JP5562010B2 - Magnetic resonance imaging system - Google Patents

Magnetic resonance imaging system Download PDF

Info

Publication number
JP5562010B2
JP5562010B2 JP2009262541A JP2009262541A JP5562010B2 JP 5562010 B2 JP5562010 B2 JP 5562010B2 JP 2009262541 A JP2009262541 A JP 2009262541A JP 2009262541 A JP2009262541 A JP 2009262541A JP 5562010 B2 JP5562010 B2 JP 5562010B2
Authority
JP
Japan
Prior art keywords
noise
magnetic field
frequency
magnetic resonance
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009262541A
Other languages
Japanese (ja)
Other versions
JP2011104134A5 (en
JP2011104134A (en
Inventor
英久 秋丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2009262541A priority Critical patent/JP5562010B2/en
Publication of JP2011104134A publication Critical patent/JP2011104134A/en
Publication of JP2011104134A5 publication Critical patent/JP2011104134A5/ja
Application granted granted Critical
Publication of JP5562010B2 publication Critical patent/JP5562010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

本発明は、磁気共鳴現象を利用して被検体の任意部位の断層像を得るためのMRI装置に関し、主にノイズ発生源を特定する技術に関する。   The present invention relates to an MRI apparatus for obtaining a tomographic image of an arbitrary part of a subject using a magnetic resonance phenomenon, and particularly to a technique for specifying a noise generation source.

磁気共鳴イメージング装置(以下、MRI装置という。)は、被検体に静磁場及び傾斜磁場を与える磁場発生手段と、上記被検体の生体組織を構成する原子の原子核に核磁気共鳴を起こさせるために高周波信号を照射する送信系と、上記の核磁気共鳴により被検体から放出されるエコー信号を検出する受信系と、この受信系で検出したエコー信号を用いて画像再構成演算を行う信号処理系とを備え、核磁気共鳴により放出されるエコー信号を用いて画像再構成演算を行う信号処理系とを備え、核磁気共鳴により放出されるエコー信号を計測するシーケンスを繰り返し行なって断層像を得るようになっている。   A magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus) is a magnetic field generating means for applying a static magnetic field and a gradient magnetic field to a subject, and for causing nuclear magnetic resonance in atomic nuclei constituting the biological tissue of the subject. A transmission system that emits a high-frequency signal, a reception system that detects an echo signal emitted from the subject by the above-described nuclear magnetic resonance, and a signal processing system that performs an image reconstruction operation using the echo signal detected by the reception system And a signal processing system for performing image reconstruction calculation using echo signals emitted by nuclear magnetic resonance, and obtaining a tomographic image by repeatedly performing a sequence of measuring echo signals emitted by nuclear magnetic resonance It is like that.

ここで、上記MRI装置を囲む周囲環境には、その付近の電気、電子機器等から発生する外来無線ノイズが飛び交っており、この外来無線ノイズを上記被検体から放出されるエコー信号を受信する手段、例えば受信側の高周波コイルで受信してしまうことがあった。この場合は、被検体から計測したエコー信号に上記外来無線ノイズが混入して、得られる断層像の画質が劣化することがあった。   Here, in the surrounding environment surrounding the MRI apparatus, external wireless noise generated from the nearby electrical and electronic devices is scattered, and means for receiving an echo signal emitted from the subject through the external wireless noise For example, reception may be performed by a high-frequency coil on the reception side. In this case, the external radio noise is mixed in the echo signal measured from the subject, and the image quality of the obtained tomographic image may be deteriorated.

一方、システム内部にもノイズ発生源があり、同様に得られる断層像の画質が劣化することがあった。   On the other hand, there are noise sources inside the system, and the image quality of the tomographic image obtained in the same way may be deteriorated.

特許文献1記載の従来技術では、MRI装置において、上記受信系には、被検体から放出されるエコー信号を受信しない位置に外来無線ノイズを受信する手段を設け、この外来無線ノイズ受信手段からのノイズ信号と上記被検体からのエコー信号を受信する手段からの出力信号とから該エコー信号受信手段に混入する外来無線ノイズを除去する回路を設けたことを特徴とする磁気共鳴イメージング装置が開示されている。   In the prior art described in Patent Document 1, in the MRI apparatus, the receiving system is provided with means for receiving external radio noise at a position where the echo signal emitted from the subject is not received, and the external radio noise receiving means A magnetic resonance imaging apparatus comprising a circuit for removing external radio noise mixed in the echo signal receiving means from the noise signal and an output signal from the means for receiving the echo signal from the subject is disclosed. ing.

