JP5558190B2 - Method for producing long CNT isolated dispersion and carbon nanotube coating film - Google Patents

Method for producing long CNT isolated dispersion and carbon nanotube coating film Download PDF

Info

Publication number
JP5558190B2
JP5558190B2 JP2010101712A JP2010101712A JP5558190B2 JP 5558190 B2 JP5558190 B2 JP 5558190B2 JP 2010101712 A JP2010101712 A JP 2010101712A JP 2010101712 A JP2010101712 A JP 2010101712A JP 5558190 B2 JP5558190 B2 JP 5558190B2
Authority
JP
Japan
Prior art keywords
cnt
column
cnts
long
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010101712A
Other languages
Japanese (ja)
Other versions
JP2011230952A (en
Inventor
勉之 中井
拓治 小向
久美子 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Original Assignee
Nitta Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corp filed Critical Nitta Corp
Priority to JP2010101712A priority Critical patent/JP5558190B2/en
Publication of JP2011230952A publication Critical patent/JP2011230952A/en
Application granted granted Critical
Publication of JP5558190B2 publication Critical patent/JP5558190B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

本発明は、長尺CNTの単離分散液の製造方法、およびこの製造方法により製造するカーボンナノチューブ塗工膜に関するものである。   The present invention relates to a method for producing an isolated dispersion of long CNTs, and a carbon nanotube coating film produced by this production method.

カーボンナノチューブ(以下、CNTという)は、その性状、サイズ、等により、各種用途が期待されている物質である。こうしたCNTのうち、長尺CNTは、アスペクト比が特に高く、他のCNTと比較して、少量でも導電性発現に有利であることが知られており、その産業上の利用分野は広い。例えば導電性ゴムにおいてはCNTが導電フィラーに利用される。この導電性を高めるうえではCNTのアスペクト比が大きいすなわち長尺のCNTがより導電性の発現には有効とされる。また、長尺CNTが少量でも導電ネットワーク形成効率が高く導電性を発現できるので、樹脂に混合した場合の物性低下を抑制することもできる。このようにして、長尺CNTの用途がある。このような長尺CNTが各種形態でCNTが分散している粗CNT分散液中に存在している場合では、その粗CNT分散液から長尺CNTのみを得る技術が要求される。なお、長尺CNT、短尺CNTを問わず、高濃度領域では或る程度の導電性の発現を認められるが、比較的少量、低濃度領域ではCNT長さの効果が顕著となる。また、一般に、CNTは、合成時に一定長さに制御されていても、その後の分散プロセスにおいて切断による短尺化が進行するものの、その直径は変化しない。   Carbon nanotubes (hereinafter referred to as CNT) are substances that are expected to be used for various purposes depending on their properties, sizes, and the like. Among these CNTs, long CNTs have a particularly high aspect ratio and are known to be advantageous for the development of conductivity even in a small amount as compared with other CNTs, and their industrial application fields are wide. For example, in conductive rubber, CNT is used as a conductive filler. In order to increase the conductivity, a CNT having a large aspect ratio, that is, a long CNT, is effective in developing the conductivity. Moreover, since the conductive network formation efficiency is high and conductivity can be expressed even with a small amount of long CNTs, it is possible to suppress deterioration of physical properties when mixed with resin. Thus, there is a use of long CNT. When such long CNTs are present in a crude CNT dispersion in which CNTs are dispersed in various forms, a technique for obtaining only long CNTs from the coarse CNT dispersion is required. It should be noted that, regardless of whether it is long CNT or short CNT, a certain degree of conductivity is observed in the high concentration region, but the effect of the CNT length becomes significant in a relatively small amount of the low concentration region. In general, even if the CNTs are controlled to have a certain length at the time of synthesis, the diameter of the CNTs does not change, although shortening due to cutting proceeds in the subsequent dispersion process.

なお、特許文献1にはカラムクロマトグラフィを用いてCNTをナノチューブとナノ粒子以外の炭素物質に分離し、さらにナノチューブとナノ粒子の分子量、形状の差による展開速度の差でCNTを分離する技術が開示されているが、粗CNT分散液中から長尺CNTのみを分離して得る具体技術は開示も示唆もされていない。   Patent Document 1 discloses a technique for separating CNTs into carbon materials other than nanotubes and nanoparticles using column chromatography, and further separating CNTs based on differences in the development speed due to differences in the molecular weight and shape of the nanotubes and nanoparticles. However, there is no disclosure or suggestion of a specific technique obtained by separating only long CNTs from the crude CNT dispersion.

特開平06−228824号公報Japanese Patent Laid-Open No. 06-228824

粗CNT分散液中では、CNTは長尺や短尺の形態で分散していたり、あるいはファンデルワールス力で長尺や短尺を問わず塊状、束状の凝集物になって分散している。そうした粗CNT分散液中から長尺CNTのみを得ることは容易ではない。   In the crude CNT dispersion, the CNTs are dispersed in a long or short form, or are dispersed in the form of agglomerates or bundles regardless of the long or short form by van der Waals force. It is not easy to obtain only long CNTs from such a crude CNT dispersion.

本発明においては、粗CNT分散液から長尺CNTが単離分散した単離分散液の製造方法を提供し、また、その方法により製造した長尺CNTの単離分散液を用いたCNT塗工膜を提供することを解決すべき課題としている。   In the present invention, a method for producing an isolated dispersion in which long CNTs are isolated and dispersed from a crude CNT dispersion is provided, and a CNT coating using the long CNT isolated dispersion produced by the method is provided. Providing a film is a problem to be solved.

本発明第1による長尺CNTの単離分散液の製造方法は、長尺CNTに対応した所定粒径範囲のビーズをカラム中に固定相として充填する第1ステップと、各種形状のCNTを含む粗CNT分散液を移動相として前記カラム入口から該カラム内に展開する第2ステップと、上記カラム出口から順次に形状ごとに揃って流れ出てくる各種単離分散液から長尺CNTの単離分散液を選択する第3ステップと、を含むことを特徴とする。   The method for producing an isolated dispersion of long CNTs according to the first aspect of the present invention includes a first step of filling beads having a predetermined particle size range corresponding to the long CNTs as a stationary phase in the column, and CNTs having various shapes. A second step of developing the crude CNT dispersion liquid from the column inlet into the column as a mobile phase, and isolating and dispersing long CNTs from various isolated dispersion liquids flowing out from the column outlet in order for each shape. And a third step of selecting a liquid.

本発明第2によるCNT分散液の製造方法は、長尺CNTに対応した所定粒径範囲のビーズを固定相としてカラム中に充填する第1ステップと、各種形状のCNTを含む粗CNT分散液を上記カラム内の固定相上に展開する第2ステップと、上記カラム内に所定の溶媒を移動相として流す第3ステップと、上記カラム出口から順次に形状ごとに揃って流れ出てくる各種単離分散液から長尺CNTの単離分散液を選択する第4ステップと、を含むことを特徴とする。   The method for producing a CNT dispersion according to the second aspect of the present invention includes a first step of filling a column with beads having a predetermined particle size range corresponding to long CNTs as a stationary phase, and a crude CNT dispersion containing CNTs of various shapes. A second step of developing on the stationary phase in the column; a third step of flowing a predetermined solvent as a mobile phase in the column; and various isolation dispersions flowing out from the column outlet in order for each shape. And a fourth step of selecting an isolated dispersion of long CNTs from the liquid.

好ましくは、上記選択は、カラム出口から長尺CNTの展開速度に応じたタイミングで出てくる長尺CNTの単離分散液を選択することである。   Preferably, the selection is to select an isolated dispersion of long CNT that comes out from the column outlet at a timing corresponding to the development speed of the long CNT.

好ましくは、上記カラムに充填するビーズの粒径範囲は0.05mm〜5mmであり、より好ましくは、0.1mm〜1mm、最適には0.35mm〜0.5mmである。なお、ビーズ径が0.05mm未満であるとCNTがカラム中に展開せず、また、5mm超であると形状ごとの分離が困難である。   Preferably, the particle size range of the beads packed into the column is 0.05 mm to 5 mm, more preferably 0.1 mm to 1 mm, and most preferably 0.35 mm to 0.5 mm. When the bead diameter is less than 0.05 mm, the CNTs do not expand in the column, and when the bead diameter exceeds 5 mm, separation by shape is difficult.

上記長尺CNTの長さは、好ましくは5μm以上である。   The length of the long CNT is preferably 5 μm or more.

上記長尺CNTは、単層CNTでも多層CNTでもよい。   The long CNT may be a single-wall CNT or a multi-wall CNT.

また、上記長尺CNTは、その直径に限定されない。   The long CNT is not limited to its diameter.

上記ビーズは、無機質ビーズ、プラスチックビーズ、金属ビーズ、等を含むことができる。無機質ビーズには、ガラス、セラミック(アルミナ、ジルコニア等)、を含む。プラスチックビーズには、ポリエチレン、ポリプロピレン、テフロン(登録商標)、アクリル樹脂、ポリカーボネイト、等を含む。   The beads can include inorganic beads, plastic beads, metal beads, and the like. The inorganic beads include glass and ceramic (alumina, zirconia, etc.). Plastic beads include polyethylene, polypropylene, Teflon (registered trademark), acrylic resin, polycarbonate, and the like.

カラム内にはそのカラム入口側からカラム出口側まで粒径一定のビーズを充填するが、粒径が上記範囲内であれば、粒径が多少相違してもよい。カラム出口側には上記粒径の上限を超過した粒径のビーズを配置してもよい。   The column is filled with beads having a constant particle size from the column inlet side to the column outlet side, but the particle size may be slightly different as long as the particle size is within the above range. You may arrange | position the bead of the particle size which exceeded the upper limit of the said particle size on the column exit side.

粗CNT分散液は、少なくとも長尺CNTが他の形態のCNT、例えば短尺CNTおよび/または塊状ないし束状に凝集しているCNTと共に複数分散している分散液である。したがって、粗CNT分散液には複数の長尺CNTに対して他のCNTが各種組合せで分散している。   The crude CNT dispersion is a dispersion in which a plurality of long CNTs are dispersed together with CNTs in other forms, for example, short CNTs and / or CNTs aggregated in a lump or bundle. Therefore, in the coarse CNT dispersion, other CNTs are dispersed in various combinations with respect to the plurality of long CNTs.

本発明第1、第2の製造方法により製造した長尺CNTの単離分散液は、溶媒中に長尺CNTが単離状態で分散している溶液である。   The long CNT isolated dispersion produced by the first and second production methods of the present invention is a solution in which long CNTs are dispersed in a solvent in an isolated state.

本発明第1、第2の長尺CNTの単離分散液中には、長尺CNT以外の他の形態のCNTも含むことがある。したがって、本発明第1の第3ステップ、本発明第2の第4ステップを一部に実施する限りにおいては、長尺CNTと共にこの長尺CNT以外のCNTを一部に含む単離分散液も本発明の範囲に含む単離分散液である。   The isolated dispersion liquid of the first and second long CNTs of the present invention may contain other forms of CNTs other than the long CNTs. Therefore, as long as the first third step of the present invention and the fourth step of the second embodiment of the present invention are performed in part, an isolated dispersion liquid that includes CNTs other than the long CNT together with the long CNT is also included. It is an isolated dispersion within the scope of the present invention.

本発明によれば、粗CNT分散液から長尺CNTが分散した単離分散液を得ることができる。   According to the present invention, an isolated dispersion in which long CNTs are dispersed from a crude CNT dispersion can be obtained.

図1は本発明の実施の形態にかかるCNT分散液の製造に用いる粗CNT分散液の一部を示す図である。FIG. 1 is a diagram showing a part of a crude CNT dispersion used for producing a CNT dispersion according to an embodiment of the present invention. 図2(a)はカラムクロマトグラフィに用いるカラム側面を示す図、図2(b)はカラム内にカラム充填剤であるガラスビーズを充填した状態を示す図、図2(c)は、カラム内に粗CNT分散液を投入した状態を示す図、図2(d)はカラム内の各種形態のCNTの展開状態をカラム充填剤を除いた状態でモデル的に示す図である。2 (a) is a diagram showing the side of the column used for column chromatography, FIG. 2 (b) is a diagram showing a state in which glass beads as a column filler are packed in the column, and FIG. FIG. 2 (d) is a diagram showing the developed state of various forms of CNTs in the column in a model form with the column filler removed, with the crude CNT dispersion liquid being charged. 図3(a)は大径のガラスビーズによるカラム内展開状態を示す図、図3(b)は中径のガラスビーズによるカラム内展開状態を示す図、図3(c)は小径のガラスビーズによるカラム内展開状態を示す図である。FIG. 3A is a diagram showing a state in which the large-diameter glass beads are developed in the column, FIG. 3B is a diagram showing a state in which the medium-diameter glass beads are developed in the column, and FIG. 3C is a diagram showing small-diameter glass beads. It is a figure which shows the expansion state in the column by. 図4(a)は長尺CNT分散液の状態を示す図、図4(b)は短尺CNT分散液の状態を示す図である。FIG. 4A is a diagram showing the state of the long CNT dispersion, and FIG. 4B is a diagram showing the state of the short CNT dispersion. 図5は粗CNT分散液を塗装してなるCNT塗工膜の表面のSEM写真と実施形態のCNT分散液を塗装してなるCNT塗工膜の表面のSEM写真と、それぞれに対応する表面抵抗率と光透過率とを表形式で示す図である。FIG. 5 shows a SEM photograph of the surface of the CNT coating film formed by coating the rough CNT dispersion liquid, a SEM photograph of the surface of the CNT coating film formed by coating the CNT dispersion liquid of the embodiment, and the surface resistance corresponding to each. It is a figure which shows a rate and a light transmittance in a tabular form.

以下、添付した図面を参照して、本発明の実施の形態に係るCNT分散液の製造方法を説明する。図1に粗CNT分散液を示す。粗CNT分散液1は、その一部拡大を円A内で示すように、複数のCNTがファンデルワールス力により塊状に凝集集合してなる複数の集合物2a、複数のCNTが束状に凝集集合してなる複数の集合物2b、長さが一定以下で上記凝集集合形態をとらずに単離している複数の短尺CNT2c、長さが一定以上で上記凝集集合形態をとらずに単離している複数の長尺CNT2dを示す。また、これ以外の形態で分散するCNTも含む。ここで、実施形態における長尺CNT2dの長さは、短尺CNTと比較して相対的であり、上記背景技術で説明したように産業用途に応じて決めることができ、実施形態では、例えば5μm以上のCNTを長尺CNTとし、5μm未満のCNTを短尺CNTと言うこととする。このような図1で示すような粗CNT分散液1は本発明を限定するものではなく、長尺CNT2dに対して、集合物2a,2b,短尺CNT2cの少なくともいずれか1つ、あるいは実施形態では記載していない他の形態のCNTをも含む分散液であれば粗CNT分散液1に含むことができる。   Hereinafter, a method for producing a CNT dispersion according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a crude CNT dispersion. As shown in the circle A, the coarse CNT dispersion 1 shows a plurality of aggregates 2a formed by agglomerating and aggregating a plurality of CNTs in a lump by van der Waals force, and a plurality of CNTs agglomerating in a bundle. A plurality of aggregates 2b formed by aggregation, a plurality of short CNTs 2c having a length that is less than a certain length and not taking the aggregated aggregate form, and a length that is greater than a certain value and not taking the aggregated aggregate form A plurality of long CNTs 2d are shown. In addition, CNTs dispersed in other forms are also included. Here, the length of the long CNT 2d in the embodiment is relative to that of the short CNT, and can be determined according to the industrial application as described in the background art, and in the embodiment, for example, 5 μm or more. These CNTs are referred to as long CNTs, and CNTs less than 5 μm are referred to as short CNTs. Such a coarse CNT dispersion 1 as shown in FIG. 1 does not limit the present invention, and is not limited to the long CNT 2d, but at least one of the aggregates 2a, 2b and the short CNT 2c, or in the embodiment. Any dispersion containing other forms of CNTs not described can be included in the crude CNT dispersion 1.

粗CNT分散液1における溶媒は、CNTを分散できる溶媒であれば特に限定しないが、実施形態ではこの溶媒は例えばエチルセルロース系樹脂と、ブチルカルビトールアセテートと、エタノールとを含んでいる。   The solvent in the crude CNT dispersion 1 is not particularly limited as long as it is a solvent that can disperse CNTs. However, in the embodiment, this solvent includes, for example, an ethyl cellulose resin, butyl carbitol acetate, and ethanol.

図2を参照してカラムクロマトグラフィを説明すると、実施形態のカラムクロマトグラフィに用いるカラム(管柱)3は、例えばガラス、ステンレス、アクリル樹脂等からなり、図2(a)で示すようにカラム出口3aが小径となっている以外は一定内径のカラムである。このカラムクロマトグラフィでは、図2(b)で示すようにカラム3内にはカラム充填剤(固定相)としてガラスビーズが充填される。ガラスビーズはカラム出口側3aには大径のガラスビーズ4aが充填され、その大径ガラスビーズ4aの充填位置からカラム入口側3bへかけて一定小径のガラスビーズ4bが充填される。大径のガラスビーズ4aがカラム出口側3aに充填されるのは、カラム出口3aからガラスビーズ4bが流出するのを防止するためである。この小径ガラスビーズ4bの粒径は、0.05mm〜5mmの範囲において、粒径一定のガラスビーズ4bが選択されて配置される。このガラスビーズ4bの粒径は、粗CNT分散液1内の集合物2a,2b、短尺CNT2c、長尺CNT2dとの接触に関わる表面積、接触経路等に関わり、粗CNT分散液1からの長尺CNT2dの分離効率を決めることに関与する。なお、ガラスビーズ4bの形状は球状(真円球、楕円球、等)であることが好ましい。   The column chromatography will be described with reference to FIG. 2. The column (tube column) 3 used in the column chromatography of the embodiment is made of, for example, glass, stainless steel, acrylic resin, and the like, and as shown in FIG. Is a column with a constant inner diameter except that has a small diameter. In this column chromatography, as shown in FIG. 2B, the column 3 is filled with glass beads as a column filler (stationary phase). The glass beads are filled with a large-diameter glass bead 4a on the column outlet side 3a, and are filled with a constant small-diameter glass bead 4b from the filling position of the large-diameter glass bead 4a to the column inlet side 3b. The reason why the large diameter glass beads 4a are filled in the column outlet side 3a is to prevent the glass beads 4b from flowing out from the column outlet 3a. The small diameter glass beads 4b have a particle diameter of 0.05 mm to 5 mm, and the glass beads 4b having a constant particle diameter are selected and arranged. The particle size of the glass beads 4b is related to the surface area, contact path, etc. associated with the aggregates 2a, 2b, short CNTs 2c, and long CNTs 2d in the coarse CNT dispersion 1, and the long beads from the coarse CNT dispersion 1 It is involved in determining the separation efficiency of CNT2d. In addition, it is preferable that the shape of the glass bead 4b is spherical (a perfect sphere, an ellipsoid, etc.).

次に、このように粒径0.05mm〜5mmの範囲で選択されたガラスビーズ4bが充填されたカラム3に対して、図2(c)で示すようにカラム入口側3bから粗CNT分散液(移動相)1を展開溶媒として投入する。この粗CNT分散液1内の溶媒は重力あるいはカラム入口側3bから図示略の加圧装置で加圧、あるいはカラム出口側3aから図示略の吸引装置での吸引により、カラム出口側3a側から粗CNT分散液1内のCNTの形状差に基づいた展開速度差によりCNTを分離する。この分離の様子を図2(d)に示す。図2(d)はカラム3内のカラム充填剤であるガラスビーズ4a,4bの図示を略した状態で粗CNT分散液1内のCNTのモデル的分離形態を示す。このCNT形態のうち、塊状の集合形態である集合物2aが最も分離されずに展開速度が最も遅いのでカラム入口側3bにあり、束状の集合形態である集合物2bは塊状集合物2aよりも展開速度が速いので塊状集合物2aよりもカラム出口3a側に近く位置し、長尺CNT2dは束状集合物2bよりも展開速度が速いのでさらにカラム出口3a側に束状集合物2bよりは近く位置し、短尺CNT2cは最も展開速度が速いのでカラム出口3a側に最も近い。そして、このカラム3からはこの展開速度の順序でCNTが出てくるので、長尺CNT2dの展開速度に応じたタイミングに合わせてCNT分散液を選択すると、長尺CNT2dが単離状態で分散しているCNT分散液(長尺CNT単離分散液)を得ることができる。   Next, as shown in FIG. 2 (c), the crude CNT dispersion liquid is supplied from the column inlet side 3b to the column 3 packed with the glass beads 4b selected in the particle diameter range of 0.05 mm to 5 mm. (Mobile phase) 1 is charged as a developing solvent. The solvent in the crude CNT dispersion 1 is coarsely applied from the column outlet side 3a side by gravity or pressurized from the column inlet side 3b by a pressurizing device (not shown) or sucked from the column outlet side 3a by a suction device (not shown). The CNTs are separated by the difference in the development speed based on the shape difference of the CNTs in the CNT dispersion liquid 1. The state of this separation is shown in FIG. FIG. 2 (d) shows a model separation form of CNTs in the crude CNT dispersion 1 with the glass beads 4 a and 4 b being column fillers in the column 3 omitted. Among the CNT forms, the aggregate 2a which is a massive aggregate form is not separated most and the development speed is the slowest, so it is on the column inlet side 3b, and the aggregate 2b which is a bundle-like aggregate form is more than the massive aggregate 2a. Since the development speed is fast, it is positioned closer to the column outlet 3a side than the massive aggregate 2a, and the long CNT 2d is faster than the bundle aggregate 2b, so that it is further closer to the column outlet 3a than the bundle aggregate 2b. The short CNT 2c is located closest to the column outlet 3a side because it has the fastest deployment speed. Since the CNTs come out from the column 3 in the order of the developing speed, when the CNT dispersion liquid is selected in accordance with the timing corresponding to the developing speed of the long CNT 2d, the long CNT 2d is dispersed in an isolated state. CNT dispersion liquid (long CNT isolation dispersion liquid) can be obtained.

なお、図3(a)では、ガラスビーズが粒径5mmの大径のガラスビーズ4b1である場合、塊状集合物2a、束状集合物2b、短尺CNT2c、長尺CNT2dのいずれもがカラム3内では分離されない様子を示す。図3(b)ではガラスビーズが粒径0.05mm〜5mmのガラスビーズ4b2である場合、塊状集合物2a、束状集合物2b、短尺CNT2c、長尺CNT2dいずれもカラム3内で分離されている様子を示す。図3(c)ではガラスビーズが粒径0.05mm未満のガラスビーズ4b3である場合、塊状集合物2a、束状集合物2b、短尺CNT2c、長尺CNT2dいずれもカラム3内で分離されない様子を示す。以上からガラスビーズは粒径0.05mm〜5mmの範囲内であることが好ましい。

In FIG. 3A, when the glass beads are large-diameter glass beads 4b1 having a particle diameter of more than 5 mm, all of the aggregated aggregate 2a, bundled aggregate 2b, short CNT2c, and long CNT2d are in column 3. It shows how it is not separated. In FIG. 3B, when the glass beads are glass beads 4b2 having a particle diameter of 0.05 mm to 5 mm, all of the aggregate 2a, the bundle 2b, the short CNT 2c, and the long CNT 2d are separated in the column 3. It shows how it is. In FIG. 3C, when the glass beads are glass beads 4b3 having a particle size of less than 0.05 mm, the bulk aggregate 2a, the bundle aggregate 2b, the short CNT 2c, and the long CNT 2d are not separated in the column 3. Show. From the above, it is preferable that the glass beads have a particle diameter of 0.05 mm to 5 mm.

次にビーズ4bは表面処理することでCNT長さの分布をより細やかに高精度にして分離することができる。すなわち、カラムクロマトグラフィでは移動相である粗CNT分散液と、粗CNT分散液内の成分と、カラム充填剤との相互関係(親和性)の違いを利用することで成分ごとに分離するものである。そしてビーズ4bに表面処理を施すことで上記相互関係を調整し、上記成分の分離度とか処理効率(展開速度)等を向上させることができる。   Next, the beads 4b can be separated with a finer and more precise distribution of CNT lengths by surface treatment. That is, in column chromatography, the components are separated by utilizing the difference (affinity) between the crude CNT dispersion that is the mobile phase, the components in the crude CNT dispersion, and the column filler. . Then, by applying a surface treatment to the beads 4b, the mutual relationship can be adjusted, and the degree of separation of the components, processing efficiency (development speed), and the like can be improved.

実施形態のカラム充填剤としてはガラスビーズに限定されないが、ガラスビーズ以外でも、その粒径範囲は同様またはほぼ同様である。   The column filler of the embodiment is not limited to glass beads, but the particle size range is the same or substantially the same except for glass beads.

図4(a)に長さが一定以上の長尺CNT2dのみが単離して分散している長尺CNT単離分散液5を示し、図4(b)に長さが一定以下の短尺CNT2cのみが単離した短尺CNT単離分散液6を示す。   FIG. 4 (a) shows a long CNT isolation dispersion 5 in which only long CNTs 2d having a certain length or more are isolated and dispersed, and FIG. 4 (b) shows only short CNTs 2c having a certain length or less. Shows the isolated short CNT dispersion 6.

(a)ECビヒクル(日新化成社製EC−100FTP、エチルセルロースとブチルカルビトールアセテートの混合物)100gに、熱CVD法により合成したCNT(基板上に合成されて非晶質炭素を含む長短各種形態のCNT)10mgを投入し、分散装置である回転式ホモジナイザ−で1時間攪拌する。これにより粗CNT分散液を得る。   (A) CNTs synthesized by a thermal CVD method on 100 g of an EC vehicle (EC-100 FTP manufactured by Nisshin Kasei Co., Ltd., a mixture of ethyl cellulose and butyl carbitol acetate) (a variety of long and short forms containing amorphous carbon and synthesized on a substrate) Of CNT), and stirred for 1 hour with a rotary homogenizer serving as a dispersion apparatus. Thereby, a crude CNT dispersion is obtained.

(b)上記(a)で得た粗CNT分散液を攪拌しつつエタノールで10倍の粗CNT分散液に希釈する。   (B) The crude CNT dispersion obtained in (a) above is diluted to 10 times the crude CNT dispersion with ethanol while stirring.

(c)クロマトグラフィ用のカラム管(硼珪酸ガラス、カラム長300mm、内径20mm)にガラスビーズ(ソーダガラス、直径0.105mm〜0.125mm)とエタノールとを高さ50mmとなるように充填し、(b)で得た粗CNT分散液4mlをカラムに展開させる。   (C) A column tube for chromatography (borosilicate glass, column length 300 mm, inner diameter 20 mm) is filled with glass beads (soda glass, diameter 0.105 mm to 0.125 mm) and ethanol so that the height is 50 mm, 4 ml of the crude CNT dispersion obtained in (b) is developed on a column.

(d)カラム中を透過したCNT分散液を1mlずつ分取し3番目および4番目の液をロータリーエバポレータ−を用いて減圧除去してエタノールを除去する。   (D) 1 ml of CNT dispersion liquid permeated through the column is fractionated, and the third and fourth liquids are removed under reduced pressure using a rotary evaporator to remove ethanol.

(e)上記で得たCNT分散液をバーコーターを用いて基板上に塗布する。   (E) The CNT dispersion obtained above is applied onto a substrate using a bar coater.

(f)上記塗布したCNT分散液を150℃雰囲気で乾燥し、CNT塗工膜を得る。   (F) The coated CNT dispersion is dried in an atmosphere of 150 ° C. to obtain a CNT coated film.

なお、上記分散装置としては回転式ホモジナイザ−以外に超音波ホモジナイザ−、圧力式ホモジナイザ−、ボールミル、ビーズミル等がある。   Examples of the dispersing device include an ultrasonic homogenizer, a pressure homogenizer, a ball mill, a bead mill and the like in addition to the rotary homogenizer.

図5(a)に粗CNT分散液1(カラムクロマトグラフィ未処理分散液)を基板上に塗工した場合のCNT塗工膜表面の状態のSEM写真(×50k)と表面抵抗率(Ω/□)と波長550nmの光の透過率(%)とを示し、図5(b)に実施形態の長尺CNT単離分散液5(カラムクロマトグラフィ処理分散液)を基板上に塗工した場合のCNT塗工膜表面の状態をSEM写真(×50k)と表面抵抗率(Ω/□)と上記光透過率(%)とを示す。   FIG. 5 (a) shows an SEM photograph (× 50k) and surface resistivity (Ω / □) of the surface of the CNT-coated film when the crude CNT dispersion 1 (column chromatography untreated dispersion) was applied on the substrate. ) And the transmittance (%) of light having a wavelength of 550 nm, and FIG. 5B shows the CNT when the long CNT isolation dispersion 5 (column chromatography treatment dispersion) of the embodiment is applied on the substrate. The state of the coating film surface is shown by an SEM photograph (× 50k), surface resistivity (Ω / □), and the light transmittance (%).

これらをSEM写真で比較して示すように、図5の左側SEM写真で示す未処理CNT塗工膜では表面抵抗率1.3×104、図5(b)の右側SEM写真で示す処理CNT塗工膜では表面抵抗率3.8×103、であり、光透過率は未処理CNT塗工膜で89.0%、処理CNT塗工膜で92.8%であった。これらSEM写真の比較で明らかであるように、未処理CNT塗工膜には塊状や束状の凝集物が存在していることにより表面全体に互いに入り組んだ線状の凹凸が存在している。これに対して本実施形態のCNT塗工膜では、塊状や束状の凝集物が存在しないため、表面全体の平坦性が高く、透明性も高いので、例えば透明電極の用途に適する。 As shown in comparison with SEM photographs, the untreated CNT-coated film shown in the left SEM photograph of FIG. 5 has a surface resistivity of 1.3 × 10 4 , and the treated CNT shown in the right SEM photograph of FIG. The coated film had a surface resistivity of 3.8 × 10 3 , and the light transmittance was 89.0% for the untreated CNT-coated film and 92.8% for the treated CNT-coated film. As is clear from the comparison of these SEM photographs, the untreated CNT coated film has lumps and bundles of linear aggregates due to the presence of massive aggregates and bundles. On the other hand, in the CNT coating film of this embodiment, since no aggregates or bundles are present, the flatness of the entire surface is high and the transparency is also high.

以上説明したように本実施形態では、カラムクロマトグラフィに用いるカラム中に長尺CNTに対応したビーズ径0.05mm〜5mmの範囲内のビーズを充填剤として充填するようにしたので、長尺CNTを含む単離分散液を効果的に得ることができる。   As described above, in the present embodiment, beads in a range of beads having a diameter of 0.05 mm to 5 mm corresponding to the long CNT are packed as fillers in the column used for column chromatography. An isolated dispersion containing it can be obtained effectively.

1 粗CNT分散液
2a 塊状集合物
2b 束状集合物
2c 短尺CNT
2d 長尺CNT
3 カラム
3a カラム出口
3b カラム入口
4a,4b ガラスビーズ
1 Coarse CNT dispersion 2a Bulk aggregate 2b Bundle aggregate 2c Short CNT
2d long CNT
3 Column 3a Column outlet 3b Column inlet 4a, 4b Glass beads

Claims (6)

長尺CNTに対応した粒径範囲が0.05mm〜5mmであるビーズをカラム中に固定相として充填する第1ステップと、各種形状のCNTを含む粗CNT分散液を移動相として前記カラム入口から該カラム内に展開する第2ステップと、上記カラム出口から順次に形状ごとに揃って流れ出てくる各種単離分散液から長尺CNTの単離分散液を選択する第3ステップと、を含むことを特徴とするCNT分散液の製造方法。 A first step of filling beads having a particle size range corresponding to long CNTs of 0.05 mm to 5 mm into the column as a stationary phase, and a crude CNT dispersion containing CNTs of various shapes from the column inlet as a mobile phase A second step of developing in the column, and a third step of selecting an isolated dispersion of long CNTs from various isolated dispersions that are sequentially flowed out of the column outlet in accordance with the shape. A method for producing a CNT dispersion characterized by the following. 長尺CNTに対応した粒径範囲が0.05mm〜5mmであるビーズをカラム中に固定相として充填する第1ステップと、各種形状のCNTを含む粗CNT分散液を上記カラム内の固定相上に展開する第2ステップと、上記カラム内に所定の溶媒を移動相として流す第3ステップと、上記カラム出口から順次に形状ごとに揃って流れ出てくる各種単離分散液から長尺CNTの単離分散液を選択する第4ステップと、を含むことを特徴とするCNT分散液の製造方法。 A first step of filling beads having a particle size range corresponding to long CNTs of 0.05 mm to 5 mm as a stationary phase in the column, and a crude CNT dispersion containing CNTs of various shapes on the stationary phase in the column A third step of flowing a predetermined solvent into the column as a mobile phase, and a single unit of long CNTs from various isolated dispersions flowing out from the column outlet in order for each shape. A fourth step of selecting a separation dispersion, and a method for producing a CNT dispersion. 上記選択は、カラム出口から長尺CNTの展開速度に応じたタイミングで出てくる長尺CNTの単離分散液を選択することである、請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the selection is to select an isolated dispersion liquid of long CNT that comes out at a timing corresponding to a developing speed of the long CNT from a column outlet. 上記カラムに充填するビーズの材質はガラスであることを特徴とする請求項1ないし3のいずれかに記載の方法。   The method according to any one of claims 1 to 3, wherein a material of beads filled in the column is glass. 上記請求項1ないしのいずれかに記載の製造方法により製造したCNT分散液。 A CNT dispersion produced by the production method according to any one of claims 1 to 4 . 上記請求項に記載のCNT分散液を塗工してなるCNT塗工膜。 A CNT coated film formed by coating the CNT dispersion liquid according to claim 5 .
JP2010101712A 2010-04-27 2010-04-27 Method for producing long CNT isolated dispersion and carbon nanotube coating film Expired - Fee Related JP5558190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010101712A JP5558190B2 (en) 2010-04-27 2010-04-27 Method for producing long CNT isolated dispersion and carbon nanotube coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010101712A JP5558190B2 (en) 2010-04-27 2010-04-27 Method for producing long CNT isolated dispersion and carbon nanotube coating film

Publications (2)

Publication Number Publication Date
JP2011230952A JP2011230952A (en) 2011-11-17
JP5558190B2 true JP5558190B2 (en) 2014-07-23

Family

ID=45320667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010101712A Expired - Fee Related JP5558190B2 (en) 2010-04-27 2010-04-27 Method for producing long CNT isolated dispersion and carbon nanotube coating film

Country Status (1)

Country Link
JP (1) JP5558190B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5829544B2 (en) * 2012-02-13 2015-12-09 ニッタ株式会社 Carbon nanotube aggregate and method for producing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317787A (en) * 1976-08-03 1978-02-18 Agency Of Ind Science & Technol Filler for high speed liquid chromatography
JP2522469B2 (en) * 1993-02-01 1996-08-07 日本電気株式会社 Carbon nanotube refining method
JP4868490B2 (en) * 2004-01-06 2012-02-01 国立大学法人京都大学 Carbon nanotube purification method
JP4544530B2 (en) * 2005-09-05 2010-09-15 ジャパンスーパーコンダクタテクノロジー株式会社 CNT array material manufacturing method
JP5292714B2 (en) * 2006-03-28 2013-09-18 東レ株式会社 Liquid containing carbon nanotube and method for producing transparent conductive film thereof
EP2059474B1 (en) * 2006-08-31 2018-10-03 Nano-C, Inc. Direct liquid-phase collection and processing of fullerenic materials
JP5034544B2 (en) * 2007-02-20 2012-09-26 東レ株式会社 Carbon nanotube aggregate and method for producing the same

Also Published As

Publication number Publication date
JP2011230952A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
Roy et al. Effect of carbon nanotube (CNT) functionalization in epoxy-CNT composites
Liu et al. Diameter-selective metal/semiconductor separation of single-wall carbon nanotubes by agarose gel
Eggersdorfer et al. Agglomerates and aggregates of nanoparticles made in the gas phase
Mathkar et al. Synthesis of fluorinated graphene oxide and its amphiphobic properties
KR101693486B1 (en) Coating solution having silver nano wire, conductive thin film and manufacturing thereof
Renteria et al. Graphene thermal properties: applications in thermal management and energy storage
Sun et al. Separation of nanoparticles in a density gradient: FeCo@ C and gold nanocrystals
Xia et al. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles
Doorn et al. High resolution capillary electrophoresis of carbon nanotubes
Feng et al. High-efficiency separation of single-wall carbon nanotubes by self-generated density gradient ultracentrifugation
Zhang et al. Closed-edged graphene nanoribbons from large-diameter collapsed nanotubes
Lee et al. Graphene/polymer nanocomposites: Preparation, mechanical properties, and application
Walter et al. Determination of the lateral dimension of graphene oxide nanosheets using analytical ultracentrifugation
Qin et al. Optimizing dispersion, exfoliation, synthesis, and device fabrication of inorganic nanomaterials using Hansen solubility parameters
Hirano et al. Thermodynamic determination of the metal/semiconductor separation of carbon nanotubes using hydrogels
JP5896922B2 (en) Method for controlling density, porosity and / or gap size in a nanotube fabric layer or film
Majidian et al. Role of the particle size polydispersity in the electrical conductivity of carbon nanotube-epoxy composites
Pramanik et al. DNA-assisted dispersion of carbon nanotubes and comparison with other dispersing agents
Liu et al. Computational simulation of elastomer nanocomposites: current progress and future challenges
Liu et al. One-step preparation of oxygen/fluorine dual functional MWCNTs with good water dispersibility by the initiation of fluorine gas
Saito et al. Evaluation of the work of adhesion at the interface between a surface-modified metal oxide and an organic solvent using molecular dynamics simulations
Clar et al. Evaluation of critical parameters in the separation of single-wall carbon nanotubes through selective adsorption onto hydrogels
JP2014084255A (en) Carbon nanotube thin film, transparent electrode and electrode for lithography
JP5558190B2 (en) Method for producing long CNT isolated dispersion and carbon nanotube coating film
Liao et al. Crumpling defective graphene sheets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140604

R150 Certificate of patent or registration of utility model

Ref document number: 5558190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees