JP5562179B2 - pH meter - Google Patents

pH meter Download PDF

Info

Publication number
JP5562179B2
JP5562179B2 JP2010189065A JP2010189065A JP5562179B2 JP 5562179 B2 JP5562179 B2 JP 5562179B2 JP 2010189065 A JP2010189065 A JP 2010189065A JP 2010189065 A JP2010189065 A JP 2010189065A JP 5562179 B2 JP5562179 B2 JP 5562179B2
Authority
JP
Japan
Prior art keywords
electrode
liquid junction
liquid
meter
reference electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010189065A
Other languages
Japanese (ja)
Other versions
JP2012047552A (en
Inventor
善孝 伊藤
Original Assignee
アイスフエトコム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイスフエトコム株式会社 filed Critical アイスフエトコム株式会社
Priority to JP2010189065A priority Critical patent/JP5562179B2/en
Publication of JP2012047552A publication Critical patent/JP2012047552A/en
Application granted granted Critical
Publication of JP5562179B2 publication Critical patent/JP5562179B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、pH計に関し、特にイオン感応性電界効果トランジスタを有するpH計に関する。   The present invention relates to a pH meter, and more particularly to a pH meter having an ion sensitive field effect transistor.

水素イオン指数pHを測定するpH計のセンサには、ガラス電極式とISFET式とがある。まず、特開2001−124722公報に開示されたガラス電極式のものについて説明する。図7は、従来技術に係るガラス電極式のpH計を示す説明図である。図7において、30はpH計、31はpHセンサ、32はpH応答ガラス膜、33はpH応答ガラス膜支持体、34は内部液、35は信号取り出し電極、36は比較電極内部液、37は比較電極、38は容器、39は液絡である。   There are a glass electrode type and an ISFET type sensor for the pH meter for measuring the hydrogen ion exponent pH. First, the glass electrode type disclosed in Japanese Patent Application Laid-Open No. 2001-124722 will be described. FIG. 7 is an explanatory view showing a glass electrode type pH meter according to the prior art. In FIG. 7, 30 is a pH meter, 31 is a pH sensor, 32 is a pH responsive glass membrane, 33 is a pH responsive glass membrane support, 34 is an internal solution, 35 is a signal extraction electrode, 36 is a reference electrode internal solution, and 37 is a reference electrode. A reference electrode, 38 is a container, and 39 is a liquid junction.

pH計30のpHセンサ31は、pHセンサを構成する部分を容器38の内部に設けている。被測定液がpH応答ガラス膜32と液絡39に接すると、pH応答ガラス膜支持体33に支持されたpH応答ガラス膜32は、その膜両側で分極により内部液34のpHと被測定液のpHに依存する起電圧を発生する。その起電圧により信号取出し電極35の電位が変化する。それに対し、比較電極内部液36中で比較電極37は、被測定液のpHに依存せず一定の電位を発生するから、信号取出し電極35と比較電極37の間で電位差が生じ、その起電圧は、pH計30の演算部によりpHに換算される。   The pH sensor 31 of the pH meter 30 is provided with a portion constituting the pH sensor inside the container 38. When the liquid to be measured comes into contact with the pH responsive glass film 32 and the liquid junction 39, the pH responsive glass film 32 supported by the pH responsive glass film support 33 is polarized on both sides of the film and the pH of the internal liquid 34 and the liquid to be measured. An electromotive voltage depending on the pH of the is generated. The potential of the signal extraction electrode 35 is changed by the electromotive voltage. On the other hand, the reference electrode 37 in the reference electrode internal solution 36 generates a constant potential regardless of the pH of the solution to be measured. Therefore, a potential difference is generated between the signal extraction electrode 35 and the comparison electrode 37, and the electromotive voltage is generated. Is converted to pH by the calculation unit of the pH meter 30.

ところで、このようなガラス電極式の場合は、高インピーダンスの影響でpH緩衝能が低く、導電率も低い純度が高いサンプル液のpH値の測定は困難である。ガラス電極式で実際にpH値を測定ができるのは、例えば水道水の10mS/m程度までである。また、pH値を測定可能とされている水道水でも、高インピーダンスのためにノイズを受けやすく、測定時の電位が不安定になる現象が見られる。また、pH緩衝能が低く導電率も低い純度が高いサンプル液でのpH値の測定では、ガラス電極のpHに対する応答が遅い上に比較電極の電位応答も極端に遅くなるので、pH値の測定は実質的に困難であり誤差も発生するという問題がある。現状では、液絡39の素材として多孔質セラミックが用いられることが多い。しかし、多孔質セラミック部材では、通常Ag/AgClである比較電極内部液36から溶解したAg+ やAgCl2−錯体ができて、AgClが液絡39に溶出して詰まり易いという難点がある。これにより、内部液の洩出が阻害され液間電位差が発生しやすくなり、測定値と実際のpH値との間に誤差を生じていた。   By the way, in the case of such a glass electrode type, it is difficult to measure the pH value of a sample solution having a low pH buffering ability and a high purity due to the influence of high impedance. The glass electrode type can actually measure the pH value, for example, up to about 10 mS / m of tap water. In addition, even tap water whose pH value can be measured is susceptible to noise due to high impedance, and a phenomenon in which the potential at the time of measurement becomes unstable is observed. In addition, when measuring the pH value of a sample solution with low pH buffering capacity and low conductivity and high purity, the response of the glass electrode to the pH is slow and the potential response of the comparative electrode is extremely slow. Is substantially difficult and causes errors. At present, porous ceramics are often used as the material of the liquid junction 39. However, the porous ceramic member has a difficulty in that Ag + or AgCl2-complex dissolved from the reference electrode internal liquid 36, which is usually Ag / AgCl, is formed, and AgCl is easily eluted and clogged. As a result, leakage of the internal liquid is hindered and an inter-liquid potential difference is likely to occur, and an error has occurred between the measured value and the actual pH value.