特開平3-188831号公報Japanese Unexamined Patent Publication No. 3-188831

しかしながら、特許文献1記載の従来技術は、ノイズの種類を特定できず、該ノイズはその発生源を特定してアーチファクト低減のために除去しなければならないが、それができない問題点がある。
本発明は、ノイズの種類を特定可能とするMRI装置を提供することを目的とする。
However, the prior art described in Patent Document 1 cannot identify the type of noise, and the noise has to be identified and removed to reduce artifacts.
An object of this invention is to provide the MRI apparatus which can specify the kind of noise.

上記の課題を解決するために、本発明によれば、被検体に静磁場および傾斜磁場を与える磁場発生系と、前記被検体の生体組織を構成する原子核に核磁気共鳴を起こさせるための高周波磁場を照射する送信系と、前記核磁気共鳴により放出される核磁気共鳴信号を検出する受信系と、装置全体の動作を制御する中央処理装置とを備えた磁気共鳴イメージング装置において、前記受信系は、ノイズの発生源を特定する特定手段を備え、前記特定手段は、前記受信系により、前記傾斜磁場及び前記高周波磁場を印加しないで得られた複数個のエコー信号の周波数スペクトルを2次元的に配置する手段を備え、所定の周波数のノイズコンポーネントの出現頻度により、ノイズの発生源を特定可能とすることを特徴とする磁気共鳴イメージング装置が提供される。   In order to solve the above problems, according to the present invention, a magnetic field generating system for applying a static magnetic field and a gradient magnetic field to a subject, and a high frequency for causing nuclear magnetic resonance in an atomic nucleus constituting the biological tissue of the subject. A magnetic resonance imaging apparatus comprising: a transmission system that irradiates a magnetic field; a reception system that detects a nuclear magnetic resonance signal emitted by the nuclear magnetic resonance; and a central processing unit that controls the operation of the entire apparatus. Includes a specifying means for specifying a noise generation source, and the specifying means is configured to two-dimensionally analyze frequency spectra of a plurality of echo signals obtained without applying the gradient magnetic field and the high-frequency magnetic field by the receiving system. The magnetic resonance imaging apparatus is characterized in that the noise generation source can be specified by the appearance frequency of the noise component having a predetermined frequency. Provided.

また、被検体に静磁場および傾斜磁場を与える磁場発生系と、前記被検体の生体組織を構成する原子核に核磁気共鳴を起こさせるための高周波磁場を照射する送信系と、前記核磁気共鳴により放出される核磁気共鳴信号を検出する受信系と、装置全体の動作を制御する中央処理装置とを備えた磁気共鳴イメージング装置において、前記受信系は、ノイズの発生源を特定する特定手段を備え、前記特定手段は、前記受信系の受信コイルの受信感度を変化させた場合に、所定の周波数のノイズコンポーネントの変化が、前記受信感度の変化に追従するかに基づいて、ノイズの発生源を特定可能とする磁気共鳴イメージング装置が提供される。   A magnetic field generation system that applies a static magnetic field and a gradient magnetic field to the subject, a transmission system that irradiates a high-frequency magnetic field for causing nuclear magnetic resonance to cause nuclei constituting the biological tissue of the subject, and the nuclear magnetic resonance. In a magnetic resonance imaging apparatus comprising a receiving system for detecting emitted nuclear magnetic resonance signals and a central processing unit for controlling the operation of the entire apparatus, the receiving system comprises a specifying means for specifying a noise source. The specifying means determines a noise source based on whether a change in a noise component of a predetermined frequency follows the change in the reception sensitivity when the reception sensitivity of the reception coil of the reception system is changed. A magnetic resonance imaging apparatus capable of being specified is provided.

本発明によれば、ノイズの種類を特定可能とすることが可能なMRI装置を提供できる。   According to the present invention, it is possible to provide an MRI apparatus capable of specifying the type of noise.

