JP5561711B2 - Urinary dysfunction improving agent including saw palmetto - Google Patents

Urinary dysfunction improving agent including saw palmetto Download PDF

Info

Publication number
JP5561711B2
JP5561711B2 JP2009168982A JP2009168982A JP5561711B2 JP 5561711 B2 JP5561711 B2 JP 5561711B2 JP 2009168982 A JP2009168982 A JP 2009168982A JP 2009168982 A JP2009168982 A JP 2009168982A JP 5561711 B2 JP5561711 B2 JP 5561711B2
Authority
JP
Japan
Prior art keywords
acid
spe
oleic acid
activity
myristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009168982A
Other languages
Japanese (ja)
Other versions
JP2011020972A (en
Inventor
朝日 鈴木
美保子 黒川
恵子 濱崎
静雄 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
QSai Co Ltd
Original Assignee
Shizuoka University NUC
QSai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC, QSai Co Ltd filed Critical Shizuoka University NUC
Priority to JP2009168982A priority Critical patent/JP5561711B2/en
Publication of JP2011020972A publication Critical patent/JP2011020972A/en
Application granted granted Critical
Publication of JP5561711B2 publication Critical patent/JP5561711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicines Containing Plant Substances (AREA)

Description

本発明は、ノコギリヤシを含む排尿障害改善剤、特に優れた排尿障害改善効果を有する排尿障害改善剤に関する。   The present invention relates to a urination disorder-improving agent containing saw palmetto, and particularly to a urination disorder-improving agent having an excellent urination disorder-improving effect.

前立腺は男性の膀胱直下にあって、後部尿道をとりまく臓器である。通常、前立腺は約20gのクルミ程度の大きさであるが、高齢の大多数の男性で前立腺の肥大が起きている。前立腺肥大の原因として、高齢化にともなう男性ホルモンの低下と相対的な女性ホルモンの増加によるホルモンのバランスの崩れから発症すると考えられている。老年になって性ホルモンのバランスが崩れると、前立腺の内側にある尿道に近い部分(尿道周囲腺)が増殖して大きくなる(機械的閉塞)とともに、ジヒドロテストステロン(以下、DHT)が前立腺に蓄積することで、前立腺肥大症(benign prostate hyperplasia、以下BPH)が起こると考えられている。BPHになると、前立腺の組織や前立腺部の尿道あるいは膀胱の出口にある平滑筋の緊張が高まることが知られている。尿が溜まった時における交感神経の興奮が、神経の受容体を介してこれらの筋肉を収縮させること(機能的閉塞)が症状の原因と考えられている。
BPHの症状としては、尿が出にくい、尿の勢いがない、排尿の回数が増えるなどの下部尿路症状(以下、LUTS)が挙げられる。BPHの治療方法は、薬物療法、低侵襲治療(手術)、外科治療、尿道留置カテーテル等に大きく分類される。
The prostate is the organ that surrounds the posterior urethra just below the male bladder. Usually, the prostate is about 20 grams of walnut, but the majority of older men have enlarged prostate. It is thought that the prostatic hypertrophy is caused by a decrease in male hormones due to aging and a loss of hormone balance due to a relative increase in female hormones. When the balance of sex hormones is lost in old age, the portion close to the urethra (periurethral gland) inside the prostate grows and enlarges (mechanical obstruction), and dihydrotestosterone (DHT) accumulates in the prostate As a result, benign prostate hyperplasia (BPH) is thought to occur. BPH is known to increase the tension of the smooth muscle at the prostate tissue, the urethra of the prostate, or the outlet of the bladder. Symptom excitation when urine accumulates causes these muscles to contract via functional receptors (functional obstruction).
Symptoms of BPH include lower urinary tract symptoms (hereinafter referred to as LUTS) such as difficulty in producing urine, lack of urine momentum, and increased frequency of urination. BPH treatment methods are roughly classified into drug therapy, minimally invasive treatment (surgery), surgical treatment, urethral indwelling catheter, and the like.

BPHに用いられている標準的な薬物療法としては、α遮断薬、5α-リダクターゼ阻害剤、植物製剤が挙げられる。ここで、5α-リダクターゼはテストステロンを最も高活性なDHTに変換する酵素である。
この中でも、植物製剤はヨーロッパやアメリカにおいて一般的であり、BPHの治療の際に処方される全薬剤の約80%を占める。植物製剤は、約30種類が存在しているが、最もよく用いられているのがノコギリヤシ果実抽出液(saw palmetto extract、以下SPE)である。SPEとは、アメリカ合衆国南東部に自生するヤシ科に属する低潅木(Serenoa repens)の果実の抽出物である。ノコギリヤシの果実は10月から12月にかけて房状で成熟する。ノコギリヤシ果実は1700年代初頭よりアメリカインディアンによって、睾丸萎縮、勃起不全、前立腺肥大、粘膜の炎症の改善、乳房の増大に用いられてきた。BPHのLUTS患者に対し、PermixonTM(ノコギリヤシ果実の脂溶性画分)はα遮断薬であるタムスロシンとほぼ同程度の効能を示すことが知られている(非特許文献1)。また、SPEは、in vitroの実験で5α-リダクターゼの1型と2型のいずれのアイソザイムも阻害することが知られている(非特許文献2)。
一方、SPEの主な成分は、その抽出方法にもよるが、Serenoa repensの超臨界CO2抽出物であるSabalselectTM(インデナ社商品名)では、脂肪酸93.5%、脂肪族アルコール0.2%、ステロール0.32%であることが知られている。
Standard drug therapies used for BPH include α 1 blockers, 5α-reductase inhibitors, and botanical formulations. Here, 5α-reductase is an enzyme that converts testosterone into the most active DHT.
Among these, botanical preparations are common in Europe and the United States and account for about 80% of all drugs prescribed for the treatment of BPH. There are about 30 types of plant preparations, but the most commonly used is a saw palmetto extract (hereinafter referred to as SPE). SPE is a fruit extract of a low shrub (Serenoa repens) belonging to the palm family that grows naturally in the southeastern United States. Saw palmetto fruit matures in tufts from October to December. Saw palm fruit has been used by American Indians since the early 1700s to testicular atrophy, erectile dysfunction, prostate enlargement, improvement of mucosal inflammation, and breast enlargement. For BPH LUTS patients, Permixon (a fat-soluble fraction of saw palmetto fruit) is known to be almost as effective as tamsulosin, an α 1 blocker (Non-patent Document 1). SPE is also known to inhibit both type 1 and type 2 isozymes of 5α-reductase in in vitro experiments (Non-patent Document 2).
On the other hand, the main components of SPE depend on the extraction method, but Sabalselect (trade name of Indena), which is a supercritical CO 2 extract of Serenoa repens, has 93.5% fatty acid and 0.2% fatty alcohol. %, And sterol is known to be 0.32%.

Bayne C.W. et al., Prostate, 40(1999): 232-241Bayne C.W. et al., Prostate, 40 (1999): 232-241 Iehle C et al., J Steroid Biochem Mol Biol, 54(1995): 273-279Iehle C et al., J Steroid Biochem Mol Biol, 54 (1995): 273-279

しかしながら、SPE中のどの成分がBPH治療に効いているかはこれまで解明されていなかった。加えて、より排尿障害改善効果に優れた製剤を求める患者の声も大きかった。
本発明は上記従来技術に鑑み行われたものであり、その解決すべき課題は、優れた排尿障害改善効果を有する排尿障害改善剤を提供することにある。
However, it has not been clarified so far which component in SPE is effective for BPH treatment. In addition, there were many patients who asked for a preparation with a better effect of improving urination disorder.
The present invention has been made in view of the above prior art, and a problem to be solved is to provide a urination disorder improving agent having an excellent urination disorder improvement effect.

前記課題を解決するために本発明者らが鋭意研究を行った結果、SPEを特定の脂肪酸組成に調整することにより、SPEが有する排尿障害改善効果を高めることが可能であり、非常に優れた排尿障害改善効果を有する排尿障害改善剤の製造が可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies conducted by the present inventors in order to solve the above problems, it is possible to enhance the urination disorder improving effect of SPE by adjusting SPE to a specific fatty acid composition, which is very excellent. The present inventors have found that it is possible to produce a dysuria improving agent having an effect of improving dysuria, and have completed the present invention.

すなわち、本発明にかかる排尿障害改善剤は、ノコギリヤシ果実抽出液を含み、オレイン酸、ミリスチン酸を1:0〜2:3で含むことを特徴とする。
また、本発明にかかる排尿障害改善剤は、ノコギリヤシ果実抽出液を、
n−ヘキサン/メタノール−水により抽出し、
水相(メタノール−水)を、ジエチルエーテルにて抽出し、
ジエチルエーテル相を、シリカゲルクロマトグラフィーにより、n−ヘキサン−ジエチルエーテル(組成4:1)で活性画分を精製し、
該活性画分を、逆相クロマトグラフィーにより、分画することにより製造され、
オレイン酸、ミリスチン酸を1:0〜2:3で含むことを特徴とする。
That is, the urination disorder improving agent according to the present invention contains a saw palmetto fruit extract, and is characterized by containing oleic acid and myristic acid at 1: 0 to 2: 3.
Moreover, the urination disorder improving agent according to the present invention comprises a saw palm fruit extract,
extraction with n-hexane / methanol-water,
The aqueous phase (methanol-water) is extracted with diethyl ether,
The diethyl ether phase was purified by silica gel chromatography with n-hexane-diethyl ether (composition 4: 1),
The active fraction is produced by fractionating by reverse phase chromatography;
It contains oleic acid and myristic acid at 1: 0 to 2: 3.

本発明によれば、SPEを含み、オレイン酸およびミリスチン酸の配合割合を調整することで、優れた排尿障害改善効果が実現できる排尿障害改善剤を製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the urination disorder improving agent which can implement | achieve the outstanding urination disorder improvement effect can be manufactured by adjusting the compounding ratio of oleic acid and myristic acid including SPE.

CDCl3中のSPEの1H NMRスペクトル(500MHz)。 1 H NMR spectrum (500 MHz) of SPE in CDCl 3 . SPEからの活性成分の分別方法を示したフローチャート。The flowchart which showed the fractionation method of the active ingredient from SPE. 逆相クロマトグラフィーにて得られた各フラクションについて(A)[3H]prazosin(0.25nM)、(B)[3H]NMS(0.25nM)、(C) (+)-[3H]PN 200-110(0.3nM)の特異的結合の抑制率を測定した。For each fraction obtained by reverse phase chromatography (A) [ 3 H] prazosin (0.25 nM), (B) [ 3 H] NMS (0.25 nM), (C) (+)-[ 3 H] PN The inhibition rate of specific binding of 200-110 (0.3 nM) was measured. SPEより単離したオレイン酸及びラウリン酸とそれぞれの標品の(A)[3H]prazosin、(B)[3H]NMS、(C) (+)-[3H]PN 200-110の特異的結合の阻害曲線。(A) [ 3 H] prazosin, (B) [ 3 H] NMS, (C) (+)-[ 3 H] PN 200-110 of oleic acid and lauric acid isolated from SPE and their respective preparations Inhibition curve of specific binding. SPEとSPE中の主な脂肪酸(ラウリン酸、オレイン酸、ミリスチン酸、パルミチン酸、リノール酸)による(A)[3H]prazosin、(B)[3H]NMS、(C) (+)-[3H]PN 200-110の特異的結合の阻害曲線。(A) [ 3 H] prazosin, (B) [ 3 H] NMS, (C) (+)-by SPE and the main fatty acids (lauric acid, oleic acid, myristic acid, palmitic acid, linoleic acid) in SPE Inhibition curve of specific binding of [ 3 H] PN 200-110. (A)内部標準物質であるデキサメタゾンと(B)DHTの選択イオンクロマトグラム。(A) Selected ion chromatograms of dexamethasone and (B) DHT which are internal standard substances. SPEとSPE中の主要脂肪酸(ラウリン酸、オレイン酸、ミリスチン酸、パルミチン酸、リノール酸)の5α-リダクターゼ活性の阻害曲線。Inhibition curve of 5α-reductase activity of SPE and major fatty acids (lauric acid, oleic acid, myristic acid, palmitic acid, linoleic acid) in SPE. SPE(116μg/mL)および3種の脂肪酸混合試料(ラウリン酸(34.8μg/mL)、オレイン酸(33.6μg/mL)、ミリスチン酸(13.9μg/mL))の5α-リダクターゼ活性。黒いバーは、SPE(116μg/mL)の5α-リダクターゼ活性。白いバーは、SPE中に存在する濃度で再度混合した脂肪酸混合試料の5α-リダクターゼ活性。灰色のバーは、116μg/mL SPE中に含まれる3種の各脂肪酸によって理論的に計算された阻害効果の合計を考慮した5α-リダクターゼ活性(算出値)。5α-reductase activity of SPE (116 μg / mL) and three fatty acid mixed samples (lauric acid (34.8 μg / mL), oleic acid (33.6 μg / mL), myristic acid (13.9 μg / mL)). Black bars indicate 5α-reductase activity of SPE (116 μg / mL). White bars represent 5α-reductase activity of fatty acid mixed samples remixed at concentrations present in SPE. Gray bars represent 5α-reductase activity (calculated value) taking into account the sum of the inhibitory effects theoretically calculated by each of the three fatty acids contained in 116 μg / mL SPE. さまざまな濃度におけるSPE、脂肪酸単体試料(ラウリン酸、オレイン酸、ミリスチン酸)、2種の脂肪酸混合試料(オレイン酸およびミリスチン酸)、前記3種の脂肪酸混合試料による[3H]NMSの特異的結合率。Specificity of [ 3 H] NMS by SPE at different concentrations, fatty acid simple substance samples (lauric acid, oleic acid, myristic acid), two fatty acid mixed samples (oleic acid and myristic acid), and the three fatty acid mixed samples Bond rate. 合計50μg/mLの3種の脂肪酸(ラウリン酸、オレイン酸、ミリスチン酸)の組成を変化させた時の[3H]NMSの特異的結合の抑制率(%)を円内に示した。The inhibition rate (%) of specific binding of [ 3 H] NMS when the composition of three kinds of fatty acids (lauric acid, oleic acid, myristic acid) in total 50 μg / mL was changed is shown in the circle.

本発明では、まず、SPE中のどの成分が排尿障害改善に効果的であるかの解明を行い、次に、その結果に基づき、優れた排尿障害改善製剤の検討を行った。
はじめに、SPE中の活性成分の単離とその構造解析の結果を示す。
In the present invention, first, which component in SPE is effective in improving urination disorder was examined, and then, an excellent urination disorder improving preparation was examined based on the result.
First, the results of isolation and structural analysis of active ingredients in SPE are shown.

Bruker Avance500(Karlsruhe社製)で測定したSPE(SabalselectTM、インデナ社製)の1H NMRスペクトルを図1に示す。δ0.8−2.4に脂肪族由来プロトンシグナル、δ5.4にオレフィンプロトンのシグナルがスペクトルに検出された。これらのシグナルから、飽和および不飽和脂肪酸がSPEに含まれる主な成分であることが明らかとなった。本発明者らのさらなる検討により、遊離脂肪酸に加えて脂肪酸のグリセロールエステルがSPEに含まれることが確認された。δ2.35のメチレンシグナルの強度から、遊離脂肪酸とグリセロールエステルの比率は約3:1と考えられた。 FIG. 1 shows a 1 H NMR spectrum of SPE (Sabalselect , manufactured by Indena) measured by Bruker Avance500 (manufactured by Karlsruhe). Aliphatic proton signals were detected in the spectrum at δ0.8-2.4, and olefin proton signals were detected at δ5.4. From these signals, it became clear that saturated and unsaturated fatty acids are the main components contained in SPE. Further investigations by the present inventors confirmed that SPE contains glycerol esters of fatty acids in addition to free fatty acids. From the intensity of the methylene signal at δ 2.35, the ratio of free fatty acid to glycerol ester was considered to be about 3: 1.

次に、SPE中の活性成分を単離するための抽出方法を以下に示す。
図2に示すように、はじめに、SPE 2mLをメタノール50mLで希釈し、精製水100mLを加えた。n-ヘキサン100mLで抽出する操作を3回繰り返した。その水層を100mLのジエチルエーテル(以下、Et2O)で抽出する操作を2回繰り返した。各有機層は減圧下溶媒を溜去した。Et2O残渣200mgについて、シリカゲルカラムクロマトグラフィーに供した。活性のあったフラクション3(18mg)について、C8カラムを用いた逆相クロマトグラフィーに供し、1分ごとに分画した。高速液体クロマトグラフィー(以下、HPLC)装置にはAgilent1100システム(Agilent 1100オートサンプラー、バイナリーポンプ、フォトダイオードアレイ検出器) を用いた。各フラクションは窒素気流にて乾固し、エタノールに再溶解後、受容体結合評価に供した。
ラウリン酸およびオレイン酸を精製するために SPEのEt2O抽出物を分取HPLCに供した。分取HPLCにはLC-8A(島津製作所社製)を用いた。
Next, the extraction method for isolating the active ingredient in SPE is shown below.
As shown in FIG. 2, first, 2 mL of SPE was diluted with 50 mL of methanol, and 100 mL of purified water was added. The operation of extracting with 100 mL of n-hexane was repeated three times. The operation of extracting the aqueous layer with 100 mL of diethyl ether (hereinafter Et 2 O) was repeated twice. Each organic layer was distilled off the solvent under reduced pressure. About 200 mg of Et 2 O residue, it was subjected to silica gel column chromatography. The active fraction 3 (18 mg) was subjected to reverse phase chromatography using a C8 column and fractionated every minute. An Agilent 1100 system (Agilent 1100 autosampler, binary pump, photodiode array detector) was used as a high performance liquid chromatography (hereinafter, HPLC) apparatus. Each fraction was dried in a nitrogen stream, redissolved in ethanol, and subjected to receptor binding evaluation.
Were subjected Et 2 O extracts SPE to preparative HPLC to purify the lauric acid and oleic acid. LC-8A (manufactured by Shimadzu Corporation) was used for preparative HPLC.

フラクション3について逆相クロマトグラフィーに供し、さらに分画し、下記に示された方法で各受容体に対する結合活性評価を行った結果を図3に示す。
ここで、本発明にかかる排尿障害改善剤を評価する指標となる各受容体(α1アドレナリン、ムスカリン性、1,4-DHP Caチャネル拮抗薬)結合活性について説明する。
Fraction 3 was subjected to reverse phase chromatography, further fractionated, and the results of evaluation of the binding activity for each receptor by the method shown below are shown in FIG.
Here, each receptor (α 1 adrenergic, muscarinic, 1,4-DHP Ca channel antagonist) binding activity, which serves as an index for evaluating the urination disorder improving agent according to the present invention, will be described.

(α1アドレナリン受容体結合活性)
α1アドレナリン受容体は、カテコールアミン類によって活性化されるGタンパク共役型の受容体であり、主に平滑筋の後シナプスに存在する。前立腺平滑筋や尿道平滑筋の交感神経α1アドレナリン受容体を介する収縮は、尿道閉塞(機能的閉塞または動的閉塞)を引き起こす。したがって、α1アドレナリン受容体結合活性を示す物質は、前立腺および膀胱頸部の過度の交感神経系の緊張に起因する尿道閉塞に効果的であり、前立腺平滑筋を弛緩させ、尿道抵抗を減少させることが期待できる。
(ムスカリン性受容体結合活性)
膀胱収縮の主な神経伝達物質は、副交感系の骨盤神経を経由し、膀胱平滑筋のムスカリン性受容体を介し、膀胱の収縮反応および不随筋である内尿道括約筋の弛緩を起こす。したがって、ムスカリン性受容体結合活性を示す物質は、膀胱収縮を抑えることが期待できる。
(1,4-DHP Caチャネル拮抗薬受容体結合活性)
膀胱平滑筋に存在する1,4-DHP Caチャネル受容体を介して細胞内に取り込まれたCaの濃度が上昇すると膀胱平滑筋の収縮を起こす。したがって、1,4-DHP Caチャネル拮抗薬受容体結合活性を示す物質は、膀胱平滑筋の収縮を抑えることが期待できる。
1 adrenergic receptor binding activity)
The α 1 adrenergic receptor is a G protein-coupled receptor activated by catecholamines, and is mainly present in the synapse after smooth muscle. Contraction through sympathetic alpha 1 adrenergic receptors in prostate and urethral smooth muscles causes urethral obstruction (functional occlusion or dynamic occlusion). Therefore, substances exhibiting α 1 adrenergic receptor binding activity are effective in urethral obstruction due to excessive sympathetic nervous system tension in the prostate and bladder neck, relax prostate smooth muscle and reduce urethral resistance I can expect that.
(Muscarinic receptor binding activity)
The main neurotransmitter of bladder contraction is via the parasympathetic pelvic nerve and via the muscarinic receptor of the bladder smooth muscle, causes the contraction response of the bladder and relaxation of the internal urethral sphincter, an involuntary muscle. Therefore, a substance exhibiting muscarinic receptor binding activity can be expected to suppress bladder contraction.
(1,4-DHP Ca channel antagonist receptor binding activity)
When the concentration of Ca + taken up into the cell via the 1,4-DHP Ca channel receptor present in the bladder smooth muscle increases, the bladder smooth muscle contracts. Therefore, a substance exhibiting 1,4-DHP Ca channel antagonist receptor binding activity can be expected to suppress bladder smooth muscle contraction.

受容体結合活性評価方法
α1アドレナリン、ムスカリン性、1,4-DHP Caチャネル拮抗薬の各受容体の測定では、標識体として、それぞれ、[7-methoxy-3H]prazosin(2.979 TBq/mmol)(以下、[3H]prazosin)、[N-Methyl-3H]scopolamine methyl chloride(2.997 TBq/mmol)(以下、[3H]NMS)、(+)-[3H]PN 200-110(3.180 TBq/mmol)(以下、(+)-[3H]PN 200-110)(いずれもパーキンエルマー社製)を用いるラジオレセプターアッセイ法に従った。
ラットはエーテル麻酔下開腹し、腹部下行大動脈よりヘパリン処理した注射筒で採血し、屠殺した。動脈から冷却した生理食塩水を還流した後、脳を摘出した。小脳を取り除いた脳に19倍容量の冷却した50mMトリス緩衝液(pH 7.4)を加え、ホモジナイズし、4℃下40,000×gで20分間遠心分離した。上清除去後、沈渣に再度19倍容量の冷却した50mMトリス緩衝液(pH 7.4)を加え、懸濁後、4℃下40,000×gで20分間遠心分離した。上清除去後、沈渣に29倍容量の冷却した50mMトリス緩衝液(pH 7.4)を加え、懸濁し、受容体標品とした。
組織量として受容体標品10mgに50mMトリス緩衝液(pH 7.4)、脂肪酸、0.25nM [3H]prazosinを添加し、終量1mLとした。本反応液を25℃で30分インキュベーションした。組織量として受容体標品3mgに50mM N-(2-hydroxyethyl)piperazine-N’-ethanesulfonic acid(HEPES)緩衝液(pH 7.4)、脂肪酸、0.25nM [3H]NMSを添加し、終量500μLとした。本反応液を25℃で60分インキュベーションした。組織量として受容体標品5mgに50mMトリス緩衝液(pH 7.4)、脂肪酸、0.3nM (+)-[3H]PN 200-110を添加し、終量500μLとした。本反応液を暗室にてナトリウムランプ点灯下25℃で60分インキュベーションした。
それぞれの反応液はインキュベーション終了後、Cell Harvester(Brandel社製)を用いてガラス繊維濾紙(Whatman GF/B)上に急速吸引濾過した。直ちに濾紙を冷却した50mMリン酸緩衝液(pH 7.4)3mLで洗浄した。濾紙にトルエンシンチレーター (トルエン 2L、Triton-X 1L、2,5-diphenylloxazole 15g、1,4-bis[2-(5-phenyloxazolyl)]benzene 0.3g) を加えて、室温中に6時間以上放置後、その放射活性について液体シンチレーションカウンターを用いて測定した。ディスプレーサーとして、10μM phentolamine([3H]prazosin)、1μM atropin([3H]NMS)、1μM nifedipine((+)-[3H]PN 200-110)を用い、ディスプレーサーの非存在下および存在下で得られた放射活性をそれぞれ全結合と非特異的結合とし、両者の差を受容体への特異的結合と定義した。
Receptor binding activity evaluation method alpha 1 adrenergic, muscarinic, in the measurement of each receptor of l, 4-DHP Ca channel antagonists, as a label, respectively, [7-methoxy- 3 H] prazosin (2.979 TBq / mmol ) (Hereinafter, [ 3 H] prazosin), [N-Methyl- 3 H] scopolamine methyl chloride (2.997 TBq / mmol) (hereinafter, [ 3 H] NMS), (+)-[ 3 H] PN 200-110 Radioreceptor assay using (3.180 TBq / mmol) (hereinafter (+)-[ 3 H] PN 200-110) (both manufactured by PerkinElmer) was followed.
Rats were laparotomized under ether anesthesia, and blood was collected from an abdominal descending aorta with a syringe treated with heparin and sacrificed. After refluxing the physiological saline cooled from the artery, the brain was removed. A 19-fold volume of cooled 50 mM Tris buffer (pH 7.4) was added to the brain from which the cerebellum had been removed, homogenized, and centrifuged at 40,000 × g for 20 minutes at 4 ° C. After removing the supernatant, 19-fold volume of cooled 50 mM Tris buffer (pH 7.4) was added again to the sediment, and after suspension, the mixture was centrifuged at 40,000 × g for 20 minutes at 4 ° C. After removing the supernatant, 29-fold volume of cooled 50 mM Tris buffer (pH 7.4) was added to the sediment and suspended to prepare a receptor preparation.
As a tissue amount, 50 mM Tris buffer (pH 7.4), fatty acid and 0.25 nM [ 3 H] prazosin were added to 10 mg of the receptor preparation to make a final volume of 1 mL. This reaction solution was incubated at 25 ° C. for 30 minutes. As a tissue quantity, add 50 mM N- (2-hydroxyethyl) piperazine-N'-ethanesulfonic acid (HEPES) buffer (pH 7.4), fatty acid, 0.25 nM [ 3 H] NMS to 3 mg of the receptor preparation, and a final volume of 500 μL. It was. This reaction solution was incubated at 25 ° C. for 60 minutes. As a tissue amount, 50 mM Tris buffer (pH 7.4), fatty acid, and 0.3 nM (+)-[ 3 H] PN 200-110 were added to 5 mg of the receptor preparation to make a final volume of 500 μL. This reaction solution was incubated in a dark room at 25 ° C. for 60 minutes with a sodium lamp lit.
Each reaction solution was subjected to rapid suction filtration on glass fiber filter paper (Whatman GF / B) using Cell Harvester (manufactured by Brandel) after completion of incubation. The filter paper was immediately washed with 3 mL of a cooled 50 mM phosphate buffer (pH 7.4). Toluene scintillator (toluene 2L, Triton-X 1L, 2,5-diphenylloxazole 15g, 1,4-bis [2- (5-phenyloxazolyl)] benzene 0.3g) is added to the filter paper and left at room temperature for 6 hours or more. The radioactivity was measured using a liquid scintillation counter. As a displacer, 10 μM phentolamine ([ 3 H] prazosin), 1 μM atropin ([ 3 H] NMS), 1 μM nifedipine ((+)-[ 3 H] PN 200-110) was used in the absence of the displacer and The radioactivity obtained in the presence was defined as total binding and nonspecific binding, respectively, and the difference between the two was defined as specific binding to the receptor.

図3より、フラクション3-6、3-7、3-9、3-10、3-12、3-13は[3H]prazosin、(+)-[3H]PN 200-110、[3H]NMSの特異的結合を強く抑制していることがわかる。また、フラクション3-11は(+)-[3H]PN 200-110の特異的結合を強く抑制している。LC/MS分析より、各々のフラクションの主成分は、ラウリン酸 (フラクション3-6、3-7)、ミリスチン酸 (フラクション3-8、3-9)、リノール酸 (フラクション3-10)、パルミチン酸 (フラクション3-11) およびオレイン酸 (フラクション3-12、3-13) とそれぞれ推定された。Et2O抽出物を分取クロマトグラフィーに供し、ラウリン酸およびオレイン酸を単離した。オレイン酸は純度93%、収率14.2%、ラウリン酸は純度95%、収率16.7%で得られた。 From FIG. 3, fractions 3-6, 3-7, 3-9, 3-10, 3-12, 3-13 are [ 3 H] prazosin, (+)-[ 3 H] PN 200-110, [ 3 It can be seen that the specific binding of H] NMS is strongly suppressed. Fraction 3-11 strongly suppresses the specific binding of (+)-[ 3 H] PN 200-110. From LC / MS analysis, the main components of each fraction are lauric acid (fractions 3-6, 3-7), myristic acid (fractions 3-8, 3-9), linoleic acid (fractions 3-10), palmitic Estimated as acid (fractions 3-11) and oleic acid (fractions 3-12, 3-13), respectively. The Et 2 O extract was subjected to preparative chromatography to isolate lauric acid and oleic acid. Oleic acid was obtained with a purity of 93% and a yield of 14.2%, and lauric acid with a purity of 95% and a yield of 16.7%.

オレイン酸およびラウリン酸は SPE中の主要な活性成分として単離された。この2種類の脂肪酸の各受容体結合活性について詳細に検討した結果を図4および表1に示す。ここで、標品のオレイン酸(純度99%)およびラウリン酸(純度99%)は、それぞれ、東京化成工業社製およびナカライテスク社製を使用した。また、以下、表中の値は平均値±S.E.(標準誤差)で表記した。   Oleic acid and lauric acid were isolated as the main active ingredients in SPE. The results of detailed examination of the receptor binding activities of these two types of fatty acids are shown in FIG. Here, the standard oleic acid (purity 99%) and lauric acid (purity 99%) were manufactured by Tokyo Chemical Industry Co., Ltd. and Nacalai Tesque, respectively. In the following, the values in the table are expressed as mean ± S.E. (Standard error).

Figure 0005561711
Figure 0005561711

図4より、SPEから単離したオレイン酸(10−80μg/mL)およびラウリン酸 (50−150μg/mL) は、[3H]prazosinの特異的結合を濃度依存的に抑制していることがわかる。同様にオレイン酸(30−200μg/mL)およびラウリン酸(100−300μg/mL)は、[3H]NMSの特異的結合を濃度依存的に抑制している。また、(+)-[3H]PN 200-110の特異的結合も、濃度依存的 (オレイン酸:30−100μg/mL、ラウリン酸:10−150μg/mL)に抑制している。加えて、オレイン酸およびラウリン酸標品も[3H]prazosin、[3H]NMS、(+)-[3H]PN 200-110の特異的結合を濃度依存的に抑制しており、表1より、それらのIC50値はSPEから単離されたオレイン酸およびラウリン酸とほぼ同等であることが明らかとなった。 FIG. 4 shows that oleic acid (10-80 μg / mL) and lauric acid (50-150 μg / mL) isolated from SPE inhibited the specific binding of [ 3 H] prazosin in a concentration-dependent manner. Recognize. Similarly, oleic acid (30-200 μg / mL) and lauric acid (100-300 μg / mL) suppress the specific binding of [ 3 H] NMS in a concentration-dependent manner. In addition, the specific binding of (+)-[ 3 H] PN 200-110 is also suppressed in a concentration-dependent manner (oleic acid: 30-100 μg / mL, lauric acid: 10-150 μg / mL). In addition, oleic acid and lauric acid samples also inhibited specific binding of [ 3 H] prazosin, [ 3 H] NMS, (+)-[ 3 H] PN 200-110 in a concentration-dependent manner. 1 revealed that their IC 50 values were almost equivalent to those of oleic acid and lauric acid isolated from SPE.

以上のことから、SPEから単離されたオレイン酸およびラウリン酸は[3H]prazosin、[3H]NMS、(+)-[3H]PN 200-110の特異的結合を濃度依存的に抑制することが明らかになった。すなわち、SPEから単離されたオレイン酸およびラウリン酸は、α1アドレナリン、ムスカリン性、1,4-DHP Caチャネル拮抗薬の各受容体結合活性を示すことが示唆された。
また、IC50値の比較から、オレイン酸およびラウリン酸標品の結合活性は、SPEから単離されたオレイン酸およびラウリン酸の結合活性とほぼ同程度であった。さらに、IC50値からオレイン酸の各受容体への結合活性はラウリン酸よりも高いことが明らかとなった。SPE中のオレイン酸およびラウリン酸含量がほぼ等しいことから、オレイン酸はSPEの薬理作用の発現に大きく寄与することが示唆された。
Based on the above, oleic acid and lauric acid isolated from SPE showed specific concentrations of [ 3 H] prazosin, [ 3 H] NMS, and (+)-[ 3 H] PN 200-110 in a concentration-dependent manner. It became clear to suppress. That is, it was suggested that oleic acid and lauric acid isolated from SPE show each receptor binding activity of α 1 adrenergic, muscarinic, 1,4-DHP Ca channel antagonist.
From the comparison of IC 50 values, the binding activity of the oleic acid and lauric acid preparations was almost the same as that of oleic acid and lauric acid isolated from SPE. Furthermore, the IC 50 value revealed that the binding activity of oleic acid to each receptor was higher than that of lauric acid. The oleic acid and lauric acid contents in SPE were almost equal, suggesting that oleic acid contributes greatly to the development of pharmacological action of SPE.

次に、SPEに含まれるオレイン酸およびラウリン酸以外の脂肪酸である、ミリスチン酸、パルミチン酸、リノール酸についても、α1アドレナリン、ムスカリン性、1,4-DHP Caチャネル拮抗薬の各受容体結合活性について検討し、主要5脂肪酸の作用について、不飽和度と鎖長の活性に与える影響を考察した。ここでは、ミリスチン酸およびリノール酸は、Sigma-Aldrich社製、パルミチン酸は、和光純薬工業社製を使用した。結果を図5および表2に示す。 Next, for myristic acid, palmitic acid, and linoleic acid, fatty acids other than oleic acid and lauric acid contained in SPE, each receptor binding of α 1 adrenergic, muscarinic, 1,4-DHP Ca channel antagonist The activity was examined, and the effects of the unsaturation degree and chain length on the activity of the main five fatty acids were considered. Here, myristic acid and linoleic acid were manufactured by Sigma-Aldrich, and palmitic acid was manufactured by Wako Pure Chemical Industries. The results are shown in FIG.

Figure 0005561711
Figure 0005561711

図5より、SPEは[3H]prazosinの特異的結合を濃度依存的(10−200μg/mL)に抑制し、そのIC50値は106±11μg/mLであった(表2)。上記の5種の脂肪酸は[3H]prazosinの特異的結合を濃度依存的(10−300μg/mL)に抑制し、これらのIC50値は23.8−136μg/mLの範囲であった。表2に記載のIC50値よりこれら5種の脂肪酸による[3H]prazosinの特異的結合の抑制作用を比較すると、リノール酸が最も高く、SPEの4.5倍であった。以下、オレイン酸が2.3倍、ミリスチン酸が1.7倍であり、ラウリン酸およびパルミチン酸はSPEとほぼ同等であった。
同図に示すように、SPEおよびパルミチン酸を除く4種の脂肪酸は、[3H]NMSの特異的結合を濃度依存的(10−200μg/mL)に抑制した。SPEのIC50値は185±8μg/mLであり、パルミチン酸を除く4種の脂肪酸のIC50値は56.4−169μg/mLの範囲であった(表2)。SPEと4種の脂肪酸の[3H]NMSの特異的結合の抑制作用を比較すると、オレイン酸は2.6倍、ミリスチン酸およびリノール酸はそれぞれ1.8倍、3.3倍SPEより高く、これら脂肪酸の抑制作用の序列は[3H]prazosinの特異的結合の抑制作用の序列と同じであった。
さらに、同図に示すように、SPEおよび各脂肪酸は(+)-[3H]PN 200-110の特異的結合を濃度依存的(3−200μg/mL)に抑制し、それらのIC50値は24.5−61.3μg/mLであった(表2)。また、他の受容体と同様に、5種の脂肪酸とSPEによる結合抑制作用を比較すると、リノール酸およびオレイン酸がSPEよりも2.4倍、1.8倍高い抑制作用を示した。
From FIG. 5, SPE inhibited the specific binding of [ 3 H] prazosin in a concentration-dependent manner (10-200 μg / mL), and its IC 50 value was 106 ± 11 μg / mL (Table 2). The above five fatty acids suppressed the specific binding of [ 3 H] prazosin in a concentration-dependent manner (10-300 μg / mL), and these IC 50 values ranged from 23.8-136 μg / mL. From the IC 50 values shown in Table 2, when the inhibitory action of specific binding of [ 3 H] prazosin by these five fatty acids was compared, linoleic acid was the highest, 4.5 times that of SPE. Hereinafter, oleic acid was 2.3 times and myristic acid was 1.7 times, and lauric acid and palmitic acid were almost equivalent to SPE.
As shown in the figure, the four fatty acids excluding SPE and palmitic acid inhibited the specific binding of [ 3 H] NMS in a concentration-dependent manner (10-200 μg / mL). The IC 50 value of SPE was 185 ± 8 μg / mL, and the IC 50 values of the four fatty acids excluding palmitic acid were in the range of 56.4-169 μg / mL (Table 2). Comparing the inhibitory action of SPE and the specific binding of [ 3 H] NMS of four fatty acids, oleic acid is 2.6 times higher, myristic acid and linoleic acid are 1.8 times higher and 3.3 times higher than SPE, respectively. The order of inhibitory action of these fatty acids was the same as that of the inhibitory action of specific binding of [ 3 H] prazosin.
Furthermore, as shown in the figure, SPE and each fatty acid suppressed the specific binding of (+)-[ 3 H] PN 200-110 in a concentration-dependent manner (3-200 μg / mL), and their IC 50 values Was 24.5-61.3 μg / mL (Table 2). Similarly to the other receptors, when the binding inhibitory action of five types of fatty acids and SPE was compared, linoleic acid and oleic acid showed an inhibitory action 2.4 and 1.8 times higher than SPE.

したがって、α1アドレナリン、ムスカリン性、1,4-DHP Caチャネル拮抗薬のいずれの受容体においても、不飽和二重結合を2つ含むリノール酸の結合活性が最も高く、次いで二重結合を1つ含むオレイン酸の結合活性が高いことが明らかとなった。これより、不飽和脂肪酸の結合活性は、飽和脂肪酸の結合活性よりも高い傾向が認められた。不飽和度と活性相関の報告例として、α7ニコチン性受容体の活性抑制評価の例が挙げられる(Vijayaraghavan S. et al., J Neurosci, 15(1995): 3679-3687)。リノレン酸(C18:3)、リノール酸(C18:2)、オレイン酸(C18:1) によるα7ニコチン性受容体活性抑制作用は不飽和度の増加に従い増強した。本発明においても、不飽和度の増加によって各受容体への結合活性が増強されることを推測することができた。また、飽和脂肪酸では、ミリスチン酸(C14:0)が最も結合活性が高く、α1アドレナリン受容体とムスカリン性受容体に関してはラウリン酸(C12:0)の方がパルミチン酸(C16:0)より高かった。飽和脂肪酸に関しては、鎖長と結合活性には相関性が認められなかった。 Therefore, the binding activity of linoleic acid containing two unsaturated double bonds is the highest in any of α 1 -adrenergic, muscarinic, and 1,4-DHP Ca channel antagonist receptors, and then double bonds become 1 It became clear that the binding activity of oleic acid containing one was high. From this, the binding activity of unsaturated fatty acids tended to be higher than the binding activity of saturated fatty acids. As an example of a report of the relationship between the degree of unsaturation and the activity, there is an example of evaluation of activity inhibition of α7 nicotinic receptor (Vijayaraghavan S. et al., J Neurosci, 15 (1995): 3679-3687). The inhibitory effect on α7 nicotinic receptor activity by linolenic acid (C18: 3), linoleic acid (C18: 2), and oleic acid (C18: 1) was enhanced as the degree of unsaturation increased. Also in the present invention, it could be presumed that the binding activity to each receptor is enhanced by increasing the degree of unsaturation. Of the saturated fatty acids, myristic acid (C14: 0) has the highest binding activity, and for α 1 adrenergic and muscarinic receptors, lauric acid (C12: 0) is better than palmitic acid (C16: 0). it was high. For saturated fatty acids, there was no correlation between chain length and binding activity.

次に、SPE中の主要成分であるオレイン酸およびラウリン酸について、その標品を使用し、各受容体への結合の速度論的解析を行った。
この解析は、各標識リガンドの濃度を、[3H]prazosin(0.03-0.5nM)、[3H]NMS(0.06-1.0nM)、(+)-[3H]PN 200-110(0.03-1.0nM)として、上記受容体結合評価試験に基づいて行った。
各標識リガンドの最大結合部位数(maximal number of binding sites:Bmax)およびみかけの解離定数(dissociation constant:Kd)は各標識リガンドの種々の濃度における特異的結合を測定し、Graph Pad PRISM 4.01(グラフパッドソフトウエア社製)を用い、非線形回帰解析により算出した。有意差検定はFischerの分散分析後、Dunnett’s testを用いて行い、危険率5%未満を有意差ありと判定した。アスタリスクが対照値からの有意差を示しており、*P<0.05、**P<0.01である。
表3に、オレイン酸およびラウリン酸の、各受容体への結合の速度論的解析結果を示す。
Next, oleic acid and lauric acid, which are the main components in SPE, were used for the kinetic analysis of the binding to each receptor.
In this analysis, the concentration of each labeled ligand was determined using [ 3 H] prazosin (0.03-0.5 nM), [ 3 H] NMS (0.06-1.0 nM), (+)-[ 3 H] PN 200-110 (0.03- 1.0 nM) based on the receptor binding evaluation test.
The maximum number of binding sites (Bmax) and the apparent dissociation constant (Kd) of each labeled ligand measure the specific binding of each labeled ligand at various concentrations. Graph Pad PRISM 4.01 Using a pad regression software). The significant difference test was performed using Dunnett's test after the analysis of variance of Fischer, and a risk rate of less than 5% was determined to be significant. Asterisks indicate significant differences from control values, * P <0.05, ** P <0.01.
Table 3 shows the results of kinetic analysis of the binding of oleic acid and lauric acid to each receptor.

Figure 0005561711
Figure 0005561711

表3によると、in vitroにおいて、オレイン酸(52.7μg/mL)およびラウリン酸(73.5μg/mL)は、ラット脳における[3H]prazosin特異的結合のBmax値を対照値に比べてそれぞれ39%、33%有意に減少させた。同様に、オレイン酸(72.8μg/mL) およびラウリン酸(163μg/mL)は、ラット脳の[3H]NMS特異的結合のBmax値を対照値に比べてそれぞれ49%、24%有意に減少させた。また、オレイン酸(33.3μg/mL)およびラウリン酸(82.3μg/mL)は、ラット脳の(+)-[3H]PN 200-110の特異的結合のBmax値を対照値に比べてそれぞれ34%、42%有意に減少させた。 According to Table 3, in vitro, oleic acid (52.7 μg / mL) and lauric acid (73.5 μg / mL) each had a B max value of [ 3 H] prazosin-specific binding in the rat brain of 39 compared to the control value, respectively. %, 33% significantly decreased. Similarly, oleic acid (72.8 μg / mL) and lauric acid (163 μg / mL) significantly reduced the B max value of [ 3 H] NMS-specific binding in rat brain by 49% and 24%, respectively, compared to the control value. I let you. In addition, oleic acid (33.3μg / mL) and lauric acid (82.3μg / mL) showed a Bmax value for the specific binding of (+)-[ 3 H] PN 200-110 in the rat brain compared to the control value, respectively. 34% and 42% significantly decreased.

ラウリン酸およびオレイン酸の存在下、[3H]prazosinおよび[3H]NMSの特異的結合をラット脳において測定したところ、[3H]prazosinおよび[3H]NMSの特異的結合のBmax値は減少した。以前の本発明者らの研究により、SPEはラット前立腺の[3H]prazosinおよび膀胱の[3H]NMSの特異的結合のBmax値を減少させることが知られており、非競合的に抑制すると考えられている。オレイン酸およびラウリン酸による[3H]prazosin結合抑制は、SPEと同じく、Bmax値の減少を伴っていることから、非競合的に抑制すると考えられる。
また、オレイン酸およびアラキドン酸(C20:4)がイヌ心臓膜への[3H]QNBの特異的結合のBmax値を減少させるとの報告がある(Rauch B. et al., J Mol Cell Cardiol, 21(1989), 495-506)。遊離脂肪酸と受容体膜標品のプレインキュベーションによって、ムスカリン性受容体のコンホメーションが変化し、放射標識リガンドが結合できない状態になる。その結果としてBmax値が減少するとRauchらは考察した。
このRauchらの考察から、オレイン酸およびラウリン酸は、ムスカリン性受容体のコンホメーションを変えたために、[3H]NMS結合のBmax値が減少したと考えられる。
The presence of lauric acid and oleic acid, [3 H] prazosin and [3 H] where the specific binding of NMS was determined in rat brain, [3 H] prazosin and [3 H] Bmax value of the specific binding of NMS Decreased. Previous studies by the inventors have shown that SPE decreases the Bmax value of the specific binding of [ 3 H] prazosin in the rat prostate and [ 3 H] NMS in the bladder and is non-competitively suppressed It is considered to be. Inhibition of [ 3 H] prazosin binding by oleic acid and lauric acid is accompanied by a decrease in Bmax value, similar to SPE, and is considered to be suppressed non-competitively.
In addition, oleic acid and arachidonic acid (C20: 4) have been reported to decrease the Bmax value of specific binding of [ 3 H] QNB to canine heart membrane (Rauch B. et al., J Mol Cell Cardiol , 21 (1989), 495-506). Preincubation of free fatty acid with the receptor membrane preparation changes the conformation of the muscarinic receptor and renders the radiolabeled ligand unable to bind. As a result, Rauch et al. Considered that the Bmax value decreased.
Based on this study by Rauch et al., It is considered that oleic acid and lauric acid decreased the Bmax value of [ 3 H] NMS binding due to a change in the conformation of the muscarinic receptor.

また、オレイン酸およびラウリン酸はラット脳の(+)-[3H]PN 200-110の特異的結合のBmax値を減少させた。
ラット心筋細胞を用いた実験でドコサヘキサエン酸(C22:6)がCaチャネル作動薬(BAY K 8644)と拮抗薬(nitrendipine)の作用を減弱させるという報告がある(Kjome J.R. et al., J Mol Neurosci, 10(1998), 209-217)。このメカニズムとして、ドコサヘキサエン酸が1,4-DHP結合サイトまたはその近傍に結合し、膜のCaチャネルの蛋白-脂質間の環境や脂質間の環境を変えたことが原因であると考えられた。
したがって、ムスカリン性受容体のコンホメーション変化も含めて考え、オレイン酸およびラウリン酸が1,4-DHP Caチャネル拮抗薬受容体のコンホメーションを変えたために、(+)-[3H]PN 200-110結合のBmax値が減少したことが示唆された。
In addition, oleic acid and lauric acid decreased the Bmax value of specific binding of (+)-[ 3 H] PN 200-110 in rat brain.
In experiments using rat cardiomyocytes, docosahexaenoic acid (C22: 6) has been reported to attenuate the effects of Ca channel agonists (BAY K 8644) and antagonists (nitrendipine) (Kjome JR et al., J Mol Neurosci , 10 (1998), 209-217). This mechanism is thought to be due to the fact that docosahexaenoic acid binds to the 1,4-DHP binding site or its vicinity and changes the protein-lipid environment of the membrane Ca channel and the environment between lipids.
Therefore, considering the conformational change of muscarinic receptors, (+)-[ 3 H] because oleic acid and lauric acid changed the conformation of 1,4-DHP Ca channel antagonist receptors. It was suggested that the Bmax value of PN 200-110 binding decreased.

次に、SPEに含まれている主要5脂肪酸(ラウリン酸、オレイン酸、ミリスチン酸、パルミチン酸、リノール酸)の5α-リダクターゼ活性の評価を行った。結果を図6および表4に示す。   Next, the 5α-reductase activity of five major fatty acids (lauric acid, oleic acid, myristic acid, palmitic acid, linoleic acid) contained in SPE was evaluated. The results are shown in FIG.

なお、ここでは、5α-リダクターゼ阻害活性の測定は既知の方法を参考に行った(Liu J. et al., Biol Pharm Bull, 29(2006), 392-395)。タンパク濃度も既知の方法(Bradford M.M., Anal Biochem, 72(1976), 248-254)で測定し、活性評価まで−80℃で保存した。
阻害剤による評価は以下に示す条件で行った。1mMジチオスレイトールを含む20mM リン酸緩衝液(pH 6.5)、50μMテストステロン、脂肪酸のエタノール溶液、167μM nicotinamide adenine dinucleotide phosphate(以下、NADPH)、0.2mg proteinの雌性ラット肝ミクロソームを加え、終量300μLとした。活性の対照として脂肪酸の代わりにエタノールを用いた。NADPHとミクロソームを除く反応液を10分間37℃でプレインキュベーションし、NADPHとミクロソームを加え、37℃、10分間インキュベーション後、2M 水酸化ナトリウム10μLを添加することにより反応を停止させた。内部標準物質である30μM デキサメタゾン10μLを加えた後に600μLの酢酸エチルで抽出した。酢酸エチル層を窒素気流で乾固した後に、メタノール50μLに溶解した。LC/MS測定はWaters Alliance 2790およびWaters ZQ 2000を用いた。対照のDHT/デキサメタゾン面積比を5α-リダクターゼ活性の100%とし、脂肪酸存在下の5α-リダクターゼ活性と比較した。DHTおよびデキサメタゾンの選択イオンクロマトグラムを図7に示す。
Here, the measurement of 5α-reductase inhibitory activity was performed with reference to a known method (Liu J. et al., Biol Pharm Bull, 29 (2006), 392-395). The protein concentration was also measured by a known method (Bradford MM, Anal Biochem, 72 (1976), 248-254) and stored at −80 ° C. until activity evaluation.
The evaluation with an inhibitor was performed under the following conditions. Add 20 mM phosphate buffer (pH 6.5) containing 1 mM dithiothreitol, 50 μM testosterone, ethanol solution of fatty acid, 167 μM nicotinamide adenine dinucleotide phosphate (NADPH), 0.2 mg protein of female rat liver microsomes, and a final volume of 300 μL. did. Ethanol was used instead of fatty acid as a control for activity. The reaction solution excluding NADPH and microsomes was preincubated for 10 minutes at 37 ° C., NADPH and microsomes were added, and after incubation at 37 ° C. for 10 minutes, the reaction was stopped by adding 10 μL of 2M sodium hydroxide. After adding 10 μL of 30 μM dexamethasone as an internal standard substance, extraction was performed with 600 μL of ethyl acetate. The ethyl acetate layer was dried in a nitrogen stream and then dissolved in 50 μL of methanol. For LC / MS measurement, Waters Alliance 2790 and Waters ZQ 2000 were used. The control DHT / dexamethasone area ratio was taken as 100% of the 5α-reductase activity, and compared with the 5α-reductase activity in the presence of fatty acids. The selected ion chromatogram of DHT and dexamethasone is shown in FIG.

Figure 0005561711
Figure 0005561711

図6より、SPEは5α-リダクターゼ活性を濃度依存的に抑制し、そのIC50値は101±2μg/mLであった(表4)。パルミチン酸を除く4種の脂肪酸も5α-リダクターゼ活性を濃度依存的 (10−200μg/mL) に抑制した。表4に示されているように、それらのIC50値は42.1−67.6μg/mLの範囲であり、パルミチン酸を除く4種の脂肪酸の酵素活性抑制作用はいずれもSPEより高かった。リノール酸、オレイン酸、ミリスチン酸、ラウリン酸の4種はSPEに含まれる5α-リダクターゼ活性抑制成分の可能性が示唆された。 From FIG. 6, SPE inhibited 5α-reductase activity in a concentration-dependent manner, and its IC 50 value was 101 ± 2 μg / mL (Table 4). Four fatty acids except palmitic acid also inhibited 5α-reductase activity in a concentration-dependent manner (10-200 μg / mL). As shown in Table 4, their IC 50 values were in the range of 42.1-67.6 μg / mL, and the enzyme activity inhibitory action of the four fatty acids excluding palmitic acid was higher than that of SPE. Four types of linoleic acid, oleic acid, myristic acid, and lauric acid were suggested to be possible 5α-reductase activity inhibiting components in SPE.

SPE、オレイン酸、ラウリン酸、ミリスチン酸、リノール酸は濃度依存的に5α-リダクターゼ活性を抑制した。それぞれの脂肪酸間での活性抑制作用に大きな差は認められなかった。IC50値より、各脂肪酸の活性抑制作用はSPEよりも1.4−2.4倍高いことがわかる。したがって、オレイン酸、ラウリン酸、ミリスチン酸、リノール酸が5α-リダクターゼ活性抑制作用を示し、パルミチン酸が抑制作用を示さないことがわかった。 SPE, oleic acid, lauric acid, myristic acid and linoleic acid inhibited 5α-reductase activity in a concentration-dependent manner. There was no significant difference in the activity-inhibiting action between the fatty acids. From the IC 50 value, it can be seen that the activity inhibitory action of each fatty acid is 1.4-2.4 times higher than SPE. Therefore, it was found that oleic acid, lauric acid, myristic acid, and linoleic acid showed a 5α-reductase activity inhibitory action, and palmitic acid did not show an inhibitory action.

図8に、IC50値付近のSPE(116μg/mL)、その濃度での含有比率を元にして混合した3種の脂肪酸混合試料の5α-リダクターゼ活性を比較した結果を示す。
同図に示すように、IC50値付近のSPEの5α-リダクターゼ活性は対照に比べて41±2.0%であった。インデナ社ホームページ(http://www.indena.com/pdf/sabalselect.pdf)よりSPE(116μg/mL)のときのラウリン酸、オレイン酸、ミリスチン酸の濃度を算出すると、それぞれ34.8μg/mL、33.6μg/mL、13.9μg/mLであった。図6に示されているように、ラウリン酸40μg/mL、ミリスチン酸20μg/mLでは5α-リダクターゼ阻害活性を示さなかった。一方で、オレイン酸33.6μg/mL存在下の5α-リダクターゼ活性は、阻害曲線から対照の83.6%と算出された。
したがって、図8に示すように、ラウリン酸34.8μg/mL、オレイン酸33.6μg/mL、ミリスチン酸13.9μg/mLの混合試料存在下の5α-リダクターゼ活性の理論値は対照の83.6%と算出された。一方、同図に示すように、混合試料の5α-リダクターゼ活性の実測値は対照の23±1.5%であった。脂肪酸単独の抑制作用の加算に比べ、脂肪酸混合によって抑制作用の増強が認められた。
ここで、ラウリン酸34.8μg/mL、オレイン酸33.6μg/mL、ミリスチン酸13.9μg/mLをモル濃度に換算すると、それぞれ152μM、119μM、69μMとなり、合計341μMである。オレイン酸341μM(96.2μg/mL)存在下の5α-リダクターゼ活性の理論値は、対照の11%と算出された。混合した脂肪酸の抑制作用に比べ、オレイン酸単独の方が酵素活性の抑制作用は高かった。
FIG. 8 shows the results of comparing the 5α-reductase activity of three fatty acid mixed samples mixed based on SPE (116 μg / mL) near the IC 50 value and the content ratio at that concentration.
As shown in the figure, the 5α-reductase activity of SPE near the IC 50 value was 41 ± 2.0% compared to the control. When the concentrations of lauric acid, oleic acid and myristic acid at SPE (116 μg / mL) were calculated from the Indena website (http://www.indena.com/pdf/sabalselect.pdf), 34.8 μg / mL, They were 33.6 μg / mL and 13.9 μg / mL. As shown in FIG. 6, lauric acid 40 μg / mL and myristic acid 20 μg / mL showed no 5α-reductase inhibitory activity. On the other hand, the 5α-reductase activity in the presence of 33.6 μg / mL oleic acid was calculated as 83.6% of the control from the inhibition curve.
Therefore, as shown in FIG. 8, the theoretical value of 5α-reductase activity in the presence of a mixed sample of 34.8 μg / mL lauric acid, 33.6 μg / mL oleic acid, and 13.9 μg / mL myristic acid is 83.6% of the control. Calculated. On the other hand, as shown in the figure, the measured value of 5α-reductase activity of the mixed sample was 23 ± 1.5% of the control. Compared with the addition of the inhibitory action of fatty acids alone, the inhibitory action was enhanced by the fatty acid mixture.
Here, when lauric acid 34.8 μg / mL, oleic acid 33.6 μg / mL, and myristic acid 13.9 μg / mL are converted to molar concentrations, they are 152 μM, 119 μM, and 69 μM, respectively, for a total of 341 μM. The theoretical value of 5α-reductase activity in the presence of 341 μM oleic acid (96.2 μg / mL) was calculated to be 11% of the control. Compared to the inhibitory action of mixed fatty acids, oleic acid alone had a higher inhibitory action on enzyme activity.

SPE (116μg/mL) に含まれるラウリン酸、オレイン酸、ミリスチン酸の濃度は、上記のように、インデナ社ホームページによると、それぞれ 34.8、33.6、13.9μg/mLである。各濃度のラウリン酸、オレイン酸、ミリスチン酸を混合した場合の5α-リダクターゼ活性の理論値は、対照に比べて約8割残存することになる。一方、上記濃度で混合した脂肪酸存在下の5α-リダクターゼ活性の実測値は対照に比べて23%の活性を示し、活性の約8割が抑制された。この事実は、3種の脂肪酸による5α-リダクターゼ阻害活性の総和では説明できない。このことから、ラウリン酸およびミリスチン酸添加によるオレイン酸の作用を増強、すなわち薬力学的相互作用があると考えられる。また、3種の脂肪酸の合計濃度に相当するオレイン酸 (96.2μg/mL) 存在下の5α-リダクターゼ活性の理論値は対照比11%と算出されたことより、オレイン酸単独では、オレイン酸、ラウリン酸、ミリスチン酸混合時の実測値に比べて高い抑制作用を示す可能性が示唆された。
以上のことから、SPEの5α-リダクターゼ活性抑制作用に比べて脂肪酸混合試料の抑制作用の方が高いことが明らかとなった。この原因としては、SPEには5α-リダクターゼ活性の抑制作用を示さないエステル体が含まれているために、遊離脂肪酸のみの混合脂肪酸に比べて抑制作用が低かったと考えられる。
The concentrations of lauric acid, oleic acid, and myristic acid contained in SPE (116 μg / mL) are 34.8, 33.6, and 13.9 μg / mL, respectively, according to the Indena website as described above. About 80% of the theoretical value of 5α-reductase activity when lauric acid, oleic acid, and myristic acid are mixed at each concentration remains compared to the control. On the other hand, the actually measured value of 5α-reductase activity in the presence of the fatty acid mixed at the above concentration showed 23% activity compared to the control, and about 80% of the activity was suppressed. This fact cannot be explained by the sum of the 5α-reductase inhibitory activities of the three fatty acids. From this, it is considered that the action of oleic acid by addition of lauric acid and myristic acid is enhanced, that is, there is a pharmacodynamic interaction. In addition, the theoretical value of 5α-reductase activity in the presence of oleic acid (96.2 μg / mL) corresponding to the total concentration of the three fatty acids was calculated to be 11% of the control ratio. It was suggested that the inhibitory action may be higher than the measured value when lauric acid and myristic acid were mixed.
From the above, it was clarified that the inhibitory action of the fatty acid mixed sample is higher than the inhibitory action of SPE on 5α-reductase activity. This is probably because SPE contains an ester that does not exhibit an inhibitory action on 5α-reductase activity, and therefore, the inhibitory action is considered to be lower than that of mixed fatty acids containing only free fatty acids.

さらに、3種の脂肪酸が排尿改善効果に有効であることを確認するために、SPE、脂肪酸単体(ラウリン酸、オレイン酸、ミリスチン酸)、2種の脂肪酸試料(オレイン酸およびミリスチン酸)、前記した3種の脂肪酸混合試料を用い、そのムスカリン性受容体に対する結合活性について検討を行った。試験方法は上記の方法を用いて測定した。
ここで、各試料は、SPE中に含まれる割合(ラウリン酸:30.2%、オレイン酸:26.5%、ミリスチン酸:12.1%)で調整された。
すなわち、100μg/mLの試料では、SPE(100μg/mL)、ラウリン酸(30.2μg/mL)、オレイン酸(26.5μg/mL)、ミリスチン酸(12.1μg/mL)、オレイン酸およびミリスチン酸(26.5μg/mL(オレイン酸)+12.1μg/mL(ミリスチン酸))、脂肪酸混合試料(30.2μg/mL(ラウリン酸)+26.5μg/mL(オレイン酸)+12.1μg/mL(ミリスチン酸))の濃度のものを用いて試験を行った。結果を表5および図9に示す。
Furthermore, in order to confirm that the three types of fatty acids are effective for improving urination, SPE, fatty acid alone (lauric acid, oleic acid, myristic acid), two types of fatty acid samples (oleic acid and myristic acid), Using the three types of fatty acid mixed samples, the binding activity to the muscarinic receptor was examined. The test method was measured using the above method.
Here, each sample was adjusted at a ratio (lauric acid: 30.2%, oleic acid: 26.5%, myristic acid: 12.1%) contained in SPE.
That is, for the 100 μg / mL sample, SPE (100 μg / mL), lauric acid (30.2 μg / mL), oleic acid (26.5 μg / mL), myristic acid (12.1 μg / mL), oleic acid and myristic acid (26.5 μg / mL (oleic acid) + 12.1 μg / mL (myristic acid)), fatty acid mixed sample (30.2 μg / mL (lauric acid) + 26.5 μg / mL (oleic acid) + 12.1 μg / mL (myristic acid)) The test was carried out using a sample having a concentration. The results are shown in Table 5 and FIG.

Figure 0005561711
Figure 0005561711

表5および図9より、ほとんどの試料で、試料の濃度の増加に伴い、[3H]NMS特異的結合率が減少していくことがわかる。すなわち、試料の濃度の増加に伴い、ムスカリン性受容体に対する結合活性が上昇していることが明らかとなった。脂肪酸単体では、それほど高い結合活性を示さなかったが、高濃度のオレイン酸試料では、顕著な結合活性を示していた。
また、オレイン酸およびミリスチン酸の混合試料も、高いムスカリン性受容体結合活性を示していた。
加えて、5α-リダクターゼ活性抑制作用の結果と同様に、SPEよりも、3種の脂肪酸混合試料の方がムスカリン性受容体に対する結合活性が高いことが明らかとなった。したがって、5α-リダクターゼ活性抑制作用のみならず、ムスカリン性受容体結合活性も高いこれらの成分を含むことで、SPEと同等ないしより優れた排尿障害改善剤が製造可能であることが示唆された。
From Table 5 and FIG. 9, it can be seen that in most samples, the [ 3 H] NMS-specific binding rate decreases with increasing sample concentration. That is, it became clear that the binding activity to the muscarinic receptor increased as the concentration of the sample increased. Fatty acid alone did not show very high binding activity, but the high concentration oleic acid sample showed significant binding activity.
The mixed sample of oleic acid and myristic acid also showed high muscarinic receptor binding activity.
In addition, similar to the results of the inhibitory action of 5α-reductase activity, it was revealed that the three fatty acid mixed samples had higher binding activity to muscarinic receptors than SPE. Therefore, it was suggested that an urinary dysfunction-improving agent equivalent to or better than SPE can be produced by including these components having not only a 5α-reductase activity inhibitory action but also a high muscarinic receptor binding activity.

次に、これらの結果をもとに、上記3種の脂肪酸(ラウリン酸、オレイン酸、ミリスチン酸)を配合し、SPEと同等ないしより優れた排尿障害改善剤を製造するために、より優れた効果の期待できる脂肪酸組成について検討を行った。   Next, based on these results, the above three fatty acids (lauric acid, oleic acid, myristic acid) were blended to produce a urination disorder improving agent equivalent to or better than SPE. The fatty acid composition which can expect the effect was examined.

合計50μg/mLの3種の脂肪酸(ラウリン酸、オレイン酸、ミリスチン酸)の組成を変化させた際のムスカリン性受容体に対する結合活性を、上記の試験方法を用いて測定した。結果を表6および図10に示す。   The binding activity to the muscarinic receptor when the composition of three kinds of fatty acids (lauric acid, oleic acid, myristic acid) in total 50 μg / mL was changed was measured using the above test method. The results are shown in Table 6 and FIG.

Figure 0005561711
Figure 0005561711

表6および図10より、各脂肪酸単体では、オレイン酸、ラウリン酸、ミリスチン酸の順に[3H]NMS特異的結合抑制率が高く、特にオレイン酸の抑制率が高かった。すなわち、オレイン酸のムスカリン性受容体に対する結合活性が一番高いことがわかる。しかしながら、抑制率が一番高かったのはサンプル番号2のオレイン酸およびミリスチン酸の混合物(配合割合4:1)であることから、ミリスチン酸を添加することによりオレイン酸のムスカリン性受容体結合活性作用を増強していることがわかった。しかしながら、単独ではミリスチン酸より結合活性が若干高いラウリン酸をオレイン酸に添加しても、オレイン酸のムスカリン性受容体結合活性作用を増強しなかった。 From Table 6 and FIG. 10, each fatty acid alone had a higher [ 3 H] NMS specific binding inhibition rate in the order of oleic acid, lauric acid, and myristic acid, and in particular, the inhibition rate of oleic acid was high. That is, it can be seen that the binding activity of oleic acid to the muscarinic receptor is the highest. However, since the inhibition rate was highest in the mixture of oleic acid and myristic acid of sample No. 2 (blending ratio 4: 1), the addition of myristic acid gave muscarinic receptor binding activity of oleic acid. It was found that the effect was enhanced. However, adding lauric acid, which has a slightly higher binding activity than myristic acid alone, to oleic acid did not enhance the muscarinic receptor binding activity of oleic acid.

これらの結果から、本発明にかかる排尿障害改善剤は、オレイン酸に特定割合のミリスチン酸を添加することが重要である。すなわち、本発明にかかる排尿障害改善剤は、オレイン酸、ミリスチン酸を1:0〜2:3で含むことを特徴とする。オレイン酸、ミリスチン酸を4.5:0.5〜1:1で含むことが好適である。また、オレイン酸、ミリスチン酸を4:1〜3:2で含むことが特に好適である。ミリスチン酸の含有割合が小さすぎる場合、ミリスチン酸添加によるムスカリン性受容体結合活性作用を増強できなくなってしまう。ミリスチン酸の含有割合が大きすぎる場合、オレイン酸の含有割合が相対的に減ってしまうため、ムスカリン性受容体結合活性作用に劣る傾向にある。   From these results, it is important for the urination disorder improving agent according to the present invention to add a specific ratio of myristic acid to oleic acid. That is, the urination disorder improving agent according to the present invention is characterized by containing oleic acid and myristic acid at 1: 0 to 2: 3. It is preferable that oleic acid and myristic acid are contained at 4.5: 0.5 to 1: 1. Further, it is particularly preferable to contain oleic acid and myristic acid in a ratio of 4: 1 to 3: 2. When the content ratio of myristic acid is too small, it becomes impossible to enhance the muscarinic receptor binding activity by adding myristic acid. When the content ratio of myristic acid is too large, the content ratio of oleic acid is relatively decreased, and therefore tends to be inferior to the muscarinic receptor binding activity.

本発明にかかる排尿障害改善剤において、ノコギリヤシ果実抽出液を含み、オレイン酸とミリスチン酸を上記組成に調整する方法としては、特に限定されるものではないが、ノコギリヤシ果実の原産地を変える方法、ノコギリヤシ果実の抽出方法を変える方法、ノコギリヤシ果実抽出液にオレイン酸ないしミリスチン酸を添加する方法等が挙げられる。   In the agent for improving dysuria according to the present invention, a method for adjusting the oleic acid and myristic acid to the above-mentioned composition containing a saw palm fruit extract is not particularly limited. Examples thereof include a method of changing the fruit extraction method and a method of adding oleic acid or myristic acid to the saw palmetto fruit extract.

Claims (2)

ノコギリヤシ果実抽出液を含み、
ミリスチン酸(X)、オレイン酸(Y)、ラウリン酸(Z)の三成分の配合質量比が、三相図において以下の座標で囲まれる範囲内であることを特徴とする排尿障害改善剤。
(X,Y,Z)=(0,100,0)、(0,80,20)、(20,60,20)、(40,60,0)
Including saw palmetto fruit extract,
An agent for improving urination disorder , wherein a blending mass ratio of three components of myristic acid (X), oleic acid (Y), and lauric acid (Z) is within a range surrounded by the following coordinates in a three-phase diagram .
(X, Y, Z) = (0, 100, 0), (0, 80, 20), (20, 60, 20), (40, 60, 0)
ノコギリヤシ果実抽出液を、
n−ヘキサン/メタノール−水により抽出し、
水相(メタノール−水)を、ジエチルエーテルにて抽出し、
ジエチルエーテル相を、シリカゲルクロマトグラフィーにより、n−ヘキサン−ジエチルエーテル(組成4:1)で活性画分を精製し、
該活性画分を、逆相クロマトグラフィーにより、分画することにより製造され、
ミリスチン酸(X)、オレイン酸(Y)、ラウリン酸(Z)の三成分の配合質量比が、三相図において以下の座標で囲まれる範囲内であることを特徴とする排尿障害改善剤。
(X,Y,Z)=(0,100,0)、(0,80,20)、(20,60,20)、(40,60,0)
Saw palm fruit extract,
extraction with n-hexane / methanol-water,
The aqueous phase (methanol-water) is extracted with diethyl ether,
The diethyl ether phase was purified by silica gel chromatography with n-hexane-diethyl ether (composition 4: 1),
The active fraction is produced by fractionating by reverse phase chromatography;
An agent for improving urination disorder , wherein a blending mass ratio of three components of myristic acid (X), oleic acid (Y), and lauric acid (Z) is within a range surrounded by the following coordinates in a three-phase diagram .
(X, Y, Z) = (0, 100, 0), (0, 80, 20), (20, 60, 20), (40, 60, 0)
JP2009168982A 2009-07-17 2009-07-17 Urinary dysfunction improving agent including saw palmetto Active JP5561711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009168982A JP5561711B2 (en) 2009-07-17 2009-07-17 Urinary dysfunction improving agent including saw palmetto

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009168982A JP5561711B2 (en) 2009-07-17 2009-07-17 Urinary dysfunction improving agent including saw palmetto

Publications (2)

Publication Number Publication Date
JP2011020972A JP2011020972A (en) 2011-02-03
JP5561711B2 true JP5561711B2 (en) 2014-07-30

Family

ID=43631360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009168982A Active JP5561711B2 (en) 2009-07-17 2009-07-17 Urinary dysfunction improving agent including saw palmetto

Country Status (1)

Country Link
JP (1) JP5561711B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065027A1 (en) 2019-10-02 2021-04-08 あすか製薬株式会社 Dysuria-alleviating agent
CN114502239A (en) 2019-10-02 2022-05-13 Aska制药株式会社 Agent for ameliorating dysuria
WO2021117547A1 (en) * 2019-12-12 2021-06-17 BGG Japan株式会社 Food for preventing or ameliorating lower urinary tract symptoms
US20240041899A1 (en) 2020-12-18 2024-02-08 Aska Pharmaceutical Co., Ltd. Solid preparation

Also Published As

Publication number Publication date
JP2011020972A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
Colucci et al. Increased vascular catecholamine sensitivity and alpha-adrenergic receptor affinity in female and estrogen-treated male rats.
Barton et al. Postmenopausal hypertension: mechanisms and therapy
Xue et al. Central interactions of aldosterone and angiotensin II in aldosterone-and angiotensin II-induced hypertension
Dinh et al. Aldosterone-induced oxidative stress and inflammation in the brain are mediated by the endothelial cell mineralocorticoid receptor
Guo et al. Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, peroxisome proliferator-activated receptor-γ, and proinflammatory adipokines
Tarabra et al. Effect of the monocyte chemoattractant protein-1/CC chemokine receptor 2 system on nephrin expression in streptozotocin-treated mice and human cultured podocytes
Feike et al. Advances in research on pharmacotherapy of sarcopenia
JP5561711B2 (en) Urinary dysfunction improving agent including saw palmetto
Pojoga et al. Caveolin-1 ablation reduces the adverse cardiovascular effects of N-ω-Nitro-L-Arginine methyl ester and angiotensin II
US9829495B2 (en) Method for differentially diagnosing ACTH-dependent Cushing&#39;s syndrome
Lindsey et al. Evidence That the G Protein–Coupled Membrane Receptor GPR30 Contributes to the Cardiovascular Actions of Estrogen
da Costa Gonçalves et al. Evidence that the vasodilator angiotensin-(1–7)-Mas axis plays an important role in erectile function
Zhang et al. TLR2 and TLR4 mediate an activation of adipose tissue renin-angiotensin system induced by uric acid
Li et al. COX-2 is involved in ET-1-induced hypertrophy of neonatal rat cardiomyocytes: role of NFATc3
Miller et al. A GPR119 signaling system in the murine eye regulates intraocular pressure in a sex-dependent manner
Liang et al. Mechanical stress enhances serotonin 2B receptor modulating brain natriuretic peptide through nuclear factor-κB in cardiomyocytes
Zhang et al. Aldosterone-induced brain MAPK signaling and sympathetic excitation are angiotensin II type-1 receptor dependent
Dai et al. Effects of angiotensin receptor blocker on phenotypic alterations of podocytes in early diabetic nephropathy
Anderson et al. Hypothalamic prolactin receptor messenger ribonucleic acid levels, prolactin signaling, and hyperprolactinemic inhibition of pulsatile luteinizing hormone secretion are dependent on estradiol
Olver et al. Chronic interval exercise training prevents BKCa channel-mediated coronary vascular dysfunction in aortic-banded miniswine
Takeuchi et al. New anti-nephrin antibody mediated podocyte injury model using a C57BL/6 mouse strain
Sutanto et al. Mineralocorticoid receptor ligands: biochemical, pharmacological, and clinical aspects
Cheng et al. Inhibition of mineralocorticoid receptor is a renoprotective effect of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor pitavastatin
Sturgis et al. The role of aldosterone in mediating the dependence of angiotensin hypertension on IL-6
Orth et al. Adult human mesangial cells (HMCs) express endothelin-B-receptors which mediate endothelin-1-induced cell growth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140604

R150 Certificate of patent or registration of utility model

Ref document number: 5561711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350