そこで、pH応答速度が速いISFET式が注目されるようになった。以下に特開2000−338077公報に開示されたISFET式のものについて説明する。図8は、従来技術に係るISFET式のpH計を示す説明図である。図8において、40はセンサ部、41はISFET、42は参照電極部、43はシール部、44はケース、45は参照電極内部液、46は液絡部、47は電極配線部である。   Therefore, the ISFET type having a fast pH response speed has attracted attention. The ISFET type disclosed in Japanese Unexamined Patent Publication No. 2000-338077 will be described below. FIG. 8 is an explanatory diagram showing an ISFET type pH meter according to the prior art. In FIG. 8, 40 is a sensor unit, 41 is an ISFET, 42 is a reference electrode unit, 43 is a seal unit, 44 is a case, 45 is a reference electrode internal liquid, 46 is a liquid junction, and 47 is an electrode wiring unit.

センサ部40は、各部品がケース44に収納されており、一方の開口部には液絡部46と、液絡部46を支持すると共にこの開口部をシールドするシール部43とが設けられている。また、ケース44の液絡部46が設けられた側の先端にはpHセンサとしてISFET41を配置している。ケース44の内部には、参照電極部42を設け、さらに参照電極内部液45で満たしている。また、参照電極部42への外部への電気的導通は、電極配線部47で確保されている。   Each part of the sensor unit 40 is housed in a case 44. A liquid junction 46 and a seal portion 43 that supports the liquid junction 46 and shields the opening are provided in one opening. Yes. Further, an ISFET 41 is disposed as a pH sensor at the tip of the case 44 on the side where the liquid junction 46 is provided. A reference electrode portion 42 is provided inside the case 44 and is further filled with a reference electrode internal liquid 45. Further, electrical connection to the outside to the reference electrode portion 42 is ensured by the electrode wiring portion 47.

図8で示したようなISFETは、測定時における高速応答のpHセンサとして機能するだけでなく、ISFET自体がインピーダンス変換器として機能して入力インピーダンスを低下させるので、低緩衝能サンプル溶液のpH値の測定における活用が期待されている。しかし、ISFETの採用によって、応答が飛躍的に高速化して入力インピーダンスが低下できても、比較電極における電位応答の遅れが問題となっていた。すなわち、RE電極45のように、銀―塩化銀電極線を設け、さらに液絡液を液絡部から滲出させる構造の比較電極においては、サンプル溶液と接する液絡部に種々の問題があることが指摘され始めている。それらの中で特に重要な問題は、液絡部の汚染である。pH値を測定する度に液絡部にはサンプル溶液の成分が吸着されるが、このとき吸着したものは簡単に脱離できず、汚染物質となる。そのためにサンプル溶液と液絡部の液間電位が増大するとともに応答速度の低下をもたらし、汚染物質の吸着と脱離によってノイズも大きくなる。したがって、ISFETを用いても流動電位が発生しやすく、pH緩衝能が低いサンプルではpH値の測定を繰り返すごとに正確なpH値を得ることが困難になる課題を生じていた。   The ISFET as shown in FIG. 8 not only functions as a high-speed response pH sensor at the time of measurement, but also the ISFET itself functions as an impedance converter to lower the input impedance, so the pH value of the low buffer capacity sample solution It is expected to be used in the measurement of However, even if the response is dramatically increased and the input impedance can be reduced by adopting the ISFET, a delay in potential response at the reference electrode has been a problem. That is, as in the RE electrode 45, a comparative electrode having a structure in which a silver-silver chloride electrode wire is provided and liquid junction liquid is leached from the liquid junction portion has various problems in the liquid junction portion in contact with the sample solution. Has begun to be pointed out. A particularly important problem among them is contamination of the liquid junction. Every time the pH value is measured, the components of the sample solution are adsorbed to the liquid junction, but the adsorbed material cannot be easily detached and becomes a contaminant. For this reason, the liquid-liquid potential between the sample solution and the liquid junction increases, and the response speed decreases, and noise increases due to adsorption and desorption of contaminants. Therefore, even if ISFET is used, a flow potential is likely to be generated, and in a sample having a low pH buffering capacity, there is a problem that it is difficult to obtain an accurate pH value every time the pH value is measured.

特開2001−124722公報JP 2001-124722 A 特開2000−338077公報JP 2000-338077 A

本発明は、上記課題を解決するために、イオン感応性電界効果トランジスタを有するpH計において、pH値の測定を繰り返しても、pH緩衝能が低く、導電率も低い純度が高いサンプル液のpH値の測定を正確に行える構造を有するpH計を提供することを目的とする。   In order to solve the above-mentioned problems, the present invention provides a pH meter having an ion-sensitive field-effect transistor, which has a low pH buffering capacity and a low conductivity and a high purity, even if the measurement of the pH value is repeated. An object of the present invention is to provide a pH meter having a structure capable of accurately measuring a value.

請求項1に記載の発明は、センサ電極と比較電極とを有するpH計において、前記センサ電極は、イオン感応性電界効果トランジスタを備え、前記比較電極は、略筒状に形成された管状部と、該管状部の内部に設けられた銀―塩化銀電極部と、前記管状部の内部の内部液を外部に導出すると共に、前記管状部の軸方向に直交する断面における円相当直径が2mmを超えるように形成された液絡部とを備えていることを特徴とするpH計である。   The invention according to claim 1 is a pH meter having a sensor electrode and a comparison electrode, wherein the sensor electrode includes an ion-sensitive field effect transistor, and the comparison electrode includes a tubular portion formed in a substantially cylindrical shape. And a silver-silver chloride electrode portion provided inside the tubular portion, and the internal liquid inside the tubular portion is led out to the outside, and the equivalent circle diameter in a cross section perpendicular to the axial direction of the tubular portion is 2 mm. It is a pH meter characterized by having a liquid junction part formed so that it may exceed.

請求項2に記載の発明は、請求項1に記載の発明において、前記液絡部が多孔質セラミック又は多孔質ガラスからなることを特徴とするpH計である。   A second aspect of the present invention is the pH meter according to the first aspect of the present invention, wherein the liquid junction portion is made of porous ceramic or porous glass.

請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、前記比較電極は、前記液絡部が有機ポリマー多孔質体からなることを特徴とするpH計である。   A third aspect of the present invention is the pH meter according to the first or second aspect of the present invention, wherein the reference electrode has a liquid junction part made of an organic polymer porous body.

請求項1に記載の発明によれば、液絡部の管状部の軸方向に直交する断面における円相当直径が2mmを超えるようにしたので、発明者の知見によれば、液絡部の断面積を大きくすることによりサンプル液に含まれる分子が汚染物質として付着していない孔が一定数以上存在するようになる。これによって、正確な測定に必要な程度に比較電極の内部液の滲出を確保できるので、比較電極の電位応答が大幅に改善されて測定時における高速応答を実現できる。また、汚染に強いpH計となるので、測定を繰り返しても測定値と実際のpH値との間に誤差を生じにくくなる。ひいては、pH値の測定における再現性も向上し、導電率が10mS/m以下である水溶液のpH測定する場合においても、再現性の良いpH値の測定結果が簡単に得られる。   According to the first aspect of the present invention, the equivalent circle diameter in the cross section orthogonal to the axial direction of the tubular portion of the liquid junction exceeds 2 mm. By increasing the area, a certain number or more of pores to which molecules contained in the sample liquid are not attached as contaminants are present. As a result, the leaching of the internal liquid of the comparison electrode can be ensured to the extent necessary for accurate measurement, so that the potential response of the comparison electrode is greatly improved and a high-speed response during measurement can be realized. Further, since the pH meter is resistant to contamination, it is difficult to cause an error between the measured value and the actual pH value even if the measurement is repeated. As a result, the reproducibility in the measurement of the pH value is also improved, and even when measuring the pH of an aqueous solution having an electrical conductivity of 10 mS / m or less, a measurement result of a pH value with good reproducibility can be easily obtained.

請求項2に記載の発明によれば、液絡部に例えば果汁などの色素が付着しにくくなり、長期間使用する際における比較電極の外見の劣化を低減することができる。   According to the second aspect of the present invention, it becomes difficult for a pigment such as fruit juice to adhere to the liquid junction part, and the deterioration of the appearance of the comparison electrode during long-term use can be reduced.

請求項3に記載の発明によれば、比較電極の先端部にサンプル溶液の容器などが当たっても比較電極に欠けや亀裂を生じにくい。   According to the third aspect of the present invention, even if a sample solution container or the like hits the tip of the comparison electrode, the comparison electrode is less likely to be chipped or cracked.

本発明の実施の形態に係る液絡部とその周辺部を示す断面図である。It is sectional drawing which shows the liquid junction part which concerns on embodiment of this invention, and its periphery part. 本発明の実施の形態に係る液絡部を適用したpH計の断面図である。It is sectional drawing of the pH meter to which the liquid junction part which concerns on embodiment of this invention is applied. ISFET式のpH計における動作原理の説明図である。It is explanatory drawing of the principle of operation in an ISFET type pH meter. pH値の測定時におけるガラス電極方式とISFET方式との応答状態を比較したグラフである。It is the graph which compared the response state of the glass electrode system and ISFET system at the time of measurement of pH value. 液絡部の断面積と抵抗の関係を算出したグラフである。It is the graph which computed the relationship between the cross-sectional area of a liquid junction part, and resistance. 本発明に係る比較電極のpH測定時の応答状態を比較した実施例を示すグラフである。It is a graph which shows the Example which compared the response state at the time of pH measurement of the reference electrode which concerns on this invention. 従来技術に係るガラス電極式のpH計を示す説明図である。It is explanatory drawing which shows the glass electrode-type pH meter which concerns on a prior art. 従来技術に係るISFET式のpH計を示す説明図である。It is explanatory drawing which shows the ISFET type pH meter which concerns on a prior art.

以下に、本発明の実施の形態に係るpH計を図面に基づいて説明する。なお、以下の説明ではセンサをペンシル状に形成したpH計に適用した形態に基づいて説明しているが、本発明は様々な外形を持つセンサに適用することができる。すなわち、円筒の中に液絡部と銀―塩化銀電極部とが収納された構成だけではなく、例えば特開2005−265727公報に開示されたような構成にも好ましく適用できる。   Below, the pH meter which concerns on embodiment of this invention is demonstrated based on drawing. In addition, although the following description demonstrates based on the form applied to the pH meter which formed the sensor in pencil shape, this invention is applicable to the sensor with various external shapes. That is, the present invention can be preferably applied not only to the configuration in which the liquid junction portion and the silver-silver chloride electrode portion are accommodated in the cylinder, but also to the configuration disclosed in, for example, Japanese Patent Application Laid-Open No. 2005-265727.

図1は本発明の実施の形態に係る液絡部とその周辺部を示す断面図である。図1において、12は液絡部、13は管状部、14はゴム栓部である。また、図2は、本発明の実施の形態に係る液絡部を適用したpH計の断面図である。図2において、10はpH計、11は比較電極、15は銀―塩化銀電極線、16は比較電極内部液、17は外部接続端子、18は本体挿入部、19はOリング、20は本体部、21はISFET、22はサンプル溶液である。図3は、ISFET式のpH計における動作原理の説明図である。   FIG. 1 is a cross-sectional view showing a liquid junction part and its peripheral part according to an embodiment of the present invention. In FIG. 1, 12 is a liquid junction part, 13 is a tubular part, 14 is a rubber plug part. Moreover, FIG. 2 is sectional drawing of the pH meter to which the liquid junction part which concerns on embodiment of this invention is applied. In FIG. 2, 10 is a pH meter, 11 is a reference electrode, 15 is a silver-silver chloride electrode wire, 16 is a reference electrode internal solution, 17 is an external connection terminal, 18 is a body insertion portion, 19 is an O-ring, and 20 is a body. Part, 21 is an ISFET, and 22 is a sample solution. FIG. 3 is an explanatory diagram of the operating principle of an ISFET type pH meter.

まず、ISFET式のpH計の動作原理について、図3に基づいて説明する。pHセンサとなるISFET21は、Nチャンネル型のISFETである。ISFETは、Ion‐Sensitive Field‐Effect Transistorという英語名の略称であり、ユニポーラトランジスタであるFETの構造をセンサに応用したものである。ゲート絶縁膜は、イオンに対して感応性があり、ISFETでは絶縁膜をこの性質を積極的に利用することで高性能なpHセンサを実現するものである。ISFETのゲート電極は、P型シリコン基板の表面に作られた薄い絶縁膜の上に電解質溶液が接し、さらにこの溶液に比較電極11が接した構造からなっている。ISFETのデバイス動作は、この絶縁膜の下に形成される電荷チャンネルを利用するものであ。すなわち、上下2つのN型半導体層を形成し、それぞれをドレイン電極とソース電極とし、この間に電圧を引加する。この系において、電圧の印加でチャンネルという電流通路、つまりがN型半導体層間に電子の流れが形成されると、伝導電流が流れることになる。   First, the operating principle of the ISFET type pH meter will be described with reference to FIG. The ISFET 21 serving as a pH sensor is an N channel type ISFET. ISFET is an abbreviation for the English name Ion-Sensitive Field-Effect Transistor, and is an application of the structure of an FET, which is a unipolar transistor, to a sensor. The gate insulating film is sensitive to ions. In ISFET, a high-performance pH sensor is realized by actively utilizing this property of the insulating film. The gate electrode of the ISFET has a structure in which an electrolyte solution is in contact with a thin insulating film formed on the surface of a P-type silicon substrate, and the reference electrode 11 is in contact with this solution. The device operation of the ISFET utilizes a charge channel formed under this insulating film. That is, two upper and lower N-type semiconductor layers are formed, and each is used as a drain electrode and a source electrode, and a voltage is applied between them. In this system, when a voltage is applied to form a current path called a channel, that is, an electron flow between the N-type semiconductor layers, a conduction current flows.

この構造において、溶液16中で水素イオン濃度が増すと、P型半導体の主なキャリアである正孔はこれに反発してゲート絶縁膜から遠ざかり、これとは反対に、通常はP型層内に少数派として存在する電子がゲート直下に引き寄せられる。その結果、ドレイン電極とソース電極との間にチャンネルという電流通路が形成される。このように、絶縁膜に沿って蓄積した電子を図の上下方向へ流れるキャリア通路を絶縁膜に加えられるゲート電極の電位により制御できるのである。つまり、ゲート電極の電位によってドレイン電極とソース電極との間の電流をコントロールすることができる電位応答型センサとなる。したがって、水素イオン濃度が高いほどNチャネル層が厚くなって電流が多く流れるので、この電流値によってイオン濃度を検知できるのである。図4は、pH値の測定時におけるガラス電極方式とISFET方式との応答状態を比較したグラフである。図4に示すように、ISFET方式はガラス電極方式よりもpH測定時の応答速度が速いという利点がある。   In this structure, when the hydrogen ion concentration in the solution 16 is increased, holes which are main carriers of the P-type semiconductor are repelled and moved away from the gate insulating film. The electrons that exist as a minority are drawn directly under the gate. As a result, a current path called a channel is formed between the drain electrode and the source electrode. In this way, the carrier path through which electrons accumulated along the insulating film flow in the vertical direction in the figure can be controlled by the potential of the gate electrode applied to the insulating film. That is, the potential response type sensor can control the current between the drain electrode and the source electrode by the potential of the gate electrode. Therefore, the higher the hydrogen ion concentration, the thicker the N channel layer and the more current flows, so that the ion concentration can be detected from this current value. FIG. 4 is a graph comparing the response states of the glass electrode system and the ISFET system when measuring the pH value. As shown in FIG. 4, the ISFET method has an advantage that the response speed at the time of pH measurement is faster than the glass electrode method.

図2は、この構成をペンシル型のpH計に適用したものである。すなわち、pH計10は、ペンシル状に形成した本体部20に対して本体挿入部18を挿脱可能にすることによって、比較電極11の交換や分離してのメンテナンスをできるようにしている。なお、本体挿入部18は、その外周部にOリング19を設けて、外部接続端子17の部位までサンプル溶液や洗浄液が浸潤することを防止している。比較電極11の内部には、銀―塩化銀電極線15を設けると共に比較電極内部液16で満たしている。比較電極内部液16は、管状部13に挿入された状態で設けられた液絡部12から滲出する。本体部20の先端にはISFET21を埋設しており、さらにISFET21の表面を図示していない絶縁膜で覆っている。また、本体部20のこの絶縁膜を設けた部分の近傍は平坦に形成してあり、サンプル溶液22を保持しやすいようにしている。   FIG. 2 shows an application of this configuration to a pencil-type pH meter. That is, the pH meter 10 allows maintenance of the reference electrode 11 to be replaced or separated by making the main body insertion portion 18 detachable from the main body portion 20 formed in a pencil shape. The main body insertion portion 18 is provided with an O-ring 19 on the outer peripheral portion thereof to prevent the sample solution and the cleaning solution from infiltrating to the site of the external connection terminal 17. The reference electrode 11 is provided with a silver-silver chloride electrode wire 15 and filled with the reference electrode internal solution 16. The internal liquid 16 of the reference electrode exudes from the liquid junction portion 12 provided in the state inserted in the tubular portion 13. An ISFET 21 is embedded at the tip of the main body 20, and the surface of the ISFET 21 is covered with an insulating film (not shown). In addition, the vicinity of the portion of the main body 20 where the insulating film is provided is formed flat so that the sample solution 22 can be easily held.

さらに、液絡部12とその周辺部の構成について詳しく説明する。図1に示すように、液絡部12は、前述のようにゴム栓部14によって管状部13に支持されている。管状部13は、比較電極のケースの一部をなすものであり、図2のサンプル溶液22と液絡部12とが接してpH値の測定を容易になるように、ISFET21に臨むように配置している。なお、管状部13は、略筒状の内部空間が形成されているならば、外周側が略筒状に形成されていなくてもよい。また、ゴム栓部14は、液絡部12を管状部13に対して支持すると共に、比較電極内部液16が液絡部12の周囲から漏出することを防ぐ機能も持つ。液絡部12は、比較電極内部液16が内部から滲出してくるように、多孔質の材料で形成されている。多孔質の材料としては、硬質材料としては多孔質セラミック又は多孔質ガラス(バイコールガラス)、軟質材料としては有機ポリマー多孔質体が好ましい。多孔質セラミック又は多孔質ガラスを用いる場合は、液絡部に例えば果汁などの色素が付着しにくくなるので、長期間使用するうちに液絡部にサンプル液の色が付着して不潔な印象を与えることを低減することができる。有機ポリマー多孔質体を用いる場合は比較電極の先端部にサンプル溶液の容器など固いものが当たったり、pH計を床に落としたりしても比較電極に欠けや亀裂を生じるにくいという利点がある。   Further, the configuration of the liquid junction 12 and its peripheral part will be described in detail. As shown in FIG. 1, the liquid junction 12 is supported on the tubular portion 13 by the rubber stopper 14 as described above. The tubular portion 13 forms part of the case of the reference electrode, and is arranged to face the ISFET 21 so that the sample solution 22 and the liquid junction portion 12 in FIG. doing. Note that the outer peripheral side of the tubular portion 13 may not be formed in a substantially cylindrical shape as long as a substantially cylindrical inner space is formed. Further, the rubber plug portion 14 supports the liquid junction portion 12 with respect to the tubular portion 13, and also has a function of preventing the reference electrode internal liquid 16 from leaking from the periphery of the liquid junction portion 12. The liquid junction part 12 is formed of a porous material so that the reference electrode internal liquid 16 oozes out from the inside. As the porous material, porous ceramic or porous glass (Vycor glass) is preferable as the hard material, and an organic polymer porous body is preferable as the soft material. When using porous ceramic or porous glass, pigments such as fruit juice are less likely to adhere to the liquid junction, so the color of the sample liquid will adhere to the liquid junction during a long period of use and give an unclean impression. Giving can be reduced. When the organic polymer porous body is used, there is an advantage that the comparative electrode is less likely to be chipped or cracked even if a hard object such as a sample solution container hits the tip of the comparative electrode or the pH meter is dropped on the floor.

ところで、本発明では、液絡部12の管状部13の軸方向に直交する断面における円相当直径が3mm以上になるように形成している。これは、pH緩衝能が低く、導電率も低い純度が高いサンプル液のpH値の測定を正確に行うためには、銀―塩化銀電極と液絡液を収容した比較電極の液絡部において、液絡部を支持する管状部の軸方向に直交する方向における断面積をできるだけ大きくすることによって、液絡部を介した比較電極内部液の外部への浸潤が安定するという発明者の知見に基づいている。液絡部を円筒形と仮定し、その直径をd(mm)とすると、断面直径dの液絡部の抵抗Rは、R=k*4/(πd2)となる。ここで、d=1mmΦの場合の抵抗をR0とすると、R0=k*4/πとなる。そこで、d=1mmΦの場合の抵抗R0で規格化すると、規格化抵抗Rnは、Rn=K0/d2となる。なお、後述するように、この直径は円相当直径であり、断面形状は円形に限られるものではない。   By the way, in this invention, it forms so that the circle equivalent diameter in the cross section orthogonal to the axial direction of the tubular part 13 of the liquid junction part 12 may become 3 mm or more. In order to accurately measure the pH value of a sample solution having a low pH buffering capacity and a low conductivity and a high purity, a silver-silver chloride electrode and a liquid junction part of a reference electrode containing a liquid junction liquid are used. According to the inventor's knowledge that the cross-sectional area in the direction orthogonal to the axial direction of the tubular portion supporting the liquid junction is made as large as possible, so that the infiltration of the liquid inside the reference electrode through the liquid junction is stabilized. Is based. Assuming that the liquid junction is cylindrical and its diameter is d (mm), the resistance R of the liquid junction with the cross-sectional diameter d is R = k * 4 / (πd2). Here, when the resistance in the case of d = 1 mmΦ is R0, R0 = k * 4 / π. Therefore, when normalized with the resistance R0 in the case of d = 1 mmΦ, the normalized resistance Rn becomes Rn = K0 / d2. As will be described later, this diameter is a circle-equivalent diameter, and the cross-sectional shape is not limited to a circle.

図5は、液絡部の断面積と抵抗の関係を算出したグラフである。図5は前述の算出結果をグラフ化したものである。図5からわかるように、液絡部抵抗は液絡部直径の2乗で急激に減少している。発明者は、このグラフに基づいて、以下の述べる実施例を製作して比較した。図6は、本発明に係る比較電極のpH測定時の応答状態を比較した実施例を示すグラフである。発明者は、pH計の実施例として、円筒形状の液絡部の直径を1mmΦ及び3mmΦとし、さらに液絡部以外の部分を図1及び図2に示した構成にしたものを製作した。これらの実施例に対し、雨水をpH値の測定サンプルとしてそれぞれの測定特性を調べた。一般的に雨水のpH測定は難易度の高いものとされているが、液絡部の断面直径が1mmΦの実施例では5分以上経過してもpH測定値は安定しなかった。これに対して、3mmΦの場合は、図6に示すように、速やかに応答して約1分で安定な測定値に落ち着いた。発明者は、これらの液絡部を多数回使用した後の洗浄効果などについても調べると共に、さらに直径を1mm単位で2mmから12mmまでと、2.5mmとした円筒形状の液絡部を製作し、実際の抵抗値等を調べた。これらの結果から、発明者は以下の知見を得た。   FIG. 5 is a graph in which the relationship between the cross-sectional area of the liquid junction and the resistance is calculated. FIG. 5 is a graph of the above calculation results. As can be seen from FIG. 5, the junction resistance decreases sharply with the square of the junction diameter. Based on this graph, the inventor manufactured and compared the examples described below. FIG. 6 is a graph showing an example in which the response state at the time of pH measurement of the reference electrode according to the present invention is compared. As an example of the pH meter, the inventor manufactured a cylindrical liquid junction portion having diameters of 1 mmΦ and 3 mmΦ, and a portion other than the liquid junction portion configured as shown in FIGS. 1 and 2. With respect to these examples, each measurement characteristic was examined using rainwater as a pH value measurement sample. In general, pH measurement of rainwater is considered to be difficult, but in an example in which the cross-sectional diameter of the liquid junction is 1 mmΦ, the pH measurement value was not stable even after 5 minutes or more. On the other hand, in the case of 3 mmΦ, as shown in FIG. 6, it quickly responded and settled to a stable measurement value in about 1 minute. The inventor examined the cleaning effect after using these liquid junctions many times, and manufactured a cylindrical liquid junction with a diameter of 2 mm to 12 mm in increments of 1 mm and 2.5 mm. The actual resistance value and the like were examined. From these results, the inventors obtained the following knowledge.

すなわち、多孔質セラミック、多孔質ガラス、有機ポリマー多孔質体のいずれの材料においても、各々の気孔のうち、比較電極内部液を外部へ有効に滲出させている有効気孔率は、サンプル溶液の付着、材料の強度や滲出した比較電極内部液による汚染を考慮すると、一般的に50%以下となる。このような状況において、気孔率を変えて比較電極内部液の流出量を制御しようとしても、比較電極内部液の過剰滲出の問題などがあって制御範囲が限られるので、劇的な改善は期待できない。これに対して、液絡部の直径を2mmを超えるようにすると、有効気孔の絶対数が増えるので、液絡部での吸着分子の影響が相当程度、ないしは無視できるほどに低減できるようになる。なお、液絡部の直径が2mmの場合は、3mmの場合ほど安定せず、むしろ1mmの場合に近かった。2.5mmの場合には、1mmよりも3mmに近い安定性が得られたので、安定性が高くなる直径は2mmを超えたところにあることが分かった。これによって、液絡部にサンプル溶液の付着、材料の強度や滲出した比較電極内部液による汚染の影響があっても、比較電極の電位応答が大幅に改善されpH値の測定時に高速応答を確保できるようになる。また、液絡部の形状は、円筒状でなくとも、例えば角筒状であっても抵抗値に差はなかった。よって、液絡部の断面形状は特に限定されるものではない。なお、液絡部の直径は大きければ大きい方が好ましいと言えるが、直径11mm及び12mmでは直径10mmの場合に対して抵抗値の差は1%未満であり、実際のpH値測定時の応答性はほとんど改善しないことが予想される。液絡部の直径が大きくなると、製造コストが増大する上にpH計が大型化するので、この点を考慮すると液絡部の直径は10mm以下にすることが好ましいと言える。結局のところ、液絡部12の管状部13の軸方向に直交する断面における円相当直径が2mmを超えて10mm以下の場合は比較電極の電位応答が大幅に改善されて測定時における高速応答を実現でき、3mm以上10mm以下の場合は、比較電極の電位応答が劇的とも言えるほど改善されることが分かった。   That is, in any material of porous ceramic, porous glass, and organic polymer porous body, among the pores, the effective porosity that effectively exudes the liquid inside the reference electrode to the outside is the adhesion of the sample solution. Considering the strength of the material and the contamination by the exuded reference electrode internal solution, it is generally 50% or less. In such a situation, even if it is attempted to control the outflow amount of the liquid inside the reference electrode by changing the porosity, the control range is limited due to problems such as excessive leaching of the liquid inside the reference electrode, so a dramatic improvement is expected. Can not. On the other hand, if the diameter of the liquid junction exceeds 2 mm, the effective number of effective pores increases, so that the influence of adsorbed molecules at the liquid junction can be reduced to a considerable extent or negligible. . In addition, when the diameter of the liquid junction part was 2 mm, it was not as stable as the case of 3 mm, but rather was close to the case of 1 mm. In the case of 2.5 mm, stability closer to 3 mm than 1 mm was obtained, and thus it was found that the diameter at which the stability was increased exceeded 2 mm. This greatly improves the potential response of the reference electrode and ensures a high-speed response when measuring the pH value, even if the sample solution adheres to the liquid junction, is affected by the strength of the material, or contamination by the exuded reference electrode internal solution. become able to. Moreover, even if the shape of the liquid junction portion is not cylindrical, for example, it is a rectangular tube, there is no difference in resistance value. Therefore, the cross-sectional shape of the liquid junction is not particularly limited. In addition, it can be said that the larger the diameter of the liquid junction part, the better. However, the difference in resistance value is less than 1% when the diameter is 11 mm and 12 mm, compared with the case where the diameter is 10 mm. Is expected to improve little. If the diameter of the liquid junction increases, the manufacturing cost increases and the pH meter increases in size. Therefore, it can be said that the diameter of the liquid junction is preferably 10 mm or less in consideration of this point. After all, when the equivalent circle diameter in the cross section perpendicular to the axial direction of the tubular portion 13 of the liquid junction portion 12 is more than 2 mm and 10 mm or less, the potential response of the reference electrode is greatly improved and a high-speed response at the time of measurement is obtained. It was found that the potential response of the reference electrode was improved so as to be dramatic when the distance was 3 mm or more and 10 mm or less.

以上のように、本発明は、イオン感応性電界効果トランジスタ(ISFET)を有するpH計において、pH値の測定を繰り返しても、pH緩衝能が低く、導電率も低い純度が高いサンプル液のpH値の測定を正確に行える、つまり雨水等に対して簡単に再現性の良いpH値の測定を実現できる。したがって、本発明を実施したpH計によって、雨水や河川や井戸水などの環境水、さらにボイラの冷却水など従来pH計による測定が困難な分野におけるpH値の測定が可能になるので、その効果は非常に大きいと言える。なお、本発明は以上に説明した内容に限定されるものではなく、例えば液絡部もしくは管状部の形状、比較電極の内部構造や外形、又はpH計本体への挿脱の可否などについては、各請求項に記載した範囲を逸脱しない限りにおいて種々の変形を加えることが可能である。   As described above, the present invention is a pH meter having an ion-sensitive field effect transistor (ISFET). Even if the measurement of the pH value is repeated, the pH of the sample liquid having a low pH buffering capacity and a low conductivity and a high purity. The value can be measured accurately, that is, the pH value can be easily measured with good reproducibility for rainwater or the like. Therefore, the pH meter embodying the present invention makes it possible to measure pH values in fields that are difficult to measure with conventional pH meters, such as environmental water such as rainwater, rivers and well water, and cooling water for boilers. It can be said that it is very big. In addition, the present invention is not limited to the contents described above, for example, about the shape of the liquid junction part or the tubular part, the internal structure and outer shape of the reference electrode, whether or not it can be inserted into and removed from the pH meter body, etc. Various modifications can be made without departing from the scope of the claims.

10 pH計
11 比較電極
12 液絡部
13 管状部
14 ゴム栓部
15 銀―塩化銀電極線
16 比較電極内部液
17 外部接続端子
18 本体挿入部
19 Oリング
20 本体部
21 ISFET
22 サンプル溶液
30 pH計
31 pHセンサ
32 pH応答ガラス膜
33 pH応答ガラス膜支持体
34 内部液
35 信号取り出し電極
36 比較電極内部液
37 比較電極
38 容器
39 液絡
40 センサ部
41 ISFET
42 参照電極部
43 シール部
44 ケース
45 参照電極内部液
46 液絡部
47 電極配線部
10 pH meter 11 Reference electrode 12 Liquid junction part 13 Tubular part 14 Rubber plug part 15 Silver-silver chloride electrode wire 16 Reference electrode internal liquid 17 External connection terminal 18 Main body insertion part 19 O-ring 20 Main body part 21 ISFET
22 Sample solution 30 pH meter 31 pH sensor 32 pH responsive glass membrane 33 pH responsive glass membrane support 34 internal liquid 35 signal extraction electrode 36 comparative electrode internal liquid 37 comparative electrode 38 container 39 liquid junction 40 sensor unit 41 ISFET
Reference electrode part 43 Seal part 44 Case 45 Reference electrode internal liquid 46 Liquid junction part 47 Electrode wiring part

