A JP5562206B2 (en) 2010-10-28 2010-10-28 Ship bow structure

Publications (2)

Publication Number Publication Date
JP2012091740A JP2012091740A (en) 2012-05-17
JP5562206B2 true JP5562206B2 (en) 2014-07-30

Family

ID=46385610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010242445A Expired - Fee Related JP5562206B2 (en) 2010-10-28 2010-10-28 Ship bow structure

Country Status (1)

Country Link
JP (1) JP5562206B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2918952B2 (en) * 1990-01-29 1999-07-12 秀明 宮田 Vessel with double front deck
JP3049333U (en) * 1997-09-20 1998-06-09 初高汽船株式会社 Waterline concave hull form
JP3951979B2 (en) * 2003-07-25 2007-08-01 博康 山本 Hull shape
JP4744329B2 (en) * 2006-03-08 2011-08-10 三井造船株式会社 Ship
JP5104515B2 (en) * 2008-04-21 2012-12-19 株式会社Ihi Multi-vibration shaker
BRPI1008244B8 (en) * 2009-02-16 2022-08-23 Rolls Royce Marine As HULL FOR A MARITIME COURSE VESSEL

Also Published As

Publication number Publication date
JP2012091740A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
US8590475B2 (en) Wakesurfing boat and hull for a wakesurfing boat
JP5986856B2 (en) Commercial cargo ship
JP3640428B2 (en) boat
RU2514964C2 (en) Bow bulb design
JP2008260445A (en) Vessel
CA2728819A1 (en) Improved hybrid boat hull
KR20080043357A (en) Open sea hydrofoil craft
CN106627984A (en) Stem wave inhibiting and roll stabilization appendage
JP2006321306A (en) Ship with bow fin
CN103770903A (en) Wave absorbing type wave piercing yacht
JP2015085930A (en) On-water travel body
JP5562206B2 (en) Ship bow structure
JP2008528375A (en) bow
JP2008247050A (en) Vessel drag reducing device and vessel
JP2006224811A (en) Bow shape of ship
JP2009512595A (en) A hull for sailing vessels that allows the bottom plate to enhance water gliding performance
CN110682995A (en) Planing boat with three-channel structure
CN108712983B (en) Ship with a detachable cover
JP3951979B2 (en) Hull shape
EP2842861A2 (en) Wakesurfing boat and hull for a wakesurfing boat
JP2006240516A (en) High speed catamaran
CN210592323U (en) Bow and ship
JP2012116401A (en) Ship
CN211617980U (en) Shallow V-shaped boat
JP5030884B2 (en) Stern shape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140610

R150 Certificate of patent or registration of utility model

Ref document number: 5562206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees