JP5561693B2 - Novel compound, base generator and photosensitive resin composition containing the base generator - Google Patents

Novel compound, base generator and photosensitive resin composition containing the base generator Download PDF

Info

Publication number
JP5561693B2
JP5561693B2 JP2010093549A JP2010093549A JP5561693B2 JP 5561693 B2 JP5561693 B2 JP 5561693B2 JP 2010093549 A JP2010093549 A JP 2010093549A JP 2010093549 A JP2010093549 A JP 2010093549A JP 5561693 B2 JP5561693 B2 JP 5561693B2
Authority
JP
Japan
Prior art keywords
base
formula
base generator
resin composition
photosensitive resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010093549A
Other languages
Japanese (ja)
Other versions
JP2011080032A (en
Inventor
晃二 有光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Original Assignee
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009207577A external-priority patent/JP2010084144A/en
Application filed by Tokyo University of Science filed Critical Tokyo University of Science
Priority to JP2010093549A priority Critical patent/JP5561693B2/en
Publication of JP2011080032A publication Critical patent/JP2011080032A/en
Application granted granted Critical
Publication of JP5561693B2 publication Critical patent/JP5561693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)
  • Pyrane Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、新規な化合物、塩基発生剤及び当該塩基発生剤を含有する感光性樹脂組成物に関する。さらに詳しくは、光等の活性エネルギー線によって塩基を発生する新規な化合物、塩基発生剤及び当該塩基発生剤を含有する感光性樹脂組成物に関する。   The present invention relates to a novel compound, a base generator, and a photosensitive resin composition containing the base generator. More specifically, the present invention relates to a novel compound that generates a base by active energy rays such as light, a base generator, and a photosensitive resin composition containing the base generator.

光の照射によって酸を発生する酸発生剤を含有する感光性樹脂組成物が、フォトレジスト材料や光硬化材料等として適用されている。酸発生剤から発生した酸は、触媒や重合開始剤として作用し、また、酸発生剤等を含有した感光性樹脂組成物をフォトレジスト材料として用いてパターンを形成する場合には、例えば酸発生剤に光を照射して触媒等となる強酸を発生させ、樹脂成分を化学変性させる。そして、化学変性された樹脂成分の溶解性の変化により、パターンを形成するようにする。   A photosensitive resin composition containing an acid generator that generates an acid upon irradiation with light is applied as a photoresist material, a photocuring material, or the like. The acid generated from the acid generator acts as a catalyst or a polymerization initiator. When a photosensitive resin composition containing an acid generator or the like is used as a photoresist material to form a pattern, for example, acid generation The agent is irradiated with light to generate a strong acid serving as a catalyst, and the resin component is chemically modified. Then, a pattern is formed by the change in solubility of the chemically modified resin component.

かかるフォトレジスト材料は、解像度及び感度が高いこと、さらには耐エッチング性が高いパターンを形成し得ることが求められており、特に、深紫外線レジスト材料として、酸素プラズマエッチングに耐性を持つパターンを形成し得る材料が求められている。酸発生剤を含有する感光性樹脂組成物からなるフォトレジスト材料は、高感度・高解像性等を目指して、種々のものが提供されているが、光酸発生剤と樹脂材料の組み合わせの種類はある程度限定されてしまうため、酸発生剤を使用しない新たな感光システムが求められていた。   Such a photoresist material is required to have a high resolution and sensitivity and to be able to form a pattern with high etching resistance. In particular, as a deep ultraviolet resist material, a pattern resistant to oxygen plasma etching is formed. There is a need for materials that can be used. Various photoresist materials comprising a photosensitive resin composition containing an acid generator have been provided for the purpose of high sensitivity, high resolution, etc., but a combination of a photoacid generator and a resin material is provided. Since the types are limited to some extent, a new photosensitive system that does not use an acid generator has been demanded.

加えて、モノマー、オリゴマー、あるいはポリマーの光硬化速度を向上させるために様々な検討がなされており、光の作用で発生するラジカル種を開始剤として、多数のビニルモノマーを重合させるラジカル光重合系の材料が広く開発の対象とされてきた。また、光の作用で酸を発生させ、この酸を触媒とするカチオン重合系の材料も盛んに研究されていた。しかしながら、ラジカル光重合系の材料の場合には、空気中の酸素によって重合反応が阻害され硬化反応が抑制されるので、酸素遮断のための特別な工夫が必要とされていた。また、カチオン重合系の材料の場合には、ラジカル光重合系の材料のような酸素阻害がない一方、光酸発生剤から発生した強酸が硬化後も残存するために、当該強酸の存在を原因とする腐食性や樹脂の変性の可能性が問題とされていた。   In addition, various studies have been made to improve the photocuring speed of monomers, oligomers, or polymers, and radical photopolymerization systems that polymerize many vinyl monomers using radical species generated by the action of light as initiators. These materials have been widely targeted for development. In addition, active studies have been made on cationic polymerization materials that generate an acid by the action of light and use this acid as a catalyst. However, in the case of radical photopolymerization-type materials, since the polymerization reaction is inhibited and the curing reaction is suppressed by oxygen in the air, a special device for blocking oxygen has been required. In addition, in the case of a cationic polymerization material, there is no oxygen inhibition like a radical photopolymerization material, but the strong acid generated from the photoacid generator remains after curing, which causes the presence of the strong acid. The corrosivity and the possibility of denaturation of the resin have been problems.

このような背景から、解像度及び感度が高く、耐エッチング性が高いパターンを形成できるレジスト材料を得るために、また、活性エネルギー線を利用して液状物を迅速に固化させる硬化技術をいっそう高性能化するために、空気中の酸素による阻害効果を受けず、生成する強酸のような腐食性物質を含まず高効率で反応が進行する、新たな感光システムを用いた感光性樹脂組成物が強く望まれていた。   Against this background, in order to obtain a resist material that can form a pattern with high resolution and sensitivity and high etching resistance, a curing technology that rapidly solidifies a liquid substance using active energy rays is further improved in performance. Therefore, a photosensitive resin composition using a new photosensitive system that is not affected by oxygen in the air and does not contain corrosive substances such as strong acids that are generated and that has a highly efficient reaction is strong. It was desired.

前記の問題を克服する手段の1つとして、塩基触媒による重合反応や化学反応を用いる方法、例えば、光の作用によって塩基を発生させ、これを触媒として樹脂を化学変性させる方法を用いて、光によって発生する塩基を触媒とする感光性樹脂組成物をフォトレジスト材料や光硬化材料等へ応用する手段が検討されている。そして、エポキシ基を有する化合物は塩基の作用によって架橋反応を起こして硬化することを利用して、光や熱の作用で開始剤あるいは触媒としてのアミン類をエポキシ樹脂層内で発生させ、次いで加熱処理によって硬化させる方法が提供されている(例えば、特許文献1及び特許文献2を参照。)。   As one of the means for overcoming the above problems, a method using a polymerization reaction or chemical reaction by a base catalyst, for example, a method of generating a base by the action of light and chemically denaturing a resin using this as a catalyst, A means for applying a photosensitive resin composition using a base generated by the above as a catalyst to a photoresist material, a photocuring material or the like has been studied. The compound having an epoxy group is cured by causing a crosslinking reaction by the action of a base to generate amines as initiators or catalysts in the epoxy resin layer by the action of light or heat, and then heated. Methods of curing by treatment are provided (see, for example, Patent Document 1 and Patent Document 2).

特開2005−264156号公報JP 2005-264156 A 特開2007−101685号公報Japanese Patent Laid-Open No. 2007-10185

しかしながら、従来提供されている方法にあっては、発生することができる塩基の強度に制限があることや、光の作用で塩基を発生する反応が迅速に行われない等の問題があるため実用性に乏しく、改善が求められていた。   However, in the methods provided in the past, there is a problem in that there is a limitation in the intensity of the base that can be generated, and there is a problem that the reaction for generating the base by the action of light is not performed quickly. It was poor in nature and required improvement.

本発明は、前記の課題に鑑みてなされたものであり、例えば、エポキシ系化合物等の架橋反応に用いることができ、発生する塩基の強度が高く、エポキシ系化合物等に適用した場合には、塩基発生反応が連鎖的に行われ、反応効率に優れる新規な化合物、塩基発生剤及び当該塩基発生剤を含有する感光性樹脂組成物を提供することにある。   The present invention has been made in view of the above-mentioned problems, and can be used for, for example, a crosslinking reaction of an epoxy compound, the strength of a generated base is high, and when applied to an epoxy compound or the like, It is an object of the present invention to provide a novel compound, a base generator, and a photosensitive resin composition containing the base generator, in which base generation reactions are performed in a chain and excellent in reaction efficiency.

前記の課題を解決するために、本発明の第1発明に係る塩基発生剤は、カルボン酸とアルカリ金属またはアルカリ土類金属からなるカルボン酸塩であり、下記式(X)で表され
ることを特徴とする。
In order to solve the above-mentioned problems, the base generator according to the first invention of the present invention is a carboxylate salt composed of a carboxylic acid and an alkali metal or an alkaline earth metal, and is represented by the following formula (X): It is characterized by.

Figure 0005561693
(式(X)中、 は下記式(VI)を示し、Mはアルカリ金属またはアルカリ土類金属、nは1または2の整数、を示す。)
Figure 0005561693
(式(VI)中、R 、R 、R はCH COO 、CH(CH )COO またはHを示し、かかるCH COO またはCH(CH )COO はR 、R 、R のいずれか1つの基に付され、残りの2つの基にはHが付される。)
Figure 0005561693
(In the formula (X), A represents the following formula (VI), M represents an alkali metal or alkaline earth metal, and n represents an integer of 1 or 2.)
Figure 0005561693
(In the formula (VI), R 1 , R 2 and R 3 represent CH 2 COO , CH (CH 3 ) COO or H, and such CH 2 COO or CH (CH 3 ) COO represents R 1 , (It is attached to any one group of R 2 and R 3 , and H is attached to the remaining two groups.)

本発明の第2発明に係る塩基発生剤は、カルボン酸と塩基類からなるカルボン酸塩であり、下記式(Y)で表されることを特徴とする。 The base generator according to the second invention of the present invention is a carboxylate salt composed of a carboxylic acid and a base, and is represented by the following formula (Y).

Figure 0005561693
(式(Y)中、 は下記式(VI)を示し、Q は下記式(II)で表されるイミダゾール類からなる塩基類を示す。)
Figure 0005561693
(式(VI)中、R 、R 、R はCH COO 、CH(CH )COO またはHを示し、かかるCH COO またはCH(CH )COO はR 、R 、R のいずれか1つの基に付され、残りの2つの基にはHが付される。)
Figure 0005561693
(Formula (Y) in, A - represents the following formula (VI), Q + represents a imidazoles or Ranaru bases represented by the following formula (II).)
Figure 0005561693
(In the formula (VI), R 1 , R 2 and R 3 represent CH 2 COO , CH (CH 3 ) COO or H, and such CH 2 COO or CH (CH 3 ) COO represents R 1 , (It is attached to any one group of R 2 and R 3 , and H is attached to the remaining two groups.)

Figure 0005561693
(式(II)中、Rはそれぞれ、独立して水素原子、炭素数が1〜4のアルキル基(S等のヘテロ原子を含んでもよい。)、またはフェニル基、を示す。)
Figure 0005561693
(In formula (II), each R independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms (which may contain a heteroatom such as S), or a phenyl group.)

本発明の第3発明に係る化合物は、カルボン酸と塩基類からなるカルボン酸塩であり、下記式(Z)で表されることを特徴とする。   The compound according to the third aspect of the present invention is a carboxylate salt composed of a carboxylic acid and a base, and is represented by the following formula (Z).

Figure 0005561693
(式(Z)中、 は下記式(VI)を示し、G は下記化学式で表される塩基類のいずれかを示す。
Figure 0005561693
(In formula (Z), A represents the following formula (VI), and G + represents any of the bases represented by the following chemical formula. )

Figure 0005561693
Figure 0005561693
(式(VI)中、R(In formula (VI), R 1 、R, R 2 、R, R 3 はCHIs CH 2 COOCOO 、CH(CH, CH (CH 3 )COOCOO またはHを示し、かかるCHOr H, and this CH 2 COOCOO またはCH(CHOr CH (CH 3 )COOCOO はRIs R 1 、R, R 2 、R, R 3 のいずれか1つの基に付され、残りの2つの基にはHが付される。)Is attached to any one of the groups, and H is attached to the remaining two groups. )

Figure 0005561693
Figure 0005561693

本発明の第4発明に係る化合物は、カルボン酸と塩基類からなるカルボン酸塩であり、下記化学式で表されることを特徴とする化合物。  The compound according to the fourth aspect of the present invention is a carboxylate salt composed of a carboxylic acid and a base, and is represented by the following chemical formula.

Figure 0005561693
Figure 0005561693
(上記化学式中、J(In the above chemical formula, J + は下記化学式で表される塩基類のいずれかを示す。)Represents any of the bases represented by the following chemical formulas. )
Figure 0005561693
Figure 0005561693

本発明の第3発明に係る塩基発生剤は、前記した本発明の第3発明または第4発明に係る化合物からなることを特徴とする。  The base generator according to the third aspect of the present invention is characterized by comprising the compound according to the third or fourth aspect of the present invention.

本発明に係る感光性樹脂組成物は、前記第1発明ないし第3発明のいずれかに記載の塩基発生剤と、塩基反応性化合物とを含有することを特徴とする。   A photosensitive resin composition according to the present invention comprises the base generator according to any one of the first to third inventions and a base-reactive compound.

本発明に係る感光性樹脂組成物は、前記感光性樹脂組成物において、前記塩基反応性化合物がエポキシ系化合物及び/またはケイ素系化合物であることを特徴とする。   The photosensitive resin composition according to the present invention is characterized in that, in the photosensitive resin composition, the base reactive compound is an epoxy compound and / or a silicon compound.

本発明の第1発明に係る塩基発生剤は、式(VI)に示すカルボン酸と、塩基類としてアルカリ金属またはアルカリ土類金属からなるカルボン酸塩であるので、光によって脱炭酸し、その結果、空気中の水の作用により強アルカリを発生するため塩基性が高く(酸解離定数(pKa)が概ね13以上(水溶媒))、反応効率に優れ、塩基反応性化合物とともに感光性樹脂組成物を構成した場合にあっては、エポキシ系化合物等の塩基反応性化合物との反応は連鎖的に進行して、当該化合物との反応効率が格段に高い塩基発生剤となる。 Since the base generator according to the first invention of the present invention is a carboxylic acid salt composed of a carboxylic acid represented by the formula (VI) and an alkali metal or an alkaline earth metal as a base, it is decarboxylated by light. Since the strong alkali is generated by the action of water in the air, the basicity is high (acid dissociation constant (pKa) is approximately 13 or more (water solvent)), the reaction efficiency is excellent, and the photosensitive resin composition together with the base-reactive compound. In this case, the reaction with a base-reactive compound such as an epoxy compound proceeds in a chained manner, and becomes a base generator with a remarkably high reaction efficiency with the compound.

本発明の第2発明に係る塩基発生剤は、式(VI)に示すカルボン酸と、塩基類としてイミダゾール類からなるカルボン酸塩であるので、光によって脱炭酸し、その結果、遊離のイミダゾールを生成するため塩基性が高く(酸解離定数(pKa)が12〜13程度(水溶媒))、第1発明と同様に反応効率に優れ、塩基反応性化合物とともに感光性樹脂組成物を構成した場合にあっては、エポキシ系化合物等の塩基反応性化合物との反応は連鎖的に進行して、当該化合物との反応効率が格段に高い塩基発生剤となる。 Since the base generator according to the second invention of the present invention is a carboxylic acid salt composed of carboxylic acid represented by formula (VI) and imidazoles as bases, it is decarboxylated by light, and as a result, free imidazole is converted. Since it is highly basic (acid dissociation constant (pKa) is about 12 to 13 (aqueous solvent)), it is excellent in reaction efficiency like the first invention, and constitutes a photosensitive resin composition together with a base-reactive compound In this case, the reaction with a base-reactive compound such as an epoxy compound proceeds in a chain, and becomes a base generator with a remarkably high reaction efficiency with the compound.

本発明の第3発明または第4発明に係る化合物、第3発明に係る塩基発生剤は、式(VI)に示すカルボン酸と、塩基類としてグアニジン類またはホスファゼン誘導体からなるカルボン酸塩であるので、光によって脱炭酸し、その結果、遊離のグアニジン類ないしはホスファゼン誘導体を生成するため塩基性が高く(酸解離定数(pKa)が13.5を超えて(水溶媒)、第1発明及び第2発明と同様に反応効率に優れ、塩基反応性化合物とともに感光性樹脂組成物を構成した場合にあっては、エポキシ系化合物等の塩基反応性化合物との反応は連鎖的に進行して、当該化合物との反応効率が格段に高い化合物ないし塩基発生剤となる。 Since the compound according to the third or fourth invention of the present invention and the base generator according to the third invention are carboxylic acid salts comprising the carboxylic acid represented by the formula (VI) and guanidines or phosphazene derivatives as the bases. Decarboxylation by light, and as a result, free guanidines or phosphazene derivatives are formed, so that the basicity is high (acid dissociation constant (pKa) exceeds 13.5 (aqueous solvent) ) . As in the case of the invention, the reaction efficiency is excellent, and when the photosensitive resin composition is constituted together with the base-reactive compound, the reaction with the base-reactive compound such as an epoxy compound proceeds in a chain manner, It becomes a compound or base generator having a remarkably high reaction efficiency with the compound.

加えて、本発明の第3発明または第4発明に係る化合物、第3発明に係る塩基発生剤は、塩基類としてグアニジン類等を採用している。一般に、アミン、アミジン類の塩基性はpKa(共役酸のpKa、アセトニトリル(CHCN溶媒中))は10(アミン)〜24(アミジン類)であり、この程度の塩基性ではラクトン類や環状シロキサンのアニオン開環重合は起こりにくい一方、グアニジン類やホスファゼン誘導体では、pKaが26〜27程度(アセトニトリル(CHCN)溶媒中)となりアニオン開環重合が起こるため、これを用いるとモノマーが連鎖反応でポリマーに変化するので、塩基反応性化合物であるラクトン類等に適用される塩基発生剤として最適である。また、得られた感光性樹脂化合物も、光硬化材料(UV接着、UVインク、UV粘着、UVコーティングなど)として使用することができる。 In addition , the compounds according to the third or fourth invention of the present invention and the base generator according to the third invention employ guanidines as bases. In general, the basicity of amines and amidines is 10 (amine) to 24 (amidines) of pKa (pKa of conjugate acid, acetonitrile (in CH 3 CN solvent)). While anionic ring-opening polymerization of siloxane is unlikely to occur, guanidines and phosphazene derivatives have an pKa of about 26 to 27 (in acetonitrile (CH 3 CN) solvent) and anionic ring-opening polymerization occurs. Since it changes to a polymer by the reaction, it is most suitable as a base generator applied to lactones which are base reactive compounds. Moreover, the obtained photosensitive resin compound can also be used as photocuring materials (UV adhesion, UV ink, UV adhesion, UV coating, etc.).

本発明の第4発明に係る化合物は、カルボン酸としてケトプロフェンを採用しているので、光脱炭酸を引き起こすカルボン酸の中でケトプロフェンの量子収率が最も高く(Φ=0.75程度)、極めて高効率な塩基発生剤として機能することが期待できる。 Since the compound according to the fourth invention of the present invention employs ketoprofen as the carboxylic acid, the quantum yield of ketoprofen is the highest among the carboxylic acids causing photodecarboxylation (Φ = 0.75), It can be expected to function as a highly efficient base generator.

本発明に係る感光性樹脂組成物は、前記した本発明の塩基発生剤と、塩基反応性化合物とを含有するので、塩基発生剤から発生する塩基とエポキシ系化合物等との反応が連鎖的に進行し、優れた反応効率を備えるため、室温レベルでも硬化が速やかに実施され、硬化が十分になされる感光性樹脂組成物となる。かかる効果を奏する本発明の感光性樹脂組成物は、例えば、高感度の光硬化材料やレジスト材料等に好適に用いることができる。   Since the photosensitive resin composition according to the present invention contains the base generator of the present invention and a base reactive compound, the reaction between the base generated from the base generator and the epoxy compound is chained. Since it progresses and has excellent reaction efficiency, it is a photosensitive resin composition that is rapidly cured even at a room temperature level and is sufficiently cured. The photosensitive resin composition of the present invention exhibiting such effects can be suitably used for, for example, a highly sensitive photocuring material, resist material, and the like.

本発明に係る感光性樹脂組成物は、当該樹脂組成物を構成する塩基反応性化合物としてエポキシ系化合物あるいはケイ素系化合物を採用しているので、硬化が効率よく実施され、特に、重合性エポキシ系化合物あるいは重合性ケイ素系化合物を採用した場合にあっては、エポキシ基の開環重合、またはシラノール基またはアルコキシシリル基の縮重合によるポリマーを好適に提供することができる。また、エポキシ系化合物等は汎用材料であるため、コスト的にも有利である。   Since the photosensitive resin composition according to the present invention employs an epoxy compound or a silicon compound as a base-reactive compound constituting the resin composition, curing is carried out efficiently. When a compound or a polymerizable silicon-based compound is employed, a polymer obtained by ring-opening polymerization of an epoxy group or condensation polymerization of a silanol group or an alkoxysilyl group can be suitably provided. In addition, since epoxy compounds and the like are general-purpose materials, they are advantageous in terms of cost.

実施例1で得られた塩基発生剤の光分解挙動(波長:254nm)を示した図である。FIG. 3 is a view showing the photodegradation behavior (wavelength: 254 nm) of the base generator obtained in Example 1. 実施例1で得られた塩基発生剤の光分解挙動(波長:313nm)を示した図である。It is the figure which showed the photodegradation behavior (wavelength: 313 nm) of the base generator obtained in Example 1. 試験例1において、露光量と残膜率との関係(温度依存性)を示した図である。In Experiment 1, it is the figure which showed the relationship (temperature dependence) of the exposure amount and the remaining film rate. 試験例2において、露光量と残膜率との関係(時間依存性)を示した図である。In Experiment 2, it is the figure which showed the relationship (time dependence) of the exposure amount and the remaining film rate. 試験例3において、露光量と残膜率との関係(濃度依存性)を示した図である。In Experiment 3, it is the figure which showed the relationship (density dependence) of the exposure amount and the remaining film rate. 試験例4において、露光時間とSiOの生成量との関係を示した図である。In Test Example 4, a diagram showing the relationship between the amount of exposure time and SiO 2. 試験例5において、露光量と残膜率との関係(濃度依存性)を示した図である。In Experiment 5, it is the figure which showed the relationship (density dependence) of the exposure amount and the remaining film rate. 実施例9で得られた塩基発生剤のUVスペクトル変化を示した図である。FIG. 6 is a diagram showing changes in UV spectrum of the base generator obtained in Example 9. 試験例7において、露光量と残膜率との関係を示した図である。In Test Example 7, it is a diagram showing the relationship between the exposure amount and the remaining film rate. 試験例8において、露光量と残膜率との関係を示した図である。In Test Example 8, it is a diagram showing the relationship between the exposure amount and the remaining film rate. 試験例9において、露光量と残膜率との関係を示した図である。In Test Example 9, it is a diagram showing the relationship between the exposure amount and the remaining film rate. 試験例10において、露光量と残膜率との関係を示した図である。In Test Example 10, it is a diagram showing the relationship between the exposure amount and the remaining film rate. 試験例11において、露光量と残膜率との関係を示した図である。In Test Example 11, it is a diagram showing the relationship between the exposure amount and the remaining film rate. 試験例12において、露光量と残膜率との関係を示した図である。In Experiment 12, it is the figure which showed the relationship between the exposure amount and the remaining film rate. 試験例13において、露光量と残膜率との関係を示した図である。In Test Example 13, it is a diagram showing the relationship between the exposure amount and the remaining film rate. 試験例14において、露光量と残膜率との関係を示した図である。In Experiment 14, it is the figure which showed the relationship between the exposure amount and the remaining film rate.

以下、本発明の一態様を説明する。本発明の第1発明に係る塩基発生剤は、カルボン酸と、アルカリ金属あるいはアルカリ土類金属Mからなる、下記式(X)で表されるカルボン酸塩で表される化合物である。   Hereinafter, one embodiment of the present invention will be described. The base generator according to the first aspect of the present invention is a compound represented by a carboxylic acid salt composed of carboxylic acid and an alkali metal or alkaline earth metal M and represented by the following formula (X).

Figure 0005561693
(式(X)中、Ar基は芳香環であり、当該芳香環は置換基としてベンゾイル基、ニトロ基、アルコキシ基、アルキル基を含んでもよく、当該芳香環の置換基は環構造をとることができる。また、R’、R’’は、それぞれ水素原子、アルコキシ基、アルキル基、水酸基、またはアリール基、Mはアルカリ金属またはアルカリ土類金属、nは1または2の整数、を示す。)
Figure 0005561693
(In the formula (X), the Ar group is an aromatic ring, and the aromatic ring may include a benzoyl group, a nitro group, an alkoxy group, or an alkyl group as a substituent, and the substituent of the aromatic ring has a ring structure. R ′ and R ″ each represent a hydrogen atom, an alkoxy group, an alkyl group, a hydroxyl group, or an aryl group, M represents an alkali metal or an alkaline earth metal, and n represents an integer of 1 or 2. )

かかる第1発明の塩基発生剤は、カルボン酸との結合対象としてアルカリ金属あるいはアルカリ土類金属を使用しており、以下のスキーム1に示されるように、光の照射によって脱炭酸を引き起こし、空気中の水の作用により強アルカリを発生する(MOH中のOHが強塩基として作用する塩基発生剤となる。)。 The base generator of the first invention uses an alkali metal or an alkaline earth metal as a binding target with the carboxylic acid, and causes decarboxylation by irradiation with light, as shown in the following scheme 1. generating a strong alkali by the action of water in the (M + OH - OH medium - is a base generator which acts as a strong base.).

(スキーム1)

Figure 0005561693
(Scheme 1)
Figure 0005561693

また、本発明の第2発明に係る塩基発生剤は、カルボン酸(ケトプロフェンを除く。)と、塩基類Qからなる、下記式(Y)で表されるカルボン酸塩で表される化合物である。   The base generator according to the second invention of the present invention is a compound represented by a carboxylic acid salt represented by the following formula (Y), which comprises a carboxylic acid (excluding ketoprofen) and a base Q. .

Figure 0005561693
(式(Y)中、Ar基は芳香環であり、当該芳香環は置換基としてベンゾイル基、ニトロ基、アルコキシ基、アルキル基を含んでもよく、当該芳香環の置換基は環構造をとることができる。また、R’、R’’は、それぞれ水素原子、アルコキシ基、アルキル基、水酸基、またはアリール基、Qは下記式(II)で表されるイミダゾール類からなる塩基類、を示す。)
Figure 0005561693
(In the formula (Y), the Ar group is an aromatic ring, and the aromatic ring may include a benzoyl group, a nitro group, an alkoxy group, or an alkyl group as a substituent, and the substituent of the aromatic ring has a ring structure. R ′ and R ″ are each a hydrogen atom, an alkoxy group, an alkyl group, a hydroxyl group, or an aryl group, and Q is a base composed of an imidazole represented by the following formula (II). )

Figure 0005561693
(式(II)中、Rはそれぞれ、独立して水素原子、炭素数が1〜4のアルキル基(S等のヘテロ原子を含んでもよい。)、またはフェニル基、を示す。)
Figure 0005561693
(In formula (II), each R independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms (which may contain a heteroatom such as S), or a phenyl group.)

第2発明の塩基発生剤は、塩基類としてイミダゾール類を使用しており、光の照射によって脱炭酸し、その結果、遊離のイミダゾール類といった塩基を生成する。スキームで示すと以下のスキーム3のとおりである。   The base generator of the second invention uses imidazoles as bases, and is decarboxylated by irradiation with light, and as a result, bases such as free imidazoles are generated. The scheme is as shown in Scheme 3 below.

(スキーム3)

Figure 0005561693
(Scheme 3)
Figure 0005561693

また、本発明の第3発明に係る塩基発生剤は、カルボン酸と、塩基類Gからなる、下記式(Z)で表されるカルボン酸塩で表される化合物である。   The base generator according to the third aspect of the present invention is a compound represented by a carboxylic acid salt composed of a carboxylic acid and a base G and represented by the following formula (Z).

Figure 0005561693
(式(Z)中、Ar基は芳香環であり、当該芳香環は置換基としてベンゾイル基、ニトロ基、アルコキシ基、アルキル基を含んでもよく、当該芳香環の置換基は環構造をとることができる。また、R’、R’’は、それぞれ水素原子、アルコキシ基、アルキル基、水酸基、またはアリール基、Gは下記式(IV)で表されるグアニジン類、式(V)で表されるホスファゼン誘導体、のいずれかからなる塩基類、を示す。)
Figure 0005561693
(In the formula (Z), the Ar group is an aromatic ring, and the aromatic ring may include a benzoyl group, a nitro group, an alkoxy group, or an alkyl group as a substituent, and the substituent of the aromatic ring has a ring structure. R ′ and R ″ are each a hydrogen atom, an alkoxy group, an alkyl group, a hydroxyl group, or an aryl group, G is a guanidine represented by the following formula (IV), and a formula (V). A phosphazene derivative, a base consisting of any one of

Figure 0005561693
(式(IV)中、R〜Rはそれぞれ、独立して水素原子、アルキル基またはアリール基(アルキル基は環状構造でもよい。)を示す。)
Figure 0005561693
(In formula (IV), R 1 to R 5 each independently represents a hydrogen atom, an alkyl group or an aryl group (the alkyl group may be a cyclic structure).)

Figure 0005561693
(式(V)中、R〜Rはそれぞれ、独立して水素原子、アルキル基またはアリール基(アルキル基は環状構造でもよい。)を示す。)
Figure 0005561693
(In formula (V), R 1 to R 7 each independently represent a hydrogen atom, an alkyl group or an aryl group (the alkyl group may be a cyclic structure).)

第3発明の塩基発生剤は、塩基類としてグアニジン類やホスファゼン誘導体を使用しており、光の照射によって脱炭酸し、その結果、遊離のグアニジン類ないしはホスファゼン誘導体といった塩基を生成する。スキームで示すと以下のスキーム2’(グアニジン類)及びスキーム3’(ホスファゼン誘導体)のとおりである。   The base generator of the third invention uses guanidines or phosphazene derivatives as bases, and is decarboxylated by irradiation with light, and as a result, a base such as free guanidines or phosphazene derivatives is generated. The scheme is as shown in the following scheme 2 '(guanidines) and scheme 3' (phosphazene derivatives).

(スキーム2’)

Figure 0005561693
(Scheme 2 ')
Figure 0005561693

(スキーム3’)

Figure 0005561693
(Scheme 3 ')
Figure 0005561693

式(X)、(Y)、または式(Z)で表される本発明の塩基発生剤において、カルボン酸を構成するArは芳香環であり、アリール基、ナフチル基であることが好ましい。また、これらの芳香環は置換基としてベンゾイル基、ニトロ基、アルコキシ基、アルキル基を含むことができる。アルコキシ基及びアルキル基の炭素数は、1〜4とすることが好ましい。なお、かかる芳香環の置換基は環構造をとることができる。   In the base generator of the present invention represented by the formula (X), (Y), or the formula (Z), Ar constituting the carboxylic acid is an aromatic ring, preferably an aryl group or a naphthyl group. Moreover, these aromatic rings can contain a benzoyl group, a nitro group, an alkoxy group, and an alkyl group as a substituent. It is preferable that carbon number of an alkoxy group and an alkyl group shall be 1-4. In addition, the substituent of this aromatic ring can take a ring structure.

また、カルボン酸を構成するR’、R’’は、それぞれ水素原子、アルコキシ基、アルキル基、水酸基、アリール基等の置換基である。アルコキシ基及びアルキル基の炭素数は、1〜4とすることが好ましい。   Further, R ′ and R ″ constituting the carboxylic acid are each a substituent such as a hydrogen atom, an alkoxy group, an alkyl group, a hydroxyl group, or an aryl group. It is preferable that carbon number of an alkoxy group and an alkyl group shall be 1-4.

カルボン酸としては、下記式(VI)、式(VII)、式(VIII)で表される化合物(一般に、順に、キサントン酢酸類、チオキサントン酢酸類、ニトロフェニル酢酸と呼ばれる。)を使用するようにしてもよい。これらのカルボン酸は、量子収率(光脱炭酸効率)Φ=0.64程度(式(VI)。式(VII)もほぼ同様)、Φ=0.6程度(式(VIII))と高く、極めて高効率で光化学的に遊離の塩基を発生させることができる。   As the carboxylic acid, compounds represented by the following formula (VI), formula (VII), and formula (VIII) (generally called xanthone acetic acid, thioxanthone acetic acid, and nitrophenyl acetic acid in this order) are used. May be. These carboxylic acids have a high quantum yield (photodecarboxylation efficiency) of about Φ = 0.64 (formula (VI), almost the same as formula (VII)) and about Φ = 0.6 (formula (VIII)). The photochemically free base can be generated with extremely high efficiency.

Figure 0005561693
Figure 0005561693

Figure 0005561693
Figure 0005561693

Figure 0005561693
Figure 0005561693

なお、式(VI)及び式(VII)中、R、R、RはCHCOOH、CH(CH)COOHまたはHを示し、かかるCHCOOHまたはCH(CH)COOHはR、R、Rのいずれか1つの基に付され、残りの2つの基にはHが付される。また、式(VIII)中、R、R、RはCHCOOHまたはHを示し、かかるCHCOOHはR、R、Rのいずれか1つの基に付され、残りの2つの基にはHが付される。 In the formulas (VI) and (VII), R 1 , R 2 and R 3 represent CH 2 COOH, CH (CH 3 ) COOH or H, and the CH 2 COOH or CH (CH 3 ) COOH represents R 1 , R 2 , or R 3 is attached to any one group, and the remaining two groups are attached to H. In the formula (VIII), R 1 , R 2 and R 3 represent CH 2 COOH or H, and the CH 2 COOH is attached to any one group of R 1 , R 2 and R 3 , and the rest H is attached to the two groups.

また、本発明の第1発明または第3発明の塩基発生剤において、対象となるカルボン酸の例としては、例えば、下記式(III)で表されるケトプロフェン(2−(1−カルボキシエチル)ベンゾフェノンともよばれる。)を使用することができる。光脱炭酸を引き起こすカルボン酸の中でケトプロフェンの量子収率が最も高く(Φ=0.75程度)、カルボン酸としてケトプロフェンを使用することにより、極めて高効率な塩基発生剤として機能する。   In the base generator of the first invention or the third invention of the present invention, examples of the target carboxylic acid include, for example, ketoprofen (2- (1-carboxyethyl) benzophenone represented by the following formula (III) Also called). Among the carboxylic acids that cause photodecarboxylation, the quantum yield of ketoprofen is the highest (approximately Φ = 0.75), and by using ketoprofen as the carboxylic acid, it functions as an extremely efficient base generator.

Figure 0005561693
Figure 0005561693

式(X)で表される第1発明の塩基発生剤を製造するには、所望のカルボン酸と、塩基類の陽イオンを構成するアルカリ金属あるいはアルカリ土類金属Mを含む化合物(塩基類を含むメトキシド、エトキシド、tert−ブトキシド等の化合物)を混合することにより簡便に製造することができる。   In order to produce the base generator of the first invention represented by the formula (X), a compound containing a desired carboxylic acid and an alkali metal or alkaline earth metal M constituting a cation of a base (bases It can be easily produced by mixing methoxide, ethoxide, tert-butoxide and other compounds.

次に、式(X)に表される第1発明の塩基発生剤を構成するMとしては、アルカリ金属、アルカリ土類金属が挙げられる。アルカリ金属としては、例えば、ナトリウム(Na)やカリウム(K)、が挙げられる、また、アルカリ土類金属としては、例えば、カルシウム(Ca)やバリウム(Ba)、が挙げられる。   Next, as M which comprises the base generator of 1st invention represented by Formula (X), an alkali metal and an alkaline-earth metal are mentioned. Examples of the alkali metal include sodium (Na) and potassium (K). Examples of the alkaline earth metal include calcium (Ca) and barium (Ba).

また、式(Y)で表される第2発明の塩基発生剤を構成する塩基類Qとしては、下記式(II)で表されるイミダゾール類が挙げられる。   In addition, examples of the bases Q constituting the base generator of the second invention represented by the formula (Y) include imidazoles represented by the following formula (II).

Figure 0005561693
(式(II)中、Rはそれぞれ、独立して水素原子、炭素数が1〜4のアルキル基(S等のヘテロ原子を含んでもよい。)、またはフェニル基、を示す。)
Figure 0005561693
(In formula (II), each R independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms (which may contain a heteroatom such as S), or a phenyl group.)

また、塩基類として使用することができる式(II)で表されるイミダゾール類としては、例えば、イミダゾール、下記(II−a)に示す1−メチルイミダゾール、下記(II−b)に示す2−メチルイミダゾール、2−フェニルイミダゾール、2−ベンジルイミダゾール、3A,4,5,6,7,7A−ヘキサヒドロ−1H−ベンズイミダゾール−2−イル メチルスルフィド、2−(4−ブロモフェニル)4,5−ジヒドロ−1H−イミダゾール、1−[3−(トリエトキシシリル)プロピル]−4,5−ジヒドロ−1H−イミダゾール、DL−イソアマリン等が挙げられる(なお、前記したイミダゾール類に存在する炭素数が1〜4のアルキル基には、S等のヘテロ原子を含んでもよい。)。   Examples of the imidazoles represented by the formula (II) that can be used as the bases include imidazole, 1-methylimidazole shown in the following (II-a), and 2- in the following (II-b). Methylimidazole, 2-phenylimidazole, 2-benzylimidazole, 3A, 4,5,6,7,7A-hexahydro-1H-benzimidazol-2-yl methylsulfide, 2- (4-bromophenyl) 4,5- Examples include dihydro-1H-imidazole, 1- [3- (triethoxysilyl) propyl] -4,5-dihydro-1H-imidazole, DL-isoamarin and the like. The alkyl group of ˜4 may contain a heteroatom such as S).

Figure 0005561693
Figure 0005561693

Figure 0005561693
Figure 0005561693

なお、式(Y)で表される第2発明の塩基発生剤にあっては、カルボン酸として式(III)に示したケトプロフェン(2−(1−カルボキシエチル)ベンゾフェノンともよばれる。)は使用しない。   In the base generator of the second invention represented by the formula (Y), ketoprofen (also referred to as 2- (1-carboxyethyl) benzophenone) represented by the formula (III) is not used as the carboxylic acid. .

式(Y)で表される第2発明の塩基発生剤を製造するには、所望のカルボン酸と、塩基類Qとなる、発生させたいイミダゾール類を混合することにより簡便に製造することができる。   In order to produce the base generator of the second invention represented by the formula (Y), it can be easily produced by mixing the desired carboxylic acid and the imidazoles to be generated, which are the bases Q. .

そして、式(Z)で表される第3発明の化合物ないし塩基発生剤を構成する塩基類Gとしては、下記式(IV)で表されるグアニジン類、下記式(V)で表されるホスファゼン誘導体が挙げられる。なお、式(IV)におけるR〜R、式(V)におけるR〜Rはそれぞれ、独立して水素原子、アルキル基またはアリール基(アルキル基は環状構造でもよい。)を示すが、アルキル基の炭素数は1〜4とすることが好ましい。 The bases G constituting the compound or base generator of the third invention represented by the formula (Z) include guanidines represented by the following formula (IV) and phosphazenes represented by the following formula (V). Derivatives. Note that R 1 to R 5 in formula (IV) and R 1 to R 7 in formula (V) each independently represent a hydrogen atom, an alkyl group, or an aryl group (the alkyl group may be a cyclic structure). The alkyl group preferably has 1 to 4 carbon atoms.

Figure 0005561693
(式(IV)中、R〜Rはそれぞれ、独立して水素原子、アルキル基またはアリール基(アルキル基は環状構造でもよい。)を示す。)
Figure 0005561693
(In formula (IV), R 1 to R 5 each independently represents a hydrogen atom, an alkyl group or an aryl group (the alkyl group may be a cyclic structure).)

Figure 0005561693
(式(V)中、R〜Rはそれぞれ、独立して水素原子、アルキル基またはアリール基(アルキル基は環状構造でもよい。)を示す。)
Figure 0005561693
(In formula (V), R 1 to R 7 each independently represent a hydrogen atom, an alkyl group or an aryl group (the alkyl group may be a cyclic structure).)

塩基類として使用することができる式(IV)で表されるグアニジン類としては、例えば、グアニジン構造を有する下記式(IV−a)に示すグアニジンや、下記式(IV−b)に示す1,1,3,3−テトラメチルグアニジン(TMG)、下記式(IV−c)に示す1,5,7−トリアザ−ビシクロ[4.4.0]デシ−5−エン(1,5,7−triaza−bicyclo[4.4.0]dec−5−ene:TBD)、式(IV−d)に示すMTBD、式(IV−e)に示すETBD、式(IV−f)に示すITBD、式(IV−g)または(IV−h)等に示す化合物が挙げられる(式(IV−a)〜式(IV−h)については、プロトン付加体を示す。)。   Examples of the guanidine represented by the formula (IV) that can be used as the base include, for example, guanidine represented by the following formula (IV-a) having a guanidine structure, and 1, represented by the following formula (IV-b). 1,3,3-tetramethylguanidine (TMG), 1,5,7-triaza-bicyclo [4.4.0] dec-5-ene (1,5,7-) represented by the following formula (IV-c) triaza-bicyclo [4.4.0] dec-5-ene: TBD), MTBD represented by formula (IV-d), ETBD represented by formula (IV-e), ITBD represented by formula (IV-f), formula Examples include compounds represented by (IV-g) or (IV-h) (the formulas (IV-a) to (IV-h) represent proton adducts).

Figure 0005561693
Figure 0005561693

また、塩基類として使用することができる式(V)で表されるホスファゼン誘導体としては、下記式(V−a)、式(V−b)、式(V−c)、式(V−d)または式(V−e)等に示す化合物が挙げられる(式(V−a)〜式(V−e)については、プロトン付加体を示す。)。   Examples of the phosphazene derivative represented by the formula (V) that can be used as bases include the following formula (Va), formula (Vb), formula (Vc), and formula (Vd). ) Or a compound represented by the formula (Ve) or the like (the formula (Va) to the formula (Ve) represent a proton adduct).

Figure 0005561693
Figure 0005561693

式(Z)で表される第3発明の塩基発生剤を製造するには、所望のカルボン酸と、塩基類Gとなる、発生させたいグアニジン類あるいはホスファゼン誘導体を混合することにより簡便に製造することができる。   In order to produce the base generator of the third invention represented by the formula (Z), it is simply produced by mixing the desired carboxylic acid and the guanidine or phosphazene derivative to be generated, which becomes the base G. be able to.

本発明の塩基発生剤は、前記した式(X)、式(Y)または式(Z)で表される化合物(カルボン酸塩)であるが、当該化合物を構成するカルボン酸の結合対象として、所定のアルカリ金属、アルカリ土類金属や、イミダゾール類、グアニジン類やホスファゼン誘導体を用いているので、酸解離定数(pKa)が式(X)の塩基発生剤であれば概ね13以上(水溶媒中)、式(Y)の塩基発生剤であれば12〜13程度、式(Z)の塩基発生剤であれば13.5を超えて(いずれも水溶媒中)(従来は3級アミンでも10程度)非常に塩基性が高く、重合時の反応効率が高い、優れた塩基発生剤として作用する。例えば、エポキシ系化合物等に適用した場合には、後記するスキーム5等に示すように、塩基が水からプロトンを奪って、水酸化物イオンを発生し、これがエポキシ化合物の連鎖的な重合反応を開始することになるが、水酸化物イオンの発生量は塩基の強度に依存するため、塩基強度が高いほど重合反応効率も高くなる。さらに、例えば、後記するNo.2−1〜No.2−7の塩基反応性化合物は電子吸引性基のα位のプロトンが引き抜かれβ脱離を引き起こし、極性変換が起こる高分子化合物であるが、この時のプロトン引き抜き効率も塩基強度に依存するため、塩基強度が大きいほど脱離反応は起こりやすく、本発明の塩基発生剤を含有した感光性樹脂組成物が、感度の高い感光性樹脂として機能することが期待できる。   The base generator of the present invention is a compound (carboxylate) represented by the above formula (X), formula (Y) or formula (Z), but as a binding target of the carboxylic acid constituting the compound, Since a predetermined alkali metal, alkaline earth metal, imidazole, guanidine or phosphazene derivative is used, if the acid dissociation constant (pKa) is a base generator of the formula (X), it is approximately 13 or more (in an aqueous solvent). ), About 12 to 13 in the case of the base generator of the formula (Y), and more than 13.5 in the case of the base generator of the formula (Z) (both in an aqueous solvent). Degree) It is very basic and acts as an excellent base generator with high reaction efficiency during polymerization. For example, when applied to an epoxy compound or the like, as shown in Scheme 5 and the like to be described later, the base deprives protons from water to generate hydroxide ions, which cause a chain polymerization reaction of the epoxy compound. Although the amount of hydroxide ions generated depends on the base strength, the higher the base strength, the higher the polymerization reaction efficiency. Furthermore, for example, No. described later. 2-1. The 2-7 base-reactive compound is a high molecular compound in which the α-position proton of the electron-withdrawing group is withdrawn to cause β-elimination and polarity conversion occurs. The proton extraction efficiency at this time also depends on the base strength. Therefore, the elimination reaction is more likely to occur as the base strength increases, and the photosensitive resin composition containing the base generator of the present invention can be expected to function as a highly sensitive photosensitive resin.

また、一般に、アミン、アミジン類の塩基性はpKa(共役酸のpKa、アセトニトリル(CHCN溶媒中)は10(アミン)〜24(アミジン類)であり、この程度の塩基性ではラクトン類や環状シロキサンのアニオン開環重合は起こりにくい一方、式(Z)で表される第3発明に係る塩基発生剤を構成するグアニジン類やホスファゼン誘導体では、pKaが26〜27程度(アセトニトリル(CHCN)溶媒中)となりアニオン開環重合が起こるため、これを用いるとモノマーが連鎖反応でポリマーに変化するので、かかる第3発明に係る塩基発生剤は、ラクトン類等に最適な塩基発生剤となり、ラクトン類等に適用して感光性樹脂組成物とした場合には、光硬化材料(UV接着、UVインク、UV粘着、UVコーティングなど)に適用することができる。 In general, the basicity of amines and amidines is pKa (pKa of conjugate acid, acetonitrile (in CH 3 CN solvent) is 10 (amine) to 24 (amidines). While anionic ring-opening polymerization of cyclic siloxane hardly occurs, guanidines and phosphazene derivatives constituting the base generator according to the third invention represented by the formula (Z) have a pKa of about 26 to 27 (acetonitrile (CH 3 CN ) In a solvent) and anion ring-opening polymerization occurs, and when this is used, the monomer is converted into a polymer by a chain reaction. Therefore, the base generator according to the third invention is an optimal base generator for lactones and the like. When applied to lactones, etc. to make photosensitive resin compositions, photo-curing materials (UV adhesion, UV ink, UV adhesive, UV coating, etc.) Can be applied to.

なお、本発明に係る感光性樹脂組成物における照射光の波長及び露光量の範囲としては、塩基発生剤の種類や量、及び感光性樹脂組成物を構成するエポキシ系樹脂やチオール化合物の種類等に応じて適宜決定すればよいが、例えば、波長として190〜400nm、露光量として100〜10000mJ/cmの範囲内から選択して適用すればよく、後記する増感剤を用いることによりさらに高波長域を使用することも可能である。また、例えば、カルボン酸としてケトプロフェン、キサントン酢酸類、ニトロフェニル酢酸を使用した場合にあっては、ケトプロフェン、ニトロフェニル酢酸では254nm付近、キサントン酢酸類、チオキサントン酢酸類では254nm付近または365nm付近とすればよい。照射光の照射時間は、概ね10秒以上とすればよく、1.5〜20分とすることが好ましい。 In addition, as the range of the wavelength of the irradiation light and the exposure amount in the photosensitive resin composition according to the present invention, the type and amount of the base generator, the types of epoxy resins and thiol compounds constituting the photosensitive resin composition, etc. However, the wavelength may be selected from the range of 190 to 400 nm and the exposure amount may be selected from the range of 100 to 10000 mJ / cm 2 , and it can be further increased by using a sensitizer described later. It is also possible to use a wavelength range. For example, when ketoprofen, xanthone acetic acid, and nitrophenyl acetic acid are used as the carboxylic acid, the ketoprofen and nitrophenyl acetic acid may be around 254 nm, and the xanthone acetic acid and thioxanthone acetic acid may be around 254 nm or around 365 nm. Good. The irradiation time of the irradiation light may be approximately 10 seconds or longer, and is preferably 1.5 to 20 minutes.

以下、本発明の塩基発生剤の一例を、塩基類としてアルカリ金属(ナトリウム(Na)、カリウム(K))及びアルカリ土類金属(カルシウム(Ca)、バリウム(Ba))を挙げて、No1−1’〜No6−4’に示す。なお、塩基類として2価のアルカリ土類金属を用いた場合にあっては、式(X)は下記式(X’)のようになる(式(X’)におけるAr、R’、R’’については、前記した式(X)と同様である。)。   Hereinafter, examples of the base generator of the present invention include alkali metals (sodium (Na), potassium (K)) and alkaline earth metals (calcium (Ca), barium (Ba)) as bases. Shown in 1 ′ to No 6-4 ′. When a divalent alkaline earth metal is used as the base, the formula (X) is represented by the following formula (X ′) (Ar, R ′, R ′ in the formula (X ′)) 'Is the same as the above-described formula (X).)

Figure 0005561693
Figure 0005561693

Figure 0005561693
Figure 0005561693

Figure 0005561693
Figure 0005561693

Figure 0005561693
Figure 0005561693

Figure 0005561693
Figure 0005561693

Figure 0005561693
Figure 0005561693

Figure 0005561693
Figure 0005561693

次に、本発明の感光性樹脂組成物を説明する。本発明の感光性樹脂組成物は、光によって脱炭酸して、遊離の塩基を発生する本発明の塩基発生剤と、塩基反応性化合物を必須成分として含有する。本発明の感光性樹脂組成物を構成する塩基反応性化合物は、塩基発生剤及び必要により含有する塩基増殖剤により発生した塩基の作用により反応して、架橋等により硬化する化合物であり、例えば、下記No.2−1〜No.5−5の化合物等を使用することができ、特に、例えば、少なくとも1つのエポキシ基を有するエポキシ系化合物、少なくとも1つのアルコキシシリル基やシラノール基等を有しているケイ素系化合物等が挙げられる。かかる塩基反応性化合物は、1種類を単独で用いるようにしてもよく、また、2種類以上を組み合わせて使用するようにしてもよい。また、本発明の塩基発生剤も、1種類を単独で用いるようにしてもよく、また、2種類以上を組み合わせて使用するようにしてもよい。   Next, the photosensitive resin composition of the present invention will be described. The photosensitive resin composition of this invention contains the base generator of this invention which decarboxylates with light and generate | occur | produces a free base, and a base reactive compound as an essential component. The base-reactive compound that constitutes the photosensitive resin composition of the present invention is a compound that reacts by the action of a base generated by a base generator and, if necessary, a base proliferating agent, and cures by crosslinking or the like. The following No. 2-1. 5-5 compounds and the like can be used. Particularly, for example, epoxy compounds having at least one epoxy group, silicon compounds having at least one alkoxysilyl group, silanol group, and the like can be mentioned. . Such base-reactive compounds may be used alone or in combination of two or more. Moreover, the base generator of this invention may be used individually by 1 type, and may be used in combination of 2 or more types.

以下、本発明の塩基発生剤を適用した場合のエポキシ系化合物との反応挙動を説明する。なお、下記のスキームにあっては、塩基として便宜的にアミンを用いて説明するものとし、また、R及びR’は、例えば炭素数が1〜12のアルキル基を示すが、特にそれらには限定されない。   Hereinafter, the reaction behavior with the epoxy compound when the base generator of the present invention is applied will be described. In the following scheme, an amine is used for convenience as the base, and R and R ′ represent, for example, an alkyl group having 1 to 12 carbon atoms. It is not limited.

まず、1級や2級のアミン系では、下記に示したスキーム4のように、例えば、塩基発生剤による1級アミンがエポキシ基に付加すると、中間体1となるが、Hとして脱離可能な水素が窒素原子上に2つあるため、このうち1つのHを失って2へと変化する。一方、変化した2は2級アミンの構造をしているので、もう一度、別のエポキシ系化合物と反応することが可能となり3を生成することになるが、生成した3は3級アミンの構造をしているが、立体的にエポキシ系化合物と反応することはできない。また、反応は逐次的な付加反応として進行するため、エポキシ系化合物が十分に硬化しない場合が多い。 First, in the primary or secondary amine system, as shown in Scheme 4 below, for example, when a primary amine by a base generator is added to an epoxy group, it becomes an intermediate 1, but is eliminated as H +. Since there are two possible hydrogens on the nitrogen atom, one of them loses H + and changes to 2. On the other hand, since the changed 2 has the structure of a secondary amine, it can react with another epoxy compound once again to produce 3, but the produced 3 has the structure of a tertiary amine. However, it cannot react with the epoxy compound sterically. In addition, since the reaction proceeds as a sequential addition reaction, the epoxy compound is often not sufficiently cured.

(スキーム4)

Figure 0005561693
(Scheme 4)
Figure 0005561693

一方、第1発明の塩基発生剤のように、塩基類としてアルカリ(アルカリ金属、アルカリ土類金属)を用いると、下記に示したスキーム5のようにエポキシの開環反応は連鎖的に進むので、エポキシ系化合物との反応効率が格段に高くなる。   On the other hand, when an alkali (alkali metal, alkaline earth metal) is used as a base as in the base generator of the first invention, the ring-opening reaction of epoxy proceeds in a chain manner as shown in Scheme 5 below. The reaction efficiency with the epoxy compound is remarkably increased.

(スキーム5)

Figure 0005561693
(Scheme 5)
Figure 0005561693

また、3級アミン系や第2発明の塩基発生剤のようなイミダゾール類、第3発明の塩基発生剤のようなグアニジン類、ホスファゼン誘導体にあっては、3級アミンやイミダゾール類、グアニジン類、ホスファゼン誘導体等の塩基が直接付加する場合と、塩基と水からOHが生成し、これがエポキシと反応する場合の2種類が考えられる。塩基が直接付加する場合は、下記に示したスキーム6のように、まず化合物4が生成するが、この場合、窒素原子上には水素が存在しないので、酸素原子上の電荷は消失せず、次のエポキシ系化合物と反応し5を生成することになる。このようにしてエポキシ系化合物との反応は連鎖的に進行するので、1級,2級アミン系のような付加反応機能に比べてエポキシ系化合物との反応効率が格段に高い。 Further, in imidazoles such as tertiary amines and base generators of the second invention, guanidines such as base generators of the third invention, and phosphazene derivatives, tertiary amines, imidazoles, guanidines, There are two possible cases: a case where a base such as a phosphazene derivative is directly added, and a case where OH is generated from a base and water and this reacts with an epoxy. When the base is directly added, compound 4 is first formed as shown in Scheme 6 below. In this case, since no hydrogen exists on the nitrogen atom, the charge on the oxygen atom does not disappear, It reacts with the following epoxy compound to produce 5. Thus, since the reaction with the epoxy compound proceeds in a chain manner, the reaction efficiency with the epoxy compound is remarkably higher than the addition reaction function such as the primary and secondary amine systems.

(スキーム6)

Figure 0005561693
(Scheme 6)
Figure 0005561693

一方、塩基と水からOHが生成し、これがエポキシと反応する場合は、下記に示したスキーム7のように、生成したOHから6が生成するが、この場合も、酸素原子上の電荷は消失せず、次のエポキシ系化合物と反応し7を生成することになる。従って、前記したスキームと同様にエポキシ系化合物との反応は連鎖的に進行し、エポキシ系化合物との反応効率が格段に高くなる。 On the other hand, when OH is generated from a base and water and reacts with epoxy, 6 is generated from the generated OH as shown in Scheme 7 shown below. Does not disappear and reacts with the next epoxy compound to produce 7. Accordingly, the reaction with the epoxy compound proceeds in a chain as in the above-described scheme, and the reaction efficiency with the epoxy compound is remarkably increased.

(スキーム7)

Figure 0005561693
(Scheme 7)
Figure 0005561693

以下、塩基反応性化合物の具体例を挙げる。なお、下記No.2−1〜No.2−7の高分子化号物(塩基反応性化合物)のうち、No.2−1〜No.2−5の高分子化合物は、塩基の作用により脱離及び脱炭酸の反応を生じる。一方、No.2−6及びNo.2−7の塩基反応性化合物は、塩基の作用により脱離反応を引き起こしカルボン酸を生じることになる。   Hereinafter, specific examples of the base-reactive compound will be given. In addition, the following No. 2-1. Among the 2-7 polymerized compounds (base-reactive compounds), No. 2-1. The polymer compound 2-5 undergoes elimination and decarboxylation by the action of a base. On the other hand, no. 2-6 and no. The 2-7 base-reactive compound causes a elimination reaction by the action of a base to produce a carboxylic acid.

Figure 0005561693
Figure 0005561693

なお、前記した塩基反応性化合物No.2−1〜No.2−7は、いずれも塩基の作用で脱離反応を起こし、極性が変換されるポリマー群であり、分解前後で溶解性が変化することを利用してパターニングを行う材料(レジスト材料)等として適用することができる。分解機構例のスキームを下記スキーム8及びスキーム9に示す。   The above-mentioned base reactive compound No. 2-1. 2-7 is a polymer group that undergoes elimination reaction due to the action of a base and whose polarity is changed, and as a material (resist material) that performs patterning by utilizing the change in solubility before and after decomposition. Can be applied. Schemes of examples of decomposition mechanisms are shown in Scheme 8 and Scheme 9 below.

(スキーム8)

Figure 0005561693
(Scheme 8)
Figure 0005561693

(スキーム9)

Figure 0005561693
(Scheme 9)
Figure 0005561693

また、塩基反応性化合物の他の例を挙げる。なお、下記No.3−1〜No.3−4の塩基反応性化合物のうち、No.3−1の物質(混合物)は塩基の作用により脱水縮合及び架橋の反応を生じる。No.3−2の物質(混合物)は塩基の作用により脱水縮合及び架橋の反応を生じる。No.3−3の物質(ポリマー)は塩基の作用により脱炭酸の反応を生じる。No.3−4の物質は塩基の作用によりイミド形成の反応を生じる。なお、No.3−1及びNo.3−2において、xは0を超えて1以下の数を示す。   Other examples of base-reactive compounds are also given. In addition, among the base reactive compounds No. 3-1 to No. 3-4 below, the substance (mixture) No. 3-1 undergoes dehydration condensation and crosslinking reactions by the action of the base. No. The substance (mixture) 3-2 causes dehydration condensation and crosslinking reaction by the action of the base. No. 3-3 substance (polymer) causes a decarboxylation reaction by the action of a base. The No. 3-4 substance causes an imide formation reaction by the action of a base. In addition, No. 3-1. In 3-2, x represents a number exceeding 0 and 1 or less.

Figure 0005561693
Figure 0005561693

本発明の感光性樹脂組成物を構成する塩基反応性化合物は、少なくとも1つのエポキシ基を有するエポキシ系化合物を使用することができる。また、少なくとも2つのエポキシ基を有するエポキシ系化合物に塩基を作用させることによって、エポキシ系化合物をエポキシ基の開環重合によりポリマーとすることができる。また、エポキシ系化合物に塩基を付加することにより、かかるエポキシ系化合物を化学変性することができる。重合反応性を示すエポキシ系化合物の一例を以下に示す。   As the base-reactive compound constituting the photosensitive resin composition of the present invention, an epoxy compound having at least one epoxy group can be used. Moreover, an epoxy compound can be made into a polymer by ring-opening polymerization of an epoxy group by allowing a base to act on an epoxy compound having at least two epoxy groups. Moreover, such an epoxy compound can be chemically modified by adding a base to the epoxy compound. An example of an epoxy compound showing polymerization reactivity is shown below.

Figure 0005561693
Figure 0005561693

また、重合反応性を示すエポキシ系化合物(ポリマー)のその他の例を以下に示す。   Other examples of the epoxy compound (polymer) exhibiting polymerization reactivity are shown below.

Figure 0005561693
Figure 0005561693

また、塩基反応性化合物としては、少なくとも1つのシラノール基またはアルコキシシリル基を有するケイ素系化合物を使用することができる。また、少なくとも2つのシラノール基またはアルコキシシリル基を有するケイ素系化合物に塩基を作用させることによって、かかるケイ素系化合物をシラノール基またはアルコキシシリル基の縮重合によりポリマーとすることができる。重合反応性を示すケイ素系化合物(No.5−2〜No.5−4はポリマー)の具体例を以下に示す。   In addition, as the base-reactive compound, a silicon compound having at least one silanol group or alkoxysilyl group can be used. Further, by causing a base to act on a silicon compound having at least two silanol groups or alkoxysilyl groups, such a silicon compound can be made into a polymer by condensation polymerization of silanol groups or alkoxysilyl groups. Specific examples of silicon compounds showing polymerization reactivity (No. 5-2 to No. 5-4 are polymers) are shown below.

Figure 0005561693
Figure 0005561693

なお、前記したように、式(Z)で表される第3発明の塩基発生剤を構成するグアニジン類やホスファゼン誘導体は、pKaが26〜27程度(アセトニトリル(CHCN)溶媒中)となりアニオン開環重合が起こるため、これを用いるとモノマーが連鎖反応でポリマーに変化するので、かかる塩基発生剤と、塩基反応性化合物としてラクトン類や環状
シロキサンを用いた感光性樹脂組成物は、光硬化材料(UV接着、UVインク、UV粘着、UVコーティングなど)に好適となる。式(Z)で表される第3発明の塩基発生剤に適用可能な、塩基反応性化合物として、式(IV)で表されるグアニジン類、式(V)で表されるホスファゼン誘導体によりアニオン重合可能なラクトン及び環状シロキサンの構造の
具体例を以下に示す(No.6−1〜No.6−4)。
As described above, the guanidines and phosphazene derivatives constituting the base generator of the third invention represented by the formula (Z) have an pKa of about 26 to 27 (in acetonitrile (CH 3 CN) solvent) and anions. Since ring-opening polymerization occurs, the monomer is converted into a polymer by a chain reaction. Therefore, a photosensitive resin composition using such a base generator and a lactone or cyclic siloxane as a base-reactive compound is photocured. Suitable for materials (UV adhesion, UV ink, UV adhesion, UV coating, etc.). Anionic polymerization with a guanidine represented by formula (IV) and a phosphazene derivative represented by formula (V) as a base-reactive compound applicable to the base generator of the third invention represented by formula (Z) Specific examples of possible lactone and cyclic siloxane structures are shown below (No. 6-1 to No. 6-4).

Figure 0005561693
Figure 0005561693

本発明の感光性樹脂組成物における塩基発生剤の含有量は、塩基反応性化合物100質量部に対して0.1〜60質量部とすることが好ましい。塩基発生剤の含有量が0.1質量部より少ないと、塩基反応性化合物を迅速に反応させることができなくなる場合がある一方、塩基発生剤の含有量が60質量部を超えると、塩基発生剤の存在が塩基反応性化合物の溶媒に対する溶解性に悪影響を与える場合があり、また、過剰量の塩基発生剤の存在はコスト高に繋がることになる。塩基発生剤の含有量は、塩基反応性化合物100質量部に対して1〜60質量部とすることがなお好ましく、2〜30質量部とすることがさらに好ましく、2〜20質量部とすることがより好ましく、2〜15質量部とすることが特に好ましい。なお、塩基発生剤として式(Z)で表される第3発明に係る塩基発生剤を用いてラクトン類を重合する場合には、エタノール、プロパノール、ブタノール等のアルコールを少量共存させることが好ましく、モノマー(塩基反応性化合物)100質量部に対して塩基発生剤を0.1〜0.5質量部として、アルコールを0.5〜2.0質量部とすることが好ましい。   It is preferable that content of the base generator in the photosensitive resin composition of this invention shall be 0.1-60 mass parts with respect to 100 mass parts of base reactive compounds. When the content of the base generator is less than 0.1 parts by mass, the base-reactive compound may not be allowed to react rapidly. On the other hand, when the content of the base generator exceeds 60 parts by mass, the base is generated. The presence of the agent may adversely affect the solubility of the base-reactive compound in the solvent, and the presence of an excessive amount of the base generator leads to high costs. The content of the base generator is preferably 1 to 60 parts by mass, more preferably 2 to 30 parts by mass, and more preferably 2 to 20 parts by mass with respect to 100 parts by mass of the base-reactive compound. Is more preferable, and 2 to 15 parts by mass is particularly preferable. In the case of polymerizing lactones using the base generator according to the third invention represented by the formula (Z) as a base generator, it is preferable to coexist a small amount of alcohol such as ethanol, propanol, butanol, The base generator is preferably 0.1 to 0.5 parts by mass and the alcohol is preferably 0.5 to 2.0 parts by mass with respect to 100 parts by mass of the monomer (base-reactive compound).

本発明の感光性樹脂組成物は、塩基反応性化合物として、前記したNo.4−1〜No.4−12等の重合反応性を示すエポキシ系化合物(重合性エポキシ系化合物)、あるいは前記したNo.5−1〜No.5−5等の重合反応性を示すケイ素系化合物(重合性ケイ素系化合物)とすることが好ましい。このような感光性樹脂組成物は、光または熱の作用により、重合し、重合体を与えることとなる。中でも、光により重合反応を開始する塩基反応性化合物を含む感光性樹脂組成物とすることが好ましい。   The photosensitive resin composition of the present invention has the above-described No. 1 as a base-reactive compound. 4-1. No. 4-12 and other epoxy compounds exhibiting polymerization reactivity (polymerizable epoxy compounds) 5-1 to No. It is preferable to use a silicon compound (polymerizable silicon compound) exhibiting polymerization reactivity such as 5-5. Such a photosensitive resin composition is polymerized by the action of light or heat to give a polymer. Especially, it is preferable to set it as the photosensitive resin composition containing the base reactive compound which starts a polymerization reaction with light.

このような感光性樹脂組成物を用いてパターンを形成するには、例えば、当該樹脂組成物を有機溶媒に溶解して塗布液を調製し、調製された塗布液を基板等の適当な固体表面に塗布し、乾燥して塗膜を形成するようにする。そして、形成された塗膜に対して、パターン露光を行って塩基を発生させた後、所定の条件で加熱処理を行って、感光性樹脂組成物に含有される塩基反応性化合物の重合反応を促すようにする。   In order to form a pattern using such a photosensitive resin composition, for example, the resin composition is dissolved in an organic solvent to prepare a coating solution, and the prepared coating solution is applied to an appropriate solid surface such as a substrate. And then dried to form a coating film. And after performing pattern exposure with respect to the formed coating film and generating a base, it heat-processes on predetermined conditions, The polymerization reaction of the base reactive compound contained in the photosensitive resin composition is carried out. To encourage.

本発明の感光性樹脂組成物は、本発明の塩基発生剤を含有するため、室温でも重合反応は進行するが、重合反応を効率よく進行させるべく、加熱処理を施すことが好ましい。加熱処理の条件は、露光エネルギー、使用する塩基発生剤から発生する塩基の種類、エポキシ系化合物またはケイ素系化合物等の塩基反応性化合物の種類によって適宜決定すればよいが、加熱温度は50℃〜150℃範囲内とすることが好ましく、60℃〜130℃の範囲内とすることが特に好ましい。また、加熱時間は10秒〜60分とすることが好ましく、60秒〜30分とすることが特に好ましい。これを露光部と未露光部とで溶解度に差を生じる溶媒中に浸漬して現像を行ってパターンを得ることができる。   Since the photosensitive resin composition of the present invention contains the base generator of the present invention, the polymerization reaction proceeds even at room temperature, but it is preferable to perform a heat treatment in order to allow the polymerization reaction to proceed efficiently. The conditions for the heat treatment may be appropriately determined depending on the exposure energy, the type of base generated from the base generator used, and the type of base-reactive compound such as an epoxy compound or silicon compound. It is preferable to be within the range of 150 ° C, and it is particularly preferable to be within the range of 60 ° C to 130 ° C. The heating time is preferably 10 seconds to 60 minutes, particularly preferably 60 seconds to 30 minutes. The pattern can be obtained by immersing this in a solvent that causes a difference in solubility between the exposed part and the unexposed part and developing.

本発明の感光性樹脂組成物には、必要により、塩基の作用で増殖的に塩基を発生する塩基増殖剤を含有させることが好ましい。本発明の感光性樹脂組成物に塩基増殖剤を含有させることにより、当該樹脂組成物の感度をさらに向上させることができる。特に、光が樹脂膜深部に到達しない場合(感光層が厚い場合や多量の染料や顔料を含む場合等。)には、表面層で光化学的に発生した塩基の作用、及び塩基増殖剤による塩基増殖反応が開始されることにより、熱化学的に、かつ連鎖的に塩基が生成するので、膜深部の塩基触媒反応を起こすことが期待できる。使用できる塩基増殖剤としては、特に制限はないが、例えば、特開2000−330270号公報、特開2002−128750号公報や、K.Arimitsu、M.Miyamoto and K.Ichimura,Angew.Chem.Int.Ed.,39,3425(2000)、等に開示される塩基増殖剤が挙げられる。塩基増殖剤の添加量は、使用する塩基発生剤や塩基反応性化合物等により適宜決定すればよいが、感光性樹脂組成物全体に対して1〜40質量%の範囲であることが好ましく、5〜20質量%の範囲内であることが特に好ましい。   If necessary, the photosensitive resin composition of the present invention preferably contains a base proliferating agent that generates a base proliferatively by the action of a base. By including a base proliferating agent in the photosensitive resin composition of the present invention, the sensitivity of the resin composition can be further improved. In particular, when the light does not reach the deep part of the resin film (when the photosensitive layer is thick or contains a large amount of dye or pigment, etc.), the action of the photochemically generated base in the surface layer and the base by the base proliferating agent When the growth reaction is started, bases are generated thermochemically and in a chain manner, so that a base-catalyzed reaction in the deep part of the membrane can be expected. The base proliferating agent that can be used is not particularly limited, and examples thereof include JP-A No. 2000-330270 and JP-A No. 2002-128750. Arimitsu, M.M. Miyamoto and K.M. Ichimura, Angew. Chem. Int. Ed. , 39, 3425 (2000), and the like. The addition amount of the base proliferating agent may be appropriately determined depending on the base generator or base-reactive compound used, but is preferably in the range of 1 to 40% by mass with respect to the entire photosensitive resin composition. It is particularly preferable that the content be in the range of ˜20% by mass.

本発明の感光性樹脂組成物は、感光波長領域を拡大し、感度を高めるべく、増感剤を添加することができる。使用できる増感剤としては、特に限定はないが、例えば、ベンゾフェノン、p,p’−テトラメチルジアミノベンゾフェノン、p,p’−テトラエチルアミノベンゾフェノン、2−クロロチオキサントン、アントロン、9−エトキシアントラセン、アントラセン、ピレン、ペリレン、フェノチアジン、ベンジル、アクリジンオレンジ、ベンゾフラビン、セトフラビン−T、9,10−ジフェニルアントラセン、9−フルオレノン、アセトフェノン、フェナントレン、2−ニトロフルオレン、5−ニトロアセナフテン、ベンゾキノン、2−クロロ−4−ニトロアニリン、N−アセチル−p−ニトロアニリン、p−ニトロアニリン、N−アセチル−4−ニトロ−1−ナフチルアミン、ピクラミド、アントラキノン、2−エチルアントラキノン、2−tert−ブチルアントラキノン、1,2−ベンズアントラキノン、3−メチル−1,3−ジアザ−1,9−ベンズアンスロン、ジベンザルアセトン、1,2−ナフトキノン、3,3’−カルボニル−ビス(5,7−ジメトキシカルボニルクマリン)またはコロネン等が挙げられる。これらの増感剤は、1種類を単独で用いるようにしてもよく、また、2種類以上を組み合わせて使用するようにしてもよい。   In the photosensitive resin composition of the present invention, a sensitizer can be added in order to expand the photosensitive wavelength region and increase the sensitivity. The sensitizer that can be used is not particularly limited. For example, benzophenone, p, p′-tetramethyldiaminobenzophenone, p, p′-tetraethylaminobenzophenone, 2-chlorothioxanthone, anthrone, 9-ethoxyanthracene, anthracene. , Pyrene, perylene, phenothiazine, benzyl, acridine orange, benzoflavin, cetoflavin-T, 9,10-diphenylanthracene, 9-fluorenone, acetophenone, phenanthrene, 2-nitrofluorene, 5-nitroacenaphthene, benzoquinone, 2-chloro -4-nitroaniline, N-acetyl-p-nitroaniline, p-nitroaniline, N-acetyl-4-nitro-1-naphthylamine, picramide, anthraquinone, 2-ethylanthraquinone, 2 tert-butylanthraquinone, 1,2-benzanthraquinone, 3-methyl-1,3-diaza-1,9-benzanthrone, dibenzalacetone, 1,2-naphthoquinone, 3,3′-carbonyl-bis (5 , 7-dimethoxycarbonylcoumarin) or coronene. These sensitizers may be used alone or in combination of two or more.

本発明の感光性樹脂組成物において、増感剤の添加量は、使用する塩基発生剤や塩基反応性化合物、及び必要とされる感度等により適宜決定すればよいが、感光性樹脂組成物全体に対して1〜30質量%の範囲であることが好ましい。増感剤が1質量%より少ないと、感度が十分に高められないことがある一方、増感剤が30質量%を超えると、感度を高めるのに過剰となることがある。増感剤の添加量は、感光性樹脂組成物全体に対して5〜20質量%の範囲であることが特に好ましい。   In the photosensitive resin composition of the present invention, the addition amount of the sensitizer may be appropriately determined depending on the base generator or base-reactive compound used, the required sensitivity, etc., but the entire photosensitive resin composition It is preferable that it is the range of 1-30 mass% with respect to. If the sensitizer is less than 1% by mass, the sensitivity may not be sufficiently increased. On the other hand, if the sensitizer exceeds 30% by mass, the sensitivity may be excessive. The addition amount of the sensitizer is particularly preferably in the range of 5 to 20% by mass with respect to the entire photosensitive resin composition.

本発明の感光性樹脂組成物を所定の基材に塗布等する場合にあっては、必要により、溶媒を適宜含有するようにしてもよい。感光性樹脂組成物に溶媒を含有させることにより、塗布能力を高めることができ、作業性が良好となる。溶媒としては、特に限定はないが、例えば、ベンゼン、キシレン、トルエン、エチルベンゼン、スチレン、トリメチルベンゼン、ジエチルベンゼン等の芳香族炭化水素化合物;シクロヘキサン、シクロヘキセン、ジペンテン、n−ペンタン、イソペンタン、n−ヘキサン、イソヘキサン、n−ヘプタン、イソヘプタン、n−オクタン、イソオクタン、n−ノナン、イソノナン、n−デカン、イソデカン、テトラヒドロナフタレン、スクワラン等の飽和または不飽和炭化水素化合物;ジエチルエーテル、ジ−n−プロピルエーテル、ジ−イソプロピルエーテル、ジブチルエーテル、エチルプロピルエーテル、ジフェニルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールメチルエチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールジブチルエーテル、ジプロピレングリコールメチルエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールメチルエチルエーテル、テトラヒドロフラン、1,4−ジオキサン、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチルシクロヘキサン、メチルシクロヘキサン、p−メンタン、o−メンタン、m−メンタン;ジプロピルエーテル、ジブチルエーテル等のエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、ジプロピルケトン、メチルアミルケトン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン等のケトン類;酢酸エチル、酢酸メチル、酢酸ブチル、酢酸プロピル、酢酸シクロヘキシル、酢酸メチルセロソルブ、酢酸エチルセロソルブ、酢酸ブチルセロソルブ、乳酸エチル、乳酸プロピル、乳酸ブチル、乳酸イソアミル、ステアリン酸ブチル等のエステル類等が挙げられる。これらの溶媒は、1種類を単独で用いるようにしてもよく、また、2種類以上を組み合わせて使用するようにしてもよい。   When the photosensitive resin composition of the present invention is applied to a predetermined substrate, a solvent may be appropriately contained as necessary. By including a solvent in the photosensitive resin composition, the coating ability can be increased, and workability is improved. The solvent is not particularly limited. For example, aromatic hydrocarbon compounds such as benzene, xylene, toluene, ethylbenzene, styrene, trimethylbenzene, and diethylbenzene; cyclohexane, cyclohexene, dipentene, n-pentane, isopentane, n-hexane, Saturated or unsaturated hydrocarbon compounds such as isohexane, n-heptane, isoheptane, n-octane, isooctane, n-nonane, isononane, n-decane, isodecane, tetrahydronaphthalene, squalane; diethyl ether, di-n-propyl ether, Di-isopropyl ether, dibutyl ether, ethyl propyl ether, diphenyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibuty Ether, diethylene glycol methyl ethyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol dibutyl ether, dipropylene glycol methyl ethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol methyl ethyl Ether, tetrahydrofuran, 1,4-dioxane, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, dipropylene glycol methyl ether acetate, diethylene glycol monoethyl ether acetate, ethylcyclohexane, methylcyclohexane, p-menthane, o- Ethers such as dipropyl ether and dibutyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, dipropyl ketone, methyl amyl ketone, cyclopentanone, cyclohexanone and cycloheptanone; Examples thereof include esters such as ethyl acetate, methyl acetate, butyl acetate, propyl acetate, cyclohexyl acetate, methyl cellosolve, ethyl acetate cellosolve, butyl cellosolve, ethyl lactate, propyl lactate, butyl lactate, isoamyl lactate, and butyl stearate. One of these solvents may be used alone, or two or more of these solvents may be used in combination.

本発明の感光性樹脂組成物において、溶媒の含有量は、例えば、所定の基材上に感光性樹脂組成物を塗布し、感光性樹脂組成物による層を形成する際に、均一に塗工されるように適宜選択すればよい。   In the photosensitive resin composition of the present invention, the content of the solvent is, for example, uniformly applied when a photosensitive resin composition is applied on a predetermined substrate to form a layer of the photosensitive resin composition. The selection may be made as appropriate.

なお、本発明の感光性樹脂組成物には、本発明の目的及び効果を妨げない範囲において、添加剤を適宜添加するようにしてもよい。使用することができる添加剤としては、例えば、充填剤、顔料、染料、レベリング剤、消泡剤、帯電防止剤、紫外線吸収剤、pH調整剤、分散剤、分散助剤、表面改質剤、可塑剤、可塑促進剤、タレ防止剤、硬化促進剤等が挙げられ、これらの1種類を単独で用いるようにしてもよく、2種類以上を組み合わせて使用するようにしてもよい。   In addition, you may make it add an additive suitably to the photosensitive resin composition of this invention in the range which does not inhibit the objective and effect of this invention. Examples of additives that can be used include fillers, pigments, dyes, leveling agents, antifoaming agents, antistatic agents, ultraviolet absorbers, pH adjusters, dispersants, dispersion aids, surface modifiers, Examples thereof include a plasticizer, a plastic accelerator, an anti-sagging agent, and a curing accelerator. One of these may be used alone, or two or more may be used in combination.

以上説明した本発明の感光性樹脂組成物は、本発明の塩基発生剤と塩基反応性化合物を含有することにより、塩基発生剤から発生する塩基とエポキシ系化合物等との反応が連鎖的に進行し、硬化速度及び反応効率に優れたものとなり、室温レベルでも硬化が速やかに実施され、硬化が十分になされる感光性樹脂組成物となる。かかる効果を奏する本発明の感光性樹脂組成物は、例えば、高感度の光硬化材料やレジスト材料(パターン形成材料)等に好適に用いることができる。   The photosensitive resin composition of the present invention described above contains the base generator of the present invention and a base-reactive compound, so that the reaction between the base generated from the base generator and the epoxy compound proceeds in a chained manner. Thus, the photosensitive resin composition is excellent in curing speed and reaction efficiency, cured rapidly even at room temperature level, and sufficiently cured. The photosensitive resin composition of the present invention exhibiting such effects can be suitably used for, for example, a highly sensitive photocuring material, resist material (pattern forming material), and the like.

光硬化材料として適用された成形体は、耐熱性、寸法安定性、絶縁性等の特性が有効とされる分野の部材等として、例えば、塗料または印刷インキ、カラーフィルター、フレキシブルディスプレー用フィルム、半導体装置、電子部品、層間絶縁膜、配線被覆膜、光回路、光回路部品、反射防止膜、ホログラム、光学部材または建築材料の構成部材として広く用いられ、印刷物、カラーフィルター、フレキシブルディスプレー用フィルム、半導体装置、電子部品、層間絶縁膜、配線被覆膜、光回路、光回路部品、反射防止膜、ホログラム、光学部材または建築部材等が提供される。また、形成されたパターン等は、耐熱性や絶縁性を備え、例えば、カラーフィルター、フレキシブルディスプレー用フィルム、電子部品、半導体装置、層間絶縁膜、配線被覆膜、光回路、光回路部品、反射防止膜、その他の光学部材または電子部材として有利に使用することができる。   The molded body applied as a photo-curing material can be used as a member in a field where characteristics such as heat resistance, dimensional stability, and insulation are effective, for example, paint or printing ink, color filter, film for flexible display, semiconductor, etc. Widely used as equipment, electronic parts, interlayer insulation films, wiring coating films, optical circuits, optical circuit parts, antireflection films, holograms, optical members or building materials, printed materials, color filters, films for flexible displays, A semiconductor device, an electronic component, an interlayer insulating film, a wiring coating film, an optical circuit, an optical circuit component, an antireflection film, a hologram, an optical member, a building member, or the like is provided. In addition, the formed pattern has heat resistance and insulation, for example, color filters, flexible display films, electronic components, semiconductor devices, interlayer insulating films, wiring coating films, optical circuits, optical circuit components, reflective It can be advantageously used as a protective film, other optical member or electronic member.

なお、以上説明した態様は、本発明の一態様を示したものであって、本発明は、前記した実施形態に限定されるものではなく、本発明の構成を備え、目的及び効果を達成できる範囲内での変形や改良が、本発明の内容に含まれるものであることはいうまでもない。また、本発明を実施する際における具体的な構造及び形状等は、本発明の目的及び効果を達成できる範囲内において、他の構造や形状等としても問題はない。本発明は前記した各実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形や改良は、本発明に含まれるものである。   The aspect described above shows one aspect of the present invention, and the present invention is not limited to the above-described embodiment, and has the configuration of the present invention and can achieve the objects and effects. It goes without saying that modifications and improvements within the scope are included in the content of the present invention. Further, the specific structure, shape, and the like in carrying out the present invention are not problematic as other structures, shapes, and the like as long as the objects and effects of the present invention can be achieved. The present invention is not limited to the above-described embodiments, and modifications and improvements within the scope that can achieve the object of the present invention are included in the present invention.

例えば、前記した実施形態では、本発明の塩基発生剤として、式(Y)で表されるカルボン酸に1つのイミダゾール類を付加した化合物を例として挙げたが、これには限定されず、本発明の塩基発生剤は、イミダゾール類に2つのカルボン酸が付加したものも含まれる。一例として、2−メチルイミダゾールに式(Y)のカルボン酸を2つ付加した化合物を下記式(Y’)として示した。   For example, in the above-described embodiment, the base generator of the present invention is exemplified by a compound in which one imidazole is added to the carboxylic acid represented by the formula (Y). However, the present invention is not limited to this. The base generator of the invention includes those obtained by adding two carboxylic acids to imidazoles. As an example, a compound obtained by adding two carboxylic acids of the formula (Y) to 2-methylimidazole is shown as the following formula (Y ′).

Figure 0005561693
Figure 0005561693

前記した実施形態では、本発明の塩基発生剤の例として、No.1−1’〜No.6−4’の化合物(カルボン酸塩)を挙げたが、これらはあくまでも例示であり、式(X)、式(Y)あるいは式(Z)を具備するカルボン酸と塩基類の組合せであれば、特に制限はない。また、No.1−1’〜No.6−4’では、本発明の塩基発生剤を構成することになる金属M(陽イオン)としてアルカリ金属及びアルカリ土類金属の陽イオンを用いた例を示したが、No.1−1’〜No.6−4’に開示されるカルボン酸(No.1−1’〜No.1−4’に示すケトプロフェンを除く。)に式(II)で表されるイミダゾール類を組み合わせて、あるいはNo.1−1’〜No.6−4’に開示されるカルボン酸に式(IV)で表されるグアニジン類、または式(V)で表されるホスファゼン誘導体を組み合わせて本発明の塩基発生剤としてもよい。   In the above-described embodiment, as an example of the base generator of the present invention, No. 1-1'-No. 6-6 ′ compounds (carboxylates) were mentioned, but these are merely examples, and any combination of carboxylic acid and base having formula (X), formula (Y) or formula (Z) may be used. There is no particular limitation. No. 1-1'-No. 6-4 'shows an example in which alkali metal and alkaline earth metal cations are used as the metal M (cation) constituting the base generator of the present invention. 1-1'-No. In combination with a carboxylic acid disclosed in 6-4 '(excluding ketoprofen shown in No. 1-1' to No. 1-4 ') in combination with an imidazole represented by the formula (II), or 1-1'-No. A guanidine represented by the formula (IV) or a phosphazene derivative represented by the formula (V) may be combined with the carboxylic acid disclosed in 6-4 'as the base generator of the present invention.

前記した実施形態では、本発明の感光性樹脂組成物を構成する塩基反応性化合物の例として、No.2−1〜No.5−5の化合物を挙げたが、使用することができる塩基反応性化合物はこれらには限定されず、塩基の作用により反応して、架橋等により硬化する任意の化合物を使用することができる。
その他、本発明の実施の際の具体的な構造及び形状等は、本発明の目的を達成できる範囲で他の構造等としてもよい。
In above-mentioned embodiment, as an example of the base reactive compound which comprises the photosensitive resin composition of this invention, No. 2-1. Although the compound of 5-5 was mentioned, the base reactive compound which can be used is not limited to these, Arbitrary compounds which react by the effect | action of a base and harden | cure by bridge | crosslinking etc. can be used.
In addition, the specific structure, shape, and the like in the implementation of the present invention may be other structures as long as the object of the present invention can be achieved.

以下、実施例に基づき本発明をさらに詳細に説明するが、本発明は、かかる実施例に何ら限定されるものではない。なお、下記実施例のうち、実施例1ないし実施例8、実施例23、実施例24の記載は、参考例1ないし参考例8、参考例23、参考例24を示す。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to this Example at all. In addition, among the following examples, description of Example 1 thru | or Example 8, Example 23, and Example 24 shows Reference Example 1 thru | or Reference Example 8, Reference Example 23, and Reference Example 24.

[実施例1]
塩基発生剤の製造(1):
式(III)に示したケトプロフェン5.0g(20mmol)をメタノール15mLに溶解した溶液に、ナトリウムエトキシド(CONa)1.4g(20mmol)をメタノール25mLに溶解した溶液を滴下し、室温で1時間反応させた。反応終了後、溶媒留去し、良溶媒にクロロホルム、貧溶媒にジエチルエーテルを用いて再沈殿を2回行うことにより、式(No.1−1’)で表される本発明の塩基発生剤の白色固体を収率38%で得た。
[Example 1]
Production of base generator (1):
To a solution obtained by dissolving 5.0 g (20 mmol) of ketoprofen represented by the formula (III) in 15 mL of methanol, a solution obtained by dissolving 1.4 g (20 mmol) of sodium ethoxide (C 2 H 5 ONa) in 25 mL of methanol was dropped. The reaction was allowed to proceed for 1 hour at room temperature. After completion of the reaction, the solvent was distilled off, and reprecipitation was performed twice using chloroform as a good solvent and diethyl ether as a poor solvent, whereby the base generator of the present invention represented by the formula (No. 1-1 ′) was obtained. Was obtained in 38% yield.

H−NMR(300MHz,CDCl):δ(ppm)1.25(3H,d,J=7.2Hz,CH)、3.4(1H,d,J=7.2Hz,CH)、7.08−7.66(9H,m,ArH)
分解点(℃):156℃(DSC)
1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) 1.25 (3H, d, J = 7.2 Hz, CH 3 ), 3.4 (1H, d, J = 7.2 Hz, CH), 7.08-7.66 (9H, m, ArH)
Decomposition point (° C): 156 ° C (DSC)

光照射によるアルカリ発生能の確認(1):
実施例1で得られた塩基発生剤の適量を水とともにpH試験紙(Whatman indicator paper pH 1〜11)に数滴垂らした後(試験紙の色である黄色:pHが5〜6)、その上部より波長が254nmの光を照射したところ深緑色に変色し、pHが約11となった。以上より、実施例1で得られた塩基発生剤が光の照射によりアルカリが発生し、塩基として機能することが確認できた。
Confirmation of alkali generation ability by light irradiation (1):
After dropping a suitable amount of the base generator obtained in Example 1 onto a pH test paper (Whatman indicator paper pH 1-11) together with water (yellow, which is the color of the test paper: pH is 5 to 6), When light having a wavelength of 254 nm was irradiated from above, the color changed to dark green, and the pH was about 11. From the above, it was confirmed that the base generator obtained in Example 1 generated alkali upon irradiation with light and functioned as a base.

光分解挙動の確認:
実施例1で得られた塩基発生剤について、溶媒としてメタノールを用いて、下記の測定法を用いて光分解挙動の確認を行った。
Confirmation of photolysis behavior:
For the base generator obtained in Example 1, methanol was used as a solvent, and the photodegradation behavior was confirmed using the following measurement method.

(測定方法)
実施例1の塩基発生剤のメタノール溶液(3×10−5mol/L)に波長が254nmまたは313nmの光を照射し、紫外可視分光光度計(MultiSpec−1500/(株)島津製作所製)を用いてUVスペクトルの経時変化を確認した。結果を図1(波長:254nm)及び図2(波長:313nm)に示す。
(Measuring method)
A methanol solution (3 × 10 −5 mol / L) of the base generator of Example 1 was irradiated with light having a wavelength of 254 nm or 313 nm, and an ultraviolet-visible spectrophotometer (MultiSpec-1500 / manufactured by Shimadzu Corporation) was used. The change of the UV spectrum with time was confirmed. The results are shown in FIG. 1 (wavelength: 254 nm) and FIG. 2 (wavelength: 313 nm).

図1及び図2に示すように、実施例1で得られた本発明の塩基発生剤は、光照射の露光量に伴って237nm付近の吸収強度が増大していく様子が見られ、光分解挙動を確認することができた。   As shown in FIGS. 1 and 2, the base generator of the present invention obtained in Example 1 shows that the absorption intensity near 237 nm increases with the exposure dose of light irradiation, and photodecomposition is observed. The behavior could be confirmed.

[実施例2]
感光性樹脂組成物の製造(1):
式(No.4−12)に表されるエポキシ系化合物であるポリグリシジルメタクリレート(PGMA,M=10000)0.1g(100質量部)に対して、実施例1で得られた塩基発生剤を0.0078g(8質量部)(PGMAのモノマーユニットに対して4.0mol%)含有させることにより本発明の感光性樹脂組成物を得た。
[Example 2]
Production of photosensitive resin composition (1):
The base generator obtained in Example 1 with respect to 0.1 g (100 parts by mass) of polyglycidyl methacrylate (PGMA, M W = 10000) which is an epoxy compound represented by the formula (No. 4-12) Was contained in an amount of 0.0078 g (8 parts by mass) (4.0 mol% with respect to the monomer unit of PGMA) to obtain a photosensitive resin composition of the present invention.

[試験例1]
光不溶化挙動の確認(1)(温度依存性):
実施例2で得られた感光性樹脂組成物を1.0gのテトラヒドロフラン(THF)に溶解させた。この試料溶液を3000rpmで30秒間シリコンウェハ上にスピンコートし、ホットプレート上にて80℃で1分間プリベイクすることにより、厚さ1.3μmの膜を作製した。この膜に254nmの単色光を照射し、ポストベイクの温度を120℃として5分間実施し、クロロホルムで30秒間現像し、残っている膜の厚さを測定した。そして、同様な操作を、ポストベイクの温度を140℃、及び160℃に変化させて実施し、それぞれについて露光量と残膜率との関係(感度曲線)を作成した。得られた感度曲線を図3に示す。
[Test Example 1]
Confirmation of photoinsolubilization behavior (1) (temperature dependence):
The photosensitive resin composition obtained in Example 2 was dissolved in 1.0 g of tetrahydrofuran (THF). This sample solution was spin-coated on a silicon wafer at 3000 rpm for 30 seconds, and prebaked on a hot plate at 80 ° C. for 1 minute to produce a film having a thickness of 1.3 μm. This film was irradiated with monochromatic light of 254 nm, postbaked at 120 ° C. for 5 minutes, developed with chloroform for 30 seconds, and the thickness of the remaining film was measured. Then, the same operation was carried out by changing the post-baking temperature to 140 ° C. and 160 ° C., and the relationship (sensitivity curve) between the exposure amount and the remaining film ratio was created for each. The obtained sensitivity curve is shown in FIG.

本発明の感光性樹脂組成物は、光照射するにつれて、エポキシ化合物(PGMA)の架橋反応が進行し、クロロホルムに不溶化する。図3は、露光量と残膜率との関係の温度依存性を示した図である。図3に示すように、ポリグリシジルメタクリレート(PGMA)の不溶化効率は加熱温度が高いほど高効率で起こることが確認できた。   As the photosensitive resin composition of the present invention is irradiated with light, the crosslinking reaction of the epoxy compound (PGMA) proceeds and becomes insoluble in chloroform. FIG. 3 is a graph showing the temperature dependence of the relationship between the exposure dose and the remaining film ratio. As shown in FIG. 3, it was confirmed that the insolubilization efficiency of polyglycidyl methacrylate (PGMA) occurred with higher efficiency as the heating temperature was higher.

[試験例2]
光不溶化挙動の確認(2)(時間依存性):
実施例2で得られた感光性樹脂組成物を1.0gのテトラヒドロフラン(THF)に溶解させた。この試料溶液を3000rpmで30秒間シリコンウェハ上にスピンコートし、ホットプレート上にて80℃で1分間プリベイクすることにより、厚さ1.3μmの膜を作製した。この膜に254nmの単色光を照射し、ポストベイクの温度を140℃として5分間実施し、クロロホルムで30秒間現像し、残っている膜の厚さを測定した。そして、同様な操作を、ポストベイクの時間を10分間、及び20分間に変化させて実施し、それぞれについて露光量と残膜率との関係(感度曲線)を作成した。得られた感度曲線を図4に示す。
[Test Example 2]
Confirmation of photoinsolubilization behavior (2) (time dependence):
The photosensitive resin composition obtained in Example 2 was dissolved in 1.0 g of tetrahydrofuran (THF). This sample solution was spin-coated on a silicon wafer at 3000 rpm for 30 seconds, and prebaked on a hot plate at 80 ° C. for 1 minute to produce a film having a thickness of 1.3 μm. This film was irradiated with monochromatic light of 254 nm, postbaked at 140 ° C. for 5 minutes, developed with chloroform for 30 seconds, and the thickness of the remaining film was measured. Then, the same operation was performed with the post-baking time changed to 10 minutes and 20 minutes, and the relationship (sensitivity curve) between the exposure amount and the remaining film ratio was created for each. The obtained sensitivity curve is shown in FIG.

図4は、露光量と残膜率との関係の加熱時間依存性を示した図である。図4に示すように、加熱時間を長くするにつれてポリグリシジルメタクリレート(PGMA)の不溶化効率が向上することが確認できた。   FIG. 4 is a diagram showing the heating time dependency of the relationship between the exposure amount and the remaining film ratio. As shown in FIG. 4, it was confirmed that the insolubilization efficiency of polyglycidyl methacrylate (PGMA) was improved as the heating time was increased.

[実施例3]
感光性樹脂組成物の製造(2):
実施例2において、実施例1で得られた塩基発生剤を0.0037g(4質量部)(PGMAのモノマーユニットに対して2.0mol%)含有させることとした以外は、実施例2と同様な方法を用いて、本発明の感光性樹脂組成物を得た。
[Example 3]
Production of photosensitive resin composition (2):
Example 2 is the same as Example 2 except that 0.0037 g (4 parts by mass) (2.0 mol% with respect to the monomer unit of PGMA) of the base generator obtained in Example 1 is contained. The photosensitive resin composition of the present invention was obtained using various methods.

[実施例4]
感光性樹脂組成物の製造(3):
実施例2において、実施例1で得られた塩基発生剤を0.012g(12質量部)(PGMAのモノマーユニットに対して6.0mol%)含有させることとした以外は、実施例2と同様な方法を用いて、本発明の感光性樹脂組成物を得た。
[Example 4]
Production of photosensitive resin composition (3):
Example 2 is the same as Example 2 except that the base generator obtained in Example 1 is contained in an amount of 0.012 g (12 parts by mass) (6.0 mol% with respect to the monomer unit of PGMA). The photosensitive resin composition of the present invention was obtained using various methods.

[試験例3]
光不溶化挙動の確認(3)(濃度依存性):
実施例2で得られた感光性樹脂組成物を1.0gのテトラヒドロフラン(THF)に溶解させた。この試料溶液を3000rpmで30秒間シリコンウェハ上にスピンコートし、ホットプレート上にて80℃で1分間プリベイクすることにより、厚さ1.3μmの膜を作製した。この膜に254nmの単色光を照射し、ポストベイクの温度を120℃として5分間実施し、クロロホルムで30秒間現像し、残っている膜の厚さを測定した。そして、同様な操作を、実施例3及び実施例4で得られた感光性樹脂組成物に対して実施し、それぞれについて露光量と残膜率との関係(感度曲線)を作成した。得られた感度曲線を図5に示す。
[Test Example 3]
Confirmation of photoinsolubilization behavior (3) (concentration dependence):
The photosensitive resin composition obtained in Example 2 was dissolved in 1.0 g of tetrahydrofuran (THF). This sample solution was spin-coated on a silicon wafer at 3000 rpm for 30 seconds, and prebaked on a hot plate at 80 ° C. for 1 minute to produce a film having a thickness of 1.3 μm. This film was irradiated with monochromatic light of 254 nm, postbaked at 120 ° C. for 5 minutes, developed with chloroform for 30 seconds, and the thickness of the remaining film was measured. And the same operation was implemented with respect to the photosensitive resin composition obtained in Example 3 and Example 4, and the relationship (sensitivity curve) of the exposure amount and the remaining film rate was created about each. The obtained sensitivity curve is shown in FIG.

図5は、露光量と残膜率との関係の濃度依存性を示した図である。図5に示すように、本発明の塩基発生剤の濃度を増加させる(添加量を増加させる)につれてポリグリシジルメタクリレート(PGMA)の不溶化効率が向上することが確認できた。   FIG. 5 is a graph showing the concentration dependency of the relationship between the exposure amount and the remaining film ratio. As shown in FIG. 5, it was confirmed that the insolubilization efficiency of polyglycidyl methacrylate (PGMA) was improved as the concentration of the base generator of the present invention was increased (added amount was increased).

[試験例4]
光照射による塩基発生能の確認(2):
テトラエトキシシラン(Tetraethylorthosilicate:TEOS)0.50g、実施例1で得られた塩基発生剤0.066g、及び水0.086gをエタノール0.22gに溶解して試料溶液として、バイアル管に移した。この試料溶液にHg−Xeランプの紫外光を照射し、TEOSのゾルゲル反応の進行に伴い生成するSiOの量を測定した。露光時間とSiOの生成量との関係を図6に示す。
[Test Example 4]
Confirmation of base generation ability by light irradiation (2):
Tetraethoxysilane (TEOS) 0.50 g, the base generator 0.066 g obtained in Example 1 and water 0.086 g were dissolved in ethanol 0.22 g and transferred to a vial tube as a sample solution. This sample solution was irradiated with ultraviolet light from a Hg—Xe lamp, and the amount of SiO 2 produced as the TEOS sol-gel reaction progressed was measured. FIG. 6 shows the relationship between the exposure time and the amount of SiO 2 produced.

図6に示すように、試料溶液に紫外光を照射すると、露光時間に応じて生成するSiOの量が増大していることがわかる。これは、光照射により試料溶液中で本発明の塩基発生剤からアルカリが発生し、テトラエトキシシラン(TEOS)のゾルゲル反応が進行したことを示すものである。以上より、本発明の塩基発生剤が、露光時間に応じて塩基を発生していることが確認できた。 As shown in FIG. 6, it can be seen that when the sample solution is irradiated with ultraviolet light, the amount of SiO 2 produced increases with the exposure time. This indicates that alkali was generated from the base generator of the present invention in the sample solution by light irradiation, and the sol-gel reaction of tetraethoxysilane (TEOS) proceeded. From the above, it was confirmed that the base generator of the present invention generated a base according to the exposure time.

[実施例5]
塩基発生剤の製造(2):
式(III)に示したケトプロフェン2.0g(7.9mmol)のテトラヒドロフラン(THF)溶液に、式(IV−c)に示したTBD1.1g(7.9mmol)のテトラヒドロフラン(THF)溶液を滴下後、室温で1時間反応させた。反応終了後、溶媒留去し、エーテルを加えて攪拌後、デカンテーションを行い未反応のケトプロフェンとTBDを除去した。除去した後、減圧乾燥を行い、ケトプロフェンとTBDからなる本発明の塩基発生剤の無色粘性液体を収率58%で得た。
[Example 5]
Production of base generator (2):
After dropwise addition of a tetrahydrofuran (THF) solution of 1.1 g (7.9 mmol) of TBD shown in formula (IV-c) to a solution of ketoprofen 2.0 g (7.9 mmol) shown in formula (III) in tetrahydrofuran (THF). And allowed to react at room temperature for 1 hour. After completion of the reaction, the solvent was distilled off, ether was added and stirred, followed by decantation to remove unreacted ketoprofen and TBD. After the removal, drying under reduced pressure was performed to obtain a colorless viscous liquid of the base generator of the present invention consisting of ketoprofen and TBD in a yield of 58%.

H−NMR(300MHz,CDCl):δ(ppm)1.50(3H,d,J=6.9Hz,CHCH)1.88−1.96(H,m,CH),3.18−3.26(8H,m,CH),3.70(1H,q,J=6.9Hz,CHCH),7.30−7.85(9H,m,Ph−H),10.80(2H,br,NH) 1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) 1.50 (3H, d, J = 6.9 Hz, CHCH 3 ) 1.88-1.96 (H, m, CH 2 ), 3. 18-3.26 (8H, m, CH 2 ), 3.70 (1H, q, J = 6.9Hz, CHCH 3), 7.30-7.85 (9H, m, Ph-H), 10 .80 (2H, br, NH)

[実施例6]
感光性樹脂組成物の製造(4):
式(No.4−12)に表されるエポキシ化合物であるポリグリシジルメタクリレート(PGMA, Mw=10000)0.1g(100質量部)に対して、実施例5で得られた塩基発生剤を0.0014g(1.4質量部)(PGMAのモノマーユニットに対して0.5mol%)含有させることにより本発明の感光性樹脂組成物を得た。
[Example 6]
Production of photosensitive resin composition (4):
The base generator obtained in Example 5 was added to 0.1 g (100 parts by mass) of polyglycidyl methacrylate (PGMA, Mw = 10000), which is an epoxy compound represented by the formula (No. 4-12). .0014 g (1.4 parts by mass) (0.5 mol% with respect to the monomer unit of PGMA) was contained to obtain the photosensitive resin composition of the present invention.

[実施例7]
感光性樹脂組成物の製造(5):
実施例6において、実施例5で得られた塩基発生剤を0.0028g(2.8質量部)(PGMAのモノマーユニットに対して1.0mol%)含有させることとした以外は、実施例6と同様な方法を用いて、本発明の感光性樹脂組成物を得た。
[Example 7]
Production of photosensitive resin composition (5):
Example 6 is the same as Example 6 except that 0.0028 g (2.8 parts by mass) (1.0 mol% with respect to the monomer unit of PGMA) of the base generator obtained in Example 5 is contained. The photosensitive resin composition of this invention was obtained using the method similar to.

[実施例8]
感光性樹脂組成物の製造(6):
実施例6において、実施例5で得られた塩基発生剤を0.0055g(5.5質量部)(PGMAのモノマーユニットに対して2.0mol%)含有させることとした以外は、実施例6と同様な方法を用いて、本発明の感光性樹脂組成物を得た。
[Example 8]
Production of photosensitive resin composition (6):
Example 6 In Example 6, except that 0.0055 g (5.5 parts by mass) (2.0 mol% based on the monomer unit of PGMA) of the base generator obtained in Example 5 was contained. The photosensitive resin composition of this invention was obtained using the method similar to.

[試験例5]
光不溶化挙動の確認(濃度依存性)
実施例7で得られた感光性樹脂組成物を1.0gのクロロホルムに溶解させた。この試料溶液を3000rpmで30秒間シリコンウェハ上にスピンコートし、ホットプレート上にて80℃で30秒間プリベイクすることにより、厚さ1.0μmの膜を作製した。この膜に254nmの単色光を照射し、ポストベイクの温度を100℃として5分間実施し、クロロホルムで30秒間現像し、残っている膜の厚さを測定した。そして、同様な操作を実施例8で得られた感光性樹脂組成物に対して実施し、それぞれについて露光量と残膜率との関係(感度曲線)を作成した。得られた感度曲線を図7に示す。
[Test Example 5]
Confirmation of photoinsolubilization behavior (concentration dependence)
The photosensitive resin composition obtained in Example 7 was dissolved in 1.0 g of chloroform. This sample solution was spin-coated on a silicon wafer at 3000 rpm for 30 seconds, and prebaked on a hot plate at 80 ° C. for 30 seconds to produce a film having a thickness of 1.0 μm. This film was irradiated with monochromatic light of 254 nm, post-baked at a temperature of 100 ° C. for 5 minutes, developed with chloroform for 30 seconds, and the thickness of the remaining film was measured. And the same operation was implemented with respect to the photosensitive resin composition obtained in Example 8, and the relationship (sensitivity curve) of the exposure amount and the remaining film rate was created about each. The obtained sensitivity curve is shown in FIG.

図7は露光量と残膜率との関係の濃度依存性を示した図である。図7に示すように、本発明の塩基発生剤の濃度を増加させる(添加量を増加させる)につれてポリグリシジルメタクリレート(PGMA)の不溶化効率が向上することが確認できた。   FIG. 7 is a graph showing the concentration dependency of the relationship between the exposure amount and the remaining film ratio. As shown in FIG. 7, it was confirmed that the insolubilization efficiency of polyglycidyl methacrylate (PGMA) was improved as the concentration of the base generator of the present invention was increased (added amount was increased).

[実施例9]
塩基発生剤の製造(3)(2−キサントン酢酸+TBD):
式(1−5’)に示した2−キサントン酢酸0.50g(2.0mmol)のテトラヒドロフラン(THF)溶液に、式(IV−c)に示したTBD0.27g(2.0mmol)を滴下後、室温で1時間混合することで得られた白色固体を吸引ろ過し、テトラヒドロフラン(THF)で洗浄、減圧乾燥することで、カルボン酸塩である本発明の塩基発生剤の白色固体を0.33g(収率43%)得た。分解点は232.9℃(DSC)であった。
[Example 9]
Production of base generator (3) (2-xanthone acetic acid + TBD):
After dropwise addition of 0.27 g (2.0 mmol) of TBD shown in formula (IV-c) to a solution of 0.50 g (2.0 mmol) of 2-xanthone acetic acid shown in formula (1-5 ′) in tetrahydrofuran (THF) The white solid obtained by mixing at room temperature for 1 hour was subjected to suction filtration, washed with tetrahydrofuran (THF), and dried under reduced pressure to obtain 0.33 g of the white solid of the base generator of the present invention which is a carboxylate. (Yield 43%). The decomposition point was 232.9 ° C. (DSC).

H−NMR(300MHz,CDOD):d(ppm)1.93−1.98(4H,m,CH)、3.32−3.33(8H,m,CH)、3.64(2H,s,CH)、7.41−8.25(7H,m,Ar−H) 1 H-NMR (300 MHz, CD 3 OD): d (ppm) 1.93-1.98 (4H, m, CH), 3.32-3.33 (8H, m, CH), 3.64 ( 2H, s, CH 2), 7.41-8.25 (7H, m, Ar-H)

[試験例6]
光分解挙動の確認:
実施例9で得られた塩基発生剤について、溶媒としてメタノールを用いて、下記の測定法を用いて光分解挙動の確認を行った。その結果、実施例9で得られた塩基発生剤は、光照射の露光量に伴って237nm付近の吸収強度が増大していく様子が見られ、光分解挙動を確認することができた。
[Test Example 6]
Confirmation of photolysis behavior:
About the base generator obtained in Example 9, the photodegradation behavior was confirmed using the following measuring method, using methanol as a solvent. As a result, it was observed that the base generator obtained in Example 9 increased in absorption intensity near 237 nm with the exposure dose of light irradiation, and the photodegradation behavior could be confirmed.

(測定方法)
実施例9で得られた塩基発生剤のメタノール溶液(3.0×10−5mol/L)に波長が254nmまたは365nmの光を照射し、紫外可視分光光度計(MultiSpec−1500/(株)島津製作所製)を用いてUVスペクトルの経時変化を確認した。
(Measuring method)
The methanol solution (3.0 × 10 −5 mol / L) of the base generator obtained in Example 9 was irradiated with light having a wavelength of 254 nm or 365 nm, and an ultraviolet-visible spectrophotometer (MultiSpec-1500 / Co., Ltd.) The time course of the UV spectrum was confirmed using Shimadzu Corporation.

光照射による塩基発生能の確認:
実施例9で得られた塩基発生剤を9.0×10−3mol/Lに調製したメタノール溶液を石英セルに入れ、波長365nm光を所定量照射して光分解させた後、この溶液にあらかじめ5.0×10−5mol/Lに調整しておいたフェノールレッド溶液を1mL加えた場合におけるUVスペクトルを測定した。結果を図8に示す。
Confirmation of base generation ability by light irradiation:
A methanol solution prepared with 9.0 × 10 −3 mol / L of the base generator obtained in Example 9 was placed in a quartz cell, and a predetermined amount of light with a wavelength of 365 nm was irradiated to cause photolysis, and then the solution was added to the solution. The UV spectrum was measured when 1 mL of a phenol red solution previously adjusted to 5.0 × 10 −5 mol / L was added. The results are shown in FIG.

図8はUVスペクトル変化を示した図である。図8に示すように、実施例9で得られた塩基発生剤は、露光するにつれ、562nm付近の吸収が増大していることより、塩基発生剤に光照射することにより遊離の塩基が発生していることが確認できた。   FIG. 8 is a diagram showing changes in the UV spectrum. As shown in FIG. 8, as the base generator obtained in Example 9 was exposed to light, the absorption near 562 nm increased, so that free base was generated by irradiating the base generator with light. It was confirmed that

[実施例10]
感光性樹脂組成物の製造(7):
式(No.4−12)に表されるエポキシ化合物であるポリグリシジルメタクリレート(PGMA, Mw=15000)0.1g(100質量部)に対して、実施例9で得られた塩基発生剤を0.0055g(5.5質量部)(PGMAのモノマーユニットに対して2.0mol%)含有させることにより本発明の感光性樹脂組成物を得た。
[Example 10]
Production of photosensitive resin composition (7):
The base generator obtained in Example 9 was changed to 0 with respect to 0.1 g (100 parts by mass) of polyglycidyl methacrylate (PGMA, Mw = 15000) which is an epoxy compound represented by the formula (No. 4-12). .0055 g (5.5 parts by mass) (2.0 mol% with respect to the monomer unit of PGMA) was contained to obtain the photosensitive resin composition of the present invention.

[試験例7]
光不溶化挙動の確認(温度依存性):
実施例10で得られた感光性樹脂組成物を1.0gのクロロホルムに溶解させた。この試料溶液を3000rpm、30秒間シリコンウェハ上にスピンコートし、ホットプレート上にて60℃で30秒間プリベイクすることにより、厚さ1.2μmの膜を作製した。この膜に365nmの単色光を照射し、ポストベイクの温度を100℃として5分間実施し、クロロホルムで30秒間現像し、残っている膜の厚さを測定した。そして、露光量と残膜率との関係(感度曲線)を作成した。
[Test Example 7]
Confirmation of photoinsolubility behavior (temperature dependence):
The photosensitive resin composition obtained in Example 10 was dissolved in 1.0 g of chloroform. This sample solution was spin-coated on a silicon wafer at 3000 rpm for 30 seconds, and prebaked at 60 ° C. for 30 seconds on a hot plate to prepare a film having a thickness of 1.2 μm. The film was irradiated with monochromatic light of 365 nm, post-baked at a temperature of 100 ° C. for 5 minutes, developed with chloroform for 30 seconds, and the thickness of the remaining film was measured. Then, a relationship (sensitivity curve) between the exposure amount and the remaining film rate was created.

本発明の感光性樹脂組成物は、光照射するにつれて、エポキシ化合物(PGMA)の架橋反応が進行して硬化して、クロロホルムに不溶化する。図9は、露光量と残膜率との関係を示した図である。図9に示すように、ポリグリシジルメタクリレート(PGMA)の不溶化効率は加熱温度が100℃の状態でも効率よく起こることが確認できた。   As the photosensitive resin composition of the present invention is irradiated with light, the crosslinking reaction of the epoxy compound (PGMA) proceeds to cure and become insoluble in chloroform. FIG. 9 is a diagram showing the relationship between the exposure amount and the remaining film rate. As shown in FIG. 9, it was confirmed that the insolubilization efficiency of polyglycidyl methacrylate (PGMA) occurred efficiently even when the heating temperature was 100 ° C.

[実施例11]
塩基発生剤の製造(4)(2−キサントン酢酸+イミダゾール):
式(1−5’)に示した2−キサントン酢酸0.2g(0.79mmol)とイミダゾール0.054g(0.79mmol)をテトラヒドロフラン(THF)中で混合し、室温で30分間攪拌を行った。その後、溶媒を留去し、カルボン酸塩である本発明の塩基発生剤を0.22g(収率90%)得た。
[Example 11]
Production of base generator (4) (2-xanthone acetic acid + imidazole):
0.2 g (0.79 mmol) of 2-xanthone acetic acid represented by the formula (1-5 ′) and 0.054 g (0.79 mmol) of imidazole were mixed in tetrahydrofuran (THF) and stirred at room temperature for 30 minutes. . Thereafter, the solvent was distilled off to obtain 0.22 g (yield 90%) of the base generator of the present invention as a carboxylate.

H−NMR(300Mz,DMSO−d):d(ppm)1.36(s,1H,NH)、3.79(s,2H,CH)、7.03(s,2H,CH=CH),7.67(s,1H,N=CH)、7.91(m,7H,Ar−H) 1 H-NMR (300 Mz, DMSO-d 6 ): d (ppm) 1.36 (s, 1 H, NH), 3.79 (s, 2 H, CH 2 ), 7.03 (s, 2 H, CH = CH), 7.67 (s, 1H, N = CH), 7.91 (m, 7H, Ar-H)

[実施例12]
感光性樹脂組成物の製造(7):
式(No.4−12)に表されるエポキシ化合物であるポリグリシジルメタクリレート(PGMA, Mw=15000)0.1g(100質量部)に対して、実施例11で得られた塩基発生剤を0.012g(12質量部)(PGMAのモノマーユニットに対して5.0mol%)含有させることにより本発明の感光性樹脂組成物を得た。
[Example 12]
Production of photosensitive resin composition (7):
The base generator obtained in Example 11 was changed to 0 with respect to 0.1 g (100 parts by mass) of polyglycidyl methacrylate (PGMA, Mw = 15000) which is an epoxy compound represented by the formula (No. 4-12). The photosensitive resin composition of this invention was obtained by making it contain 0.012g (12 mass parts) (5.0 mol% with respect to the monomer unit of PGMA).

[試験例8]
光不溶化挙動の確認:
実施例12で得られた感光性樹脂組成物を1.5gのテトラヒドロフラン(THF)に溶解させた。この試料溶液を3000rpm、30秒間シリコンウェハ上にスピンコートし、ホットプレート上にて60℃で30秒間プリベイクすることにより、厚さ0.28μmの膜を作製した。この膜に365nmの単色光を照射し、ポストベイクの温度を120℃として5分間実施し、クロロホルムで30秒間現像し、残っている膜の厚さを測定し、露光量と残膜率との関係(感度曲線)を作成した。
[Test Example 8]
Confirmation of photoinsolubility behavior:
The photosensitive resin composition obtained in Example 12 was dissolved in 1.5 g of tetrahydrofuran (THF). This sample solution was spin-coated on a silicon wafer at 3000 rpm for 30 seconds, and prebaked at 60 ° C. for 30 seconds on a hot plate to produce a film having a thickness of 0.28 μm. This film was irradiated with monochromatic light of 365 nm, post-baked at 120 ° C. for 5 minutes, developed with chloroform for 30 seconds, the thickness of the remaining film was measured, and the relationship between the exposure amount and the remaining film ratio (Sensitivity curve) was created.

図10は露光量と残膜率との関係を示した図である。図10に示すように、露光量を増加させるにつれて硬化が進行し、ポリグリシジルメタクリレート(PGMA)の不溶化効率が向上することが確認できた。   FIG. 10 is a graph showing the relationship between the exposure amount and the remaining film rate. As shown in FIG. 10, it was confirmed that the curing progressed as the exposure amount was increased, and the insolubilization efficiency of polyglycidyl methacrylate (PGMA) was improved.

[実施例13]
塩基発生剤の製造(5)(2−キサントン酢酸+2−メチルイミダゾール):
式(1−5’)に示した2−キサントン酢酸0.2g(0.79mmol)と式(II−b)に示した2−メチルイミダゾール0.065g(0.79mmol)をテトラヒドロフラン(THF)中で混合し、室温で30分間攪拌を行った。その後、溶媒を留去し、カルボン酸塩である本発明の塩基発生剤を0.24g(収率90%)得た。
[Example 13]
Production of base generator (5) (2-xanthone acetic acid + 2-methylimidazole):
In tetrahydrofuran (THF), 0.2 g (0.79 mmol) of 2-xanthone acetic acid represented by the formula (1-5 ′) and 0.065 g (0.79 mmol) of 2-methylimidazole represented by the formula (II-b) were added. And stirred at room temperature for 30 minutes. Thereafter, the solvent was distilled off to obtain 0.24 g (yield 90%) of the base generator of the present invention as a carboxylate.

H−NMR(300Mz,DMSO−d):d(ppm)1.77(br,0.1H,NH)、3.77(br,0.1H,NH)、2.28(s,3H,CH)、3.88(s,2H,CH)、6.89(s,2H,CH=CH),7.90(m,7H,Ar−H) 1 H-NMR (300 Mz, DMSO-d 6 ): d (ppm) 1.77 (br, 0.1 H, NH), 3.77 (br, 0.1 H, NH), 2.28 (s, 3H , CH 3), 3.88 (s , 2H, CH 2), 6.89 (s, 2H, CH = CH), 7.90 (m, 7H, Ar-H)

[実施例14]
感光性樹脂組成物の製造(8):
式(No.4−12)に表されるエポキシ化合物であるポリグリシジルメタクリレート(PGMA, Mw=15000)0.1g(100質量部)に対して、実施例13で得られた塩基発生剤を0.012g(12質量部)(PGMAのモノマーユニットに対して5.0mol%)含有させることにより本発明の感光性樹脂組成物を得た。
[Example 14]
Production of photosensitive resin composition (8):
The base generator obtained in Example 13 was added to 0.1 g (100 parts by mass) of polyglycidyl methacrylate (PGMA, Mw = 15000) which is an epoxy compound represented by the formula (No. 4-12). The photosensitive resin composition of this invention was obtained by making it contain 0.012g (12 mass parts) (5.0 mol% with respect to the monomer unit of PGMA).

[試験例9]
光不溶化挙動の確認:
実施例14で得られた感光性樹脂組成物を1.5gの1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール(HFIP)に溶解させた。この試料溶液を3000rpm、30秒間シリコンウェハ上にスピンコートし、ホットプレート上にて60℃で30秒間プリベイクすることにより、厚さ1.00μmの膜を作製した。この膜に365nmの単色光を照射し、ポストベイクの温度を70℃として5分間実施し、クロロホルムで30秒間現像し、残っている膜の厚さを測定し、露光量と残膜率との関係(感度曲線)を作成した。
[Test Example 9]
Confirmation of photoinsolubility behavior:
The photosensitive resin composition obtained in Example 14 was dissolved in 1.5 g of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). This sample solution was spin-coated on a silicon wafer at 3000 rpm for 30 seconds, and prebaked on a hot plate at 60 ° C. for 30 seconds to produce a film having a thickness of 1.00 μm. This film was irradiated with monochromatic light of 365 nm, post-baked at 70 ° C. for 5 minutes, developed with chloroform for 30 seconds, the thickness of the remaining film was measured, and the relationship between the exposure amount and the remaining film rate (Sensitivity curve) was created.

図11は露光量と残膜率との関係を示した図である。図11に示すように、露光量を増加させるにつれて硬化が進行し、ポリグリシジルメタクリレート(PGMA)の不溶化効率が向上することが確認できた。   FIG. 11 is a graph showing the relationship between the exposure amount and the remaining film rate. As shown in FIG. 11, it was confirmed that curing progressed as the exposure amount was increased, and the insolubilization efficiency of polyglycidyl methacrylate (PGMA) was improved.

[実施例15]
塩基発生剤の製造(6)(2−キサントン酢酸+ホスファゼン):
式(1−5’)に示した2−キサントン酢酸0.2g(0.79mmol)と式(V−e)に示したイミノ−トリス(ジメチルアミノ)ホスホラン0.14g(0.79mmol)をテトラヒドロフラン(THF)中で混合し、室温で30分間攪拌を行った。その後、ヘキサンを貧溶媒、アセトンを良溶媒として再沈殿を行い沈殿させ、カルボン酸塩である本発明の塩基発生剤を0.28g(収率80%)得た。
[Example 15]
Production of base generator (6) (2-xanthone acetic acid + phosphazene):
0.2 g (0.79 mmol) of 2-xanthone acetic acid represented by the formula (1-5 ′) and 0.14 g (0.79 mmol) of imino-tris (dimethylamino) phosphorane represented by the formula (Ve) were added to tetrahydrofuran. Mix in (THF) and stir at room temperature for 30 minutes. Thereafter, reprecipitation was carried out using hexane as a poor solvent and acetone as a good solvent to obtain 0.28 g (yield 80%) of the base generator of the present invention which is a carboxylate.

H−NMR(300Mz,CDCl):d(ppm)1.43(s,1H,NH)、2.64(s,9H,CH)、2.67(s,9H,CH)、3.70(s,2H,CH)、7.83(m,7H,Ar−H) 1 H-NMR (300 Mz, CDCl 3 ): d (ppm) 1.43 (s, 1H, NH), 2.64 (s, 9H, CH 3 ), 2.67 (s, 9H, CH 3 ), 3.70 (s, 2H, CH 2 ), 7.83 (m, 7H, Ar-H)

[実施例16]
感光性樹脂組成物の製造(9):
式(No.4−12)に表されるエポキシ化合物であるポリグリシジルメタクリレート(PGMA, Mw=15000)0.1g(100質量部)に対して、実施例15で得られた塩基発生剤を0.015g(15質量部)(PGMAのモノマーユニットに対して5.0mol%)含有させることにより本発明の感光性樹脂組成物を得た。
[Example 16]
Production of photosensitive resin composition (9):
The base generator obtained in Example 15 was changed to 0 with respect to 0.1 g (100 parts by mass) of polyglycidyl methacrylate (PGMA, Mw = 15000) which is an epoxy compound represented by the formula (No. 4-12). The photosensitive resin composition of this invention was obtained by making it contain .015g (15 mass parts) (5.0 mol% with respect to the monomer unit of PGMA).

[試験例10]
光不溶化挙動の確認:
実施例16で得られた感光性樹脂組成物を1.5gのクロロホルムに溶解させた。この試料溶液を3000rpm、30秒間シリコンウェハ上にスピンコートし、ホットプレート上にて60℃で30秒間プリベイクすることにより、厚さ0.43μmの膜を作製した。この膜に365nmの単色光を照射し、ポストベイクの温度を110℃として5分間実施し、クロロホルムで30秒間現像し、残っている膜の厚さを測定し、露光量と残膜率との関係(感度曲線)を作成した。
[Test Example 10]
Confirmation of photoinsolubility behavior:
The photosensitive resin composition obtained in Example 16 was dissolved in 1.5 g of chloroform. This sample solution was spin-coated on a silicon wafer at 3000 rpm for 30 seconds, and prebaked at 60 ° C. for 30 seconds on a hot plate to produce a 0.43 μm thick film. This film was irradiated with monochromatic light of 365 nm, postbaked at 110 ° C. for 5 minutes, developed with chloroform for 30 seconds, the thickness of the remaining film was measured, and the relationship between the exposure amount and the remaining film ratio (Sensitivity curve) was created.

図12は露光量と残膜率との関係を示した図である。図12に示すように、露光量を増加させるにつれて硬化が進行し、ポリグリシジルメタクリレート(PGMA)の不溶化効率が向上することが確認できた。   FIG. 12 is a graph showing the relationship between the exposure amount and the remaining film rate. As shown in FIG. 12, it was confirmed that the curing progressed as the exposure amount was increased and the insolubilization efficiency of polyglycidyl methacrylate (PGMA) was improved.

[実施例17]
塩基発生剤の製造(7)(2−キサントン酢酸+ナトリウム):
式(1−5’)に示した2−キサントン酢酸0.2g(0.79mmol)とナトリウムエトキシド0.054g(0.79mmol)をメタノール中で混合し、室温で30分間攪拌を行った。その後、溶媒を留去し、カルボン酸塩である本発明の塩基発生剤を0.20g(収率90%)得た。H−NMRスペクトルにより、キサントンカルボン酸のCOOH由来のピークの消失を確認した。
[Example 17]
Production of base generator (7) (2-xanthone acetic acid + sodium):
0.2 g (0.79 mmol) of 2-xanthone acetic acid represented by the formula (1-5 ′) and 0.054 g (0.79 mmol) of sodium ethoxide were mixed in methanol and stirred at room temperature for 30 minutes. Thereafter, the solvent was distilled off to obtain 0.20 g (yield 90%) of the base generator of the present invention as a carboxylate. The disappearance of the COOH-derived peak of xanthonecarboxylic acid was confirmed by 1 H-NMR spectrum.

H−NMR(300Mz,CDOD):d(ppm)3.68(s,2H,CH)、7.79(m,7H,Ar−H) 1 H-NMR (300 Mz, CD 3 OD): d (ppm) 3.68 (s, 2H, CH 2 ), 7.79 (m, 7H, Ar—H)

[実施例18]
感光性樹脂組成物の製造(10):
式(No.4−12)に表されるエポキシ化合物であるポリグリシジルメタクリレート(PGMA, Mw=15000)0.1g(100質量部)に対して、実施例17で得られた塩基発生剤を0.010g(10質量部)(PGMAのモノマーユニットに対して5.0mol%)含有させることにより本発明の感光性樹脂組成物を得た。
[Example 18]
Production of photosensitive resin composition (10):
The base generator obtained in Example 17 was added to 0.1 g (100 parts by mass) of polyglycidyl methacrylate (PGMA, Mw = 15000) which is an epoxy compound represented by the formula (No. 4-12). The photosensitive resin composition of this invention was obtained by making it contain 0.010g (10 mass parts) (5.0 mol% with respect to the monomer unit of PGMA).

[試験例11]
光不溶化挙動の確認:
実施例18で得られた感光性樹脂組成物を1.5gのテトラヒドロフラン(THF)と0.1gの水との混合溶液に溶解させた。この試料溶液を3000rpm、30秒間シリコンウェハ上にスピンコートし、ホットプレート上にて60℃で30秒間プリベイクすることにより、厚さ0.29μmの膜を作製した。この膜に365nmの単色光を照射し、ポストベイクの温度を170℃として10分間実施し、クロロホルムで30秒間現像し、残っている膜の厚さを測定し、露光量と残膜率との関係(感度曲線)を作成した。
[Test Example 11]
Confirmation of photoinsolubility behavior:
The photosensitive resin composition obtained in Example 18 was dissolved in a mixed solution of 1.5 g of tetrahydrofuran (THF) and 0.1 g of water. This sample solution was spin-coated on a silicon wafer at 3000 rpm for 30 seconds, and prebaked at 60 ° C. for 30 seconds on a hot plate to produce a film having a thickness of 0.29 μm. This film was irradiated with monochromatic light of 365 nm, postbaked at 170 ° C. for 10 minutes, developed with chloroform for 30 seconds, the thickness of the remaining film was measured, and the relationship between the exposure amount and the remaining film ratio (Sensitivity curve) was created.

図13は露光量と残膜率との関係を示した図である。図13に示すように、露光量を増加させるにつれて硬化が進行し、ポリグリシジルメタクリレート(PGMA)の不溶化効率が向上することが確認できた。   FIG. 13 is a diagram showing the relationship between the exposure amount and the remaining film rate. As shown in FIG. 13, it was confirmed that curing progressed as the exposure amount was increased, and the insolubilization efficiency of polyglycidyl methacrylate (PGMA) was improved.

[実施例19]
塩基発生剤の製造(8)(2−キサントン酢酸+テトラメチルグアニジン):
式(1−5’)に示した2−キサントン酢酸0.2g(0.79mmol)と式(IV−b)に示したテトラメチルグアニジン(TMG)0.09g(0.79mmol)をTHF中で混合し、室温で30分間攪拌を行った。その後、溶媒を留去し、カルボン酸塩である本発明の塩基発生剤を0.23g(収率80%)得た。
[Example 19]
Production of base generator (8) (2-xanthoneacetic acid + tetramethylguanidine):
0.2 g (0.79 mmol) of 2-xanthone acetic acid represented by the formula (1-5 ′) and 0.09 g (0.79 mmol) of tetramethylguanidine (TMG) represented by the formula (IV-b) were added in THF. Mix and stir at room temperature for 30 minutes. Thereafter, the solvent was distilled off to obtain 0.23 g (yield 80%) of the base generator of the present invention as a carboxylate.

H−NMR(300Mz,CDCl):d(ppm)2.16(s,0.17H,NH)、2.90(s,12H,NCH)、3.66(s,2H,CH)、7.49(m,7H,Ar−H) 1 H-NMR (300 Mz, CDCl 3 ): d (ppm) 2.16 (s, 0.17 H, NH), 2.90 (s, 12 H, NCH 3 ), 3.66 (s, 2 H, CH 2 ), 7.49 (m, 7H, Ar-H)

[実施例20]
感光性樹脂組成物の製造(11):
式(No.4−12)に表されるエポキシ化合物であるポリグリシジルメタクリレート(PGMA, Mw=15000)0.1g(100質量部)に対して、実施例19で得られた塩基発生剤を0.013g(13質量部)(PGMAのモノマーユニットに対して5.0mol%)含有させることにより本発明の感光性樹脂組成物を得た。
[Example 20]
Production of photosensitive resin composition (11):
The base generator obtained in Example 19 was changed to 0 with respect to 0.1 g (100 parts by mass) of polyglycidyl methacrylate (PGMA, Mw = 15000) which is an epoxy compound represented by the formula (No. 4-12). The photosensitive resin composition of the present invention was obtained by adding 0.013 g (13 parts by mass) (5.0 mol% with respect to the monomer unit of PGMA).

[試験例12]
光不溶化挙動の確認:
実施例20で得られた感光性樹脂組成物を1.5gのクロロホルムに溶解させた。この試料溶液を3000rpm、30秒間シリコンウェハ上にスピンコートし、ホットプレート上にて60℃で30秒プリベイクすることにより、厚さ0.51μmの膜を作製した。この膜に365nmの単色光を照射し、ポストベイクの温度を140℃として3分間実施し、クロロホルムで30秒間現像し、残っている膜の厚さを測定し、露光量と残膜率との関係(感度曲線)を作成した。
[Test Example 12]
Confirmation of photoinsolubility behavior:
The photosensitive resin composition obtained in Example 20 was dissolved in 1.5 g of chloroform. This sample solution was spin-coated on a silicon wafer at 3000 rpm for 30 seconds, and prebaked at 60 ° C. for 30 seconds on a hot plate to produce a film having a thickness of 0.51 μm. This film was irradiated with monochromatic light of 365 nm, the post-baking temperature was 140 ° C. for 3 minutes, developed with chloroform for 30 seconds, the thickness of the remaining film was measured, and the relationship between the exposure amount and the remaining film rate (Sensitivity curve) was created.

図14は露光量と残膜率との関係を示した図である。図14に示すように、露光量を増加させるにつれて硬化が進行し、ポリグリシジルメタクリレート(PGMA)の不溶化効率が向上することが確認できた。   FIG. 14 is a graph showing the relationship between the exposure amount and the remaining film rate. As shown in FIG. 14, it was confirmed that the curing progressed as the exposure amount was increased and the insolubilization efficiency of polyglycidyl methacrylate (PGMA) was improved.

[実施例21]
塩基発生剤の製造(9)(ケトプロフェン+ホスファゼン):
式(III)に示したケトプロフェン0.2g(0.79mmol)と式(V−e)に示したイミノ−トリス(ジメチルアミノ)ホスホラン0.14g(0.79mmol)をジエチルエーテル中で混合し、室温で30分間攪拌を行った。その後、ヘキサンを貧溶媒、アセトンを良溶媒として再沈殿を行い沈殿させ、カルボン酸塩である本発明の塩基発生剤を0.25g(収率70%)得た。
[Example 21]
Production of base generator (9) (ketoprofen + phosphazene):
0.2 g (0.79 mmol) of ketoprofen represented by formula (III) and 0.14 g (0.79 mmol) of imino-tris (dimethylamino) phosphorane represented by formula (Ve) were mixed in diethyl ether, Stirring was performed at room temperature for 30 minutes. After that, reprecipitation was performed using hexane as a poor solvent and acetone as a good solvent, thereby obtaining 0.25 g (yield 70%) of the base generator of the present invention which is a carboxylate.

H−NMR(300Mz,CDCl):d(ppm)1.50(s,1.5H,CH)、1.52(s,1.5H,CH)、2.61(s,9H,NCH)、2.65(s,9H,NCH)、3.67(s,0.5H,NH)、3.70(s,0.5H,NH)、7.57(m,9H,Ar−H) 1 H-NMR (300 Mz, CDCl 3 ): d (ppm) 1.50 (s, 1.5 H, CH 3 ), 1.52 (s, 1.5 H, CH 3 ), 2.61 (s, 9 H , NCH 3 ), 2.65 (s, 9H, NCH 3 ), 3.67 (s, 0.5H, NH), 3.70 (s, 0.5H, NH), 7.57 (m, 9H) , Ar-H)

[実施例22]
感光性樹脂組成物の製造(12):
式(No.4−12)に表されるエポキシ化合物であるポリグリシジルメタクリレート(PGMA, Mw=15000)0.1g(100質量部)に対して、実施例21で得られた塩基発生剤を0.015g(15質量部)(PGMAのモノマーユニットに対して5.0mol%)含有させることにより本発明の感光性樹脂組成物を得た。
[Example 22]
Production of photosensitive resin composition (12):
The base generator obtained in Example 21 was added to 0.1 g (100 parts by mass) of polyglycidyl methacrylate (PGMA, Mw = 15000) which is an epoxy compound represented by the formula (No. 4-12). The photosensitive resin composition of this invention was obtained by making it contain .015g (15 mass parts) (5.0 mol% with respect to the monomer unit of PGMA).

[試験例13]
光不溶化挙動の確認:
実施例22で得られた感光性樹脂組成物を1.5gのクロロホルムに溶解させた。この試料溶液を3000rpm、30秒間シリコンウェハ上にスピンコートし、ホットプレート上にて60℃で30秒間プリベイクすることにより、厚さ0.45μmの膜を作製した。この膜に254nmの単色光を照射し、ポストベイクの温度を100℃として5分間実施し、クロロホルムで30秒間現像し、残っている膜の厚さを測定し、露光量と残膜率との関係(感度曲線)を作成した。
[Test Example 13]
Confirmation of photoinsolubility behavior:
The photosensitive resin composition obtained in Example 22 was dissolved in 1.5 g of chloroform. This sample solution was spin-coated on a silicon wafer at 3000 rpm for 30 seconds, and prebaked at 60 ° C. for 30 seconds on a hot plate to produce a 0.45 μm thick film. This film was irradiated with monochromatic light of 254 nm, post-baked at 100 ° C. for 5 minutes, developed with chloroform for 30 seconds, the thickness of the remaining film was measured, and the relationship between the exposure amount and the remaining film rate (Sensitivity curve) was created.

図15は露光量と残膜率との関係を示した図である。図15に示すように、露光量を増加させるにつれて硬化が進行し、ポリグリシジルメタクリレート(PGMA)の不溶化効率が向上することが確認できた。   FIG. 15 is a graph showing the relationship between the exposure amount and the remaining film rate. As shown in FIG. 15, it was confirmed that the curing progressed as the exposure amount was increased and the insolubilization efficiency of polyglycidyl methacrylate (PGMA) was improved.

[実施例23]
塩基発生剤の製造(10)(ケトプロフェン+テトラメチルグアニジン):
式(III)に示したケトプロフェン0.2g(0.79mmol)と式(IV−b)に示したテトラメチルグアニジン(TMG)0.09g(0.79mmol)をジエチルエーテル中で混合し、室温で30分間攪拌を行った。その後、溶媒を留去し、カルボン酸塩である本発明の塩基発生剤を0.25g(収率85%)得た。
[Example 23]
Production of base generator (10) (ketoprofen + tetramethylguanidine):
0.2 g (0.79 mmol) of ketoprofen represented by the formula (III) and 0.09 g (0.79 mmol) of tetramethylguanidine (TMG) represented by the formula (IV-b) were mixed in diethyl ether at room temperature. Stirring was performed for 30 minutes. Then, the solvent was distilled off to obtain 0.25 g (yield 85%) of the base generator of the present invention which is a carboxylate.

H−NMR(300Mz,CDCl):d(ppm)1.47(s,1.5H,CH)、1.49(s,1.5H,CH)、2.85(s,12H,NCH)、7・66(m,9H,Ar−H) 1 H-NMR (300 Mz, CDCl 3 ): d (ppm) 1.47 (s, 1.5 H, CH 3 ), 1.49 (s, 1.5 H, CH 3 ), 2.85 (s, 12 H , NCH 3 ), 7.66 (m, 9H, Ar—H)

[実施例24]
感光性樹脂組成物の製造(13):
式(No.4−12)に表されるエポキシ化合物であるポリグリシジルメタクリレート(PGMA, Mw=15000)0.1g(100質量部)に対して、実施例23で得られた塩基発生剤を0.013g(13質量部)(PGMAのモノマーユニットに対して5.0mol%)含有させることにより本発明の感光性樹脂組成物を得た。
[Example 24]
Production of photosensitive resin composition (13):
The base generator obtained in Example 23 was added to 0.1 g (100 parts by mass) of polyglycidyl methacrylate (PGMA, Mw = 15000) which is an epoxy compound represented by the formula (No. 4-12). The photosensitive resin composition of the present invention was obtained by adding 0.013 g (13 parts by mass) (5.0 mol% with respect to the monomer unit of PGMA).

[試験例14]
光不溶化挙動の確認:
実施例24で得られた感光性樹脂組成物を1.5gのクロロホルムに溶解させた。この試料溶液を3000rpm、30秒間シリコンウェハ上にスピンコートし、ホットプレート上にて60℃で30秒間プリベイクすることにより、厚さ0.58μmの膜を作製した。この膜に254nmの単色光を照射し、ポストベイクの温度を100℃として5分間実施し、クロロホルムで30秒間現像し、残っている膜の厚さを測定し、露光量と残膜率との関係(感度曲線)を作成した。
[Test Example 14]
Confirmation of photoinsolubility behavior:
The photosensitive resin composition obtained in Example 24 was dissolved in 1.5 g of chloroform. This sample solution was spin-coated on a silicon wafer at 3000 rpm for 30 seconds, and prebaked at 60 ° C. for 30 seconds on a hot plate to produce a film having a thickness of 0.58 μm. This film was irradiated with monochromatic light of 254 nm, post-baked at 100 ° C. for 5 minutes, developed with chloroform for 30 seconds, the thickness of the remaining film was measured, and the relationship between the exposure amount and the remaining film rate (Sensitivity curve) was created.

図16は露光量と残膜率との関係を示した図である。図16に示すように、露光量を増加させるにつれて硬化が進行し、ポリグリシジルメタクリレート(PGMA)の不溶化効率が向上することが確認できた。   FIG. 16 is a graph showing the relationship between the exposure amount and the remaining film rate. As shown in FIG. 16, it was confirmed that curing progressed as the exposure dose was increased, and the insolubilization efficiency of polyglycidyl methacrylate (PGMA) was improved.

本発明は、高感度の光硬化材料やレジスト材料(パターン形成材料)等を提供する感光性樹脂材料として有利に使用することができる。   The present invention can be advantageously used as a photosensitive resin material that provides a highly sensitive photocuring material, resist material (pattern forming material), and the like.

Claims (7)

カルボン酸とアルカリ金属またはアルカリ土類金属からなるカルボン酸塩であり、下記式(X)で表されることを特徴とする塩基発生剤。
Figure 0005561693
(式(X)中、 は下記式(VI)を示し、Mはアルカリ金属またはアルカリ土類金属、nは1または2の整数、を示す。)
Figure 0005561693
(式(VI)中、R 、R 、R はCH COO 、CH(CH )COO またはHを示し、かかるCH COO またはCH(CH )COO はR 、R 、R のいずれか1つの基に付され、残りの2つの基にはHが付される。)
A base generator characterized by being a carboxylate salt composed of a carboxylic acid and an alkali metal or an alkaline earth metal and represented by the following formula (X).
Figure 0005561693
(In the formula (X), A represents the following formula (VI), M represents an alkali metal or alkaline earth metal, and n represents an integer of 1 or 2.)
Figure 0005561693
(In the formula (VI), R 1 , R 2 and R 3 represent CH 2 COO , CH (CH 3 ) COO or H, and such CH 2 COO or CH (CH 3 ) COO represents R 1 , (It is attached to any one group of R 2 and R 3 , and H is attached to the remaining two groups.)
カルボン酸と塩基類からなるカルボン酸塩であり、下記式(Y)で表されることを特徴とする塩基発生剤。
Figure 0005561693
(式(Y)中、 は下記式(VI)を示し、Q は下記式(II)で表されるイミダゾール類からなる塩基類を示す。)
Figure 0005561693
(式(VI)中、R 、R 、R はCH COO 、CH(CH )COO またはHを示し、かかるCH COO またはCH(CH )COO はR 、R 、R のいずれか1つの基に付され、残りの2つの基にはHが付される。)
Figure 0005561693
(式(II)中、Rはそれぞれ、独立して水素原子、炭素数が1〜4のアルキル基(S等のヘテロ原子を含んでもよい。)、またはフェニル基、を示す。)
A carboxylic acid salt formed from carboxylic acids and bases, base generator, characterized by being represented by the following formula (Y).
Figure 0005561693
(Formula (Y) in, A - represents the following formula (VI), Q + represents a imidazoles or Ranaru bases represented by the following formula (II).)
Figure 0005561693
(In the formula (VI), R 1 , R 2 and R 3 represent CH 2 COO , CH (CH 3 ) COO or H, and such CH 2 COO or CH (CH 3 ) COO represents R 1 , (It is attached to any one group of R 2 and R 3 , and H is attached to the remaining two groups.)
Figure 0005561693
(In formula (II), each R independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms (which may contain a heteroatom such as S), or a phenyl group.)
カルボン酸と塩基類からなるカルボン酸塩であり、下記式(Z)で表されることを特徴とする化合物。
Figure 0005561693
(式(Z)中、 は下記式(VI)を示し、G は下記化学式で表される塩基類のいずれかを示す。
Figure 0005561693
(式(VI)中、R 、R 、R はCH COO 、CH(CH )COO またはHを示し、かかるCH COO またはCH(CH )COO はR 、R 、R のいずれか1つの基に付され、残りの2つの基にはHが付される。)
Figure 0005561693
A compound which is a carboxylate salt composed of a carboxylic acid and a base and represented by the following formula (Z).
Figure 0005561693
(In formula (Z), A represents the following formula (VI), and G + represents any of the bases represented by the following chemical formula. )
Figure 0005561693
(In the formula (VI), R 1 , R 2 and R 3 represent CH 2 COO , CH (CH 3 ) COO or H, and such CH 2 COO or CH (CH 3 ) COO represents R 1 , (It is attached to any one group of R 2 and R 3 , and H is attached to the remaining two groups.)
Figure 0005561693
カルボン酸と塩基類からなるカルボン酸塩であり、下記化学式で表されることを特徴とする化合物。  A carboxylic acid salt composed of a carboxylic acid and a base and represented by the following chemical formula:
Figure 0005561693
Figure 0005561693
(上記化学式中、J(In the above chemical formula, J + は下記化学式で表される塩基類のいずれかを示す。)Represents any of the bases represented by the following chemical formulas. )
Figure 0005561693
Figure 0005561693
前記請求項3または請求項4に記載の化合物からなることを特徴とする塩基発生剤。 A base generator comprising the compound according to claim 3 or 4 . 前記請求項1、請求項2または請求項5のいずれかに記載の塩基発生剤と、塩基反応性化合物とを含有することを特徴とする感光性樹脂組成物。 Claim 1, claim 2 or the base generator according to claim 5, photosensitive resin composition characterized by containing a base-reactive compounds. 前記塩基反応性化合物がエポキシ系化合物及び/またはケイ素系化合物であることを特徴とする請求項6に記載の感光性樹脂組成物。   The photosensitive resin composition according to claim 6, wherein the base-reactive compound is an epoxy compound and / or a silicon compound.
JP2010093549A 2009-09-08 2010-04-14 Novel compound, base generator and photosensitive resin composition containing the base generator Active JP5561693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010093549A JP5561693B2 (en) 2009-09-08 2010-04-14 Novel compound, base generator and photosensitive resin composition containing the base generator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009207577A JP2010084144A (en) 2008-09-08 2009-09-08 Base generator and photosensitive resin composition comprising base generator
JP2009207577 2009-09-08
JP2010093549A JP5561693B2 (en) 2009-09-08 2010-04-14 Novel compound, base generator and photosensitive resin composition containing the base generator

Publications (2)

Publication Number Publication Date
JP2011080032A JP2011080032A (en) 2011-04-21
JP5561693B2 true JP5561693B2 (en) 2014-07-30

Family

ID=44080184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010093549A Active JP5561693B2 (en) 2009-09-08 2010-04-14 Novel compound, base generator and photosensitive resin composition containing the base generator

Country Status (1)

Country Link
JP (1) JP5561693B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116931A1 (en) 2017-12-12 2019-06-20 学校法人東京理科大学 Active energy ray-curable composition
KR20200128030A (en) 2018-03-02 2020-11-11 닛뽄 가야쿠 가부시키가이샤 New compound, photopolymerization initiator containing the compound, and photosensitive resin composition containing the photopolymerization initiator

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5765851B2 (en) * 2011-05-09 2015-08-19 学校法人東京理科大学 Carboxylic acid compound, base generator and photosensitive resin composition containing the base generator
JP6035887B2 (en) * 2011-06-21 2016-11-30 セントラル硝子株式会社 Positive resist composition
TWI486335B (en) 2011-12-29 2015-06-01 Eternal Materials Co Ltd Base generator
JP6008166B2 (en) 2012-04-05 2016-10-19 株式会社リコー Actinic ray curable composition, actinic ray curable ink composition for inkjet printing, actinic ray curable adhesive composition and method for stabilizing actinic ray curable composition
JP5871771B2 (en) * 2012-10-26 2016-03-01 東京応化工業株式会社 Positive photosensitive resin composition, method for forming polyimide resin pattern, and patterned polyimide resin film
JP5997041B2 (en) * 2012-12-26 2016-09-21 東京応化工業株式会社 Photosensitive resin composition
JP5927750B2 (en) 2013-07-18 2016-06-01 セメダイン株式会社 Photocurable composition
EP3081612B1 (en) 2013-12-13 2018-11-14 Cemedine Co., Ltd. Photocurable composition having adhesive properties
JP6428646B2 (en) 2014-01-24 2018-11-28 富士フイルム和光純薬株式会社 Borate base generator and base-reactive composition containing the base generator
JP6767470B2 (en) * 2016-02-16 2020-10-14 太陽ホールディングス株式会社 Photosensitive resin composition, dry film, cured product, printed wiring board and photobase generator
US11106132B2 (en) * 2018-04-27 2021-08-31 Tokyo Ohka Kogyo Co., Ltd. Energy-sensitive composition, cured product, and pattern forming method
JPWO2021049564A1 (en) 2019-09-10 2021-03-18
JP2022075180A (en) 2020-11-06 2022-05-18 東京応化工業株式会社 Energy-sensitive composition, cured product, and method for forming cured product

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872936A (en) * 1981-10-27 1983-05-02 Oriental Shashin Kogyo Kk Heat developable photosensitive material
JP2607094B2 (en) * 1987-09-03 1997-05-07 富士写真フイルム株式会社 Photosensitive composition
JPH0736145A (en) * 1993-07-22 1995-02-07 Canon Inc Heat-developable photosensitive body
JP4830435B2 (en) * 2005-09-30 2011-12-07 大日本印刷株式会社 Photosensitive resin composition and article
US8536242B2 (en) * 2007-08-09 2013-09-17 Sekisui Chemical Co., Ltd. Photocurable composition
JP5561694B2 (en) * 2008-09-08 2014-07-30 学校法人東京理科大学 Base generator and photosensitive resin composition containing the base generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116931A1 (en) 2017-12-12 2019-06-20 学校法人東京理科大学 Active energy ray-curable composition
KR20200128030A (en) 2018-03-02 2020-11-11 닛뽄 가야쿠 가부시키가이샤 New compound, photopolymerization initiator containing the compound, and photosensitive resin composition containing the photopolymerization initiator
US11414382B2 (en) 2018-03-02 2022-08-16 Nippon Kayaku Kabushiki Kaisha Compound, photopolymerization initiator containing said compound, and photosensitive resin composition containing said photopolymerization initiator

Also Published As

Publication number Publication date
JP2011080032A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
JP5561693B2 (en) Novel compound, base generator and photosensitive resin composition containing the base generator
JP2010084144A (en) Base generator and photosensitive resin composition comprising base generator
JP5401737B2 (en) Base generator and photosensitive resin composition containing the base generator
JP6011956B2 (en) Photosensitive resin composition
JP5918111B2 (en) Photosensitive acid generator and photoresist containing them
JP6708382B2 (en) Curable composition and cured product using the same
JP5561694B2 (en) Base generator and photosensitive resin composition containing the base generator
WO2006095670A1 (en) Base multiplying agents and base-reactive curable compositions
TW201202327A (en) Photoacid generators and photoresists comprising same
KR20110068904A (en) Sulfonyl photoacid generators and photoresists comprising same
JP2015180957A (en) Oxime sulfonate and n-oxyimidosulfonate photoacid generators and photoresists comprising the same
WO2012096264A1 (en) Radiation-sensitive resin composition and radiation-sensitive acid generator
JP7171601B2 (en) Photoacid generator, resist composition, and device manufacturing method using the resist composition
JP2019156801A (en) Base proliferation agent, and base reactive resin composition containing the base proliferation agent
JP5224016B2 (en) Active energy ray base generator, active energy ray base generator composition, base-reactive composition, and pattern forming method
US20160326292A1 (en) Polymers of maleimide and cycloolefinic monomers as permanent dielectric materials
JP5733618B2 (en) Base proliferating agent and base-reactive resin composition containing the base proliferating agent
JP6280919B2 (en) Thioxanthene compound, base proliferating agent, and base-reactive resin composition containing the base proliferating agent
JP5725515B2 (en) Photobase generator and photosensitive resin composition containing the photobase generator
JP5729392B2 (en) Radiation sensitive resin composition and radiation sensitive acid generator
TW201833084A (en) Negative photosensitive composition, article cured therefrom, and method for curing said composition
KR20000034148A (en) Crosslinking agent for photoresist and photoresist composition using the same
JP3200824B2 (en) Radiation-sensitive composition
JP7199411B2 (en) Base multiplying agent and base-reactive resin composition containing the base multiplying agent
JP2014115643A (en) Base proliferation agent and base-reactive resin composition including the base proliferation agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140603

R150 Certificate of patent or registration of utility model

Ref document number: 5561693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250