Claims (3)

センサ電極と比較電極とを有するpH計において、
前記センサ電極は、イオン感応性電界効果トランジスタを備え、
前記比較電極は、略筒状に形成された管状部と、該管状部の内部に設けられた銀―塩化銀電極部と、前記管状部の内部の内部液を外部に導出すると共に、前記管状部の軸方向に直交する断面における円相当直径が3mm以上10mm以下に形成された液絡部とを備えていることを特徴とするpH計。
In a pH meter having a sensor electrode and a reference electrode,
The sensor electrode comprises an ion sensitive field effect transistor,
The comparative electrode includes a tubular portion formed in a substantially cylindrical shape, a silver-silver chloride electrode portion provided inside the tubular portion, and the internal liquid inside the tubular portion is led out to the outside, and the tubular portion And a liquid junction part having a circle equivalent diameter of 3 mm or more and 10 mm or less in a cross section perpendicular to the axial direction of the part.
前記比較電極は、前記液絡部が多孔質セラミック又は多孔質ガラスからなることを特徴とする請求項1に記載のpH計。   The pH meter according to claim 1, wherein the liquid junction part of the reference electrode is made of porous ceramic or porous glass. 前記比較電極は、前記液絡部が有機ポリマー多孔質体からなることを特徴とする請求項1に記載のpH計。   The pH meter according to claim 1, wherein the liquid junction part of the reference electrode is made of an organic polymer porous body.
JP2010189065A 2010-08-26 2010-08-26 pH meter Expired - Fee Related JP5562179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010189065A JP5562179B2 (en) 2010-08-26 2010-08-26 pH meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010189065A JP5562179B2 (en) 2010-08-26 2010-08-26 pH meter

Publications (2)

Publication Number Publication Date
JP2012047552A JP2012047552A (en) 2012-03-08
JP5562179B2 true JP5562179B2 (en) 2014-07-30

Family

ID=45902613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010189065A Expired - Fee Related JP5562179B2 (en) 2010-08-26 2010-08-26 pH meter

Country Status (1)

Country Link
JP (1) JP5562179B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128131A (en) * 1980-03-14 1981-10-07 Olympus Optical Co Ph measuring apparatus
JPS59145955A (en) * 1983-02-09 1984-08-21 Mitsubishi Electric Corp Device for measuring chemical sensitive element
JP2000338077A (en) * 1999-05-31 2000-12-08 Shindengen Electric Mfg Co Ltd Ph sensor
JP4234856B2 (en) * 1999-07-26 2009-03-04 東亜ディーケーケー株式会社 Electrode body
JP2001134722A (en) * 1999-11-01 2001-05-18 Sankyo Seiki Mfg Co Ltd Data communication method for ic card reader
JP2001356110A (en) * 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd Ph sensor
ES2382578T3 (en) * 2007-01-22 2012-06-11 Commissariat Á L'energie Atomique Et Aux Énergies Alternatives Reference electrode, manufacturing procedure and battery comprising the same

Also Published As

Publication number Publication date
JP2012047552A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
Yeh et al. Schottky‐gated probe‐free ZnO nanowire biosensor
TWI422818B (en) Hydrogen ion sensitive field effect transistor and manufacturing method thereof
JP2012198250A (en) Semiconductor sensor
Sinha et al. A comprehensive review of FET‐based pH sensors: materials, fabrication technologies, and modeling
US10845323B2 (en) Ion sensor, ion concentration measurement method, and electronic component
WO2015200758A9 (en) 3d graphene transistor
Nguyen et al. Organic field-effect transistor with extended indium tin oxide gate structure for selective pH sensing
BR112015008211B1 (en) integrated circuit, sensitive apparatus, and method of measuring an analyte of interest in a medium
Zhou et al. High performance gas sensors with dual response based on organic ambipolar transistors
Truong et al. Reduced graphene oxide field-effect transistor with indium tin oxide extended gate for proton sensing
JP5903872B2 (en) Transistor type sensor and method for manufacturing transistor type sensor
Jakob et al. Flexible thin film pH sensor based on low‐temperature atomic layer deposition
Ersöz et al. Electrolyte-gated transistor for CO2 gas detection at room temperature
Chou et al. Fabrication and application of ruthenium-doped titanium dioxide films as electrode material for ion-sensitive extended-gate FETs
US10557814B2 (en) Electrochemical detector
KR101330221B1 (en) Sensors for detecting ion concentration using CNT and methods manufacturing the same
JP5562179B2 (en) pH meter
JP2008122136A (en) Heavy metal ion sensor
Nascimento et al. Mechanisms of ion detection for fet-sensors using FTO: Role of cleaning process, ph sequence and electrical resistivity
KR101380926B1 (en) Sensors for detecting ion concentration using surface carbon nanostructures (modified carbon nanostructures) and fabricating method thereof
CN105301079B (en) Semiconductor devices and its detection method for the detection of determinand ionic activity
Xu et al. Development and performance of an all-solid-stated pH sensor based on modified membranes
CN102812351A (en) Sensing biomolecules & charged ions in an electrolyte
WO2009064166A2 (en) An integrated ion sensitive field effect transistor sensor
WO2010087383A1 (en) Ion sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140610

R150 Certificate of patent or registration of utility model

Ref document number: 5562179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees