JP5559732B2 - Battery manufacturing method and welding method - Google Patents

Battery manufacturing method and welding method Download PDF

Info

Publication number
JP5559732B2
JP5559732B2 JP2011074589A JP2011074589A JP5559732B2 JP 5559732 B2 JP5559732 B2 JP 5559732B2 JP 2011074589 A JP2011074589 A JP 2011074589A JP 2011074589 A JP2011074589 A JP 2011074589A JP 5559732 B2 JP5559732 B2 JP 5559732B2
Authority
JP
Japan
Prior art keywords
energization
welding
current
current collector
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011074589A
Other languages
Japanese (ja)
Other versions
JP2012209156A (en
Inventor
有吾 中川
康晴 山田
宏和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2011074589A priority Critical patent/JP5559732B2/en
Publication of JP2012209156A publication Critical patent/JP2012209156A/en
Application granted granted Critical
Publication of JP5559732B2 publication Critical patent/JP5559732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は電池の製造方法及び溶接方法に関し、特に隣接する単電池を電気的に接続する集電板の溶接技術に関する。   The present invention relates to a battery manufacturing method and a welding method, and more particularly to a current collector plate welding technique for electrically connecting adjacent unit cells.

車両に搭載されるニッケル水素電池等の二次電池は、直方体状の電槽の短側面を隔壁として用いて相互に連接して構成されるものもある。各電槽内は、正極板と負極板をセパレータを介して積層して構成された極板群とその両側に接合された集電板及び電解液を備える。隣接する電槽間の隔壁には貫通穴が形成され、この貫通穴に集電板の接続突部を嵌入し、接続突部同士を溶接して隣接する単電池同士を電気的に接続する。   Some secondary batteries such as nickel metal hydride batteries mounted on a vehicle are configured to be connected to each other using a short side surface of a rectangular parallelepiped battery case as a partition wall. Each battery case includes an electrode plate group formed by laminating a positive electrode plate and a negative electrode plate with a separator interposed therebetween, and a current collector plate and an electrolyte solution bonded to both sides thereof. A through hole is formed in the partition wall between the adjacent battery cases, and the connection protrusions of the current collector plate are fitted into the through holes, and the adjacent unit cells are electrically connected by welding the connection protrusions.

溶接としては、例えば抵抗溶接が用いられ、集電板の接続突部を互いに当接させた状態で溶接電極を両端支持した状態で押圧し、溶接電極に所定の溶接電流を流すことで溶接する。   As the welding, for example, resistance welding is used, and welding is performed by pressing the welding electrode in a state where both ends of the current collector plate are in contact with each other while supporting both ends, and passing a predetermined welding current through the welding electrode. .

抵抗溶接(プロジェクション抵抗溶接等)は公知であり、例えば下記の特許文献1には、1打点毎の溶接過程を検出する検出部と、検出部からの信号を打点数としてカウントする第1の記憶部と、所定の打点数に応じた予備溶接条件が記憶された第2の記憶部と、第1の記憶部から出力される打点数に応じて第2の記憶部の予備溶接条件を出力する条件変更部と、条件変更部から出力される予備溶接条件で溶接を制御する制御部を具備した抵抗溶接の予備通電制御装置が開示されている。   Resistance welding (projection resistance welding or the like) is known. For example, in Patent Document 1 below, a detection unit that detects a welding process for each hit point and a first memory that counts a signal from the detection unit as the number of hit points. Part, a second storage unit storing pre-welding conditions according to a predetermined number of hit points, and a pre-welding condition of the second storage unit according to the number of hit points output from the first storage unit A resistance welding pre-energization control device including a condition changing unit and a control unit that controls welding under pre-welding conditions output from the condition changing unit is disclosed.

また、下記の特許文献2には、金属被覆層を表面に設けた金属母材同士を、前記金属母材に形成した突起部で溶接する抵抗溶接方法であって、前記金属被覆層が、前記金属母材より小さい電気抵抗値を有するとともに、前記金属母材より低い融点を有し、前記金属母材に形成した複数の突起部で同時に溶接する際に、通電の中期から終期に到る期間の溶接電流を減少させることが開示されている。   Further, Patent Document 2 below is a resistance welding method in which metal base materials provided with metal coating layers on their surfaces are welded with protrusions formed on the metal base material, and the metal coating layers are A period from the middle to the end of energization when welding at the same time with a plurality of protrusions formed on the metal base material having a lower electrical resistance value than the metal base material and a lower melting point than the metal base material It is disclosed to reduce the welding current.

特開平8−238574号公報JP-A-8-238574 特開2004−90037号公報JP 2004-90037 A

ところで、隣接する単電池同士を電気的に接続する際には、隔壁に貫通穴を形成し、この貫通穴に集電板の接続突部を嵌入して溶接するので、貫通穴を密封するためにOリング等のシール材が必要となり、集電板の溶接時には、溶接を確実に行うとともに、シール材を締め付けて確実に貫通穴を密封することが必要となる。   By the way, when electrically connecting adjacent unit cells, a through hole is formed in the partition wall, and a connecting protrusion of the current collector plate is inserted into the through hole and welded, so that the through hole is sealed. In addition, a sealing material such as an O-ring is required, and when the current collector plate is welded, it is necessary to surely perform welding and to securely seal the through hole by tightening the sealing material.

溶接前に集電板に熱を印加してアニールすると、集電板の接続突部が熱変形するため溶接時においてシール材を効果的に締め付けることが可能であるが、溶接前に加熱機で別途アニールする必要があるので処理が煩雑となる。そのため、集電板を熱アニールすることなく確実に溶接できるとともにシール材を締め付けることができる方法が望まれている。   When heat is applied to the current collector plate before welding and annealing is performed, the connection protrusions of the current collector plate are thermally deformed, so that it is possible to effectively tighten the sealing material during welding. Since it is necessary to anneal separately, the process becomes complicated. Therefore, there is a demand for a method that can reliably weld the current collector plate without thermal annealing and can tighten the sealing material.

本発明の目的は、熱を印加してアニールすることなく、又はアニールが不十分な場合でも、被溶接部材(電池の集電板)同士を溶接できると同時に、シール材を十分に締め付けることができる方法を提供することにある。   The object of the present invention is to weld the members to be welded (battery current collector plates) to each other without annealing by applying heat or when the annealing is insufficient, and at the same time sufficiently tighten the sealing material. It is to provide a method that can.

本発明は、互いに隣接する単電池の正極側と負極側の集電板の間に貫通穴が形成された隔壁が配され、かつ前記集電板と前記隔壁の間にシール材が配され、前記貫通穴を用いて前記集電板の接続突部同士を溶接する電池の製造方法であって、接電流より単位時間当たりの熱量が低い、電流値が2.0KA〜4.0KAで、通電時間が20msec〜100msecの電流を前記接続突部に通電する第1通電工程と、前記第1通電後に、溶接電流を通電して前記接続突部同士を溶接する第2通電工程とを備えることを特徴とする。本発明の1つの実施形態では、前記第2通電工程は、一定電流の前記溶接電流を所定時間だけ通電する工程と、通電電流を順次減少させる工程とを備える。 The present invention, partition walls through holes are formed between the current collector plate for positive and negative sides of the cell are disposed adjacent to each other, and the sealing material is disposed between the said collector barrier rib, a method of manufacturing a battery of welding connection protrusion between the current collector plate with the through hole, a lower amount of heat per unit time than welding current, current value at 2.0KA~4.0KA, A first energization step of energizing the connection protrusions with an energization time of 20 msec to 100 msec; and a second energization step of energizing a welding current and welding the connection protrusions after the first energization. It is characterized by. In one embodiment of the present invention, before Symbol second energizing step includes the steps of energizing the welding current of a constant current for a predetermined time, and a step of reducing the energization current sequentially.

本発明によれば、溶接を行う第2通電に先立って実行される第1通電により、実質的に熱アニールと同様の熱変形を集電板の接続突部に生じさせることで、別途、熱印加によるアニール処理を施すことなく、又はアニール処理が不十分であっても、集電板の接続突部同士を溶接し、シール材の締め付け量を確保できる。   According to the present invention, the first energization performed prior to the second energization for welding causes thermal deformation substantially similar to thermal annealing to the connection protrusions of the current collector plate, so that Even if the annealing treatment by application is not performed or the annealing treatment is insufficient, the connection protrusions of the current collector plates can be welded together to secure the tightening amount of the sealing material.

実施形態における二次電池の構成図である。It is a block diagram of the secondary battery in embodiment. 図1におけるA部拡大図である。It is the A section enlarged view in FIG. 実施形態の通電プロファイルを示すグラフである。It is a graph which shows the electricity supply profile of embodiment. 従来技術の通電プロファイルを示すグラフである。It is a graph which shows the electricity supply profile of a prior art. 第1通電を変化させたときの締め込み量変化を示すグラフである。It is a graph which shows the amount of tightening when a 1st electricity supply is changed. 他の実施形態の構成図である。It is a block diagram of other embodiment.

以下、図面に基づき本発明の実施形態について、車両に搭載する二次電池を例にとり説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings, taking a secondary battery mounted on a vehicle as an example. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments.

図1に、本実施形態における二次電池の構成を示す。二次電池10は、幅の狭い短側面と幅の広い長側面を有する直方体状の電槽12をその短側面を隔壁16として共用して相互に連接してなる。図においては、6個の電槽12が示されているが、その数は任意である。各電槽12の上面開口は一体の蓋体13で一体的に閉鎖される。   In FIG. 1, the structure of the secondary battery in this embodiment is shown. The secondary battery 10 is formed by connecting a rectangular parallelepiped battery case 12 having a narrow short side surface and a wide long side surface, sharing the short side surface as a partition wall 16. In the figure, six battery cases 12 are shown, but the number is arbitrary. The upper surface opening of each battery case 12 is integrally closed with an integral lid 13.

各電槽12内には、正極板と負極板をセパレータを介して積層して構成された極板群14とその両側に接合された集電板20a、20bからなる発電要素が電解液とともに収容され、単電池を構成する。極板群14の正極板と負極板は互いに反対の側部に突出してそれぞれ集電板20a、20bに接合される。   In each battery case 12, a power generation element including an electrode plate group 14 formed by laminating a positive electrode plate and a negative electrode plate via a separator and current collector plates 20a and 20b bonded to both sides thereof is accommodated together with an electrolyte. A single cell. The positive electrode plate and the negative electrode plate of the electrode plate group 14 protrude on opposite sides and are joined to the current collector plates 20a and 20b, respectively.

隣接する電槽12、12間の隔壁16の上部には接続用の貫通穴が形成される。また、集電板20a、20bの上部にはそれぞれ隔壁16の貫通穴に嵌入する接続突部が形成され、隣接する電槽12,12間で集電板20aの接続突部と集電板20bの接続突部同士が抵抗溶接(好ましくはプロジェクション溶接)により溶接される。抵抗溶接の方法については、さらに後述する。   A through hole for connection is formed in the upper part of the partition wall 16 between the adjacent battery cases 12 and 12. In addition, connection protrusions that fit into the through holes of the partition wall 16 are formed on the upper portions of the current collector plates 20a and 20b, respectively, and the connection protrusion of the current collector plate 20a and the current collector plate 20b are disposed between the adjacent battery cases 12 and 12. The connection projections are welded by resistance welding (preferably projection welding). The resistance welding method will be further described later.

両端の電槽12の外側の短側面にも貫通穴が形成され、それぞれ正極端子22及び負極端子24が装着される。正極端子22には、正極端子22に隣接する電槽12の集電板20aが接続される。負極端子24には、負極端子24に隣接する電槽12の集電板20bが接続される。   Through holes are also formed on the outer short sides of the battery case 12 at both ends, and a positive electrode terminal 22 and a negative electrode terminal 24 are mounted, respectively. A current collector plate 20 a of the battery case 12 adjacent to the positive electrode terminal 22 is connected to the positive electrode terminal 22. A current collector plate 20 b of the battery case 12 adjacent to the negative electrode terminal 24 is connected to the negative electrode terminal 24.

以上のようにして、複数の単電池が互いに直列接続され、両端の正極端子22、負極端子24間に所定の直流電圧を出力する。   As described above, the plurality of single cells are connected in series, and a predetermined DC voltage is output between the positive terminal 22 and the negative terminal 24 at both ends.

図2に、図1におけるA部、すなわち隔壁16に形成された貫通穴における集電板20a、20bの溶接部位を示す。   FIG. 2 shows a welded portion of the current collector plates 20a and 20b in the portion A in FIG.

隔壁16の一部に貫通穴30が形成され、集電板20aの接続突部21aと、集電板20bの接続突部21bがともにこの貫通穴30に嵌入されて当接する。貫通穴30と接続突部21a、21bとの間には、シール材としてのOリング32が装着される。Oリング32が装着された状態において、一対の溶接電極を集電板20a、20bの接続突部21a、21bを挟むように配置し、接続突部21a、21bを両側から押圧して所定の荷重を印加した状態で溶接電流を流すことにより接続突部21a、21bを抵抗溶接する。   A through hole 30 is formed in a part of the partition wall 16, and the connection protrusion 21 a of the current collector plate 20 a and the connection protrusion 21 b of the current collector plate 20 b are both fitted into and contact with the through hole 30. An O-ring 32 as a sealing material is attached between the through hole 30 and the connection protrusions 21a and 21b. In a state where the O-ring 32 is mounted, a pair of welding electrodes are arranged so as to sandwich the connection projections 21a and 21b of the current collector plates 20a and 20b, and the connection projections 21a and 21b are pressed from both sides to obtain a predetermined load. The connection projections 21a and 21b are resistance-welded by flowing a welding current in a state in which is applied.

このような構成において、従来においては集電板20a、20bはともに熱印加によるアニール処理が施された後に抵抗溶接しており、集電板20a、20bの接続突部21a、21bがアニールにより熱変形するため抵抗溶接時においてシール材としてのOリング32を効果的に締め付けることが可能であるが、溶接前に加熱機で別途アニールする必要があるので処理が煩雑となる。   In such a configuration, conventionally, the current collector plates 20a and 20b are both subjected to resistance welding after being subjected to an annealing treatment by applying heat, and the connection protrusions 21a and 21b of the current collector plates 20a and 20b are heated by annealing. Since it deforms, it is possible to effectively tighten the O-ring 32 as a sealing material at the time of resistance welding, but the treatment becomes complicated because it needs to be separately annealed with a heater before welding.

そこで、本実施形態では、集電板20a、20bに熱印加によるアニール処理が施されていない状態で抵抗溶接を行う。具体的には、集電板20a、20bの接続突部21a、21bに溶接電流を流す前に、これに先立って第1通電を行い、第1通電により接続突部21a、21bを加熱して実質的に熱印加によるアニール処理と同様の熱変形を生じさせる。第1通電の目的は接続突部21a、21b同士の溶接ではないので、接続突部21a、21bを溶接するために必要な所定の溶接電流よりもその電流値は小さくし、単位時間当たりの熱量を第2通電より小さくしている。   Therefore, in the present embodiment, resistance welding is performed in a state where the current collector plates 20a and 20b are not annealed by applying heat. Specifically, before supplying the welding current to the connection projections 21a and 21b of the current collector plates 20a and 20b, first energization is performed prior to this, and the connection projections 21a and 21b are heated by the first energization. Thermal deformation substantially similar to the annealing treatment by applying heat is generated. Since the purpose of the first energization is not the welding of the connection protrusions 21a and 21b, the current value is made smaller than a predetermined welding current necessary for welding the connection protrusions 21a and 21b, and the amount of heat per unit time. Is smaller than the second energization.

すなわち、本実施形態では、以下の2つの工程により集電板20、20bの接続突部21a、21b同士を溶接する。
(1)溶接電流よりも小さい電流値を通電する(第1通電)。
(2)その後に、溶接電流を通電して溶接する(第2通電)。
That is, in this embodiment, the connection protrusions 21a and 21b of the current collector plates 20 and 20b are welded by the following two processes.
(1) Energize a current value smaller than the welding current (first energization).
(2) Thereafter, welding is performed by applying a welding current (second energization).

図3に、本実施形態における通電プロファイルを示す。図において、横軸は時間を示し、縦軸は通電電流値を示す。   FIG. 3 shows an energization profile in the present embodiment. In the figure, the horizontal axis represents time, and the vertical axis represents the energization current value.

まず、ある時刻t1において第1通電100を開始する。この第1通電100では溶接電流よりも小さい一定の電流を接続突部21a、21bに流す。そして、時刻t2において第1通電を終了するとともに、次に、第2通電102を開始する。この第2通電102では、接続突部21a、21b同士を溶接するために必要な溶接電流を流す。第2通電102は、時刻t2から時刻t3まで一定値であり、その後、時刻t3から時刻t4までは順次減少して時刻t4でゼロとなる。   First, the first energization 100 is started at a certain time t1. In the first energization 100, a constant current smaller than the welding current is passed through the connection protrusions 21a and 21b. Then, at the time t2, the first energization is terminated, and then the second energization 102 is started. In the second energization 102, a welding current necessary for welding the connection protrusions 21a and 21b is passed. The second energization 102 has a constant value from time t2 to time t3, and then decreases sequentially from time t3 to time t4 and becomes zero at time t4.

図4に、本実施形態の通電プロファイルとの比較のため、従来の通電プロファイルを示す。従来においては、集電板20a、20bは事前に熱印加によるアニール処理が施されており、時刻t1から時刻t5まで溶接電流を流し、その後、時刻t5から時刻t6まで溶接電流よりも低い電流を流す。   FIG. 4 shows a conventional energization profile for comparison with the energization profile of the present embodiment. Conventionally, the current collector plates 20a and 20b are preliminarily annealed by applying heat, and a welding current is supplied from time t1 to time t5, and then a current lower than the welding current is applied from time t5 to time t6. Shed.

図3と図4とを比較すると、本実施形態においては、溶接前に第1通電100が存在すること、第2通電102の時刻t3〜t4において順次減少するプロファイルが存在すること、の2点において従来技術と相違する。第1通電100によって接続突部21a、21bを抵抗加熱して熱印加によるアニール処理と同様の熱変形効果を得ることができ、Oリング32の締め付け量を適切な量に調整することができる。そのため、熱印加によるアニール処理を不要とする(アニールレス)。また、第2通電102の時刻t3〜t4における減少により、溶接に必要な熱量を確保するとともに、隔壁16あるいはOリング32へのダメージを最小限に抑制することができる。   Comparing FIG. 3 and FIG. 4, in this embodiment, there are two points: the first energization 100 exists before welding, and the profile that sequentially decreases at the time t3 to t4 of the second energization 102 exists. In FIG. The first energization 100 can resistance-heat the connection protrusions 21a and 21b to obtain the same thermal deformation effect as the annealing process by applying heat, and the tightening amount of the O-ring 32 can be adjusted to an appropriate amount. Therefore, the annealing process by applying heat is not required (annealingless). Further, the decrease of the second energization 102 at the times t3 to t4 can secure the amount of heat necessary for welding and suppress damage to the partition wall 16 or the O-ring 32 to the minimum.

図5に、第1通電100の通電量を変化させた場合の、Oリング32の締め付け量の変化を示す。第1通電100を時刻t1〜t2において流し、第2通電102を時刻t2〜t4において流す場合に、第2通電102を一定として第1通電100の通電量を変化させた場合である。   FIG. 5 shows a change in the tightening amount of the O-ring 32 when the energization amount of the first energization 100 is changed. This is a case where the first energization 100 is flowed at times t1 to t2 and the second energization 102 is flowed at times t2 to t4, and the energization amount of the first energization 100 is changed with the second energization 102 being constant.

図において、実線100bは基準通電量であり、これよりも相対的に小さい通電量を一点鎖線100aで示し、基準通電量よりも相対的に大きい通電量を二点鎖線100cで示す。   In the figure, a solid line 100b is a reference energization amount, an energization amount relatively smaller than this is indicated by a one-dot chain line 100a, and an energization amount relatively larger than the reference energization amount is indicated by a two-dot chain line 100c.

また、通電量100a、100b、100cを流したときのOリング32の締め付け量(あるいは据え込み量)をそれぞれ図中200a、200b、200cで示す。通電量100a、100b、100cにそれぞれ対応する締め付け量は、締め付け量200a、200b、200cである。Oリング32の締め付け量は、例えば0.5mm以上あれば十分なレベルとみなすことができる。   Also, the tightening amounts (or upsetting amounts) of the O-ring 32 when the energization amounts 100a, 100b, and 100c are supplied are indicated by 200a, 200b, and 200c in the drawing, respectively. The tightening amounts corresponding to the energization amounts 100a, 100b, and 100c are the tightening amounts 200a, 200b, and 200c, respectively. If the tightening amount of the O-ring 32 is 0.5 mm or more, for example, it can be regarded as a sufficient level.

第1通電100の通電量が増大すると、これに伴ってOリング32の締め付け量も増大していく。基準通電量100bのときの締め付け量200bは約0.6mmであり、十分なレベルが確保される。   When the energization amount of the first energization 100 increases, the tightening amount of the O-ring 32 increases accordingly. The tightening amount 200b at the reference energization amount 100b is about 0.6 mm, and a sufficient level is secured.

相対的に大きな通電量200cのときの締め付け量200cは0.7mmと十分であるが、隔壁16の一部に焼損が生じてしまう。   The tightening amount 200c when the energization amount 200c is relatively large is sufficient as 0.7 mm, but burning of a part of the partition wall 16 occurs.

相対的に小さな通電量200aのときの締め付け量200aは0.5mm未満であり、Oリング32の締め付けが不十分となる。   The tightening amount 200a when the energization amount 200a is relatively small is less than 0.5 mm, and the O-ring 32 is not sufficiently tightened.

第1通電100は、Oリング32の締め付け量を十分に確保できる程度であり、かつ、隔壁16の焼損や接続突部21a、21bの溶解(溶接)を生じない程度とすることが望ましく、その範囲を例示すると以下の通りである。
電流値:2.0KA〜4.0KA
通電時間:20msec〜100sec
電流値が2.0KAより小さい場合や通電時間が20msecより短い場合は、Oリング32の締め付け量を十分に確保できず、電流値が4.0KAより大きい場合や通電時間が100msecより長い場合は、Oリング32や隔壁16に損傷が生じるため好ましくないからである。
It is desirable that the first energization 100 is of a level that can sufficiently secure the tightening amount of the O-ring 32 and that does not cause burning of the partition wall 16 and melting (welding) of the connection protrusions 21a and 21b. Examples of ranges are as follows.
Current value: 2.0 KA to 4.0 KA
Energization time: 20msec~100 m sec
If the current value is less than 2.0 KA or if the energization time is shorter than 20 msec, the tightening amount of the O-ring 32 cannot be secured sufficiently, and if the current value is greater than 4.0 KA or if the energization time is longer than 100 msec. This is because the O-ring 32 and the partition wall 16 are damaged, which is not preferable.

因みに、本願出願人は、相対的に小さな通電量200aの場合に接続突部21a、21bの抵抗値に変化はなく、基準通電量200bの場合に接続突部21a、21bの抵抗値は穏やかに上昇し、相対的に大きな通電量200cの場合に接続突部21a、21bの抵抗値は溶接電流102を流したときよりも急峻であることを確認している。接続突部21a、21bはともに導体であり、導体の抵抗値は温度とともに上昇することを考慮すると、相対的に小さな通電量200aの場合にはほとんど発熱しておらず、基準通電量200bの場合には発熱が生じ、相対的に大きな通電量200cの場合には溶接時と同様の発熱が生じているということができる。基準通電量200bにおいては、抵抗値は穏やかに上昇し、上昇開始から第2通電開始まで50〜100μΩ程度の上昇を示す。   Incidentally, the applicant of the present application does not change the resistance values of the connection protrusions 21a and 21b when the energization amount 200a is relatively small, and gently reduces the resistance values of the connection protrusions 21a and 21b when the reference energization amount 200b. It is confirmed that the resistance values of the connection protrusions 21a and 21b are steeper than when the welding current 102 is passed when the energization amount 200c is relatively large. Considering that the connection protrusions 21a and 21b are both conductors, and the resistance value of the conductor increases with temperature, in the case of the relatively small energization amount 200a, almost no heat is generated, and in the case of the reference energization amount 200b. In the case of a relatively large energization amount 200c, it can be said that heat generation similar to that during welding occurs. At the reference energization amount 200b, the resistance value rises gently and shows an increase of about 50 to 100 μΩ from the rise start to the second energization start.

そして、第2通電102の開始時には急激な立ち上がりを示し、ここで初めて溶接に至る発熱が生じる。   Then, when the second energization 102 is started, a sudden rise is shown, and here, heat is generated for the first time.

なお、本願出願人は、第1通電100を行うことなく第2通電102のみで接続突部21a、21b同士を溶接した場合、Oリング32の締め付け量は0.5mm未満で不足であることを確認している。   In addition, when this application applicant welds the connection protrusions 21a and 21b only by the 2nd electricity supply 102, without performing the 1st electricity supply 100, the tightening amount of O-ring 32 is less than 0.5 mm and it is insufficient. I have confirmed.

第1通電100の適正な範囲は、通電電流と通電時間により決定されるが、ある一定以上の電流値に設定すると溶接に至り、また、電流値が低すぎると必要以上に通電時間を増大させなければならず非効率となるため、通電電流と通電時間のバランスを抵抗値上昇量を監視しながら決定するのが望ましい。   The appropriate range of the first energization 100 is determined by the energization current and the energization time. However, if the current value is set to a certain value or more, welding is performed, and if the current value is too low, the energization time is increased more than necessary. Since this is inefficient, it is desirable to determine the balance between the energization current and the energization time while monitoring the amount of increase in resistance value.

また、第2通電102の通電電流及び通電時間も一定の範囲で増減調整してもよい。その範囲を例示すると以下の通りである。
電流値:5KA〜10KAであり、好適には7KA〜8KA
通電時間:10msec〜30msecであり、好適には15msec〜25msec
溶接電流102の減少プロファイルの全体に対する比率は、例えば時間t3〜t5の30%〜50%とすることができる。
In addition, the energization current and energization time of the second energization 102 may be adjusted up or down within a certain range. Examples of the range are as follows.
Current value: 5KA to 10KA, preferably 7KA to 8KA
Energizing time: 10 msec to 30 msec, preferably 15 msec to 25 msec
The ratio of the welding current 102 to the entire reduction profile can be, for example, 30% to 50% of the time t3 to t5.

本実施形態では、第1通電100と第2通電102の組み合わせにより集電板20a、20bの接続突部21a、21b同士を溶接しており、第1通電100を実行することによって第2通電102の実効時間、すなわち溶接電流の通電時間を短くすることができる効果がある。   In the present embodiment, the connection protrusions 21 a and 21 b of the current collector plates 20 a and 20 b are welded together by a combination of the first energization 100 and the second energization 102, and the second energization 102 is performed by executing the first energization 100. This has the effect of shortening the effective time of the welding current, that is, the energization time of the welding current.

さらに、第1通電100により接続突部21a、21bをある程度熱変形させているため、第2通電102における溶接電流の変動許容範囲も従来以上に拡大され、ロバスト性確保の観点からも効果がある。すなわち、第1通電100が存在するため、溶接電流の下限値は従来より下方側にシフトし得るとともに、時刻t3〜t4における減少スロープ(ダウンスロープ)により過剰熱量による隔壁16の焼損が防止されるので溶接電流の上限値も従来より上方側にシフトし得る。このようなロバスト性の確保は、二次電池10の量産時において特に大きな意義を有する。   Furthermore, since the connection protrusions 21a and 21b are thermally deformed to some extent by the first energization 100, the allowable variation range of the welding current in the second energization 102 is expanded more than before, which is also effective from the viewpoint of ensuring robustness. . That is, since the first energization 100 is present, the lower limit value of the welding current can be shifted downward as compared with the prior art, and burning of the partition wall 16 due to excessive heat is prevented by the decreasing slope (down slope) at time t3 to t4. Therefore, the upper limit value of the welding current can also be shifted upward as compared with the prior art. Ensuring such robustness is particularly significant when the secondary battery 10 is mass-produced.

以上、本発明の実施形態について説明したが、本発明はこれに限定されるものではなく、種々の変形が可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to this, A various deformation | transformation is possible.

例えば、本実施形態では、第1通電100と第2通電102とを連続して実行しているが、第1通電100と第2通電102との間に所定時間だけ間隔を設定してもよい。但し、第1通電100と第2通電102とを連続して実行することで、スループットが向上するとともに、第1通電100により生じた熱変形を第2通電102でより確実に利用できる利点がある。   For example, in the present embodiment, the first energization 100 and the second energization 102 are continuously performed, but an interval may be set between the first energization 100 and the second energization 102 for a predetermined time. . However, by continuously performing the first energization 100 and the second energization 102, there is an advantage that the throughput is improved and the thermal deformation caused by the first energization 100 can be more reliably used by the second energization 102. .

なお、上記実施形態では、正・負極側両方の集電板に接続突部を設け、貫通穴に嵌入しているが、正・負極のいずれか一方のみの集電板に接続突部を設け、他方の集電板の接続部は平坦又は凹部等、突出していない形状としてもよい。   In the above embodiment, the connection protrusions are provided on both the positive and negative current collector plates and are fitted in the through holes. However, the connection protrusions are provided only on the positive and negative current collector plates. The connecting portion of the other current collector plate may be a flat shape or a non-projecting shape such as a concave portion.

また、上記実施形態では、アニールを行っていない集電板を用いたが、アニールが不十分であり、シール材を十分に締め付けることができない場合も有効である。   Further, in the above embodiment, the current collector plate that has not been annealed is used, but it is also effective when annealing is insufficient and the sealing material cannot be sufficiently tightened.

また、上記実施形態では、集電板の溶接について説明したが、本発明は、他の被溶接部材でも、2つの被溶接部材間にシール材を配した状態で溶接する場合であれば利用可能である。例えば、図6に示すように、電池40(図では電池40が10個直列に接続された電池パックを記載)の製造にも利用可能である。具体的には電池40の蓋から突出している+端子60、−端子62は、電解液がケース外に漏れないように、蓋等の部材と、間にシール材を配して溶接を行っているが、その場合の溶接を第1通電、第2通電で行ってもよい。なお、図6(a)は平面図、図6(b)は正面図、図6(c)は右側面図であり、符号64は接続導体、符号66は単電池を一体的に固定するバンドを示す。   Moreover, in the said embodiment, although the welding of the current collector plate was demonstrated, this invention can be utilized even if it welds in the state which arranged the sealing material between two to-be-welded members also in another to-be-welded member. It is. For example, as shown in FIG. 6, the present invention can also be used for manufacturing a battery 40 (in the figure, a battery pack in which ten batteries 40 are connected in series). Specifically, the + terminal 60 and the − terminal 62 protruding from the lid of the battery 40 are welded by placing a sealing material between the lid and other members so that the electrolyte does not leak out of the case. However, the welding in that case may be performed by the first energization and the second energization. 6A is a plan view, FIG. 6B is a front view, and FIG. 6C is a right side view. Reference numeral 64 is a connection conductor, and reference numeral 66 is a band for integrally fixing the cells. Indicates.

10 二次電池、12 電槽、14 極板群、16 隔壁、20a,20b 集電板、21a,21b 接続突部、30 貫通穴、32 Oリング。   10 secondary battery, 12 battery case, 14 electrode plate group, 16 partition, 20a, 20b current collector plate, 21a, 21b connection protrusion, 30 through hole, 32 O-ring.

Claims (2)

互いに隣接する単電池の正極側と負極側の集電板の間に貫通穴が形成された隔壁が配され、かつ前記集電板と前記隔壁の間にシール材が配され、前記貫通穴を用いて前記集電板の接続突部同士を溶接する電池の製造方法であって、
接電流より単位時間当たりの熱量が低い、電流値が2.0KA〜4.0KAで、通電時間が20msec〜100msecの電流を前記接続突部に通電する第1通電工程と、
前記第1通電後に、溶接電流を通電して前記接続突部同士を溶接する第2通電工程と、
を備えることを特徴とする電池の製造方法。
Single cell the positive electrode side and the partition wall having a through hole is formed between the negative electrode current collector plate is disposed adjacent to each other, and the sealing material is disposed between the said collector barrier rib, the through-hole A method of manufacturing a battery for welding the connection protrusions of the current collector plates using ,
Amount of heat per unit time is lower than the welding current, current value at 2.0KA~4.0KA, a first power supply step of energizing time to energize the current of 20msec~100msec to the connection projection,
A second energization step of energizing a welding current and welding the connection protrusions after the first energization;
A method for producing a battery, comprising:
請求項1記載の電池の製造方法において、
前記第2通電工程は、
一定電流の前記溶接電流を所定時間だけ通電する工程と、
通電電流を順次減少させる工程と、
を備えることを特徴とする電池の製造方法。
In the manufacturing method of the battery of Claim 1,
The second energization step includes
Energizing the welding current at a constant current for a predetermined time;
A step of sequentially reducing the energization current;
A method for producing a battery , comprising:
JP2011074589A 2011-03-30 2011-03-30 Battery manufacturing method and welding method Active JP5559732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011074589A JP5559732B2 (en) 2011-03-30 2011-03-30 Battery manufacturing method and welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011074589A JP5559732B2 (en) 2011-03-30 2011-03-30 Battery manufacturing method and welding method

Publications (2)

Publication Number Publication Date
JP2012209156A JP2012209156A (en) 2012-10-25
JP5559732B2 true JP5559732B2 (en) 2014-07-23

Family

ID=47188722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011074589A Active JP5559732B2 (en) 2011-03-30 2011-03-30 Battery manufacturing method and welding method

Country Status (1)

Country Link
JP (1) JP5559732B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6851870B2 (en) * 2017-03-17 2021-03-31 プライムアースEvエナジー株式会社 Secondary battery and manufacturing method of secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231264A (en) * 1988-03-10 1989-09-14 Furukawa Battery Co Ltd:The Resistance welding method and resistance welding circuit device in lead storage battery
JPH10106535A (en) * 1996-09-26 1998-04-24 Shin Kobe Electric Mach Co Ltd Lead-acid battery and method for connecting cells
JP4267314B2 (en) * 2002-12-19 2009-05-27 パナソニック株式会社 Resistance welding monitoring apparatus and method
JP2010153179A (en) * 2008-12-25 2010-07-08 Panasonic Ev Energy Co Ltd Battery module

Also Published As

Publication number Publication date
JP2012209156A (en) 2012-10-25

Similar Documents

Publication Publication Date Title
US10115958B2 (en) Manufacturing method of electric storage device and electric storage device
US9065124B2 (en) Battery pack and method for welding cells
KR100874055B1 (en) Inter-Connecter between Unit Cell and Serial Cell equipped it
KR100908569B1 (en) Manufacturing method of battery module
US8883332B2 (en) Rechargeable secondary battery
KR101912004B1 (en) Lithium secondary battery with improved safety by using bimetal tab
US20110064993A1 (en) Battery array with reliable low-resistance connections
US11145937B2 (en) Battery pack
US20130196211A1 (en) Battery having cell tab connection structure using resistance welding
US9559347B2 (en) Negative electrode terminal for battery and method for producing negative electrode terminal for battery
KR101895904B1 (en) Rechargeable battery and a method of manufacturing the same
US8822069B2 (en) Battery pack
KR102226916B1 (en) Cylindrical Secondary Battery Having Protrusion of Improved Weld-ability
KR101354580B1 (en) Battery having Tab made with two different kind metals
JP4586008B2 (en) Battery pack and manufacturing method thereof
US20080220667A1 (en) Electrical terminal for sealed accumulator
JP5087218B2 (en) Secondary battery and manufacturing method thereof
JP5559732B2 (en) Battery manufacturing method and welding method
US10263291B2 (en) Method of producing a prismatic battery cell
JP2021012755A (en) Method for manufacturing power storage device
KR100614354B1 (en) Can type secondary battery and method of forming the same
KR20190016239A (en) Battery module
US20240234963A9 (en) Cylindrical secondary battery module, and secondary battery pack and vehicle including the same
KR102716515B1 (en) Voltage sensing housing structure and battery module including the same
JP4599914B2 (en) Method for producing lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140606

R150 Certificate of patent or registration of utility model

Ref document number: 5559732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250