JP5561641B2 - Dye-sensitized solar cell - Google Patents
Dye-sensitized solar cell Download PDFInfo
- Publication number
- JP5561641B2 JP5561641B2 JP2010107941A JP2010107941A JP5561641B2 JP 5561641 B2 JP5561641 B2 JP 5561641B2 JP 2010107941 A JP2010107941 A JP 2010107941A JP 2010107941 A JP2010107941 A JP 2010107941A JP 5561641 B2 JP5561641 B2 JP 5561641B2
- Authority
- JP
- Japan
- Prior art keywords
- dye
- solar cell
- sensitized solar
- photoelectrode
- porous film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
Landscapes
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
Description
本発明は、色素増感太陽電池に関し、より具体的には、光の波長または光の入射角度を変化させることにより生じる表面プラズモン共鳴電場増強現象を利用した色素増感太陽電池に関するものである。 The present invention relates to a dye-sensitized solar cell, and more specifically to a dye-sensitized solar cell that utilizes a surface plasmon resonance electric field enhancement phenomenon that occurs by changing the wavelength of light or the incident angle of light.
太陽電池は、使用される半導体材料によって、シリコン系、化合物半導体系、有機半導体系、金属酸化物半導体系などに分類される。ここで、金属酸化物半導体系の太陽電池は色素増感太陽電池とも呼ばれ、例えば、導電性ガラス上に塗布・焼結した酸化チタン微粒子の表面上に光増感剤(色素)を結合させて光電極を形成し、この光電極の多孔質酸化チタン内部を電解質で充満させた後、対電極を貼り合わせることで作製される。 Solar cells are classified into silicon-based, compound semiconductor-based, organic semiconductor-based, metal oxide semiconductor-based, etc., depending on the semiconductor material used. Here, a metal oxide semiconductor solar cell is also called a dye-sensitized solar cell. For example, a photosensitizer (dye) is bonded onto the surface of titanium oxide fine particles coated and sintered on conductive glass. Then, a photoelectrode is formed, the inside of the porous titanium oxide of the photoelectrode is filled with an electrolyte, and then the counter electrode is bonded together.
近年、太陽光を利用した光電変換技術である太陽電池の開発において、電極界面を最適化して光制御を行うことが高効率化の一つのキーポイントとしてさかんに研究が行われている。とりわけ、電極表面で励起される表面プラズモン共鳴効果による色素増感電場増強を利用した太陽電池の応用が注目されている。 In recent years, in the development of solar cells, which are photoelectric conversion technologies using sunlight, various studies have been conducted on optimizing electrode interfaces and performing light control as one of the key points for higher efficiency. In particular, the application of solar cells using dye-sensitized electric field enhancement by the surface plasmon resonance effect excited on the electrode surface has attracted attention.
表面プラズモン共鳴電場増強現象を利用した色素増感太陽電池に関する従来技術として、特許文献1では、光応答分子が固定された金属膜上に断面三角形状を有するガラス製プリズムが当接された光応答電極を備えた湿式太陽電池が開示されている。このようなガラス製プリズムを利用した表面プラズモン共鳴は全反射減衰(ATR)法と呼ばれ、このようなプリズムの配置はクレッチマン(Kretschmann)配置と呼ばれる。 As a prior art relating to a dye-sensitized solar cell using a surface plasmon resonance electric field enhancement phenomenon, Patent Document 1 discloses a light response in which a glass prism having a triangular cross section is in contact with a metal film on which a photoresponsive molecule is fixed. A wet solar cell with an electrode is disclosed. Surface plasmon resonance using such a glass prism is called the total reflection attenuation (ATR) method, and the arrangement of such a prism is called a Kretschmann arrangement.
また、非特許文献1では、光増感剤を担持した金属微粒子が凝集した不規則な微粒子凝集構造を有する光電極を作成し、光増感剤と金属微粒子との相互作用による表面プラズモン共鳴を用いて光増感剤の吸収係数(ひいてはエネルギー変換効率)を増加させている。なお、特許文献2では、この金属微粒子の表面に金属修飾化合物を更に配置してエネルギー変換効率を高めている。 In Non-Patent Document 1, a photoelectrode having an irregular fine particle aggregation structure in which metal fine particles supporting a photosensitizer are aggregated is prepared, and surface plasmon resonance due to the interaction between the photosensitizer and the metal fine particles is performed. It is used to increase the absorption coefficient (and hence energy conversion efficiency) of the photosensitizer. In Patent Document 2, a metal modifying compound is further arranged on the surface of the metal fine particles to increase energy conversion efficiency.
また、特許文献3では、金属微粒子と半導体微粒子の積層構造をなす光電極において、規則的に配列した金属微粒子同士の相互作用により局在型表面プラズモン共鳴を増強して、光増感剤の吸収係数を向上させている。 Further, in Patent Document 3, in a photoelectrode having a laminated structure of metal fine particles and semiconductor fine particles, localized surface plasmon resonance is enhanced by the interaction between regularly arranged metal fine particles and absorption of the photosensitizer is performed. The coefficient is improved.
しかしながら、特許文献1に開示の色素増感太陽電池では、表面プラズモン共鳴を発生させるプリズムの存在により、装置が大型化するとともにその設計自由度が制限されるといった問題があった。 However, the dye-sensitized solar cell disclosed in Patent Document 1 has a problem that the size of the device is increased and the degree of design freedom is limited due to the presence of a prism that generates surface plasmon resonance.