本発明の全体構成を示すブロック図The block diagram which shows the whole structure of this invention 本発明の実施例1及び2の概念を示す図The figure which shows the concept of Example 1 and 2 of this invention 本発明の実施例1の動作を示すフローチャートThe flowchart which shows operation | movement of Example 1 of this invention. 信号取得の際のシーケンス図Sequence diagram for signal acquisition フーリエ変換して得られた結果のスペクトルを示す図Diagram showing the resulting spectrum obtained by Fourier transform 本発明の実施例2の動作を示すフローチャートThe flowchart which shows operation | movement of Example 2 of this invention. フーリエ変換して得られた結果のスペクトルを示す図Diagram showing the resulting spectrum obtained by Fourier transform

以下、本発明の実施例を添付図面に基づいて詳細に説明する。
図1は本発明による処理方法が適用されるMRI装置の全体構成を示すブロック図である。このMRI装置は、磁気共鳴現象を利用して被検体の断層像を得るもので、同図に示すように静磁場発生回路1と、傾斜磁場発生系2と、送信系3と、受信系4と、信号処理系5と、シーケンサ6と、中央処理装置(CPU)7と、操作部8とを備えて成る。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a block diagram showing the overall configuration of an MRI apparatus to which a processing method according to the present invention is applied. This MRI apparatus uses a magnetic resonance phenomenon to obtain a tomographic image of a subject, and as shown in the figure, a static magnetic field generation circuit 1, a gradient magnetic field generation system 2, a transmission system 3, and a reception system 4 A signal processing system 5, a sequencer 6, a central processing unit (CPU) 7, and an operation unit 8.

静磁場発生回路1は、被検体9の周りにその体軸方向または体軸と直交する方向に均一な静磁場を発生させるもので、上記被検体9の周りのある広がりをもった空間に永久磁石方式又は常電導方式あるいは超電導方式の磁場発生手段が配置されている。傾斜磁場発生系2は、X、Y、Zの三軸方向に傾斜磁場を発生する傾斜磁場コイル10と、それぞれのコイルを駆動する傾斜磁場電源11とから成り、シーケンサ6からの命令にしたがってそれぞれのコイルの傾斜磁場電源11を駆動することにより、X、Y、Zの三軸方向の傾斜磁場Gs、Gp、Gfを被検体9に印加するようになっている。この傾斜磁場の加え方により、被検体9に対するスライス面を設定することができ、またエコー信号をエンコードし位置情報を付与する。また傾斜磁場の印加に起因する渦電流の空間的かつ時間的な情報から、静磁場発生回路1の一部を形成しているシムコイル、あるいは傾斜磁場発生系2に対して補償電流を印加することが出来る。   The static magnetic field generation circuit 1 generates a uniform static magnetic field around the subject 9 in the direction of the body axis or in a direction perpendicular to the body axis. Magnetic, normal conducting, or superconducting magnetic field generating means are arranged. The gradient magnetic field generation system 2 includes a gradient magnetic field coil 10 that generates a gradient magnetic field in three axis directions of X, Y, and Z, and a gradient magnetic field power source 11 that drives each coil. By driving the gradient magnetic field power supply 11 of the coil, gradient magnetic fields Gs, Gp, and Gf in three axis directions of X, Y, and Z are applied to the subject 9. By applying this gradient magnetic field, a slice plane for the subject 9 can be set, and an echo signal is encoded to provide position information. Applying a compensation current to the shim coil that forms part of the static magnetic field generation circuit 1 or the gradient magnetic field generation system 2 based on the spatial and temporal information of the eddy current resulting from the application of the gradient magnetic field I can do it.

送信系3は、シーケンサ6から送出される高周波磁場パルスにより被検体9の生体組織を構成する原子の原子核に核磁気共鳴を起こさせるために高周波信号を照射するもので、高周波発振器12と、変調器13と、高周波増幅器14と、送信側の高周波照射コイル15とから成り、高周波発振器12から出力された高周波パルスを高周波増幅器14で増幅した後に被検体9に近接して配置された送信側の高周波照射コイル15に供給することにより、電磁波(高周波信号)が上記被検体9に照射されるようになっている。   The transmission system 3 irradiates a high-frequency signal in order to cause nuclear magnetic resonance to occur in the atomic nucleus constituting the biological tissue of the subject 9 by the high-frequency magnetic field pulse transmitted from the sequencer 6. A transmitter 13, a high-frequency amplifier 14, and a transmission-side high-frequency irradiation coil 15, a high-frequency pulse output from the high-frequency oscillator 12 is amplified by the high-frequency amplifier 14, and is then placed close to the subject 9. By supplying the high-frequency irradiation coil 15, electromagnetic waves (high-frequency signals) are irradiated on the subject 9.

受信系4は、被検体9の生体組織の原子核の核磁気共鳴により放出されるエコー信号(NMR信号)を検出するもので、受信側の高周波受信コイル16と、増幅器17と、直交位相検波器18と、A/D変換器19とから成り、送信側の高周波照射コイル15から照射された電磁波による被検体9の応答の電磁波(NMR信号)は被検体9に近接して配置された受信側の高周波コイル16で検出され、増幅器17及び直交位相検波器18を介してA/D変換器19に入力してディジタル量に変換され、さらにシーケンサ6からの命令によるタイミングで直交位相検波器18によりサンプリングされた二系列の収集データとされ、その信号が信号処理系5に送られるようになっている。   The receiving system 4 detects an echo signal (NMR signal) emitted by nuclear magnetic resonance of the nucleus of the biological tissue of the subject 9, and receives a high-frequency receiving coil 16 on the receiving side, an amplifier 17, and a quadrature detector 18 and an A / D converter 19, and the electromagnetic wave (NMR signal) of the response of the subject 9 due to the electromagnetic wave irradiated from the high-frequency irradiation coil 15 on the transmission side is disposed close to the subject 9 Is detected by a high frequency coil 16 and input to an A / D converter 19 via an amplifier 17 and a quadrature phase detector 18 to be converted into a digital quantity, and further by a quadrature phase detector 18 at a timing according to a command from the sequencer 6. The two sets of sampled collected data are sent to the signal processing system 5.

この信号処理系5は、受信系4で検出したエコー信号を用いて画像再構成演算を行うと共に画像表示をするもので、エコー信号についてフーリエ変換、補正係数計算、画像再構成等の処理及びシーケンサ6の制御を行うCPU7と、経時的な画像解析処理及び計測を行うプログラムやその実行において用いる不変のパラメータなどを記憶するROM(読み出し専用メモリ)20と、前計測で得た計測パラメータや受信系4で検出したエコー信号、及び関心領域設定に用いる画像を一時保管すると共にその関心領域を設定するためのパラメータなどを記憶するRAM(随時書き込み読み出しメモリ)21と、CPU7で再構成された画像データを記録するデータ格納部となる光磁気ディスク22及び磁気ディスク24と、これらの光磁気ディスク22又は磁気ディスク24から読み出した画像データを映像化して断層像として表示する表示部となるディスプレイ23とから成る。   This signal processing system 5 performs image reconstruction calculation and image display using the echo signal detected by the reception system 4, and processes such as Fourier transform, correction coefficient calculation, image reconstruction and the sequencer for the echo signal CPU 7 for controlling 6; ROM (read-only memory) 20 for storing time-lapse image analysis processing and measurement program and invariant parameters used in its execution; measurement parameter and reception system obtained in previous measurement Echo signal detected in 4 and the image used for region of interest setting are temporarily stored and the RAM (Timely Write Read Memory) 21 that stores parameters for setting the region of interest and the image data reconstructed by the CPU 7 A magneto-optical disk 22 and a magnetic disk 24 serving as a data storage unit for recording the image data read from the magneto-optical disk 22 or the magnetic disk 24. And a display 23 serving as a display unit for visualizing the data and displaying it as a tomographic image.

シーケンサ6は、上記被検体9の生体組織を構成する原子の原子核に核磁気共鳴を起こさせる高周波磁場パルスをある所定のパルスシーケンスで繰り返し印加する制御手段となるもので、CPU7の制御で動作し、被検体9の断層像のデータ収集に必要な種々の命令を送信系3及び傾斜磁場発生系2並びに受信系4に送るようになっている。また、操作部8は、信号処理系5で行う処理の制御情報を入力するもので、トラックボール又はマウス25及び、キーボード26から成る。   The sequencer 6 serves as a control means for repeatedly applying a high-frequency magnetic field pulse causing nuclear magnetic resonance to the atomic nucleus constituting the biological tissue of the subject 9 in a predetermined pulse sequence, and operates under the control of the CPU 7. Various commands necessary for collecting tomographic image data of the subject 9 are sent to the transmission system 3, the gradient magnetic field generation system 2, and the reception system 4. The operation unit 8 inputs control information for processing performed in the signal processing system 5 and includes a trackball or mouse 25 and a keyboard 26.

次に本発明の実施例1及び2の概念を図2を用い説明する。図2において、26は受信コイル、27はプリアンプ、28は可変ゲイン、29はADCである。本発明で測定の対象とするノイズは2種類あり、1つは外来ノイズ30で受信コイル26に直接入ってくるもの、もう一つはシステムノイズ31であり、ADC29に直接入ってくるものである。   Next, the concept of Embodiments 1 and 2 of the present invention will be described with reference to FIG. In FIG. 2, 26 is a receiving coil, 27 is a preamplifier, 28 is a variable gain, and 29 is an ADC. There are two types of noise to be measured in the present invention, one is the external noise 30 that directly enters the receiving coil 26, and the other is the system noise 31 that directly enters the ADC 29. .

次に、本発明の実施例1の動作を示すフローチャートを図3を用い説明する。
(ステップ41)
受信コイル及びファントムを所定の位置(ガントリの中央)に配置する。
Next, a flowchart showing the operation of the first embodiment of the present invention will be described with reference to FIG.
(Step 41)
A receiving coil and a phantom are arranged at predetermined positions (center of the gantry).

(ステップ42)
傾斜磁場・高周波磁場を印加せずに信号を収集する。信号取得の際のシーケンス図は図4のようである。図4において、高周波パルス、傾斜磁場パルス等は印加せず、ADCのみ所定の時間間隔で動かして、ノイズのみを収集している。
(Step 42)
Collect signals without applying gradient or high-frequency magnetic fields. The sequence diagram for signal acquisition is as shown in FIG. In FIG. 4, high frequency pulses, gradient magnetic field pulses, and the like are not applied, and only the ADC is moved at a predetermined time interval to collect only noise.

(ステップ43)
ステップ43で得られたデータをフーリエ変換する。
(Step 43)
The data obtained in step 43 is Fourier transformed.

(ステップ44)
フーリエ変換して得られた結果のスペクトルを、図5(a)のように示す。ステップ44からステップからステップ42へ移ることを何度も行い、ステップ44でスペクトルを何度も得て、図5(b)のように縦方向に並べて2次元に配置する。
(Step 44)
The resulting spectrum obtained by Fourier transform is shown in FIG. 5 (a). Steps 44 to 42 are repeated many times, and a spectrum is obtained many times in step 44. The spectra are arranged in the vertical direction as shown in FIG.

本実施例により、特定の周波数のノイズが縦方向に頻繁に発生しているか、まだらに発生しているかを調べることができる。例えばノイズの頻度がまだらであり、それが近くを通る電車の間隔(例えば、5分間隔)であれば、電車に起因するノイズと操作者が推定できる。また、ノイズの頻度が頻繁であり、それが近くを通る車の間隔(例えば、30秒間隔)であれば、車に起因するノイズと操作者が推定できる。   According to this embodiment, it is possible to check whether noise of a specific frequency is frequently generated in the vertical direction or mottled. For example, if the frequency of noise is mottled and it is an interval between trains passing nearby (for example, every 5 minutes), the operator can estimate the noise caused by the train. Further, if the frequency of noise is frequent and it is an interval between vehicles passing nearby (for example, an interval of 30 seconds), it is possible to estimate the noise caused by the vehicle and the operator.

上記実施例によれば、被検体に静磁場および傾斜磁場を与える磁場発生系と、前記被検体の生体組織を構成する原子核に核磁気共鳴を起こさせるための高周波磁場を照射する送信系と、前記核磁気共鳴により放出される核磁気共鳴信号を検出する受信系と、装置全体の動作を制御する中央処理装置とを備えた磁気共鳴イメージング装置において、前記受信系は、ノイズの発生源を特定する特定手段を備え、前記特定手段は、前記受信系により、前記傾斜磁場及び前記高周波磁場を印加しないで得られた複数個のエコー信号の周波数スペクトルを2次元的に配置する手段を備え、所定の周波数のノイズコンポーネントの出現頻度により、ノイズの発生源を特定可能とする。   According to the above embodiment, a magnetic field generation system that applies a static magnetic field and a gradient magnetic field to a subject, a transmission system that irradiates a high-frequency magnetic field for causing nuclear magnetic resonance in an atomic nucleus constituting the biological tissue of the subject, In a magnetic resonance imaging apparatus comprising a receiving system for detecting a nuclear magnetic resonance signal emitted by the nuclear magnetic resonance and a central processing unit for controlling the operation of the entire apparatus, the receiving system specifies a source of noise. Specifying means, and the specifying means includes means for two-dimensionally arranging frequency spectra of a plurality of echo signals obtained without applying the gradient magnetic field and the high-frequency magnetic field by the receiving system. The noise generation source can be specified by the appearance frequency of the noise component of the frequency.

つまり、常に発生しているノイズか特定のタイミングでのみ発生するノイズかを見分けるため、周波数スペクトルを2次元的に濃淡で表現して繰り返し回数分を並べて表示する。これにより、ノイズの発生が時間的に変化するかどうかを視覚的に捉えやすくすることができる。   In other words, in order to distinguish between noise that is always generated or noise that occurs only at a specific timing, the frequency spectrum is expressed two-dimensionally in shades and the number of repetitions is displayed side by side. Thereby, it can be made easy to visually grasp whether or not the occurrence of noise changes with time.

次に、本発明の実施例2の動作を示すフローチャートを図6を用い説明する。   Next, a flowchart showing the operation of the second embodiment of the present invention will be described with reference to FIG.

(ステップ61)
受信コイル及びファントムを所定の位置(ガントリの中央)に配置する。
(Step 61)
A receiving coil and a phantom are arranged at predetermined positions (center of the gantry).

(ステップ62)
傾斜磁場・高周波磁場を印加せずに信号を収集する。信号取得の際のシーケンス図は図4のようである。図4において、高周波パルス、傾斜磁場パルス等は印加せず、ADCのみ所定の間隔で動かして、ノイズのみを収集している。
(Step 62)
Collect signals without applying gradient or high-frequency magnetic fields. The sequence diagram for signal acquisition is as shown in FIG. In FIG. 4, only the noise is collected by moving only the ADC at a predetermined interval without applying a high frequency pulse, a gradient magnetic field pulse, or the like.

(ステップ63)
ステップ62で得られたデータをフーリエ変換する。
(Step 63)
The data obtained in step 62 is Fourier transformed.

(ステップ64)
フーリエ変換して得られた結果のスペクトルを、図7(a)のように示す。
(Step 64)
The resulting spectrum obtained by Fourier transform is shown in FIG. 7 (a).

(ステップ65)
本ステップにおいて、受信コイルの感度を変化させてステップ62からステップ64までを繰り返す。受信コイルの感度を変化させて得られた結果のスペクトルを、図7(b)のように示す。
(Step 65)
In this step, steps 62 to 64 are repeated while changing the sensitivity of the receiving coil. The resulting spectrum obtained by changing the sensitivity of the receiving coil is shown in FIG. 7 (b).

(ステップ66)
受信ゲインを異ならせて得られたスペクトルデータの除算して図7(c)のようなグラフを得る。
(Step 66)
A graph as shown in FIG. 7C is obtained by dividing the spectrum data obtained by changing the reception gain.

(ステップ67)
除算した結果、受信ゲインを異ならせて大きさの異なる成分は、外来ノイズ、大きさの変わらない成分を内因ノイズと判別する。
(Step 67)
As a result of the division, components having different magnitudes with different reception gains are discriminated as external noise, and components whose magnitudes are not changed are discriminated as intrinsic noise.

本実施例によれば、受信コイルの感度をゲインを変えることにより変化させた場合、外来ノイズであれば感度の差だけ信号が増減し、システム内部のノイズであれば感度によって増減しない。そこで、受信コイルの感度を変化させたノイズデータを除算して信号比を求めてグラフ化することによって、どの周波数のものが外来ノイズかシステム内部のノイズかを判別できる。具体的に受信コイル感度=aの場合と受信コイル感度=bの場合で、図7(a)、(b)のようにスペクトルを2つ求め、その割算を計算することにより、右側のようなグラフを求める。右側のグラフにおいて信号率が、受信コイル感度の変化(受信コイルの感度比)と同程度に変化している場合、その周波数のノイズは外来ノイズ(外因ノイズ)であると判定でき、右側のグラフにおいて信号率が、受信コイル感度の変化(受信コイルの感度比)と異なる場合、その周波数のノイズは、システム内部のノイズ(内因ノイズ)であると判定できる。   According to the present embodiment, when the sensitivity of the receiving coil is changed by changing the gain, the signal is increased or decreased by the difference in sensitivity if it is external noise, and is not increased or decreased by the sensitivity if it is noise inside the system. Therefore, by dividing the noise data obtained by changing the sensitivity of the receiving coil to obtain the signal ratio and graphing it, it is possible to determine which frequency is the external noise or the noise inside the system. Specifically, when receiving coil sensitivity = a and receiving coil sensitivity = b, two spectra are obtained as shown in Figs. 7 (a) and (b), and the division is calculated as shown on the right side. A simple graph. If the signal rate in the graph on the right changes to the same extent as the change in receiver coil sensitivity (receiver coil sensitivity ratio), the noise at that frequency can be determined as external noise (external noise), and the graph on the right. When the signal rate is different from the change in the sensitivity of the receiving coil (sensitivity ratio of the receiving coil), it is possible to determine that the noise at that frequency is internal noise (internal noise).

上記実施例によれば、被検体に静磁場および傾斜磁場を与える磁場発生系と、前記被検体の生体組織を構成する原子核に核磁気共鳴を起こさせるための高周波磁場を照射する送信系と、前記核磁気共鳴により放出される核磁気共鳴信号を検出する受信系と、装置全体の動作を制御する中央処理装置とを備えた磁気共鳴イメージング装置において、前記受信系は、ノイズの発生源を特定する特定手段を備え、前記特定手段は、前記受信系の受信コイルの受信感度を変化させた場合に、所定の周波数のノイズコンポーネントの変化が、前記受信感度の変化に追従するかに基づいて、ノイズの発生源を特定可能としている。   According to the above embodiment, a magnetic field generation system that applies a static magnetic field and a gradient magnetic field to a subject, a transmission system that irradiates a high-frequency magnetic field for causing nuclear magnetic resonance in an atomic nucleus constituting the biological tissue of the subject, In a magnetic resonance imaging apparatus comprising a receiving system for detecting a nuclear magnetic resonance signal emitted by the nuclear magnetic resonance and a central processing unit for controlling the operation of the entire apparatus, the receiving system specifies a source of noise. The specifying unit is configured to determine whether the change in the noise component of a predetermined frequency follows the change in the reception sensitivity when the reception sensitivity of the reception coil of the reception system is changed. The source of noise can be specified.

本発明は、MRI装置におけるノイズの特定に利用することができる。   The present invention can be used to specify noise in an MRI apparatus.

27 周波数スペクトル、28 複数回データの受信を行なって周波数スペクトルを得て、それらを縦方向に並べたもの   27 Frequency spectrum, 28 Data received multiple times to obtain a frequency spectrum and arranged in the vertical direction

Claims (1)

被検体に静磁場および傾斜磁場を与える磁場発生系と、
前記被検体の生体組織を構成する原子核に核磁気共鳴を起こさせるための高周波磁場を照射する送信系と、
前記核磁気共鳴により放出される核磁気共鳴信号を検出する受信系と、
装置全体の動作を制御する中央処理装置と、
前記受信系の受信コイルの受信ゲインを変化させて、ノイズスペクトルの変化が、前記受信ゲインの変化に追従するかに基づいて、ノイズの発生源を特定する手段と、
を有し、
前記ノイズの発生源を特定する手段は、前記受信ゲインの異なる2つのノイズスペクトルのデータの比が、前記受信ゲインの変化の比と同程度の変化を示す周波数のノイズ成分を外因ノイズと判定し、前記受信ゲインの変化の比と異なる変化を示す周波数のノイズ成分を内因ノイズと判定する
ことを特徴とする磁気共鳴イメージング装置。
A magnetic field generation system for applying a static magnetic field and a gradient magnetic field to a subject;
A transmission system for irradiating a high-frequency magnetic field for causing nuclear magnetic resonance in an atomic nucleus constituting the biological tissue of the subject;
A receiving system for detecting a nuclear magnetic resonance signal emitted by the nuclear magnetic resonance;
A central processing unit for controlling the operation of the entire apparatus;
Means for identifying a noise generation source based on whether a change in a noise spectrum follows a change in the reception gain by changing a reception gain of a reception coil of the reception system;
Have
The means for identifying the noise generation source determines that a noise component having a frequency at which a ratio of data of two noise spectra having different reception gains is approximately the same as a ratio of a change in the reception gain is external noise. The noise component of the frequency showing a change different from the ratio of the change in the reception gain is determined as intrinsic noise.
A magnetic resonance imaging apparatus.
JP2009262541A 2009-11-18 2009-11-18 Magnetic resonance imaging system Active JP5562010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009262541A JP5562010B2 (en) 2009-11-18 2009-11-18 Magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009262541A JP5562010B2 (en) 2009-11-18 2009-11-18 Magnetic resonance imaging system

Publications (3)

Publication Number Publication Date
JP2011104134A JP2011104134A (en) 2011-06-02
JP2011104134A5 JP2011104134A5 (en) 2013-01-10
JP5562010B2 true JP5562010B2 (en) 2014-07-30

Family

ID=44228339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009262541A Active JP5562010B2 (en) 2009-11-18 2009-11-18 Magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP5562010B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6867926B2 (en) * 2017-10-12 2021-05-12 株式会社日立製作所 Noise source search device and noise source search method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650605U (en) * 1992-12-22 1994-07-12 ジーイー横河メディカルシステム株式会社 MRI equipment
JPH0650606U (en) * 1992-12-25 1994-07-12 ジーイー横河メディカルシステム株式会社 MRI equipment
US6963184B2 (en) * 2002-09-26 2005-11-08 3M Innovative Properties Company Adaptable spatial notch filter
JP5012246B2 (en) * 2007-06-20 2012-08-29 トヨタ自動車株式会社 Noise removal device

Also Published As

Publication number Publication date
JP2011104134A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
RU2685057C2 (en) Magnetic resonance imaging with rf noise detection coils
JP6232043B2 (en) Reconstruction of magnetic resonance images using detection of respiratory motion during sampling in the middle and periphery of the K-space region
US7944209B2 (en) Magnetic resonance imaging apparatus and method
JP5718228B2 (en) Magnetic resonance imaging apparatus and eddy current compensation method
CN104736050B (en) The Forecasting Methodology of MR imaging apparatus and SAR
CN107024670A (en) The bearing calibration of magnetic resonance system and device
US20140218031A1 (en) Magnetic resonance imaging apparatus and control method thereof
JP6038654B2 (en) Magnetic resonance imaging apparatus and vibration error magnetic field reduction method
JP5666470B2 (en) Nuclear magnetic resonance imaging apparatus and SAR estimation method
KR20130020423A (en) Apparatus and method for creating multi-type magnetic resonance images simultaneously
US8148980B2 (en) Magnetic resonance imaging system and method
JP6618988B2 (en) Magnetic resonance imaging apparatus and RF shimming parameter setting method
JP5189361B2 (en) Magnetic resonance imaging apparatus and method
US9726744B2 (en) Magnetic resonance imaging equipment, high frequency magnetic field irradiation method and program
JP5562010B2 (en) Magnetic resonance imaging system
US9575152B1 (en) Magnetic resonance imaging
JP6867926B2 (en) Noise source search device and noise source search method
JP2007260001A (en) Magnetic resonance imaging apparatus and imaging method
JP2005288026A (en) Magnetic resonance imaging device, eddy magnetic field distribution estimating method and static magnetic field correction method
JP4349646B2 (en) Nuclear magnetic resonance imaging system
US9709648B1 (en) Magnetic resonance imaging
WO2010038847A1 (en) Magnetic resonance imaging apparatus and rf pulse adjustment method
JP2008080030A (en) Magnetic resonance imaging apparatus
JP2000333928A (en) Magnetic resonance imaging device
JP2011251038A (en) Magnetic resonance imaging apparatus and waveform adjusting method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140610

R150 Certificate of patent or registration of utility model

Ref document number: 5562010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350