JP5556080B2 - Magnetic carrier and two-component developer for electrophotographic developer - Google Patents

Magnetic carrier and two-component developer for electrophotographic developer Download PDF

Info

Publication number
JP5556080B2
JP5556080B2 JP2009179865A JP2009179865A JP5556080B2 JP 5556080 B2 JP5556080 B2 JP 5556080B2 JP 2009179865 A JP2009179865 A JP 2009179865A JP 2009179865 A JP2009179865 A JP 2009179865A JP 5556080 B2 JP5556080 B2 JP 5556080B2
Authority
JP
Japan
Prior art keywords
magnetic
iron oxide
carrier
resistance value
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009179865A
Other languages
Japanese (ja)
Other versions
JP2010055086A (en
Inventor
真次 植本
浩光 三澤
和也 藤田
香 木下
和志 高間
栄一 栗田
功荘 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2009179865A priority Critical patent/JP5556080B2/en
Publication of JP2010055086A publication Critical patent/JP2010055086A/en
Application granted granted Critical
Publication of JP5556080B2 publication Critical patent/JP5556080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

本発明は、十分な電気抵抗値をもち、かつ電気抵抗値の電圧依存性が少ない電子写真現像剤用磁性キャリアに関するものであって、階調性に優れた電子写真現像剤用磁性キャリア及び該電子写真現像剤用磁性キャリアとトナーとを有する二成分現像剤を提供する。   The present invention relates to a magnetic carrier for an electrophotographic developer having a sufficient electric resistance value and having a small voltage dependency of the electric resistance value, and has excellent gradation properties and the magnetic carrier for an electrophotographic developer, Provided is a two-component developer having a magnetic carrier for electrophotographic developer and a toner.

周知のとおり、電子写真法においては、セレン、OPC(有機半導体)、α−Si等の光導電性物質を感光体として用い、種々の手段により静電気的潜像を形成し、この潜像に磁気ブラシ現像法等を用いて、潜像の極性と逆に帯電させたトナーを静電気力により付着させ、顕像化する方式が一般に採用されている。   As is well known, in electrophotography, a photoconductive substance such as selenium, OPC (organic semiconductor), α-Si or the like is used as a photoreceptor, and an electrostatic latent image is formed by various means. In general, a method is used in which a toner charged opposite to the polarity of the latent image is attached by electrostatic force and visualized by using a brush developing method or the like.

この現像工程においては、トナーとキャリアとからなる現像剤が使用され、キャリアと呼ばれる担体粒子が摩擦帯電により適量の正又は負の電気量をトナーに付与し、且つ、磁気力を利用し磁石を内蔵する現像スリーブを介して、潜像を形成した感光体表面付近の現像領域にトナーを搬送している。   In this development process, a developer composed of a toner and a carrier is used, and carrier particles called a carrier impart an appropriate amount of positive or negative electricity to the toner by frictional charging, and a magnet is used using magnetic force. The toner is conveyed to a developing area near the surface of the photoreceptor where a latent image is formed via a built-in developing sleeve.

近年、前記電子写真法は複写機又はプリンターに広く多用化されており、細線や小文字、写真及びカラー原稿等様々な文書に対応できることが望まれている。複写機及びプリンターの高機能化、高画質化及び高速化に伴って使用される現像剤としての諸特性の向上が要求されている。   In recent years, the electrophotographic method has been widely used in copying machines or printers, and it is desired to be able to deal with various documents such as fine lines, lowercase letters, photographs, and color originals. There is a demand for improvement in various properties as a developer used in association with higher functions, higher image quality, and higher speed of copying machines and printers.

また、周知の通り、現像剤にはトナー及びキャリアの電気特性が使用中に変化しないこと等の耐久性が必要とされており、例えば、キャリア粒子表面にトナーが強固に付着してしまい本来持っているキャリアの帯電性が失われてしまう現象(いわゆるトナーのスペント化)やキャリア粒子の粒子表面の樹脂被覆層が経時的に剥離してしまい、リークサイトを生じ結果としてトナーを適切に帯電できなくなる現象が問題となっている。   Further, as is well known, the developer is required to have durability such that the electrical characteristics of the toner and the carrier do not change during use. For example, the toner adheres firmly to the surface of the carrier particles and is inherently possessed. The chargeability of the carrier is lost (so-called toner spent), and the resin coating layer on the surface of the carrier particles peels off over time, resulting in leak sites and as a result the toner can be charged properly. The phenomenon of disappearing is a problem.

キャリアはある程度の電気抵抗値を有すことが求められており1×10〜1×1016Ω・cm程度の電気抵抗値が求められている。即ち鉄粉キャリアのように電気抵抗値が10Ω・cmと低い場合には、スリーブからの電荷注入によりキャリアが感光体の画像部へ付着したり、潜像電荷がキャリアを介して逃げ、潜像の乱れや画像の欠損等を生じたりする問題がある。一方、絶縁性の樹脂を厚く被覆してしまうと電気抵抗値が高くなりすぎ、キャリア電荷がリークしにくくなり、さらにトナーの帯電量も高くなり、その結果、エッジの効いた画像にはなるが、反面、大面積の画像面では中央部の画像濃度が非常に薄くなるという問題が生じる。 The carrier is required to have a certain electric resistance value, and an electric resistance value of about 1 × 10 8 to 1 × 10 16 Ω · cm is required. That is, when the electrical resistance value is as low as 10 6 Ω · cm as in the case of an iron powder carrier, the carrier adheres to the image portion of the photoreceptor due to charge injection from the sleeve, or the latent image charge escapes through the carrier, There is a problem that the latent image is disturbed or the image is lost. On the other hand, if the insulating resin is coated thickly, the electric resistance value becomes too high, the carrier charge is difficult to leak, and the charge amount of the toner is also increased, resulting in an edged image. On the other hand, there is a problem that the image density in the center is very thin on a large-area image surface.

また、電気抵抗値の電圧に対する依存性が大きくなると、一般的に階調性のない画像となり、複写機及びプリンターの現像剤として用いた場合、高画質化が困難であり、用途も限定されることとなる。   In addition, when the dependency of the electrical resistance value on the voltage is increased, an image having no gradation is generally obtained, and when used as a developer of a copying machine or a printer, it is difficult to improve the image quality, and the application is limited. It will be.

鉄粉キャリア及びフェライトキャリアは、通常、粒子表面を樹脂で被覆して使用されるが、鉄粉キャリアは真比重が7〜8g/cmであってフェライトキャリアは真比重が4.5〜5.5g/cmと大きいために、現像機中で攪拌するためには大きな駆動力を必要とし、機械的な損耗が多く、トナーのスペント化、キャリア自体の帯電性劣化や感光体の損傷を招きやすい。さらに、前記鉄粉キャリア及びフェライトキャリア表面と被覆樹脂との接着性が良好とは言い難く、使用中に次第に被覆樹脂が剥離して、帯電性の変化を起こし、結果として画像の乱れやキャリア付着等の問題を引き起こしてしまう。 The iron powder carrier and the ferrite carrier are usually used by coating the particle surface with a resin, but the iron powder carrier has a true specific gravity of 7 to 8 g / cm 3 and the ferrite carrier has a true specific gravity of 4.5 to 5. Because it is as large as 5 g / cm 3 , a large driving force is required to stir in the developing machine, and mechanical wear is high, causing toner spent, charging deterioration of the carrier itself and damage to the photoreceptor. Easy to invite. Furthermore, it is difficult to say that the adhesion between the iron powder carrier and ferrite carrier surface and the coating resin is good, and the coating resin gradually peels off during use, causing a change in chargeability, resulting in image disturbance and carrier adhesion. Cause problems such as.

もっとも、特開平2−220068号公報記載の磁性酸化鉄粒子とフェノール樹脂との球状磁性複合体粒子からなる磁性体分散型キャリアは、前記鉄粉キャリア及びフェライトキャリアに比べて真比重が小さいために、トナーとキャリアの衝突時のエネルギーが小さくなり、被覆樹脂の剥離耐久性に優れたものである。   However, the magnetic material-dispersed carrier comprising spherical magnetic composite particles of magnetic iron oxide particles and phenol resin described in JP-A-2-220068 has a smaller true specific gravity than the iron powder carrier and ferrite carrier. The energy at the time of collision between the toner and the carrier is reduced, and the coating resin has excellent peeling durability.

しかしながら、前記磁性体分散型キャリアは電気抵抗値が低く、電気抵抗値の電圧依存性も大きい。また、各種樹脂で被覆し電気抵抗を改善しても、近年の複写機及びプリンターの高速化、高機能化及び高画質化に伴い、実際の複写機及びプリンターでの耐刷時に樹脂コートキャリアの樹脂被覆層が摩耗等した場合に現像時にリークを生じやすく、電気抵抗値の電圧依存性が大きなため階調性が劣る問題がある。   However, the magnetic material-dispersed carrier has a low electric resistance value and a large voltage dependency of the electric resistance value. In addition, even if the electrical resistance is improved by coating with various resins, as the speed of copying machines and printers has increased, the functions and image quality have increased in recent years, the resin-coated carrier is not suitable for printing with actual copying machines and printers. When the resin coating layer is worn or the like, there is a problem that leakage tends to occur at the time of development, and the gradation property is inferior because the voltage dependency of the electric resistance value is large.

また、特に最近、メンテナンスフリーのマシン寿命まで現像剤の耐久性が必要な場合もあり、磁性体分散型キャリアが十分な電気抵抗を持ち、しかも、電気抵抗の電圧依存性が低い磁性キャリアが強く要求されている。   In particular, the durability of the developer may be required until the maintenance-free machine life, and the magnetic dispersion carrier has a sufficient electric resistance, and the magnetic carrier having a low voltage dependency of the electric resistance is strong. It is requested.

従来、前記磁性体分散型キャリアについて、球状磁性複合体粒子の粒子表面をメラミン樹脂で被覆しキャリアの電気抵抗値を制御する技術(特許文献1)、球状磁性複合体粒子の粒子表面に一種又は二種以上の樹脂とフェノール樹脂との硬化した共重合体樹脂からなる被覆層を形成しキャリアの電気抵抗値を制御する技術(特許文献2)、球状磁性複合体粒子の粒子表面に非磁性鉄化合物を含有させてキャリアの電気抵抗値を制御する技術(特許文献3、4)、アルミニウムと鉄の複合酸化鉄が粒子表面に存在する磁性酸化鉄を含有するキャリア(特許文献5、6)等が知られている。   Conventionally, with respect to the magnetic material dispersed carrier, a technique for controlling the electric resistance of the carrier by coating the particle surface of the spherical magnetic composite particle with melamine resin (Patent Document 1), A technology for controlling the electric resistance of a carrier by forming a coating layer made of a copolymer resin obtained by curing two or more kinds of resins and a phenol resin (Patent Document 2), and nonmagnetic iron on the surface of spherical magnetic composite particles Techniques for controlling the electrical resistance value of a carrier by containing a compound (Patent Documents 3 and 4), carriers containing magnetic iron oxide in which a composite iron oxide of aluminum and iron is present on the particle surface (Patent Documents 5 and 6), etc. It has been known.

特開平3−192268号公報JP-A-3-192268 特開平9−311505号公報Japanese Patent Laid-Open No. 9-311505 特開平8−6303号公報JP-A-8-6303 特開2003−295523号公報JP 2003-295523 A 特開2002−72545号公報JP 2002-72545 A 特開2008−90012号公報JP 2008-90012 A

前出特許文献1、2記載の技術では、キャリアの電気抵抗値を高くすることはできるが、粒子表面をAl化合物で被覆した強磁性化合物を使用していないため電圧を高くした場合、電気抵抗が大きく低下し電気抵抗の電圧依存性が大きなものである。   In the techniques described in Patent Documents 1 and 2 described above, the electrical resistance value of the carrier can be increased, but the electrical resistance is increased when the voltage is increased because a ferromagnetic compound in which the particle surface is coated with an Al compound is not used. Greatly decreases and the voltage dependency of the electrical resistance is large.

また、前出特許文献3、4記載の技術では、高い電気抵抗値を有するキャリアを得ることができるが、強磁性体化合物としてAl化合物で表面を被覆した磁性酸化鉄粒子を使用していないため電気抵抗値の電圧依存性が大きなものである。   In the techniques described in Patent Documents 3 and 4 above, a carrier having a high electric resistance can be obtained, but magnetic iron oxide particles whose surface is coated with an Al compound are not used as the ferromagnetic compound. The voltage dependence of the electrical resistance value is large.

また、前出特許文献5、6記載の技術では、キャリアの電気抵抗値を高くすることができるが、後述する比較例に示すとおり、未だ、十分な電気抵抗値を有するとは言い難いものである。   In addition, in the techniques described in Patent Documents 5 and 6 described above, the electric resistance value of the carrier can be increased, but it is still difficult to say that it has a sufficient electric resistance value as shown in a comparative example described later. is there.

そこで、本発明は、電気抵抗が高く電気抵抗の電圧依存性が高度に制御された球状磁性複合体キャリアを提供することを技術的課題とする。   Therefore, it is a technical object of the present invention to provide a spherical magnetic composite carrier having high electrical resistance and highly controlled voltage dependence of electrical resistance.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は磁性酸化鉄粒子バインダー樹脂に分散してなる複合体粒子からなる球状磁性複合体粒子であって、印加電圧100Vのときの電気抵抗値R100が1×10Ω・cm〜1×1014Ω・cmであって印加電圧300Vのときの電気抵抗値R300
0.1≦R300/R100≦1
であることを特徴とする電子写真現像剤用磁性キャリアである(本発明1)。
That is, the present invention is a spherical magnetic composite particle composed of composite particles dispersed in a magnetic iron oxide particle binder resin, and has an electric resistance value R 100 at an applied voltage of 100 V of 1 × 10 8 Ω · cm. The electric resistance value R 300 when the applied voltage is 300 V is 0.1 ≦ R 300 / R 100 ≦ 1 at 1 × 10 14 Ω · cm.
A magnetic carrier for an electrophotographic developer, characterized in that (Invention 1).

また、本発明は、本発明1記載の電子写真現像剤用磁性キャリアにおいて、磁性酸化鉄粒子の平均粒子径が0.05μm〜2.0μmであり磁性酸化鉄粒子の粒子表面がAl、Mg、Mn、Zn、Ni、Cu、Ti、Siから選ばれる1種又は2種以上の元素からなる化合物によって被覆されており、前記元素の存在量が0.3〜4.5重量%であり、印加電圧100Vのときの電気抵抗値RM100が1×10Ω・cm以上である電子写真現像剤用磁性キャリアである(本発明2)。 Further, the present invention provides the magnetic carrier for an electrophotographic developer according to the first aspect of the present invention, wherein the average particle diameter of the magnetic iron oxide particles is 0.05 μm to 2.0 μm, and the particle surface of the magnetic iron oxide particles is Al, Mg, Covered with a compound composed of one or more elements selected from Mn, Zn, Ni, Cu, Ti, and Si, and the abundance of the elements is 0.3 to 4.5% by weight. This is a magnetic carrier for an electrophotographic developer having an electric resistance value RM 100 of 1 × 10 8 Ω · cm or more at a voltage of 100 V (Invention 2).

また、本発明は、本発明1又は2記載の電子写真現像剤用磁性キャリアにおいて、磁性酸化鉄粒子の水分吸着量Ma0.9が15mg/g以下である電子写真現像剤用磁性キャリアである(本発明3)。 The present invention also relates to a magnetic carrier for an electrophotographic developer according to the first or second aspect of the present invention, wherein the moisture adsorption amount Ma 0.9 of the magnetic iron oxide particles is 15 mg / g or less. (Invention 3).

また、本発明は、本発明1及至3のいずれかに記載の電子写真現像剤用磁性キャリアにおいて、磁性酸化鉄粒子の印加電圧10Vのときの電気抵抗値RM10が、
0.5≦RM100/RM10≦1
である電子写真現像剤用磁性キャリアである(本発明4)。
Further, the present invention provides an electrophotographic magnetic carrier for developer according to any one of the present invention 1及至3, the electric resistance value RM 10 when the applied voltage of 10V of the magnetic iron oxide particles,
0.5 ≦ RM 100 / RM 10 ≦ 1
This is a magnetic carrier for an electrophotographic developer (Invention 4).

また、本発明は、本発明1及至4のいずれかに記載の電子写真現像剤用磁性キャリアにおいて、バインダー樹脂がフェノール系樹脂である電子写真用磁性キャリアである(本発明5)。   Further, the present invention is the magnetic carrier for electrophotographic developer according to any one of the present inventions 1 to 4, wherein the binder resin is a phenolic resin (Invention 5).

また、本発明は、本発明1及至5のいずれかに記載の電子写真現像剤用磁性キャリアにおいて、球状磁性複合体粒子の粒子表面に主に樹脂からなる表面被覆層を形成した電子写真現像剤用磁性キャリアである(本発明6)。     The present invention also provides the electrophotographic developer according to any one of the inventions 1 to 5, wherein a surface coating layer mainly composed of a resin is formed on the surface of the spherical magnetic composite particles. Magnetic carrier (Invention 6).

また、本発明は、本発明1乃至6のいずれかに記載の電子写真現像剤用磁性キャリアを用いた二成分系現像剤である(本発明7)。   Further, the present invention is a two-component developer using the magnetic carrier for an electrophotographic developer according to any one of the first to sixth aspects (Invention 7).

本発明に係る電子写真現像剤用磁性キャリアは、適度な電気抵抗値を持ち、さらに電気抵抗値の電圧依存性が少ないので、電子写真用の磁性キャリアとして好適である。   The magnetic carrier for an electrophotographic developer according to the present invention is suitable as a magnetic carrier for electrophotography because it has an appropriate electric resistance value and has little voltage dependency of the electric resistance value.

実施例1で得られた球状磁性複合体粒子の電気抵抗値と印加電圧との関係を示すグラフである。4 is a graph showing the relationship between the electric resistance value of the spherical magnetic composite particles obtained in Example 1 and the applied voltage.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、本発明に係る電子写真現像剤用磁性キャリアについて述べる。   First, the magnetic carrier for electrophotographic developer according to the present invention will be described.

本発明1に係る電子写真現像剤用磁性キャリアについて電気抵抗値を測定した場合、印加電圧100Vのときの電気抵抗値R100が1.0×10Ω・cm〜1.0×1014Ω・cmである。印加電圧100Vのときの電気抵抗値R100が1×10Ω・cm未満の場合、スリーブからの電荷注入によりキャリアが感光体の画像部へ付着したり、潜像電荷がキャリアを介して逃げ、潜像の乱れや画像の欠損等を生じ好ましくない。1.0×1014Ω・cmを超える磁性キャリアの製造は工業的に困難である。印加電圧100Vのときの電気抵抗値R100は5.0×10Ω・cm〜5.0×1013Ω・cmが好ましく、より好ましくは6.0×10Ω・cm〜1.0×1013Ω・cmである。 When the electric resistance value of the magnetic carrier for electrophotographic developer according to the first aspect of the present invention is measured, the electric resistance value R 100 when the applied voltage is 100 V is 1.0 × 10 8 Ω · cm to 1.0 × 10 14 Ω. -Cm. When the electric resistance value R 100 when the applied voltage is 100 V is less than 1 × 10 8 Ω · cm, carriers are attached to the image area of the photoreceptor by charge injection from the sleeve, or latent image charges escape through the carriers. In this case, the latent image is disturbed or the image is lost. Production of a magnetic carrier exceeding 1.0 × 10 14 Ω · cm is industrially difficult. The electric resistance value R 100 when the applied voltage is 100 V is preferably 5.0 × 10 8 Ω · cm to 5.0 × 10 13 Ω · cm, more preferably 6.0 × 10 8 Ω · cm to 1.0. × 10 13 Ω · cm.

本発明1係る電子写真現像剤用磁性キャリアについて電気抵抗を測定した場合、印加電圧300Vのときの電気抵抗値R300は1.0×10Ω・cm〜1.0×1014Ω・cmが好ましい。 When the electrical resistance of the magnetic carrier for electrophotographic developer according to the present invention 1 is measured, the electrical resistance value R 300 when the applied voltage is 300 V is 1.0 × 10 8 Ω · cm to 1.0 × 10 14 Ω · cm. Is preferred.

本発明に係る電子写真用磁性キャリアは、印加電圧100Vのときの電気抵抗値R100と印加電圧300Vのときの電気抵抗値R300と関係が
0.1≦R300/R100≦1.0
である。R300/R100が0.1未満の場合は、R300とR100の値が大きく異なることを示し、電気抵抗値の電圧依存性が小さいとは言い難い。R300/R100が1.0より大きい磁性キャリアは製造が困難であり工業的でない。好ましいR300/R100は0.15〜0.80であり、より好ましくは0.20〜0.60である。
In the magnetic carrier for electrophotography according to the present invention, the relationship between the electrical resistance value R 100 when the applied voltage is 100 V and the electrical resistance value R 300 when the applied voltage is 300 V is 0.1 ≦ R 300 / R 100 ≦ 1.0.
It is. When R 300 / R 100 is less than 0.1, it indicates that the values of R 300 and R 100 are greatly different, and it is difficult to say that the voltage dependency of the electrical resistance value is small. Magnetic carriers with R 300 / R 100 greater than 1.0 are difficult to produce and are not industrial. Preferred R 300 / R 100 is 0.15 to 0.80, more preferably 0.20 to 0.60.

本発明に係る電子写真現像剤用磁性キャリアの平均粒子径は10〜100μmが好ましい。平均粒子径が10μm未満の場合には二次凝集しやすく、100μmを越える場合には機械的強度が弱く、また、鮮明な画像を得ることができなくなる。より好ましい平均粒子径は20〜70μmである。   The average particle diameter of the magnetic carrier for an electrophotographic developer according to the present invention is preferably 10 to 100 μm. When the average particle diameter is less than 10 μm, secondary aggregation tends to occur, and when it exceeds 100 μm, the mechanical strength is weak and a clear image cannot be obtained. A more preferable average particle diameter is 20 to 70 μm.

本発明に係る電子写真現像剤用磁性キャリアの比重は2.5〜4.5が好ましく、より好ましくは2.5〜4.2である。   The specific gravity of the magnetic carrier for an electrophotographic developer according to the present invention is preferably 2.5 to 4.5, more preferably 2.5 to 4.2.

本発明に係る電子写真現像剤用磁性キャリアの飽和磁化値は20〜100Am/kgが好ましく、より好ましくは40〜85Am/kgである。 The saturation magnetization value of the magnetic carrier for an electrophotographic developer according to the present invention is preferably 20 to 100 Am 2 / kg, more preferably 40 to 85 Am 2 / kg.

本発明に係る電子写真現像剤用磁性キャリアの水分吸着量Ma0.9は0.5〜10mg/gが好ましい。水分吸着量Ma0.9が0.5mg/g未満の磁性キャリアは工業的に製造することが困難である。10mg/gを超える場合は水分吸着量が多いものとなり、特に、高温高湿下において帯電量の低下をおこし画像濃度の低下がおこり好ましくない。より好ましい水分吸着量Ma0.9は1.5〜9.0mg/gである。 The water adsorption amount Ma 0.9 of the magnetic carrier for an electrophotographic developer according to the present invention is preferably 0.5 to 10 mg / g. A magnetic carrier having a moisture adsorption amount Ma 0.9 of less than 0.5 mg / g is difficult to produce industrially. If it exceeds 10 mg / g, the amount of moisture adsorbed is large, and in particular, the charge amount is lowered under high temperature and high humidity, and the image density is lowered. A more preferable moisture adsorption amount Ma 0.9 is 1.5 to 9.0 mg / g.

本発明6に係る球状磁性複合体粒子の粒子表面に主に樹脂からなる表面被覆層を形成した電子写真現像剤用磁性キャリアの電気抵抗値は、印加電圧100Vのときの電気抵抗値R100が1.0×10Ω・cm〜1.0×1016Ω・cmが好ましい。印加電圧100Vのときの電気抵抗値R100が1×1016Ω・cmを超える場合は、キャリア電荷がリークしにくくなり、さらにトナーの帯電量も高くなり、その結果、エッジの効いた画像にはなるが、反面、大面積の画像面では中央部の画像濃度が非常に薄くなるという問題が生じ好ましくない。印加電圧100Vのときの電気抵抗値R100が1.0×10Ω・cm〜5.0×1015Ω・cmがより好ましい。 The electrical resistance value of the magnetic carrier for an electrophotographic developer in which a surface coating layer mainly composed of a resin is formed on the surface of the spherical magnetic composite particles according to the sixth aspect of the invention is the electrical resistance value R 100 when the applied voltage is 100V. 1.0 × 10 8 Ω · cm to 1.0 × 10 16 Ω · cm is preferable. When the electric resistance value R 100 when the applied voltage is 100 V exceeds 1 × 10 16 Ω · cm, the carrier charge is less likely to leak, and the toner charge amount is also increased, resulting in an edged image. However, on the other hand, in the case of an image surface with a large area, there arises a problem that the image density at the center is very thin, which is not preferable. The electric resistance value R 100 when the applied voltage is 100 V is more preferably 1.0 × 10 9 Ω · cm to 5.0 × 10 15 Ω · cm.

本発明6係る電子写真現像剤用磁性キャリアについて電気抵抗を測定した場合、印加電圧300Vのときの電気抵抗値R300は1×10Ω・cm〜1×1016Ω・cmが好ましい。 When the electric resistance of the magnetic carrier for an electrophotographic developer according to the sixth aspect of the invention is measured, the electric resistance value R 300 at an applied voltage of 300 V is preferably 1 × 10 8 Ω · cm to 1 × 10 16 Ω · cm.

本発明6に係る電子写真用磁性キャリアは、印加電圧100Vのときの電気抵抗値R100と印加電圧300Vのときの電気抵抗値R300との関係(R300/R100)が0.10〜1.0であることが好ましく、より好ましくは0.30〜0.90であり、更により好ましくは0.40〜0.80である。 In the magnetic carrier for electrophotography according to the sixth aspect of the invention, the relationship (R 300 / R 100 ) between the electric resistance value R 100 when the applied voltage is 100 V and the electric resistance value R 300 when the applied voltage is 300 V is 0.10 to 10. It is preferably 1.0, more preferably 0.30 to 0.90, and even more preferably 0.40 to 0.80.

次に、本発明に係る電子写真現像剤用磁性キャリアの製造法について述べる。   Next, a method for producing a magnetic carrier for an electrophotographic developer according to the present invention will be described.

即ち、磁性キャリアを構成する球状磁性複合体粒子は、水性媒体中でフェノール類とアルデヒド類を塩基性触媒の存在下、磁性酸化鉄粒子粉末を共存させてフェノール類とアルデヒド類とを反応させて得ることができる。   That is, the spherical magnetic composite particles constituting the magnetic carrier are obtained by reacting phenols and aldehydes in the presence of a basic catalyst in the presence of a basic catalyst in an aqueous medium. Can be obtained.

まず、本発明で用いる磁性酸化鉄粒子粉末について述べる。   First, the magnetic iron oxide particle powder used in the present invention will be described.

本発明における磁性酸化鉄粒子粉末の平均粒径は0.05μm〜2.0μmが好ましい。0.05μm未満の場合は、磁性酸化鉄粒子の凝集力が大きく、磁性複合体粒子の作製が困難なものとなる。2.0μmを超える場合は磁性酸化鉄が脱離を起こしやすくなる。より好ましい磁性酸化鉄粒子粉末の平均粒径は0.08μm〜1.0μmである。   The average particle diameter of the magnetic iron oxide particles in the present invention is preferably 0.05 μm to 2.0 μm. When it is less than 0.05 μm, the cohesive force of the magnetic iron oxide particles is large, making it difficult to produce the magnetic composite particles. When it exceeds 2.0 μm, the magnetic iron oxide tends to be detached. A more preferable average particle diameter of the magnetic iron oxide particle powder is 0.08 μm to 1.0 μm.

本発明における黒色磁性酸化鉄粒子の表面層には、Al、Mg、Zn、Ni、Cu、Ti、Siから選ばれる1種又は2種以上の元素からなる化合物が粒子表面に均一な層を形成している。   In the surface layer of black magnetic iron oxide particles in the present invention, a compound composed of one or more elements selected from Al, Mg, Zn, Ni, Cu, Ti, and Si forms a uniform layer on the particle surface. doing.

本発明における磁性酸化鉄粒子粉末において、磁性酸化鉄粒子の表面層に存在するAl、Mg、Zn、Ni、Cu、Ti、Siから選ばれる1種又は2種以上の元素の存在量は、磁性酸化鉄粒子全体に対して0.3重量%以上4.5重量%以下が好ましい。磁性酸化鉄粒子の粒子表面に前記元素の存在量が0.3重量%未満の場合には、該磁性酸化鉄粒子を用いて製造した磁性キャリアの電気抵抗値が低いものとなる。粒子表面に存在する元素の存在量が4.5重量%を超える場合には、該磁性酸化鉄粒子を用いて製造した磁性キャリアの吸湿性が高くなり好ましくない。磁性酸化鉄粒子の粒子表面に存在する元素量は0.5〜4.0重量%がより好ましく、更により好ましくは0.6〜3.5重量%である。   In the magnetic iron oxide particle powder of the present invention, the abundance of one or more elements selected from Al, Mg, Zn, Ni, Cu, Ti, and Si present in the surface layer of the magnetic iron oxide particles is magnetic. The content is preferably 0.3% by weight or more and 4.5% by weight or less based on the whole iron oxide particles. When the amount of the element present on the surface of the magnetic iron oxide particles is less than 0.3% by weight, the electric resistance value of the magnetic carrier produced using the magnetic iron oxide particles is low. When the abundance of the elements present on the particle surface exceeds 4.5% by weight, the hygroscopicity of the magnetic carrier produced using the magnetic iron oxide particles is undesirably high. The amount of elements present on the surface of the magnetic iron oxide particles is more preferably 0.5 to 4.0% by weight, and still more preferably 0.6 to 3.5% by weight.

本発明における磁性酸化鉄粒子粉末の印加電圧100Vのときの電気抵抗値は1.0×10Ω・cm以上が好ましい。印加電圧100Vのときの電気抵抗値が1.0×10Ω・cm未満の場合、高電場における電気抵抗が不十分となり、電子写真用磁性キャリアとした場合に電気抵抗値が低いものとなる。印加電圧100Vのときのより好ましい電気抵抗値は3.0×10Ω・cm以上であり、更により好ましくは3.5×10Ω・cm〜1.0×1015Ω・cmである。 The electric resistance value of the magnetic iron oxide particles in the present invention when the applied voltage is 100 V is preferably 1.0 × 10 8 Ω · cm or more. When the electric resistance value at an applied voltage of 100 V is less than 1.0 × 10 8 Ω · cm, the electric resistance in a high electric field is insufficient, and the electric resistance value is low when a magnetic carrier for electrophotography is used. . A more preferable electrical resistance value at an applied voltage of 100 V is 3.0 × 10 8 Ω · cm or more, and even more preferable is 3.5 × 10 8 Ω · cm to 1.0 × 10 15 Ω · cm. .

なお、本発明における磁性酸化鉄粒子粉末の印加電圧10Vのときの電気抵抗値は1.0×10Ω・cm以上が好ましく、より好ましくは3.0×10Ω・cm〜1.0×1015Ω・cmである。 The electrical resistance value of the magnetic iron oxide particles in the present invention at an applied voltage of 10 V is preferably 1.0 × 10 8 Ω · cm or more, more preferably 3.0 × 10 8 Ω · cm to 1.0. × 10 15 Ω · cm.

本発明における磁性酸化鉄粒子粉末の印加電圧10Vのときの電気抵抗値RM10と印加電圧100Vのときの電気抵抗値RM100との関係(RM100/RM10)が、
0.5≦RM100/RM10≦1.0
であることが好ましい。RM100/RM10が0.5未満の場合は電子写真用磁性キャリアとした場合に電圧依存性が大きなものとなる。RM100/RM10が1.0より大きなものは工業的に作製が困難である。より好ましいRM100/RM10は0.6〜0.95である。
Relationship between the electric resistance value RM 100 when the electric resistance value RM 10 and the applied voltage of 100V when the applied voltage of 10V of the magnetic iron oxide particles used in the present invention (RM 100 / RM 10) is,
0.5 ≦ RM 100 / RM 10 ≦ 1.0
It is preferable that When RM 100 / RM 10 is less than 0.5, the voltage dependency is large when a magnetic carrier for electrophotography is used. When RM 100 / RM 10 is larger than 1.0, it is difficult to produce industrially. More preferably RM 100 / RM 10 is 0.6 to 0.95.

本発明における磁性酸化鉄粒子粉末の水分吸着量Ma0.9は15mg/g以下が好ましい。15mg/gより大きい場合は吸湿性が高く電子写真現像剤用キャリアとした場合に画像濃度低下等がおこり環境安定性の悪いものとなる。より好ましい水分吸着量Ma0.9は3.0〜12.0mg/gである。 The moisture adsorption amount Ma 0.9 of the magnetic iron oxide particle powder in the present invention is preferably 15 mg / g or less. If it is greater than 15 mg / g, the hygroscopicity is high, and when it is used as a carrier for an electrophotographic developer, the image density is lowered and the environmental stability is poor. A more preferable moisture adsorption amount Ma 0.9 is 3.0 to 12.0 mg / g.

次に、本発明における磁性酸化鉄粒子粉末の製造法について述べる。   Next, a method for producing magnetic iron oxide particles in the present invention will be described.

本発明における磁性酸化鉄粒子粉末は、常法に従って、マグネタイトの核粒子を製造し、次いで、前記核粒子を含有するスラリーを70〜95℃の温度範囲に保持し、スラリーのpHを8.0〜9.0の範囲に制御して、アルミニウム塩を核粒子に対して0.015重量%/分以下の割合で添加した後、30分以上熟成し、次いで、pH調整した後、常法に従って、水洗、乾燥することによって、得ることができる。Mg、Mn、Zn、Ni、Cu、Ti、Si元素は核粒子を含有するスラリーのpHを、Mg元素の場合は9.5〜10.5、Mn元素の場合は8.0〜9.0、Zn元素の場合は8.0〜9.0、Ni元素の場合は7.5〜8.5、Cu元素の場合は6.5〜7.5、Ti元素の場合は8.0〜9.0、Si元素の場合は6.5〜7.5の範囲に制御して金属塩を核粒子に対して0.015重量%/分以下で各金属塩を添加した後、30分以上熟成し、次いで、pH調整した後、常法に従って、水洗、乾燥することによって、得ることができる。   The magnetic iron oxide particles according to the present invention produce magnetite core particles in accordance with a conventional method, and then maintain the slurry containing the core particles in a temperature range of 70 to 95 ° C. to adjust the pH of the slurry to 8.0. After controlling to the range of ˜9.0 and adding aluminum salt at a rate of 0.015 wt% / min or less with respect to the core particles, aging for 30 minutes or more, and then adjusting the pH, followed by the usual method It can be obtained by washing with water and drying. Mg, Mn, Zn, Ni, Cu, Ti, and Si elements have the pH of the slurry containing the core particles, 9.5 to 10.5 for Mg element, and 8.0 to 9.0 for Mn element. In the case of Zn element, 8.0 to 9.0, in the case of Ni element 7.5 to 8.5, in the case of Cu element 6.5 to 7.5, in the case of Ti element 8.0 to 9 0.0, in the case of Si element, the metal salt is controlled within the range of 6.5 to 7.5, and each metal salt is added at 0.015 wt% / min or less with respect to the core particles, and then ripened for 30 minutes or more. Then, after adjusting the pH, it can be obtained by washing with water and drying according to a conventional method.

本発明における磁性酸化鉄粒子粉末を得るための核粒子には要求される磁気特性・分散性などの観点から様々な形状・粒子径のものが選択可能であり、その製造方法も多様に存在するが、本発明の目的をより効果的に達成するためには、後述する表面処理をより均一に行う観点から、核粒子スラリー中には、表面処理の阻害因子となりやすい物質、例えば、未反応の水酸化鉄微粒子等の混入がないことが好ましい。   The core particles for obtaining the magnetic iron oxide particle powder in the present invention can be selected from those having various shapes and particle diameters from the viewpoint of required magnetic properties and dispersibility, and there are various production methods. However, in order to achieve the object of the present invention more effectively, from the viewpoint of performing the surface treatment described later more uniformly, the core particle slurry contains a substance that is likely to be an inhibitor of the surface treatment, for example, unreacted. It is preferable that no iron hydroxide fine particles are mixed.

核粒子を含むスラリーを得るための手段には様々な方法が挙げられるが、例えば、Fe2+水溶液の酸化反応中のpHを所定の値に制御することで、八面体・多面体・六面体・球状・凹凸形状のものを得ることができる。また、酸化反応中の粒子の成長条件を制御することで所望の粒子径の核粒子を得ることができる。また、核粒子の表面平滑性は、酸化反応終盤での成長条件を制御したり、一般に知られているようにシリカ成分やアルミ成分やカルシウム成分などの成分や亜鉛・マンガンなどのスピネルフェライト結晶構造を形成しやすい成分を添加することでも制御できる。 There are various methods for obtaining the slurry containing the core particles. For example, by controlling the pH during the oxidation reaction of the Fe 2+ aqueous solution to a predetermined value, octahedron, polyhedron, hexahedron, sphere, An uneven shape can be obtained. Moreover, the core particle of a desired particle diameter can be obtained by controlling the growth conditions of the particles during the oxidation reaction. In addition, the surface smoothness of the core particles controls the growth conditions at the end of the oxidation reaction, and as is generally known, components such as silica components, aluminum components, calcium components, and spinel ferrite crystal structures such as zinc and manganese It can also be controlled by adding a component that tends to form.

Fe2+水溶液としては、例えば、硫酸第一鉄や塩化第一鉄などの一般的な鉄化合物を用いることができる。また、水酸化鉄を得るためもしくはpH調整剤としてのアルカリ溶液には、水酸化ナトリウム、炭酸ナトリウム等の水溶液を用いることができる。各々の原料は、経済性や反応効率などを考慮して選択すればよい。 As the Fe 2+ aqueous solution, for example, a general iron compound such as ferrous sulfate or ferrous chloride can be used. Moreover, aqueous solutions, such as sodium hydroxide and sodium carbonate, can be used for the alkaline solution for obtaining iron hydroxide or as a pH adjuster. Each raw material may be selected in consideration of economy and reaction efficiency.

Al表面処理時のスラリーのpHは8.0〜9.0が好ましく、より好ましいpHは8.2〜8.8である。スラリーのpHが8.0未満の場合には、Al成分が核粒子表面に被覆されずAl化合物単独で析出し、磁性酸化鉄粒子自体の電気抵抗値の低いものとなり、また、BET比表面積値が高くなり磁性酸化鉄粒子自体の吸湿性が高くなり好ましくない。スラリーのpHが9.0を超える場合にも、Al成分が核粒子表面に被覆されずAl化合物単独で析出し、磁性酸化鉄粒子自体の電気抵抗値の低いものとなり、また、BET比表面積値が高くなり磁性酸化鉄粒子自体の吸湿性が高くなり好ましくない。Mg表面処理時のスラリーのpHは9.5〜10.5、Mn表面処理時のスラリーのpHは8.0〜9.0、Zn表面処理時のスラリーのpHは8.0〜9.0、Ni表面処理時のpHは7.5〜8.5、Cu表面処理時のpHは6.5〜7.5、Ti表面処理時のpHは8.0〜9.0、Si表面処理時のpHは6.5〜7.5が好ましい。上記pHの範囲外の場合は電気抵抗値の低いものとなり、また吸湿性が高くなり好ましくない。   The pH of the slurry during the Al surface treatment is preferably 8.0 to 9.0, and more preferably 8.2 to 8.8. When the pH of the slurry is less than 8.0, the Al component is not coated on the surface of the core particles and is precipitated by the Al compound alone, resulting in a low electric resistance value of the magnetic iron oxide particles themselves, and the BET specific surface area value. And the hygroscopicity of the magnetic iron oxide particles themselves increases, which is not preferable. Even when the pH of the slurry exceeds 9.0, the Al component is not coated on the surface of the core particles and is precipitated by the Al compound alone, resulting in a low electric resistance value of the magnetic iron oxide particles themselves, and the BET specific surface area value. And the hygroscopicity of the magnetic iron oxide particles themselves increases, which is not preferable. The pH of the slurry during Mg surface treatment is 9.5 to 10.5, the pH of the slurry during Mn surface treatment is 8.0 to 9.0, and the pH of the slurry during Zn surface treatment is 8.0 to 9.0. The pH during Ni surface treatment is 7.5 to 8.5, the pH during Cu surface treatment is 6.5 to 7.5, the pH during Ti surface treatment is 8.0 to 9.0, and during Si surface treatment The pH of is preferably 6.5 to 7.5. When the pH is out of the above range, the electric resistance value is low, and the hygroscopicity is high, which is not preferable.

Al、Mg、Mn、Zn、Ni、Cu、Ti、Si成分を表面処理するスラリーの温度範囲は70〜95℃が好ましい。スラリーの温度が70℃未満の場合には、BET比表面積値の高いものとなり、磁性酸化鉄粒子自体の吸湿性の観点からも好ましくない。条件値は特に限定はないが、水系のスラリーであるため、生産性やコストを考慮すると95℃程度が上限となる。   The temperature range of the slurry for surface-treating Al, Mg, Mn, Zn, Ni, Cu, Ti, and Si components is preferably 70 to 95 ° C. When the temperature of the slurry is less than 70 ° C., the BET specific surface area value is high, which is not preferable from the viewpoint of hygroscopicity of the magnetic iron oxide particles themselves. Although the condition value is not particularly limited, it is an aqueous slurry, and therefore the upper limit is about 95 ° C. in consideration of productivity and cost.

核粒子を含有するスラリーへの金属化合物(金属塩)の添加速度は、核粒子に対して金属元素が0.015重量%/分以下となる割合で添加することが好ましい。より好ましくは核粒子に対して金属元素が0.01重量%/分以下で添加することが好ましい。金属元素を0.015重量%/分より大きな添加速度とすると、金属化合物が核粒子表面に被覆されず単独で析出し、磁性酸化鉄粒子自体の電気抵抗値の低いものとなり、またBET比表面積値の大きなものとなり磁性酸化鉄粒子自体の吸湿性の高いものとなる。下限は特に限定はないが生産性を考慮すると0.002重量%/分が下限となる。   The addition rate of the metal compound (metal salt) to the slurry containing the core particles is preferably added at a rate such that the metal element is 0.015 wt% / min or less with respect to the core particles. More preferably, the metal element is added at 0.01 wt% / min or less with respect to the core particles. If the addition rate of the metal element is greater than 0.015% by weight / min, the metal compound is not coated on the surface of the core particles and precipitates alone, resulting in a low electric resistance value of the magnetic iron oxide particles themselves, and a BET specific surface area. The value becomes large, and the magnetic iron oxide particles themselves have high hygroscopicity. The lower limit is not particularly limited, but considering productivity, the lower limit is 0.002% by weight / min.

金属化合物(金属塩)添加後には30分以上熟成を行うことが金属化合物を核粒子表面に均一に処理するため好ましい。上限は特に限定はないが生産性を考慮すると240分程度が上限となる。また、スラリーはよく攪拌されていることが好ましい。   After the addition of the metal compound (metal salt), aging is preferably performed for 30 minutes or more in order to uniformly treat the metal compound on the surface of the core particles. The upper limit is not particularly limited, but considering productivity, the upper limit is about 240 minutes. The slurry is preferably well stirred.

熟成後は、スラリーのpHを4.0〜10.0の範囲に制御することが好ましい。より好ましいスラリーのpHは6.0〜8.0の範囲である。pHが4.0未満の場合、金属化合物層を核粒子表面に均一に形成することが困難である。pHが10.0を超える場合にも、金属化合物層を核粒子表面に均一に形成することが困難である。制御に際しては、スラリーはよく攪拌されていることが好ましい。   After aging, it is preferable to control the pH of the slurry in the range of 4.0 to 10.0. More preferably, the pH of the slurry is in the range of 6.0 to 8.0. When the pH is less than 4.0, it is difficult to uniformly form the metal compound layer on the surface of the core particles. Even when the pH exceeds 10.0, it is difficult to uniformly form the metal compound layer on the surface of the core particle. In controlling, the slurry is preferably well stirred.

反応後は、常法に従って、水洗、乾燥を行えばよい。   After the reaction, it may be washed with water and dried according to a conventional method.

本発明に用いる磁性酸化鉄粒子は、あらかじめ粒子表面を親油化処理しておくことが望ましい。親油化処理することによって、より容易に球形を呈した磁性キャリアを得ることが可能となる。   It is desirable that the magnetic iron oxide particles used in the present invention have a lipophilic treatment on the particle surface in advance. By carrying out the oleophilic treatment, it is possible to obtain a magnetic carrier having a spherical shape more easily.

親油化処理は、磁性酸化鉄粒子をシランカップリング剤やチタネートカップリング剤等のカップリング剤で処理する方法や界面活性剤を含む水性溶媒中に磁性酸化鉄粒子を分散させて、粒子表面に界面活性剤を吸着させる方法が好適である。   The oleophilic treatment is a method of treating magnetic iron oxide particles with a coupling agent such as a silane coupling agent or a titanate coupling agent or by dispersing magnetic iron oxide particles in an aqueous solvent containing a surfactant, A method of adsorbing the surfactant on the surface is suitable.

シランカップリング剤としては、疎水性基、アミノ基、エポキシ基を有するものが挙げられ、疎水性基を有するシランカップリング剤としては、ビニルトリクロルシラン、ビニルトリエトキシシラン、ビニル・トリス(β−メトキシ)シラン等がある。アミノ基を有するシランカップリング剤としては、γ−アミノプロピルトリエトキノプラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキソシラン等がある。エポキシ基を有するシランカップリング剤としては、γ−グリシドオキシプロビルメチルジエトキシシラン、γ−グリシドオキシプロピルトリメトキシンラン、β−(3,4−エポキシシクロヘキシル)トリメトキシシラン等がある。   Examples of the silane coupling agent include those having a hydrophobic group, an amino group, and an epoxy group. Examples of the silane coupling agent having a hydrophobic group include vinyl trichlorosilane, vinyl triethoxysilane, vinyl tris (β- Methoxy) silane and the like. Examples of the silane coupling agent having an amino group include γ-aminopropyltrietoquinopran, N-β (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β (aminoethyl) -γ-aminopropylmethyldimethoxysilane. N-phenyl-γ-aminopropyltrimethoxosilane and the like. Examples of the silane coupling agent having an epoxy group include γ-glycidoxypropyl methyldiethoxysilane, γ-glycidoxypropyltrimethoxylane, β- (3,4-epoxycyclohexyl) trimethoxysilane and the like.

チタネートカップリング剤としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルピロホスフェート)チタネート等を用いればよい。   As the titanate coupling agent, isopropyl triisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate or the like may be used.

界面活性剤としては、市販の界面活性剤を使用することができ、磁性酸化鉄粒子や該粒子表面に有する水酸基と結合が可能な官能基を有するものが望ましく、イオン性はカチオン性又はアニオン性のものが好ましい。   As the surfactant, commercially available surfactants can be used, and those having a functional group capable of binding to a magnetic iron oxide particle or a hydroxyl group on the particle surface are desirable, and ionicity is cationic or anionic. Are preferred.

前記いずれの処理方法によっても本発明の目的を達成することができるが、フェノール樹脂との接着性を考慮するとアミノ基あるいはエポキシ基を有するシランカップリング剤による処理が好ましい。   Although the object of the present invention can be achieved by any of the above-mentioned treatment methods, the treatment with a silane coupling agent having an amino group or an epoxy group is preferable in consideration of adhesiveness with a phenol resin.

前記カップリング剤又は界面活性剤の処理量は磁性酸化鉄粒子に対して0.1〜10重量%が好ましい。   The treatment amount of the coupling agent or surfactant is preferably 0.1 to 10% by weight with respect to the magnetic iron oxide particles.

本発明において磁性酸化鉄粒子とバインダー樹脂とからなる球状磁性複合体粒子の製造方法は以下のとおりである。   In the present invention, a method for producing spherical magnetic composite particles comprising magnetic iron oxide particles and a binder resin is as follows.

本発明に用いるフェノール類としては、フェノールのほか、m−クレゾール、p−クレゾール、p−tert−ブチルフェノール、o−プロピルフェノール等のアルキルフェノール類や、アルキル基の一部又は全部が塩素原子、臭素原子で置換されたハロゲン化フェノール類等のフェノール性水酸基を有する化合物が挙げられる。   As phenols used in the present invention, in addition to phenol, alkylphenols such as m-cresol, p-cresol, p-tert-butylphenol, o-propylphenol, and a part or all of alkyl groups are chlorine atoms and bromine atoms. And compounds having a phenolic hydroxyl group, such as halogenated phenols substituted with.

フェノール類として球状磁性複合体粒子における磁性酸化鉄粒子粉末の全含有量は、球状磁性複合体粒子に対して80〜99重量%が好ましく、80重量%未満の場合には樹脂分が多くなり、大粒子が出来やすくなる。99重量%を越える場合には樹脂分が不足して十分な強度が得られない。より好ましくは85〜99重量%である。   The total content of the magnetic iron oxide particles in the spherical magnetic composite particles as phenols is preferably 80 to 99% by weight with respect to the spherical magnetic composite particles, and if it is less than 80% by weight, the resin content increases. Large particles can be easily formed. If it exceeds 99% by weight, the resin content is insufficient and sufficient strength cannot be obtained. More preferably, it is 85 to 99% by weight.

本発明に用いるアルデヒド類としては、ホルマリン又はパラアルデヒドのいずれかの形態のホルムアルデヒド、アセトアルデヒド、フルフラール、グリオキサール、アクロレイン、クロトンアルデヒド、サリチルアルデヒド及びグルタールアルデヒド等が挙げられるが、ホルムアルデヒドが最も好ましい。   Examples of aldehydes used in the present invention include formaldehyde, acetaldehyde, furfural, glyoxal, acrolein, crotonaldehyde, salicylaldehyde, glutaraldehyde and the like in the form of either formalin or paraaldehyde, with formaldehyde being most preferred.

アルデヒド類はフェノール類に対してモル比で1.0〜4.0が好ましく、アルデヒド類のフェノール類に対するモル比が1.0未満の場合には、粒子の生成が困難であったり、樹脂の硬化が進行し難いために、得られる粒子の強度が弱くなる傾向がある。4.0を超える場合には、反応後に水性媒体中に残留する未反応のアルデヒド類が増加する傾向がある。より好ましくは1.2〜3.0である。   The molar ratio of aldehydes to phenols is preferably 1.0 to 4.0. When the molar ratio of aldehydes to phenols is less than 1.0, it is difficult to produce particles, Since curing is difficult to proceed, the strength of the resulting particles tends to be weak. When it exceeds 4.0, there is a tendency that unreacted aldehydes remaining in the aqueous medium after the reaction increase. More preferably, it is 1.2-3.0.

本発明に用いる塩基性触媒としては、通常のレゾール樹脂の製造に使用されている塩基性触媒が使用できる。例えば、アンモニア水、ヘキサメチレンテトラミン及びジメチルアミン、ジエチルトリアミン、ポリエチレンイミン等のアルキルアミンが挙げられ、特にアンモニア水が好ましい。塩基性触媒はフェノール類に対してモル比で0.05〜1.50が好ましい。0.05未満の場合には、硬化が十分に進行せず造粒が困難となる。1.50を越える場合には、フェノール樹脂の構造に影響するため造粒性が悪くなり、粒子径の大きな粒子を得ることが困難となる。   As the basic catalyst used in the present invention, a basic catalyst used in the production of ordinary resole resins can be used. For example, ammonia water, hexamethylenetetramine, alkylamines such as dimethylamine, diethyltriamine, and polyethyleneimine can be mentioned, and ammonia water is particularly preferable. The basic catalyst is preferably 0.05 to 1.50 in molar ratio to phenols. If it is less than 0.05, curing does not proceed sufficiently and granulation becomes difficult. If it exceeds 1.50, the structure of the phenol resin is affected, so that the granulation property is deteriorated and it is difficult to obtain particles having a large particle size.

本発明における反応は水性媒体中で行われるが、水性媒体中の固形分濃度が30〜95重量%になるようにすることが好ましく、特に、60〜90重量%となるようにすることが好ましい。   Although the reaction in the present invention is carried out in an aqueous medium, the solid content concentration in the aqueous medium is preferably 30 to 95% by weight, particularly preferably 60 to 90% by weight. .

塩基性触媒を添加した反応溶液は60〜95℃の温度範囲まで昇温し、この温度で30〜300分間、好ましくは60〜240分間反応させ、フェノール樹脂の重縮合反応を行って硬化させる。   The reaction solution to which the basic catalyst has been added is heated to a temperature range of 60 to 95 ° C., and reacted at this temperature for 30 to 300 minutes, preferably 60 to 240 minutes, followed by a polycondensation reaction of a phenol resin and curing.

このとき、球形度の高い球状磁性複合体粒子を得るために、ゆるやかに昇温させることが望ましい。昇温速度は0.5〜1.5℃/minが好ましく、より好ましくは0.8〜1.2℃/minである。   At this time, in order to obtain spherical magnetic composite particles with high sphericity, it is desirable to raise the temperature gently. The heating rate is preferably 0.5 to 1.5 ° C./min, more preferably 0.8 to 1.2 ° C./min.

このとき、粒径を制御するために、攪拌速度を制御することが望ましい。攪拌速度は100〜1000rpmが好ましい。   At this time, it is desirable to control the stirring speed in order to control the particle size. The stirring speed is preferably 100 to 1000 rpm.

硬化させた後、反応物を40℃以下に冷却すると、バインダー樹脂中に磁性酸化鉄粒子が分散し、且つ、粒子表面に磁性酸化鉄粒子が露出した球状磁性複合体粒子の水分散液が得られる。   After curing, when the reaction product is cooled to 40 ° C. or less, an aqueous dispersion of spherical magnetic composite particles in which the magnetic iron oxide particles are dispersed in the binder resin and the magnetic iron oxide particles are exposed on the particle surface is obtained. It is done.

前記球状磁性複合体粒子を含む水分散液を濾過、遠心分離等の常法に従って、固・液を分離した後、洗浄・乾燥して球状磁性複合体粒子を得る。   The aqueous dispersion containing the spherical magnetic composite particles is filtered and centrifuged to separate solids and liquids, and then washed and dried to obtain spherical magnetic composite particles.

本発明に用いる被覆樹脂は特に限定されないが、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ポリスチレン;アクリル樹脂;ポリアクリロニトリル;ポリビニルアセテート、ポリビニルアルコール、ポリビニルブチラール、ポリ塩化ビニル、ポリビニルカルバゾール、ポリビニルエーテル、ポリビニルケトン等のポリビニル系又はポリビニリデン系樹脂;塩化ビニル・酢酸ビニル共重合体、スチレン・アクリル酸共重合体;オルガノシロキサン結合からなるストレートシリコン系樹脂又はその変性品;ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリクロロトリフルオロエチレン等のフッ素系樹脂;ポリエステル;ポリウレタン;ポリカーボネート;尿素・ホルムアルデヒド樹脂等のアミノ系樹脂;エポキシ系樹脂;ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、フッ素−ポリアミド樹脂、フッ素−ポリイミド樹脂、フッ素−ポリアミドイミド樹脂、などを挙げることができる。   The coating resin used in the present invention is not particularly limited, but polyolefin resins such as polyethylene and polypropylene; polystyrene; acrylic resin; polyacrylonitrile; polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral, polyvinyl chloride, polyvinyl carbazole, polyvinyl ether, polyvinyl ketone. Polyvinyl-based or polyvinylidene-based resins such as: vinyl chloride / vinyl acetate copolymer, styrene / acrylic acid copolymer; straight silicone resin composed of organosiloxane bonds or modified products thereof; polytetrafluoroethylene, polyvinyl fluoride, Fluorine resins such as polyvinylidene fluoride and polychlorotrifluoroethylene; polyesters; polyurethanes; polycarbonates; amino-based trees such as urea and formaldehyde resins ; Epoxy resin; polyamide resin, polyimide resin, polyamide imide resin, fluorine - polyamide resins, fluorine - polyimide resins, fluorine - polyamide-imide resins, and the like.

本発明に係る磁性キャリアの樹脂による被覆量は、球状磁性複合体粒子に対して0.1〜5.0重量%が好ましい。被覆量が0.1重量%未満の場合には、十分に被覆することが困難となり、コートむらが生じることがある。また、5.0重量%を越える場合には、樹脂の被覆を複合体粒子表面に密着させることはできるが、生成した複合体粒子同士の凝集が生じ、複合体粒子の粒子サイズの制御が困難になる。好ましくは0.5〜3.0重量%である。   The coating amount of the magnetic carrier according to the present invention with the resin is preferably 0.1 to 5.0% by weight with respect to the spherical magnetic composite particles. If the coating amount is less than 0.1% by weight, it may be difficult to sufficiently coat and uneven coating may occur. When the amount exceeds 5.0% by weight, the resin coating can be brought into close contact with the surface of the composite particles, but the generated composite particles are aggregated and it is difficult to control the particle size of the composite particles. become. Preferably, it is 0.5 to 3.0% by weight.

本発明における樹脂被覆は、樹脂被覆層中に微粒子を含有させても良い。前記微粒子としては、例えばトナーに負帯電性を付与させるものとして、4級アンモニウム塩系化合物、トリフェニルメタン系化合物、イミダゾール系化合物、ニグロシン系染料、ポリアミン樹脂などによる微粒子が好ましい。一方、トナーに正帯電性を付与させるものとして、Cr、Co等金属を含む染料、サリチル酸金属化合物、アルキルサリチル酸金属化合物などによる微粒子が好ましい。なお、これらの粒子は1種単独で使用して良いし、2種以上を併用しても良い。   The resin coating in the present invention may contain fine particles in the resin coating layer. As the fine particles, fine particles made of a quaternary ammonium salt compound, a triphenylmethane compound, an imidazole compound, a nigrosine dye, a polyamine resin, or the like are preferable, for example, to impart negative chargeability to the toner. On the other hand, fine particles made of a dye containing a metal such as Cr or Co, a salicylic acid metal compound, an alkylsalicylic acid metal compound, or the like are preferable as those that impart positive chargeability to the toner. These particles may be used alone or in combination of two or more.

また、本発明における樹脂被覆は、樹脂被覆層中に導電性微粒子を含有させても良い。樹脂中に導電性微粒子を含有させることが、磁性キャリアの抵抗を容易に制御することができる点で好ましい。前記導電性微粒子としては公知のものが使用可能であり、例えばアセチレンブラック、チャンネルブラック、ファーネスブラック、ケッチェンブラック等のカーボンブラック、Si、Ti等の金属炭化物、B、Ti等の金属窒化物、Mo、Cr等の金属ホウ化物などが挙げられる。これらは1種単独で使用してよいし、2種以上を併用しても良い。これらの中でも、カーボンブラックが好ましい。   Moreover, the resin coating in the present invention may contain conductive fine particles in the resin coating layer. It is preferable that conductive fine particles are contained in the resin because the resistance of the magnetic carrier can be easily controlled. Known conductive fine particles can be used, for example, carbon black such as acetylene black, channel black, furnace black and ketjen black, metal carbide such as Si and Ti, metal nitride such as B and Ti, Examples thereof include metal borides such as Mo and Cr. These may be used alone or in combination of two or more. Among these, carbon black is preferable.

球状磁性複合体粒子の粒子表面に樹脂を被覆する場合には、周知のスプレードライヤーを用いて球状磁性複合体粒子に樹脂を吹き付ける方法、ヘンシェルミキサー、ハイスピードミキサー等を用いて球状磁性複合体粒子と樹脂とを乾式混合する方法、樹脂を含む溶剤中に球状磁性複合体粒子を含浸する方法等によって行えばよい。   When the resin is coated on the surface of the spherical magnetic composite particles, a method of spraying the resin on the spherical magnetic composite particles using a known spray dryer, a spherical magnetic composite particle using a Henschel mixer, a high speed mixer, etc. And a method of dry mixing the resin and the resin, a method of impregnating spherical magnetic composite particles in a solvent containing the resin, and the like.

次に、本発明における二成分系現像剤について述べる。   Next, the two-component developer in the present invention will be described.

本発明のキャリアと組み合わせて使用するトナーとしては、公知のトナーを使用することができる。具体的には、結着樹脂、着色剤を主構成物とし、必要に応じて離型剤、磁性体、流動化剤などを添加したものを使用できる。また、トナーの製造方法は公知の方法を使用できる。   As the toner used in combination with the carrier of the present invention, a known toner can be used. Specifically, a binder resin and a colorant as main components, and a release agent, a magnetic material, a fluidizing agent, and the like added as necessary can be used. In addition, a known method can be used as a method for producing the toner.

<作用>
本発明において重要な点は、適切な電気抵抗値をもち電気抵抗の電圧依存性の少ない磁性酸化鉄粒子を用いてフェノール系樹脂をバインダーとして結合させて、十分な電気抵抗をもち、かつ電気抵抗値の電圧依存性の少ない電子写真用磁性キャリアを作製することである。
<Action>
An important point in the present invention is that the phenolic resin is bound as a binder using magnetic iron oxide particles having an appropriate electric resistance value and less voltage dependency of the electric resistance, and has sufficient electric resistance and electric resistance. It is to produce a magnetic carrier for electrophotography having a small voltage dependency of the value.

その結果、本発明に係る電子写真用磁性キャリアを用いた場合には、階調性に優れた画像を得ることができたと本発明者は考えている。   As a result, the inventor believes that when the electrophotographic magnetic carrier according to the present invention is used, an image having excellent gradation can be obtained.

本発明の代表的な実施の形態は次の通りである。 A typical embodiment of the present invention is as follows.

<測定方法>
磁性酸化鉄粒子の平均粒子径は、透過型電子顕微鏡写真により撮影した写真、粒子300個についてフェレ径により求めた値である。
<Measurement method>
The average particle diameter of the magnetic iron oxide particles is a value obtained from a photograph taken with a transmission electron micrograph and a ferret diameter for 300 particles.

磁性酸化鉄粒子粉末の粒子形状は、透過型電子顕微鏡と「走査型電子顕微鏡S−4800 」((株)日立ハイテクノロジーズ製)により観察した写真から判断した。   The particle shape of the magnetic iron oxide particle powder was judged from a photograph observed with a transmission electron microscope and “scanning electron microscope S-4800” (manufactured by Hitachi High-Technologies Corporation).

磁性酸化鉄粒子粉末の水分吸着量Ma0.9は「高精度蒸気吸着量測定装置BELSORP−aqua3」(日本ベル(株))を用いて、25℃、相対圧0.9の吸着時の吸着水分量の値で示した。 The water adsorption amount Ma 0.9 of the magnetic iron oxide particle powder is the adsorption at the time of adsorption at 25 ° C. and a relative pressure of 0.9 using “Highly accurate vapor adsorption amount measuring apparatus BELSORP-aqua3” (Nippon Bell Co., Ltd.). It was indicated by the value of moisture content.

BET比表面積値は、「Mono Sorb MS−II」(湯浅アイオニックス株式会社製)を用いてBET法により求めた。   The BET specific surface area value was determined by the BET method using “Mono Sorb MS-II” (manufactured by Yuasa Ionics Co., Ltd.).

磁性酸化鉄粒子粉末中に含まれるAl量および金属元素量は「蛍光X線分析装置RIX−2100」(理学電気工業株式会社製)にて測定し、磁性酸化鉄粒子粉末に対して元素換算で求めた値である。   The amount of Al and the amount of metal elements contained in the magnetic iron oxide particle powder are measured with a “fluorescence X-ray analyzer RIX-2100” (manufactured by Rigaku Denki Kogyo Co., Ltd.), and converted into elements with respect to the magnetic iron oxide particle powder. This is the calculated value.

磁性酸化鉄粒子粉末の電気抵抗値は、測定対象の試料粉末2.0gを秤量し測定容器に入れ14MPaの圧力を加えた状態で、100Vまたは10Vの定電圧を印加し「HIGH RESISTANCE METER 4339B」(ヒューレット・パッカード(株)製)で測定し、そのときの抵抗値と試料の電極面積および厚みより体積固有抵抗値を求めた。   The electrical resistance value of the magnetic iron oxide particle powder was determined by weighing 2.0 g of the sample powder to be measured, putting it in a measurement container and applying a pressure of 14 MPa, and applying a constant voltage of 100 V or 10 V, “HIGH REISTANCE METER 4339B” (The volume specific resistance value was calculated | required from the resistance value at that time, the electrode area of a sample, and thickness.) (Made by Hewlett-Packard Co., Ltd.).

球状磁性複合体粒子粉末の平均粒子径はレーザー回折式粒度分布計 LA500((株)堀場製作所製)により計測して体積基準による値で示した。   The average particle diameter of the spherical magnetic composite particle powder was measured by a laser diffraction particle size distribution analyzer LA500 (manufactured by Horiba, Ltd.) and indicated as a value based on volume.

球状磁性複合体粒子の粒子形状は「走査型電子顕微鏡S−4800 」((株)日立ハイテクノロジーズ製)により観察した写真から判断した。   The particle shape of the spherical magnetic composite particles was judged from a photograph observed with “Scanning Electron Microscope S-4800” (manufactured by Hitachi High-Technologies Corporation).

飽和磁化は、振動試料型磁力計VSM−3S−15(東英工業(株)製)を用いて外部磁場795.8kA/m(10kOe)のもとで測定した値で示した。   The saturation magnetization was indicated by a value measured under an external magnetic field of 795.8 kA / m (10 kOe) using a vibrating sample magnetometer VSM-3S-15 (manufactured by Toei Kogyo Co., Ltd.).

真比重はマルチボリウム密度計(島津製作所製1305型)で測定した。   The true specific gravity was measured with a multi-volume density meter (1305 type, manufactured by Shimadzu Corporation).

球状磁性複合体粒子の電気抵抗値(体積固有抵抗値)は、ハイレジスタンスメーター4339B(横河ヒューレットパッカード製)で試料1.0gで測定した値で示した。   The electric resistance value (volume specific resistance value) of the spherical magnetic composite particles was shown as a value measured with a high resistance meter 4339B (manufactured by Yokogawa Hewlett Packard) with a sample of 1.0 g.

画像評価はエプソン製LP8000Cを改造して用いてキャリアを本発明のキャリアに変え、バイアス電圧を変えて印刷試験を行った   For the image evaluation, Epson LP8000C was remodeled and used to change the carrier to the carrier of the present invention, and the printing test was performed by changing the bias voltage.

印刷画像の階調性はKODAK社のグレースケール(0〜19階調テストチャート)を用い目視で評価した。
◎:15階調以上
○:12〜14階調
△:8〜11階調
×:7階調以下
The gradation of the printed image was visually evaluated using a gray scale (0-19 gradation test chart) manufactured by KODAK.
◎: 15 gradations or more ○: 12-14 gradations △: 8-11 gradations X: 7 gradations or less

酸化鉄1
<磁性酸化鉄粒子の生成方法>
球状で平均粒子径が0.24μmのFe酸化鉄核粒子Aを90g/l含むスラリー100Lを温度90℃において水酸化ナトリウム溶液を添加しpH8.5に調整した後、1.9mol/lの硫酸アルミニウム水溶液3Lと水酸化ナトリウム水溶液を同時にpH8.5±0.2に調整しながら190分かけて添加した。次いで、60分間熟成させた後、希硫酸を添加してpH7.0に調整した後、濾過、水洗、乾燥してAlで表面処理された磁性酸化鉄粒子を得た。
Iron oxide 1
<Method for producing magnetic iron oxide particles>
After 100 L of a slurry containing 90 g / l of Fe 3 O 4 iron oxide core particles A having a spherical shape and an average particle diameter of 0.24 μm was adjusted to pH 8.5 by adding a sodium hydroxide solution at a temperature of 90 ° C., 1.9 mol / l 1 L of an aqueous aluminum sulfate solution and an aqueous sodium hydroxide solution were added over 190 minutes while simultaneously adjusting the pH to 8.5 ± 0.2. Next, after aging for 60 minutes, diluted sulfuric acid was added to adjust the pH to 7.0, followed by filtration, washing with water, and drying to obtain magnetic iron oxide particles surface-treated with Al.

得られた磁性酸化鉄粒子は、BET比表面積は7.4m/g、Al量は1.68%、印加電圧100Vのときの電気抵抗値RM100は7.1×10Ω・cm、印加電圧10Vのときの電気抵抗値RM10は8.2×10Ω・cm、RM100/RM10は0.87、飽和磁化は83.8Am/kg、吸着水分量Ma0.9は7.2mg/gであった。 The obtained magnetic iron oxide particles had a BET specific surface area of 7.4 m 2 / g, an Al amount of 1.68%, and an electric resistance value RM 100 at an applied voltage of 100 V of 7.1 × 10 9 Ω · cm, When the applied voltage is 10 V, the electric resistance value RM 10 is 8.2 × 10 9 Ω · cm, RM 100 / RM 10 is 0.87, the saturation magnetization is 83.8 Am 2 / kg, and the adsorbed water amount Ma 0.9 is It was 7.2 mg / g.

酸化鉄5
硫酸アルミニウム水溶液と硫酸マグネシウム水溶液を混合し添加した以外は、前記酸化鉄1と同様にして磁性酸化鉄粒子粉末を得た。
Iron oxide 5
A magnetic iron oxide particle powder was obtained in the same manner as the iron oxide 1 except that an aluminum sulfate aqueous solution and a magnesium sulfate aqueous solution were mixed and added.

酸化鉄6
硫酸アルミニウム水溶液の代わりに硫酸チタニル水溶液を添加して、表2に示す条件で磁性酸化鉄粒子粉末を得た。
Iron oxide 6
A magnetic iron oxide particle powder was obtained under the conditions shown in Table 2 by adding a titanyl sulfate aqueous solution in place of the aluminum sulfate aqueous solution.

酸化鉄7
硫酸アルミニウム水溶液の代わりにケイ酸ナトリウム水溶液を添加して、表2に示す条件で磁性酸化鉄粒子粉末を得た。
Iron oxide 7
A magnetic iron oxide particle powder was obtained under the conditions shown in Table 2 by adding a sodium silicate aqueous solution in place of the aluminum sulfate aqueous solution.

酸化鉄8
<磁性酸化鉄粒子の生成方法>
球状で平均粒子径が0.24μmのFe酸化鉄核粒子Aを90g/l含むスラリー100lを、温度90℃において水酸化ナトリウム溶液を添加しpH11に調整した後、1.9mol/lの硫酸アルミニウム水溶液3.5lを添加し攪拌した後に、1.1mol/lの硫酸マグネシウム溶液0.3lを添加し20分混合した後、一旦、pHを9.0に調整して5分混合し、希硫酸を添加してpHを7.0に調整し、濾過、水洗、乾燥してAlとMgで表面処理された磁性酸化鉄粒子を得た。
Iron oxide 8
<Method for producing magnetic iron oxide particles>
100 l of a slurry containing 90 g / l of Fe 3 O 4 iron oxide core particles A having a spherical shape and an average particle diameter of 0.24 μm was adjusted to pH 11 by adding a sodium hydroxide solution at a temperature of 90 ° C., and then 1.9 mol / l. After adding 3.5 l of an aluminum sulfate aqueous solution and stirring, 0.3 l of a 1.1 mol / l magnesium sulfate solution was added and mixed for 20 minutes, then the pH was adjusted to 9.0 and mixed for 5 minutes. Then, dilute sulfuric acid was added to adjust the pH to 7.0, followed by filtration, washing with water and drying to obtain magnetic iron oxide particles surface-treated with Al and Mg.

酸化鉄14
球状で平均粒子径が0.24μmのFe酸化鉄核粒子Aを70g/l含むスラリー80Lを温度80℃において0.5mol/lの硫酸アルミニウム水溶液6.9Lと1.5mol/lの硫酸第一鉄水溶液4.6lと水酸化ナトリウム溶液を添加しpH9.0に調整した後、毎分80lの空気を通気し、酸化反応を終了させ、濾過、水洗、乾燥を行い粒子表面に複合酸化鉄層を形成した磁性酸化鉄粒子を得た。
Iron oxide 14
80 L of a slurry containing 70 g / l of Fe 3 O 4 iron oxide core particles A having a spherical shape and an average particle diameter of 0.24 μm is 6.9 L of an aluminum sulfate aqueous solution of 0.5 mol / l at a temperature of 80 ° C. and 1.5 mol / l. After adding 4.6 liters of ferrous sulfate aqueous solution and sodium hydroxide solution to adjust to pH 9.0, 80 liters of air was passed through every minute to terminate the oxidation reaction, followed by filtration, washing with water and drying. Magnetic iron oxide particles having an iron oxide layer were obtained.

酸化鉄15
Fe2+を1.6mol/l含む硫酸第一鉄水溶液20lと1.5mol/lの水酸化ナトリウム溶液20.8lと0.4mol/lの炭酸ナトリウム溶液4lを、温度90℃において毎分80lの空気を通気して酸化反応を行い酸化反応を終了させた。このスラリーに0.5mol/lの硫酸アルミニウム水溶液1.2lと1.6mol/lの硫酸第一水溶液0.75lと水酸化ナトリウム水溶液を加えpH9.0に調整した。毎分80lの空気を再度通気し酸化反応を終了させた、濾過、水洗、乾燥を行い14面体の磁性酸化鉄粒子を得た。
Iron oxide 15
20 l of an aqueous ferrous sulfate solution containing 1.6 mol / l Fe2 +, 20.8 l of a 1.5 mol / l sodium hydroxide solution and 4 l of a 0.4 mol / l sodium carbonate solution were mixed with 80 l of air at a temperature of 90 ° C. And the oxidation reaction was terminated by carrying out an oxidation reaction. The slurry was adjusted to pH 9.0 by adding 1.2 l of 0.5 mol / l aluminum sulfate aqueous solution, 0.75 l of 1.6 mol / l first sulfuric acid aqueous solution and sodium hydroxide aqueous solution. 80 l of air per minute was vented again to terminate the oxidation reaction, followed by filtration, washing with water and drying to obtain tetrahedral magnetic iron oxide particles.

酸化鉄2〜4、9〜13
磁性粒子粉末の製造条件を種々変化させた以外は、前記実施例1と同様にして磁性酸化鉄粒子粉末を得た。
Iron oxide 2-4, 9-13
A magnetic iron oxide particle powder was obtained in the same manner as in Example 1 except that the production conditions of the magnetic particle powder were variously changed.

磁性酸化鉄核粒子の諸特性を表1に、磁性酸化鉄粒子の製造条件を表2に示す。得られた磁性酸化鉄粒子粉末の諸特性を表3に示す。   Various properties of the magnetic iron oxide core particles are shown in Table 1, and the production conditions of the magnetic iron oxide particles are shown in Table 2. Table 3 shows various characteristics of the obtained magnetic iron oxide particle powder.

<球状磁性複合体粒子の製造:磁性酸化鉄粒子の親油化処理>
フラスコに酸化鉄1の磁性酸化鉄粒子1000gを仕込み十分に良く攪拌した後、エポキシ基を有するシラン系カップリング剤(商品名:KBM−403 信越化学社製)7.0gを添加し、約100℃まで昇温し30分間良く混合攪拌することによりカップリング剤で被覆されている球状マグネタイト粒子粉末を得た。
<Manufacture of spherical magnetic composite particles: lipophilic treatment of magnetic iron oxide particles>
After 1000 g of magnetic iron oxide particles of iron oxide 1 were charged into the flask and sufficiently stirred, 7.0 g of a silane coupling agent having an epoxy group (trade name: KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and about 100 The temperature was raised to 0 ° C. and mixed and stirred well for 30 minutes to obtain spherical magnetite particle powder coated with the coupling agent.

実施例1
<球状磁性複合体粒子の製造例>
フェノール樹脂 10重量部
37%ホルマリン 15重量部
親油化処理された酸化鉄1の磁性酸化鉄粒子粉末 100重量部
25%アンモニア水 3重量部
水 13重量部
上記材料をフラスコに入れ、250rpmの攪拌速度で攪拌しながら60分間で85℃に昇温させた後、同温度で120分間反応・硬化させることにより、磁性酸化鉄粒子と硬化したフェノール樹脂からなる複合体粒子の生成を行った。
Example 1
<Production example of spherical magnetic composite particles>
Phenolic resin 10 parts by weight 37% formalin 15 parts by weight Iron oxide 1 magnetic iron oxide particles powder subjected to lipophilic treatment 100 parts by weight 25% ammonia water 3 parts by weight Water 13 parts by weight The above materials are placed in a flask and stirred at 250 rpm. The mixture was heated to 85 ° C. over 60 minutes while stirring at a speed, and then reacted and cured at the same temperature for 120 minutes to produce composite particles composed of magnetic iron oxide particles and a cured phenol resin.

次に、フラスコ内の内容物を30℃まで冷却後、上澄み液を除去し、さらに下層の沈殿物を水洗した後、風乾した。次いで、これを減圧下(5mmHg以下)に150〜200℃で乾燥して磁性芯材粒子用の球状磁性複合体粒子を得た。   Next, after cooling the content in the flask to 30 ° C., the supernatant was removed, and the precipitate in the lower layer was washed with water and then air-dried. Next, this was dried at 150 to 200 ° C. under reduced pressure (5 mmHg or less) to obtain spherical magnetic composite particles for magnetic core particles.

得られた球状磁性複合体粒子は、平均粒子径が32μmであり、比重3.72g/cm、飽和磁化値74.1Am/kg、印加電圧100Vのときの電気抵抗値R100は1.3×1011Ω・cm、印加電圧300Vのときの電気抵抗値R300は4.9×1010Ω・cmでありR300/R100は0.38、吸着水分量Ma0.9は5.3mg/gであった。 The obtained spherical magnetic composite particles have an average particle diameter of 32 μm, a specific gravity of 3.72 g / cm 3 , a saturation magnetization value of 74.1 Am 2 / kg, and an electric resistance value R 100 of 1.100 when applied voltage is 100V. The electric resistance value R 300 at 3 × 10 11 Ω · cm and an applied voltage of 300 V is 4.9 × 10 10 Ω · cm, R 300 / R 100 is 0.38, and the adsorbed water amount Ma 0.9 is 5. It was 3 mg / g.

次に、フラスコ内の内容物を30℃まで冷却後、上澄み液を除去し、さらに下層の沈殿物を水洗した後、風乾した。次いで、これを減圧下(5mmHg以下)に150〜200℃で乾燥して球状磁性複合体粒子からなる磁性キャリアを得た。   Next, after cooling the content in the flask to 30 ° C., the supernatant was removed, and the precipitate in the lower layer was washed with water and then air-dried. Next, this was dried at 150 to 200 ° C. under reduced pressure (5 mmHg or less) to obtain a magnetic carrier composed of spherical magnetic composite particles.

実施例2〜7、比較例1〜8
磁性キャリアの製造条件を種々変化させた以外は、前記実施例1と同様にして磁性キャリアを得た。
Examples 2-7, Comparative Examples 1-8
A magnetic carrier was obtained in the same manner as in Example 1 except that the production conditions of the magnetic carrier were variously changed.

得られた球状磁性複合体粒子からなる磁性キャリアの製造条件を表4に、磁性キャリアの諸特性を表5に示す。   Table 4 shows the production conditions for the magnetic carrier comprising the obtained spherical magnetic composite particles, and Table 5 shows the characteristics of the magnetic carrier.

表5の実施例に示すように、本発明に係る球状磁性複合体粒子は十分な電気抵抗を有し、しかも、電気抵抗の電圧依存性が少ないので、電子写真現像剤用磁性キャリアとして好適である。   As shown in the examples of Table 5, the spherical magnetic composite particles according to the present invention have a sufficient electric resistance, and since the voltage dependency of the electric resistance is small, it is suitable as a magnetic carrier for an electrophotographic developer. is there.

実施例8 <樹脂被覆した磁性キャリアの製造>
窒素気流下、ヘンシェルミキサー内に、実施例1の球状磁性複合体粒子粉末を1kg及びシリコーン系樹脂(商品名:KR251 信越化学社製)を固形分として9g添加し、攪拌しながら200℃まで昇温し、同温度で1時間攪拌してシリコーン系樹脂からなる樹脂被覆層の形成を行った。
Example 8 <Production of resin-coated magnetic carrier>
In a Henschel mixer, 1 kg of the spherical magnetic composite particle powder of Example 1 and 9 g of a silicone resin (trade name: KR251, manufactured by Shin-Etsu Chemical Co., Ltd.) were added as solids in a Henschel mixer, and the temperature was raised to 200 ° C. with stirring. The mixture was heated and stirred at the same temperature for 1 hour to form a resin coating layer made of a silicone resin.

得られた樹脂被覆層を有する球状磁性複合体粒子からなる磁性キャリアは、平均粒子径が32μmであり、比重3.50g/cm、飽和磁化値73.4Am/kg、印加電圧100Vのときの電気抵抗値R100は4.7×1012Ω・cm、印加電圧300Vのときの電気抵抗値R300は3.6×1012Ω・cmであった。 The obtained magnetic carrier comprising spherical magnetic composite particles having a resin coating layer has an average particle diameter of 32 μm, a specific gravity of 3.50 g / cm 3 , a saturation magnetization value of 73.4 Am 2 / kg, and an applied voltage of 100 V. The electric resistance value R 100 of the electrode was 4.7 × 10 12 Ω · cm, and the electric resistance value R 300 when the applied voltage was 300 V was 3.6 × 10 12 Ω · cm.

樹脂被覆された球状磁性複合体粒子の製造条件及び諸特性を表6に、磁性キャリア耐刷評価結果を表7に示す。   Table 6 shows the production conditions and various properties of the resin-coated spherical magnetic composite particles, and Table 7 shows the evaluation results of the magnetic carrier printing durability.

実施例9〜14、比較例9〜16
球状磁性複合体粒子の種類、樹脂の種類、樹脂被覆量を種々変化させた以外は、実施例11と同様にして球状磁性複合体粒子に表面被覆層を形成した電子写真現像剤用磁性キャリアを得た。
Examples 9-14, Comparative Examples 9-16
A magnetic carrier for an electrophotographic developer in which a surface coating layer is formed on a spherical magnetic composite particle in the same manner as in Example 11 except that various types of spherical magnetic composite particles, types of resin, and resin coating amount are changed. Obtained.

樹脂被覆された球状磁性複合体粒子の製造条件及び諸特性を表6に、磁性キャリア耐刷評価結果を表7に示す。   Table 6 shows the production conditions and various properties of the resin-coated spherical magnetic composite particles, and Table 7 shows the evaluation results of the magnetic carrier printing durability.

Figure 0005556080
Figure 0005556080

Figure 0005556080
Figure 0005556080

Figure 0005556080
Figure 0005556080

Figure 0005556080
Figure 0005556080

Figure 0005556080
Figure 0005556080

Figure 0005556080
Figure 0005556080

Figure 0005556080
Figure 0005556080

表7に示すとおり、本発明に係る磁性キャリアは5万枚の印刷でも階調性に優れているので、磁性キャリアの電圧依存性が小さく、且つ、電圧依存性が小さいことが長期に亘り維持できるものであり、画像特性に優れた磁性キャリアであることが確認された。   As shown in Table 7, since the magnetic carrier according to the present invention is excellent in gradation even after printing 50,000 sheets, the voltage dependence of the magnetic carrier is small and the voltage dependence is maintained for a long time. It was confirmed that the magnetic carrier had excellent image characteristics.

本発明に係る電子写真現像剤用磁性キャリアは、電気抵抗が高い磁性酸化鉄粒子粉末とバインダー樹脂に分散してなる球状磁性複合体粒子からなるので、適度な電気抵抗を持ち、電気抵抗が印加電圧に対し安定なため電子写真現像用磁性キャリアとして好適である。
Since the magnetic carrier for an electrophotographic developer according to the present invention is composed of magnetic iron oxide particles having a high electric resistance and spherical magnetic composite particles dispersed in a binder resin, it has an appropriate electric resistance and an electric resistance is applied. Since it is stable against voltage, it is suitable as a magnetic carrier for electrophotographic development.

Claims (7)

磁性酸化鉄粒子をバインダー樹脂に分散してなる球状磁性複合体粒子からなる電子写真現像用磁性キャリアであり、該電子写真現像用磁性キャリアの印加電圧100Vのときの電気抵抗値R100が1×10Ω・cm〜1×1014Ω・cmであって印加電圧300Vのときの電気抵抗値R300
0.1≦R300/R100≦1
であることを特徴とする電子写真現像用磁性キャリア。
An electrophotographic development magnetic carrier comprising magnetic iron oxide particles from the spherical magnetic composite particles obtained by dispersing in a binder resin, the electrical resistance value R 100 when the applied voltage 100V of the magnetic carrier for electrophotographic developer of 1 × 10 8 Ω · cm to 1 × 10 14 Ω · cm, and the electric resistance value R 300 when the applied voltage is 300 V is 0.1 ≦ R 300 / R 100 ≦ 1
A magnetic carrier for electrophotographic development characterized by the above.
請求項1記載の電子写真現像用磁性キャリアにおいて、磁性酸化鉄粒子の平均粒子径が0.05μm〜2.0μmであり磁性酸化鉄粒子の粒子表面がAl、Mg、Mn、Zn、Ni、Cu、Ti、Siから選ばれる1種又は2種以上の元素からなる化合物によって被覆されており、前記元素の存在量が0.3〜4.5重量%であり、該磁性酸化鉄粒子の印加電圧100Vのときの電気抵抗値RM100が1×10Ω・cm以上である電子写真現像剤用磁性キャリア。 2. The magnetic carrier for electrophotographic development according to claim 1, wherein the magnetic iron oxide particles have an average particle diameter of 0.05 [mu] m to 2.0 [mu] m and the surface of the magnetic iron oxide particles is Al, Mg, Mn, Zn, Ni, Cu , Ti, and Si are coated with a compound composed of one or more elements, the abundance of the elements is 0.3 to 4.5% by weight, and the applied voltage of the magnetic iron oxide particles A magnetic carrier for an electrophotographic developer having an electric resistance value RM100 of 1 × 10 8 Ω · cm or more at 100 V. 磁性酸化鉄粒子の水分吸着量Ma0.9が15mg/g以下である請求項1又は2記載の電子写真現像剤用磁性キャリア。 The magnetic carrier for an electrophotographic developer according to claim 1 or 2, wherein the water adsorption amount Ma 0.9 of the magnetic iron oxide particles is 15 mg / g or less. 磁性酸化鉄粒子の印加電圧10Vのときの電気抵抗値RM10が、
0.5≦RM100/RM10≦1
である請求項1及至3のいずれかに記載の電子写真現像剤用磁性キャリア。
When the applied voltage of the magnetic iron oxide particles is 10 V, the electrical resistance value RM 10 is
0.5 ≦ RM 100 / RM 10 ≦ 1
The magnetic carrier for an electrophotographic developer according to any one of claims 1 to 3.
前記バインダー樹脂がフェノール系樹脂である請求項1乃至4のいずれかに記載の電子写真現像剤用磁性キャリア。 The magnetic carrier for an electrophotographic developer according to any one of claims 1 to 4, wherein the binder resin is a phenol resin. 球状磁性複合体粒子の粒子表面に、主に樹脂からなる表面被覆層を形成した請求項1乃至5のいずれかに記載の電子写真現像剤用磁性キャリア。 The magnetic carrier for an electrophotographic developer according to any one of claims 1 to 5, wherein a surface coating layer mainly composed of a resin is formed on the surface of the spherical magnetic composite particles. 請求項1乃至6のいずれかに記載の電子写真現像剤用磁性キャリアを用いた二成分系現像剤。 A two-component developer using the magnetic carrier for an electrophotographic developer according to any one of claims 1 to 6.
JP2009179865A 2008-08-01 2009-07-31 Magnetic carrier and two-component developer for electrophotographic developer Active JP5556080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009179865A JP5556080B2 (en) 2008-08-01 2009-07-31 Magnetic carrier and two-component developer for electrophotographic developer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008200027 2008-08-01
JP2008200027 2008-08-01
JP2009179865A JP5556080B2 (en) 2008-08-01 2009-07-31 Magnetic carrier and two-component developer for electrophotographic developer

Publications (2)

Publication Number Publication Date
JP2010055086A JP2010055086A (en) 2010-03-11
JP5556080B2 true JP5556080B2 (en) 2014-07-23

Family

ID=42071006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009179865A Active JP5556080B2 (en) 2008-08-01 2009-07-31 Magnetic carrier and two-component developer for electrophotographic developer

Country Status (1)

Country Link
JP (1) JP5556080B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140677A1 (en) 2009-06-04 2010-12-09 戸田工業株式会社 Magnetic carrier for electrophotographic developers, process for production thereof, and two-component developers
JP5627072B2 (en) * 2009-09-30 2014-11-19 Dowaエレクトロニクス株式会社 Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP5541598B2 (en) * 2010-10-21 2014-07-09 パウダーテック株式会社 Ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier for electrophotographic developer
JP5846347B2 (en) * 2010-12-08 2016-01-20 戸田工業株式会社 Magnetic carrier for electrophotographic developer, method for producing the same, and two-component developer
WO2012141260A1 (en) * 2011-04-14 2012-10-18 戸田工業株式会社 Magnetic-carrier core material for electrophotographic developer, process for producing same, magnetic carrier for electrophotographic developer, and two-component developer
JP6020861B2 (en) * 2015-08-10 2016-11-02 戸田工業株式会社 Magnetic carrier for electrophotographic developer, method for producing the same, and two-component developer
US10409188B2 (en) 2017-02-10 2019-09-10 Canon Kabushiki Kaisha Magnetic carrier, two-component developer, replenishing developer, and image forming method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2738734B2 (en) * 1989-02-21 1998-04-08 ユニチカ株式会社 Magnetic carrier for electrophotography and method for producing the same
JP3287716B2 (en) * 1994-07-29 2002-06-04 キヤノン株式会社 Image forming method
JP3407547B2 (en) * 1996-06-06 2003-05-19 戸田工業株式会社 Electrophotographic developer carrier and method for producing the same
JP4405058B2 (en) * 2000-08-25 2010-01-27 三井金属鉱業株式会社 Electrostatic latent image development carrier
JP4378210B2 (en) * 2004-04-28 2009-12-02 キヤノン株式会社 Magnetic fine particle dispersed resin carrier and two-component developer
JP4557168B2 (en) * 2005-09-30 2010-10-06 戸田工業株式会社 Magnetic carrier for electrophotographic developer, method for producing the same, and two-component developer
JP5136749B2 (en) * 2006-04-28 2013-02-06 戸田工業株式会社 Black magnetic iron oxide particle powder
JP2008090012A (en) * 2006-10-02 2008-04-17 Powdertech Co Ltd Magnetic powder dispersed type resin carrier
JP2008090024A (en) * 2006-10-03 2008-04-17 Canon Inc Magnetic material distributed resin carrier, developer, and image forming method

Also Published As

Publication number Publication date
JP2010055086A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
JP5630601B2 (en) Magnetic carrier for electrophotographic developer, method for producing the same, and two-component developer
JP5556080B2 (en) Magnetic carrier and two-component developer for electrophotographic developer
JP3397229B2 (en) Spherical composite particle powder and magnetic carrier for electrophotography comprising the particle powder
WO2012133645A1 (en) Magnetic iron oxide particle powder, magnetic carrier for electrophotographic developer and two-component system developer
JP5224062B2 (en) Magnetic carrier for electrophotographic developer, method for producing the same, and two-component developer
JP5924486B2 (en) Method for producing magnetic carrier for electrophotographic developer and method for producing two-component developer
JP5846347B2 (en) Magnetic carrier for electrophotographic developer, method for producing the same, and two-component developer
JP4557168B2 (en) Magnetic carrier for electrophotographic developer, method for producing the same, and two-component developer
JP5773118B2 (en) Magnetic carrier for electrophotographic developer, method for producing the same, and two-component developer
US9285698B2 (en) Black magnetic iron oxide particles, magnetic carrier for electrophotographic developer and two-component developer
JP5790941B2 (en) Magnetic carrier for electrophotographic developer and two-component developer
JP4055448B2 (en) Spherical ferrite particles, production method thereof, and carrier for electrophotographic development comprising the spherical ferrite particles
JP6020861B2 (en) Magnetic carrier for electrophotographic developer, method for producing the same, and two-component developer
JP6382238B2 (en) Magnetic carrier for electrophotographic developer, method for producing the same, and two-component developer
JP3259749B2 (en) Magnetic carrier for electrophotography
JP3006657B2 (en) Magnetic carrier for electrophotography and method for producing the same
JP3405383B2 (en) Electrophotographic developer carrier and method for producing the same
JP3407547B2 (en) Electrophotographic developer carrier and method for producing the same
JP3407542B2 (en) Electrophotographic developer carrier and method for producing the same
JP3405384B2 (en) Electrophotographic developer carrier and method for producing the same
JP6474040B2 (en) Magnetic carrier for electrophotography and manufacturing method thereof
JP3257578B2 (en) Magnetic carrier for electrophotography
JP2003323007A (en) Magnetic carrier for electrophotographic developer
JPH0836276A (en) Electrophotographic magnetic carrier
JP2004151639A (en) Magnetic carrier for electrophotographic developer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5556080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250