また、可視域の光に対する表面プラズモンの励起波長域は一波長域に制限されるものであった。加えて、共鳴入射角θ等も所定の角度範囲に制限されていた(例えば、特許文献1の第3頁第4欄第48〜50行目に記載のように、電解液が水系の場合、θは70度〜85度であった)。従って、太陽電池に入射させ表面プラズモンを励起して効果的にエネルギー変換できる太陽光の波長域や入射角度は極めて制限されていた。言い換えれば、特許文献1に開示の太陽電池が終日太陽光を浴びたとしても表面プラズモン共鳴による電場増強される時間帯や光の波長が制限されていたといえる。さらに、全反射減衰法の場合は金属電極の裏側からの太陽光照射になるため、表面プラズモンが励起している角度以外は全て全反射され太陽光が色素に到達しないという問題がある。 Moreover, the excitation wavelength range of surface plasmon with respect to light in the visible range is limited to one wavelength range. In addition, the resonance incident angle θ and the like were also limited to a predetermined angle range (for example, as described in Patent Document 1, page 3, column 4, lines 48 to 50, when the electrolyte is aqueous, θ was 70 to 85 degrees). Therefore, the wavelength range and incident angle of sunlight that can be incident on a solar cell and effectively convert energy by exciting surface plasmons are extremely limited. In other words, even if the solar cell disclosed in Patent Document 1 is exposed to sunlight all day, it can be said that the time zone in which the electric field is enhanced by the surface plasmon resonance and the wavelength of light are limited. Furthermore, in the case of the total reflection attenuation method, since sunlight is irradiated from the back side of the metal electrode, there is a problem that all the rays except the angle at which the surface plasmon is excited are totally reflected and the sunlight does not reach the pigment.
また、特許文献2、特許文献3、及び非特許文献1に開示の色素増感太陽電池は、金属微粒子の局在プラズモンを用いるもので特許文献1のような装置の大型化の問題は発生しないものの、表面プラズモンの励起波長域の制限の問題は残っており、未解決のままであった。 In addition, the dye-sensitized solar cells disclosed in Patent Document 2, Patent Document 3, and Non-Patent Document 1 use localized plasmons of metal fine particles, and the problem of enlargement of the device as in Patent Document 1 does not occur. However, the problem of limiting the excitation wavelength range of surface plasmons remained and remained unresolved.
本発明は、以上のような実情に鑑みて提案されたものであり、簡素な構成の色素増感太陽電池を提供することを目的とする。さらに、本発明は、簡素な構成で、複数の波長域に亘って表面プラズモンを同時に共鳴励起することで可視域〜赤外域の広範囲にわたる太陽光の電場増強を同時に行うことができる色素増感太陽電池を提供することを目的とする。 The present invention has been proposed in view of the above circumstances, and an object thereof is to provide a dye-sensitized solar cell having a simple configuration. Furthermore, the present invention provides a dye-sensitized solar capable of simultaneously enhancing the electric field of sunlight over a wide range from the visible range to the infrared range by simultaneously resonantly exciting surface plasmons over a plurality of wavelength ranges with a simple configuration. An object is to provide a battery.
本発明者は、表面プラズモン励起手法の一つとしてグレーティング結合法(grating coupling method)に着目し、このグレーティング結合法を色素増感太陽電池に応用し、このグレーティング構造やこれに隣接する薄膜層を適切な構成・寸法に設定すれば、上記課題が解決されることを見出し、本発明を完成するに至った。 The present inventor paid attention to a grating coupling method as one of surface plasmon excitation methods, applied this grating coupling method to a dye-sensitized solar cell, and applied this grating structure and a thin film layer adjacent thereto. The inventors have found that the above problems can be solved by setting the appropriate configuration and dimensions, and have completed the present invention.
すなわち、本発明は次のような構成・特徴を採用するものである。
1.金属酸化物を含む多孔質膜及び該多孔質膜の一面に担持された色素を有する光電極と、対極と、前記光電極及び前記対極の間に介在する電解質層と、を備える色素増感型太陽電池であって、
前記光電極は、300nm〜2μmの周期を有する構造が表面に形成された基板と、前記多孔質膜の他面と前記基板の前記表面との間に形成された金属薄膜と、を更に備え、
前記構造は、複数の波長に亘って表面プラズモン共鳴を励起させることが可能なグレーティング構造であることを特徴とする色素増感太陽電池。
2.前記周期が1μm〜2μmであることを特徴とする1記載の色素増感太陽電池。
3.前記金属酸化物は酸化チタンであり、前記多孔質膜の膜厚が2nm〜50nmであることを特徴とする1又は2記載の色素増感太陽電池。
4.前記色素は前記多孔質膜の前記一面に沿って層状をなし、該層の厚さが5nm〜50nmであることを特徴とする1〜3のいずれか1項記載の色素増感太陽電池。
5.前記色素は、二種以上の色素化合物を含んでいることを特徴とする1〜4のいずれか1項記載の色素増感太陽電池。
That is, the present invention employs the following configurations and features.
1. A dye-sensitized type comprising a porous film containing a metal oxide, a photoelectrode having a dye supported on one surface of the porous film, a counter electrode, and an electrolyte layer interposed between the photoelectrode and the counter electrode A solar cell,
The photoelectrode further includes a substrate having a structure with a period of 300 nm to 2 μm formed on the surface, and a metal thin film formed between the other surface of the porous film and the surface of the substrate ,
The dye-sensitized solar cell , wherein the structure is a grating structure capable of exciting surface plasmon resonance over a plurality of wavelengths .
2. 2. The dye-sensitized solar cell according to 1, wherein the cycle is 1 μm to 2 μm.
3. The dye-sensitized solar cell according to 1 or 2, wherein the metal oxide is titanium oxide, and the thickness of the porous film is 2 nm to 50 nm.
4). The dye-sensitized solar cell according to any one of claims 1 to 3, wherein the dye is layered along the one surface of the porous film, and the thickness of the layer is 5 nm to 50 nm.
5. The dye-sensitized solar cell according to any one of claims 1 to 4, wherein the dye contains two or more kinds of dye compounds.
本発明の色素増感太陽電池によれば、従来の全反射減衰(ATR)法を利用した色素増感太陽電池に比べて、プリズムが不要なことから装置全体の簡素化・小型化・設計自由度の向上を図ることができる。例えば、プラスチック製基板上にもグレーティング構造を作製可能であるため、フレキシブルな構造の太陽電池を提供することも可能となる。 According to the dye-sensitized solar cell of the present invention, the prism is not required as compared with the conventional dye-sensitized solar cell using the total reflection attenuation (ATR) method, so that the entire device can be simplified, downsized and designed freely. It is possible to improve the degree. For example, since a grating structure can be manufactured on a plastic substrate, a solar cell having a flexible structure can be provided.
本発明の色素増感太陽電池によれば、所定寸法の周期を有するグレーティング構造が光電極に形成されるため、複数の波長域に亘って表面プラズモンを同時に共鳴励起することで可視域〜赤外域の広範囲にわたる太陽光の電場増強を同時に行うことができ、ひいてはエネルギー変換効率を飛躍的に高めることができる。 According to the dye-sensitized solar cell of the present invention, since a grating structure having a period of a predetermined dimension is formed on the photoelectrode, the surface plasmon is simultaneously resonance-excited over a plurality of wavelength regions, so that the visible region to the infrared region. Thus, it is possible to simultaneously increase the electric field of solar light over a wide range, and thus dramatically increase the energy conversion efficiency.
以下、本発明を図面に示す実施の形態に基づき説明するが、本発明は、下記の具体的な実施形態に何等限定されるものではない。 Hereinafter, although the present invention is explained based on an embodiment shown in a drawing, the present invention is not limited to the following concrete embodiment at all.
本発明の色素増感太陽電池10は、図1にその概略を示すように、金属酸化物を含む多孔質膜4及び該多孔質膜4の一面4aに担持された色素5を有する光電極1と、対極7と、光電極1及び対極7の間に介在する電解質層6と、を備える。 As schematically shown in FIG. 1, the dye-sensitized solar cell 10 of the present invention includes a porous film 4 containing a metal oxide and a photoelectrode 1 having a dye 5 supported on one surface 4 a of the porous film 4. And a counter electrode 7 and an electrolyte layer 6 interposed between the photoelectrode 1 and the counter electrode 7.
ここで、多孔質膜4を構成する金属酸化物としては、酸化チタン(TiO2)が好ましく、この多孔質膜4の膜厚は2nm〜50nmが好ましい。また、色素5としては金属錯体のルテニウム(Ru)や有機色素のポルフィリンが挙げられるが、特に、図1に示すように、酸化チタン等を含む多孔質膜4の一面4aに沿って色素5が層状をなし、この層5の厚さが5nm〜50nmであることが好ましく、さらに二種以上の色素化合物5a、5bを含んでいることがさらに好ましい。 Here, as a metal oxide which comprises the porous film 4, titanium oxide (TiO2) is preferable, and the film thickness of this porous film 4 has preferable 2 nm-50 nm. Examples of the dye 5 include ruthenium (Ru), which is a metal complex, and porphyrin, which is an organic dye. In particular, as shown in FIG. 1, the dye 5 is formed along one surface 4a of a porous film 4 containing titanium oxide or the like. It is layered, and the thickness of this layer 5 is preferably 5 nm to 50 nm, and more preferably contains two or more dye compounds 5a and 5b.
なお、従来の色素増感太陽電池において色素を含んだ層の厚さは通常100nm以上であるが、本発明では対極7から入射し電解質6及び色素層5を通過した光Iが光電極1にて表面プラズモンを励起させるために色素層5の厚さを1〜50nm程度に極めて薄くする必要がある。 In the conventional dye-sensitized solar cell, the thickness of the layer containing the dye is usually 100 nm or more. In the present invention, the light I incident from the counter electrode 7 and passed through the electrolyte 6 and the dye layer 5 is applied to the photoelectrode 1. In order to excite the surface plasmon, the thickness of the dye layer 5 needs to be extremely reduced to about 1 to 50 nm.
また、色素化合物5a、5bを二種以上含ませることで、後述するように、色素層5の光吸収特性(光吸収ピークやそのプロファイル)を調節することができ、例えば、色素層5の光吸収ピークを広くなだらかにさせたり、このピークと表面プラズモン励起波長と一致させたりすることができ、太陽光の電場増強をより効果的に行うことが可能になる。 Further, by including two or more dye compounds 5a and 5b, the light absorption characteristics (light absorption peak and profile thereof) of the dye layer 5 can be adjusted as described later. The absorption peak can be broadened gently, or the peak can be matched with the surface plasmon excitation wavelength, and the electric field of sunlight can be enhanced more effectively.
二種以上の色素5a、5bを含んだ色素層5を形成する手法として交互吸着(LbL)法が好ましい。ここで、交互吸着法とは、ガラス基板等の固体表面に互いに反対電荷を有する高分子電解質を交互に吸着させて積層型薄膜を作製する手法である。この手法の利点は、正の電荷を有した一方の種類の色素化合物5aと、負の電荷を有した他方の種類の色素化合物5bとが交互に吸着させることで、色素化合物5a、5bの層が交互に積層された色素層5を形成することができ、各層5a、5bの厚さも1nm程度まで非常に薄くすることもできる。従って、交互吸着の回数・時間を調節することで色素層5の厚さをナノオーダーで所望の寸法に設定することが可能となる。 As a method for forming the dye layer 5 including two or more kinds of dyes 5a and 5b, an alternate adsorption (LbL) method is preferable. Here, the alternate adsorption method is a method for producing a laminated thin film by alternately adsorbing polymer electrolytes having opposite charges to a solid surface such as a glass substrate. The advantage of this method is that the one type of dye compound 5a having a positive charge and the other type of dye compound 5b having a negative charge are alternately adsorbed to form a layer of the dye compounds 5a and 5b. Can be formed, and the thickness of each layer 5a, 5b can also be made very thin to about 1 nm. Therefore, the thickness of the dye layer 5 can be set to a desired dimension in the nano order by adjusting the number and time of the alternate adsorption.
本発明の色素増感太陽電池10では、光電極1が、300nm〜2μmの周期を有する構造が表面2aに形成された基板2と、多孔質膜5の他面5bと基板2の表面2aとの間に形成された金属薄膜3と、を備える点が重要な特徴である。光電極1を以上のような構成にすることで、表面プラズモン共鳴を励起可能な表面格子構造(グレーティング構造)が光電極1内に形成されることになる。 In the dye-sensitized solar cell 10 of the present invention, the photoelectrode 1 includes a substrate 2 having a structure with a period of 300 nm to 2 μm formed on the surface 2 a, the other surface 5 b of the porous film 5, and the surface 2 a of the substrate 2. It is an important feature that the metal thin film 3 formed between the two is provided. By configuring the photoelectrode 1 as described above, a surface lattice structure (grating structure) capable of exciting surface plasmon resonance is formed in the photoelectrode 1.
ここで、光電極1の一部を構成する基板2として、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリスチレン等ポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等ポリエステル、ポリメタクリル酸メチル等アクリル樹脂、ABS樹脂、エポキシ樹脂、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ナイロン樹脂、フッ素樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリカーボネートなどの樹脂材料や、石英、ガラスなどの無機材料などが挙げられるが、必ずしもこれに限定されない。なお、対極7は、入射光Iを光電極1側に透過させるため、ITOガラス基板等の透明材料が好ましい。 Here, as the substrate 2 constituting a part of the photoelectrode 1, polyolefin such as polyethylene, polypropylene, polymethylpentene, polystyrene, polyester such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, acrylic resin such as polymethyl methacrylate, ABS Resin, epoxy resin, polyarylate, polysulfone, polyethersulfone, nylon resin, fluororesin, phenoxy resin, polyimide resin, resin material such as polycarbonate, inorganic material such as quartz, glass, etc. It is not limited. The counter electrode 7 is preferably a transparent material such as an ITO glass substrate in order to transmit the incident light I to the photoelectrode 1 side.
また、金属薄膜3の材料は金、銀、銅又はアルミニウムであることが好ましい。これらの材料を使用することにより、金属薄膜3を含んだ光電極1自身を化学反応せず安定に動作させることができる。なお、これらの材料のうち、電気化学的な安定性の観点からは金が特に好ましく、プラズモン励起強度の観点からは銀が特に好ましい。金属薄膜3は、例えば、真空蒸着、スパッタリング、CVD等の手法により基板2の表面2aに堆積させることができる。なお、真空蒸着により堆積される薄膜は接着力が弱く剥がれ易い場合があるので、クロム等の別の金属を基板2の表面2aに予め堆積させた上で蒸着させてもよい。 The material of the metal thin film 3 is preferably gold, silver, copper or aluminum. By using these materials, the photoelectrode 1 itself including the metal thin film 3 can be stably operated without a chemical reaction. Of these materials, gold is particularly preferable from the viewpoint of electrochemical stability, and silver is particularly preferable from the viewpoint of plasmon excitation intensity. The metal thin film 3 can be deposited on the surface 2a of the substrate 2 by a technique such as vacuum deposition, sputtering, or CVD. In addition, since the thin film deposited by vacuum vapor deposition has a weak adhesive force and may be easily peeled off, another metal such as chromium may be deposited on the surface 2a of the substrate 2 in advance.
基板2の表面2a上のグレーティング周期Λは1μm〜2μmの範囲内であることが更に好ましい。これにより、可視域〜赤外域の入射光に対して、二又は三つの波長域で表面プラズモンの共鳴励起が可能となり、ひいては、広範囲の波長域で入射光の電場増強が可能となる。なお、グレーティング周期Λが300nm未満になるとプラズモン励起角度が限定される(つまり、低角度側と高角度側でプラズモン励起が起きなくなる)ため好ましくなく、Λが2μmより大きいとプラズモン励起が小さくなるため好ましくない。 More preferably, the grating period Λ on the surface 2 a of the substrate 2 is in the range of 1 μm to 2 μm. Thereby, resonance excitation of surface plasmons can be performed in two or three wavelength ranges with respect to incident light in the visible range to infrared range, and as a result, the electric field of incident light can be enhanced in a wide range of wavelengths. It should be noted that if the grating period Λ is less than 300 nm, the plasmon excitation angle is limited (that is, plasmon excitation does not occur on the low angle side and the high angle side). It is not preferable.
なお、図2に、グレーティング周期と表面プラズモン励起との関係を示した図である。グレーティング周期Λが1μm未満の場合(例えば、図2(b)に示すΛ=320nmである場合)では、可視域において表面プラズモンの共鳴励起が一波長域でのみしか観察することができない。これは、光の入射角を種々変更しても同様の傾向となっており、具体的には、20度で420nmの波長近傍、40度で540nmの波長近傍、70度で630nmの波長近傍でそれぞれ共鳴励起されている。 FIG. 2 is a diagram showing the relationship between the grating period and surface plasmon excitation. When the grating period Λ is less than 1 μm (for example, when Λ = 320 nm shown in FIG. 2B), resonance excitation of surface plasmons can be observed only in one wavelength region in the visible region. This is the same tendency even if the incident angle of light is changed variously. Specifically, it is in the vicinity of the wavelength of 420 nm at 20 degrees, in the vicinity of the wavelength of 540 nm at 40 degrees, and in the vicinity of the wavelength of 630 nm at 70 degrees. Each is resonantly excited.
これに対して、グレーティング周期Λが1μm以上の場合(例えば、図2(a)に示すΛ=1,6μmである場合)では、40度、44度、及び54度のいずれの入射角θでも可視域の光において二又は三つの波長域で表面プラズモンの共鳴励起が確認できる。また、図2(a)に示すΛ=1,6μmの場合は、図2(b)に示すΛ=320nmの場合に比べ、入射角θを僅かに変化させるだけで共鳴励起波長域を大きく変化させることができる。 On the other hand, when the grating period Λ is 1 μm or more (for example, when Λ = 1, 6 μm shown in FIG. 2A), the incident angle θ is 40 degrees, 44 degrees, or 54 degrees. Resonant excitation of surface plasmons can be confirmed in two or three wavelength regions in visible light. In addition, in the case of Λ = 1, 6 μm shown in FIG. 2A, the resonance excitation wavelength region is greatly changed by slightly changing the incident angle θ, compared to the case of Λ = 320 nm shown in FIG. Can be made.
(色素増感太陽電池の作製方法)
下記の方法で作製された実施例を用いて本発明の色素増感太陽電池10の特徴・性能を説明する。基板2として、周期Λが1.6μmのグレーティング構造が表面2aに形成されたポリカーボネート製基板を用意した。この基板2の表面2a上に膜厚が約130nmとなるよう金薄膜3を真空蒸着法により堆積させた。この金薄膜2の上に更に数十nmオーダーの平均粒径を有する酸化チタン(TiO2)の薄膜を電気泳動法により堆積させた。
(Method for producing dye-sensitized solar cell)
The features and performance of the dye-sensitized solar cell 10 of the present invention will be described with reference to examples produced by the following method. As the substrate 2, a polycarbonate substrate having a grating structure with a period Λ of 1.6 μm formed on the surface 2 a was prepared. A gold thin film 3 was deposited on the surface 2a of the substrate 2 by a vacuum deposition method so that the film thickness was about 130 nm. A thin film of titanium oxide (TiO 2 ) having an average particle size on the order of several tens of nm was further deposited on the gold thin film 2 by electrophoresis.
このグレーティング/Au/TiO2から構成された光電極1にポルフィリンの一種であるTMPyPと、銅クロロフィリンナトリウム(SCC)と、の二種の色素化合物5a,5bを用いて交互吸着法により超薄膜(各色素層が各20層、層厚さ約20nm)の色素層5を形成した。また、電解質6には、硫酸ナトリウム(Na2SO4)と硫酸第一鉄七水和物(FeSO4・7H2O)を混合させた水溶液を用いた。また、対極7にはITO基板を用いた。 The photoelectrode 1 composed of this grating / Au / TiO 2 is used as an ultrathin film by alternating adsorption method using two types of dye compounds 5a and 5b of TMPyP which is a kind of porphyrin and copper chlorophyllin sodium (SCC). Each dye layer was formed into 20 dye layers, each having a layer thickness of about 20 nm. The electrolyte 6 was an aqueous solution in which sodium sulfate (Na 2 SO 4 ) and ferrous sulfate heptahydrate (FeSO 4 · 7H 2 O) were mixed. The counter electrode 7 was an ITO substrate.
なお、TMPyPの正式名称は5,10,15,20−Tetrakis(1−methyl−4−pyridinio)porphyrinTetra(p−toluenesulfonate)であり、その化学式はC72H66N8O12S4である。このTMPyPは水溶性の赤色色素である。実施例1では純水に溶かしたものをカチオンとして用いた。アニオンとN+とによって吸着する。 The official name of TMPyP is 5,10,15,20-Tetrakis (1-methyl-4-pyridineio) porphyrinTetra (p-toluenesulfonate), and its chemical formula is C 72 H 66 N 8 O 12 S 4 . This TMPyP is a water-soluble red pigment. In Example 1, what was melt | dissolved in the pure water was used as a cation. Adsorbed by anions and N +.
銅クロロフィリンナトリウムの化学式はC34H31CuN4Na3O6である。銅クロロフィリンナトリウムは、クロロフィルa(−CH3)とクロロフィルb(−CHO)との混合物のマグネシウムを銅に置換し、極めて安定な水溶性の緑色色素としたものである。実施例1では純水に溶かしたものをアニオンポリマーとして用いた。カチオンとCOO−とによって吸着する。 The chemical formula of sodium copper chlorophyllin is C 34 H 31 CuN 4 Na 3 O 6. Copper chlorophyllin sodium replaces magnesium in a mixture of chlorophyll a (—CH 3) and chlorophyll b (—CHO) with copper to form an extremely stable water-soluble green pigment. In Example 1, what was melt | dissolved in the pure water was used as an anionic polymer. Adsorption by cations and COO-.
以上のように作製された色素増感太陽電池10の諸特性を、図面を参照しながら以下に説明する。 Various characteristics of the dye-sensitized solar cell 10 produced as described above will be described below with reference to the drawings.
(表面プラズモン励起特性)
図3(a)に入射角θを20度、36度、及び40度に変化させた場合の表面プラズモン励起特性を示す。図3(a)に示すように実際に作製された太陽電池においても、グレーティング構造のみを使用した実験(Λ=1.6μm、図2(a)参照)で確認された複数波長域での表面プラズモン共鳴励起現象と同様の現象が観察された。
(Surface plasmon excitation characteristics)
FIG. 3A shows surface plasmon excitation characteristics when the incident angle θ is changed to 20 degrees, 36 degrees, and 40 degrees. As shown in FIG. 3A, even in a solar cell actually manufactured, the surface in a plurality of wavelength regions confirmed in an experiment using only the grating structure (Λ = 1.6 μm, see FIG. 2A). A phenomenon similar to the plasmon resonance excitation phenomenon was observed.
具体的には、波長域600nm〜770nmにおいて、入射角θが20度の場合は670nm及び760nm近傍の二箇所で共鳴ディップが観測された。入射角θが36度の場合は640nm及び740nm近傍の二箇所で共鳴ディップが観測された。入射角θが40度の場合は、630nm及び725nm近傍の二箇所で共鳴ディップが観測された。 Specifically, in the wavelength region 600 nm to 770 nm, when the incident angle θ is 20 degrees, resonance dip was observed at two locations near 670 nm and 760 nm. When the incident angle θ was 36 degrees, resonance dip was observed at two locations near 640 nm and 740 nm. When the incident angle θ was 40 degrees, resonance dip was observed at two locations near 630 nm and 725 nm.
(色素の光吸収特性)
図3(b)は実施例1で採用した色素層5の光吸収特性を示す。上述した図3(a)と図3(b)とから、入射角θが36度の場合に共鳴ディップが生じる波長と色素層5の光吸収が極大となる波長とが一致することがわかる。従って、光の入射角θを変化させることで表面プラズモン共鳴励起波長と色素層5の光吸収ピークとを一致させることが可能となる。
(Light absorption characteristics of dyes)
FIG. 3B shows the light absorption characteristics of the dye layer 5 employed in Example 1. From FIG. 3A and FIG. 3B described above, it can be seen that when the incident angle θ is 36 degrees, the wavelength at which the resonance dip occurs coincides with the wavelength at which the light absorption of the dye layer 5 is maximized. Therefore, the surface plasmon resonance excitation wavelength and the light absorption peak of the dye layer 5 can be matched by changing the incident angle θ of light.
実施例1の色素層5は、交互吸着法により作製し、二種の色素分子を交互に合計40層分、積層させている。交互吸着法で色素層5を作製する利点は、入射光を光電極1に通過させるための所望の膜厚さを正確に得ることができるとともに、各色素化合物5a,5bが有する光吸収プロファイルやピークを変化させることが可能となる。 The dye layer 5 of Example 1 is produced by an alternate adsorption method, and two kinds of dye molecules are alternately stacked for a total of 40 layers. The advantage of producing the dye layer 5 by the alternate adsorption method is that the desired film thickness for allowing the incident light to pass through the photoelectrode 1 can be obtained accurately, and the light absorption profile possessed by each of the dye compounds 5a and 5b It becomes possible to change the peak.
例えば、図3(c)は、色素層5に採用した色素化合物の一方であるTMPyPの光吸収特性と他方の色素化合物である銅クロロフィリンナトリウム(SCC)の光吸収特性とを示す。この図3(c)に示す各色素の各光吸収プロファイルを重ね合わせた結果と、図3(b)の実施例1の色素層5の光吸収特性とはほぼ一致することがわかる。従って、交互吸着法により二種以上(例えば、二種、四種、六種)の色素化合物を含んだ色素層5を作製することで、光吸収ピークは任意に変更できるとともに、光吸収ピーク近傍の曲線の勾配をなだらかにすることも可能である。これにより、表面プラズモン共鳴励起波長と色素ピーク波長と広範囲に一致することになる。 For example, FIG. 3C shows the light absorption characteristics of TMPyP, which is one of the dye compounds employed in the dye layer 5, and the light absorption characteristics of copper chlorophyllin sodium (SCC), which is the other dye compound. It can be seen that the result of superimposing the respective light absorption profiles of the respective dyes shown in FIG. 3C substantially coincides with the light absorption characteristics of the dye layer 5 of Example 1 shown in FIG. Therefore, the light absorption peak can be arbitrarily changed by preparing the dye layer 5 containing two or more kinds (for example, two kinds, four kinds, six kinds) of dye compounds by the alternate adsorption method, and the vicinity of the light absorption peak. It is also possible to smooth the slope of the curve. Thereby, the surface plasmon resonance excitation wavelength and the dye peak wavelength coincide with each other over a wide range.
(電気化学特性)
本発明の色素増感太陽電池10の電気化学特性を検証するために、短絡光電流−時間特性の測定を行った。具体的には、ポテンショスタットにより印加電圧0Vの状態で短絡光電流特性を調べた。まず光を遮断した状態で測定を開始し、60秒ごとに光の照射と遮断を繰り返して電流値の変化を測定した。その後、白色光を照射し、入射角θを20度、36度、及び40度に変化させた場合の短絡光電流の測定を行った。その結果を図4(a)、(b)、及び(c)に示す。なお、表面プラズモンを励起するP偏光と表面プラズモンを励起しないS偏光との状態で光電流の大きさの違いも比較した。
(Electrochemical characteristics)
In order to verify the electrochemical characteristics of the dye-sensitized solar cell 10 of the present invention, the short-circuit photocurrent-time characteristics were measured. Specifically, the short-circuit photocurrent characteristics were examined with a potentiostat at an applied voltage of 0 V. First, the measurement was started with the light blocked, and the change in the current value was measured by repeating the light irradiation and blocking every 60 seconds. Then, the white light was irradiated and the short circuit photocurrent when the incident angle θ was changed to 20 degrees, 36 degrees, and 40 degrees was measured. The results are shown in FIGS. 4 (a), (b), and (c). The difference in the magnitude of the photocurrent was also compared between P-polarized light that excites surface plasmons and S-polarized light that does not excite surface plasmons.
図4(a)、(b)、及び(c)のいずれの場合でも、表面プラズモンを励起しないS偏光に比べて表面プラズモンを励起するP偏光を照射した場合の方が大きな光電流を発生していることがわかる。特に、入射角θが36度の場合(図4(b)参照)には、約2倍の光電流を発生していることがわかる。この入射角θでの表面プラズモン共鳴励起波長は、図3で示したように色素層5の光吸収ピーク波長と一致しているため、電場増強が促進されたといえる。 In any of the cases of FIGS. 4A, 4B, and 4C, a larger photocurrent is generated when P-polarized light that excites surface plasmons is irradiated than S-polarized light that does not excite surface plasmons. You can see that In particular, when the incident angle θ is 36 degrees (see FIG. 4B), it can be seen that about twice as much photocurrent is generated. Since the surface plasmon resonance excitation wavelength at the incident angle θ matches the light absorption peak wavelength of the dye layer 5 as shown in FIG. 3, it can be said that the electric field enhancement was promoted.
(多孔質膜/色素層の厚さが電場増強に及ぼす影響)
次に、酸化チタンを含んだ多孔質膜4の厚さと色素層5の厚さと変化させて、上述のような短絡光電流特性試験及びこれに関連する理論計算を行った。表1は、これらのパラメータが表面プラズモン共鳴電場増強に及ぼす影響を示したものである。
(Effect of porous membrane / dye layer thickness on electric field enhancement)
Next, by changing the thickness of the porous film 4 containing titanium oxide and the thickness of the dye layer 5, the short-circuit photocurrent characteristic test and the theoretical calculation related thereto were performed. Table 1 shows the effect of these parameters on the surface plasmon resonance electric field enhancement.
表1に示すように、入射光Iを透過し、光電極1において好適な表面プラズモン共鳴電場増強を得るには、多孔質膜4(図中、TiO2膜)は5nm〜30nmの厚さを有し、色素層5は10nm〜50nmの厚さを有することが望ましい。さらに好ましくは、多孔質膜4の厚さと色素層5の層厚さとの組合せが、5nm〜15nmと10nm〜15nmである。 As shown in Table 1, in order to transmit incident light I and obtain a suitable surface plasmon resonance electric field enhancement in the photoelectrode 1, the porous film 4 (TiO 2 film in the figure) has a thickness of 5 nm to 30 nm. The pigment layer 5 preferably has a thickness of 10 nm to 50 nm. More preferably, the combination of the thickness of the porous film 4 and the layer thickness of the dye layer 5 is 5 nm to 15 nm and 10 nm to 15 nm.
なお、理論計算上では、色素層5の層厚さを10nm程度に設定すれば多孔質膜4の膜厚は2nm〜50nmの範囲で好適な表面プラズモン共鳴電場増強が得られること、及び、多孔質膜4の膜厚を5nm程度に設定すれば色素層5の層厚さを5nm〜50nmの範囲で好適な表面プラズモン共鳴電場増強が得られることが分かった。 In theoretical calculation, if the layer thickness of the dye layer 5 is set to about 10 nm, a suitable surface plasmon resonance electric field enhancement can be obtained when the thickness of the porous film 4 is in the range of 2 nm to 50 nm. It was found that if the thickness of the material film 4 is set to about 5 nm, a suitable surface plasmon resonance electric field enhancement can be obtained when the layer thickness of the dye layer 5 is in the range of 5 nm to 50 nm.
本発明の色素増感太陽電池は、表面プラズモン共鳴励起による電場増強を得るために、簡素なグレーティング構造を光電極に設けている。これにより、本発明の色素増感太陽電池は、装置全体を簡素にかつ設計自由度を向上させることができるので、産業上の有用性が非常に高い。 The dye-sensitized solar cell of the present invention is provided with a simple grating structure on the photoelectrode in order to obtain an electric field enhancement by surface plasmon resonance excitation. Thereby, since the dye-sensitized solar cell of this invention can simplify the whole apparatus and can improve a design freedom, it is industrially very useful.
さらに、本発明の色素増感太陽電池は所定周期のグレーティング構造を採用すれば、一日の日照時間の間で、様々な入射角で又は広範囲の波長域に亘って太陽光のエネルギー変換が可能である。 Furthermore, if the dye-sensitized solar cell of the present invention adopts a grating structure with a predetermined period, it is possible to convert the energy of sunlight at various incident angles or over a wide wavelength range during the daylight hours of the day. It is.
1 光電極
2 基板
2a 基板の表面
3 金属薄膜
4 多孔質膜
4a,4b 多孔質膜の表面
5 色素(色素層)
5a,5b 色素化合物
6 電解質
7 対極
10 色素増感太陽電池
Λ グレーティング構造の周期(又はピッチ)
θ 入射角
1 Photoelectrode 2 Substrate 2a Substrate surface 3 Metal thin film 4 Porous film 4a, 4b Porous film surface 5 Dye (dye layer)
5a, 5b Dye compound 6 Electrolyte 7 Counter electrode 10 Dye-sensitized solar cell Λ Period (or pitch) of grating structure
θ Incident angle
Claims (5)
前記光電極は、300nm〜2μmの周期を有する構造が表面に形成された基板と、前記多孔質膜の他面と前記基板の前記表面との間に形成された金属薄膜と、を更に備え、
前記構造は、複数の波長に亘って表面プラズモン共鳴を励起させることが可能なグレーティング構造であることを特徴とする色素増感太陽電池。 A dye-sensitized type comprising a porous film containing a metal oxide, a photoelectrode having a dye supported on one surface of the porous film, a counter electrode, and an electrolyte layer interposed between the photoelectrode and the counter electrode A solar cell,
The photoelectrode further includes a substrate having a structure with a period of 300 nm to 2 μm formed on the surface, and a metal thin film formed between the other surface of the porous film and the surface of the substrate ,
The dye-sensitized solar cell , wherein the structure is a grating structure capable of exciting surface plasmon resonance over a plurality of wavelengths .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010107941A JP5561641B2 (en) | 2010-05-10 | 2010-05-10 | Dye-sensitized solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010107941A JP5561641B2 (en) | 2010-05-10 | 2010-05-10 | Dye-sensitized solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011238426A JP2011238426A (en) | 2011-11-24 |
JP5561641B2 true JP5561641B2 (en) | 2014-07-30 |
Family
ID=45326198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010107941A Expired - Fee Related JP5561641B2 (en) | 2010-05-10 | 2010-05-10 | Dye-sensitized solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5561641B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4213355B2 (en) * | 2001-02-28 | 2009-01-21 | 株式会社豊田中央研究所 | Dye-sensitized solar cell and dye-sensitized solar cell module |
JP5019749B2 (en) * | 2006-01-05 | 2012-09-05 | 京セラ株式会社 | PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE |
JPWO2010029961A1 (en) * | 2008-09-10 | 2012-02-02 | 京セラ株式会社 | Photoelectric conversion device |
JP2011076845A (en) * | 2009-09-30 | 2011-04-14 | Univ Of Electro-Communications | Dye-sensitized solar cell, and manufacturing method thereof |
JP5731478B2 (en) * | 2010-03-19 | 2015-06-10 | 国立大学法人東京工業大学 | Solar cell having a porous structure in which metal nanoparticles are supported in pores |
-
2010
- 2010-05-10 JP JP2010107941A patent/JP5561641B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011238426A (en) | 2011-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ding et al. | Plasmonic dye-sensitized solar cells | |
Boppella et al. | Plasmon-sensitized graphene/TiO2 inverse opal nanostructures with enhanced charge collection efficiency for water splitting | |
Guo et al. | Design and coupling of multifunctional TiO 2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell | |
Nishijima et al. | Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode | |
Kawawaki et al. | Enhancement of dye-sensitized photocurrents by gold nanoparticles: effects of plasmon coupling | |
Baba et al. | Increased short-circuit current in grating-coupled surface plasmon resonance field-enhanced dye-sensitized solar cells | |
Halaoui et al. | Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals | |
Morisawa et al. | Photoinduced chirality switching of metal-inorganic plasmonic nanostructures | |
Saito et al. | Site-selective plasmonic etching of silver nanocubes | |
Chen et al. | Versatile three-dimensional virus-based template for dye-sensitized solar cells with improved electron transport and light harvesting | |
Xie et al. | Photonic crystals for sensitized solar cells: fabrication, properties, and applications | |
Chen et al. | Computational modeling of plasmon-enhanced light absorption in a multicomponent dye sensitized solar cell | |
Wang et al. | Multilayer TiO 2 nanorod cloth/nanorod array electrode for dye-sensitized solar cells and self-powered UV detectors | |
Jung et al. | Enhanced photovoltaic properties and long-term stability in plasmonic dye-sensitized solar cells via noncorrosive redox mediator | |
WO2012153340A1 (en) | Ultrathin film solar cells | |
JP2007335222A (en) | Photoelectrode, dye-sensitized solar cell using it, and its manufacturing method | |
Shen et al. | Multiple electron injection dynamics in linearly-linked two dye co-sensitized nanocrystalline metal oxide electrodes for dye-sensitized solar cells | |
Kawawaki et al. | Enhancement of PbS quantum dot-sensitized photocurrents using plasmonic gold nanoparticles | |
TW200919743A (en) | Dye-sensitized solar cell | |
Sumita et al. | Water contamination effect on liquid acetonitrile/TiO2 anatase (101) interface for durable dye-sensitized solar cell | |
Foster et al. | Light-trapping in dye-sensitized solar cells | |
Lee et al. | Monolithic multiscale bilayer inverse opal electrodes for dye-sensitized solar cell applications | |
Maho et al. | Photonic structuration of hybrid inverse-opal TiO2—perovskite layers for enhanced light absorption in solar cells | |
Farsinezhad et al. | Reduced Ensemble Plasmon Line Widths and Enhanced Two-Photon Luminescence in Anodically Formed High Surface Area Au–TiO2 3D Nanocomposites | |
Ishida et al. | Effect of plasmon coupling on quantum efficiencies of plasmon-induced charge separation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130412 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140422 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140508 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140528 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140530 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5561641 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |