JP5555081B2 - Magnetic resonance imaging system - Google Patents

Magnetic resonance imaging system Download PDF

Info

Publication number
JP5555081B2
JP5555081B2 JP2010162391A JP2010162391A JP5555081B2 JP 5555081 B2 JP5555081 B2 JP 5555081B2 JP 2010162391 A JP2010162391 A JP 2010162391A JP 2010162391 A JP2010162391 A JP 2010162391A JP 5555081 B2 JP5555081 B2 JP 5555081B2
Authority
JP
Japan
Prior art keywords
magnetic field
generating means
coil
field generating
imaging space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010162391A
Other languages
Japanese (ja)
Other versions
JP2012024114A5 (en
JP2012024114A (en
Inventor
武 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2010162391A priority Critical patent/JP5555081B2/en
Publication of JP2012024114A publication Critical patent/JP2012024114A/en
Publication of JP2012024114A5 publication Critical patent/JP2012024114A5/ja
Application granted granted Critical
Publication of JP5555081B2 publication Critical patent/JP5555081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

本発明は、被検体中の水素や燐等からの核磁気共鳴(以下、「NMR」という)信号を測定し、核の密度分布や緩和時間分布等を映像化する核磁気共鳴イメージング(以下、「MRI」という)装置に関し、特に、被検体が配置される空間の開放性を高めた磁気共鳴イメージング装置に関する。   The present invention measures nuclear magnetic resonance (hereinafter referred to as `` NMR '') signals from hydrogen, phosphorus, etc. in a subject and visualizes nuclear density distribution, relaxation time distribution, etc. In particular, the present invention relates to a magnetic resonance imaging apparatus with improved openness of a space in which a subject is placed.

MRI装置は、被検体、特に人体の組織を構成する原子核スピンが発生するNMR信号を計測し、その頭部、腹部、四肢等の形態や機能を2次元的に或いは3次元的に画像化する装置である。撮影においては、NMR信号には、傾斜磁場によって異なる位相エンコードが付与されるとともに周波数エンコードされて、時系列データとして計測され、計測されたNMR信号を2次元又は3次元フーリエ変換することにより画像を再構成する。   The MRI device measures NMR signals generated by the spins of the subject, especially the tissues of the human body, and visualizes the form and function of the head, abdomen, limbs, etc. in two or three dimensions Device. In imaging, NMR signals are given different phase encodings depending on the gradient magnetic field, frequency encoded, and measured as time-series data, and the measured NMR signals are subjected to two-dimensional or three-dimensional Fourier transform to produce an image. Reconfigure.

このMRI装置には、静磁場を発生するための静磁場発生装置が用いられ、その静磁場発生源として超電導コイルが用いられているものがある。以下、このような静磁場発生装置を単に超電導磁石と表記する。この超電導磁石には、主にトンネル型構造のものと対向型構造のものがある。トンネル型超電導磁石は、その内部に円筒形状の空隙空間を有して、その空隙空間に円筒軸方向の均一な静磁場を発生し、この円筒空隙空間内に被検体がその体軸方向と静磁場方向とが一致するように配置されて撮影される。一方、対向型超電導磁石は、空隙空間を間に挟んで一対の超電導コイルを同軸に配置し、その空隙空間に対向方向の均一静磁場を発生し、この空隙空間に被検体がその体軸と静磁場方向とが直交するように配置されて撮影される。   Some of these MRI apparatuses use a static magnetic field generation apparatus for generating a static magnetic field, and a superconducting coil is used as the static magnetic field generation source. Hereinafter, such a static magnetic field generator is simply referred to as a superconducting magnet. This superconducting magnet mainly includes a tunnel type structure and an opposed type structure. The tunnel-type superconducting magnet has a cylindrical gap space inside, and generates a uniform static magnetic field in the cylinder axis direction in the gap space. Photographs are arranged so that the direction of the magnetic field coincides. On the other hand, a counter-type superconducting magnet has a pair of superconducting coils arranged coaxially with a gap space in between, and generates a uniform static magnetic field in the opposite direction in the gap space. Photographs are arranged so that the direction of the static magnetic field is orthogonal.

しかし、トンネル型超電導磁石の場合、撮影の際に被検体が狭い円筒空間に配置されるために、被検体に閉塞感を与えてしまう。ここでいう閉塞感とは、以下の3つから特徴付けられる。一つ目は、被験者が寝た時の視線方向の距離である。例え横方向が広く開いていたとしても、目の前を遮る壁の様なものが存在すると閉塞感を感じる。2つ目は、被検体の両脇の自由度が妨げられることである、両脇が押さえつけるような構成は閉塞感を与える。3つ目は、サポート要員のアクセス性である。先の2つ以外にも、被検体が周囲からアクセスしにくい位置に配置されていることは、心理的に閉塞感を与えるもととなる。   However, in the case of a tunnel type superconducting magnet, the subject is placed in a narrow cylindrical space at the time of imaging, which gives the subject a feeling of blockage. The feeling of obstruction here is characterized by the following three. The first is the distance in the line of sight when the subject goes to sleep. Even if the lateral direction is wide open, if there is something like a wall blocking the front, you will feel a sense of blockage. The second is that the degree of freedom on both sides of the subject is hindered. A configuration in which both sides press down gives a feeling of blockage. Third is the accessibility of support personnel. In addition to the above two, the fact that the subject is located at a position where it is difficult to access from the surroundings is a psychologically obstructive feeling.

これらの閉塞感の問題は特に閉所恐怖症の被検体にとっては深刻であり、検査を受けることが出来ない場合もある。また、幼児であれば、近くに母親を確認できないと不安になって撮影中に動き出し、撮影が出来ない恐れがある。また、意識不明の被検体や非協力的な被検体に対しては、周囲からサポートする必要があるものの、上述したトンネル型では外部から被検体へのアクセスが困難となる。さらには、撮影を行いながら手技を行ったり、薬剤をカテーテルを介して投与したりするインターベンショナルMRIにおいても、外部からの被検体へのアクセスすることが困難となる。   These occlusion problems are particularly acute for subjects with claustrophobia and may not be able to be examined. In addition, if an infant is not able to confirm the mother nearby, he / she becomes anxious and may start moving during shooting, and may not be able to take a picture. In addition, although it is necessary to support an unconscious subject or a non-cooperating subject from the surroundings, the tunnel type described above makes it difficult to access the subject from the outside. Furthermore, even in interventional MRI in which a procedure is performed while imaging is performed or a drug is administered via a catheter, it is difficult to access the subject from the outside.

一方、被検体の閉所恐怖感を低減させるために静磁場発生手段の断面形状を略多角形とした磁気共鳴イメージング装置に関する従来技術に特許文献1記載の従来技術がある。   On the other hand, there is a conventional technique described in Patent Document 1 as a related art related to a magnetic resonance imaging apparatus in which the cross-sectional shape of the static magnetic field generating means is substantially polygonal in order to reduce the feeling of claustrophobia in the subject.

国際公開WO2007/007630号明細書International Publication WO2007 / 007630 Specification

しかしながら、特許文献1記載の従来技術では静磁場発生手段の断面形状のみについての技術しか開示されていず、傾斜磁場コイルや高周波コイルを組み合わせてどのような磁気共鳴イメージング装置が提供できるか開示されていなかった。本発明では、傾斜磁場コイルや高周波コイルも組み合わせて、閉塞感の少ない磁気共鳴イメージング装置を提供することを目的とする。特に、上述した3つの閉塞感を与える要素のうち、先の2つを解決することを目的とする。つまり、一つは被検体が寝た時の視線方向距離を長く取ることを目的とし、もう一つは、両脇から押さえつけない様な広い患者空間を提供することを目的とする。この2つの目的を同時に解決する方法を提供する。   However, the prior art described in Patent Document 1 only discloses a technique regarding only the cross-sectional shape of the static magnetic field generating means, and discloses what kind of magnetic resonance imaging apparatus can be provided by combining a gradient magnetic field coil and a high frequency coil. There wasn't. An object of the present invention is to provide a magnetic resonance imaging apparatus with little feeling of blockage by combining a gradient magnetic field coil and a high frequency coil. In particular, the object is to solve the above two of the three elements that give a feeling of blockage. In other words, one of the objectives is to increase the distance in the line of sight when the subject is sleeping, and the other is to provide a wide patient space that cannot be pressed from both sides. A method to solve these two purposes simultaneously is provided.

上記課題を解決するために本発明の磁気共鳴イメージング装置は以下のように構成される。即ち、本発明によれば、被検体が配置される撮影空間の周りに配置され、前記撮影空間に水平方向の静磁場を発生させる静磁場発生手段と、該静磁場発生手段の前記撮影空間側に配置され、該撮影空間に傾斜磁場を発生させる傾斜磁場発生手段と、該傾斜磁場発生手段の前記撮影空間側に配置され、該撮影空間に高周波磁場を発生させる高周波磁場発生手段を備えた磁気共鳴イメージング装置において、
前記高周波磁場発生手段の前記撮影空間側の断面形状が、上に凸の略三角形であることを特徴とする磁気共鳴イメージング装置が提供される。
In order to solve the above problems, the magnetic resonance imaging apparatus of the present invention is configured as follows. That is, according to the present invention, a static magnetic field generating unit that is arranged around an imaging space in which a subject is arranged and generates a horizontal static magnetic field in the imaging space, and the static magnetic field generating unit on the imaging space side A magnetic field provided with a gradient magnetic field generating means for generating a gradient magnetic field in the imaging space, and a high frequency magnetic field generating means for generating a high frequency magnetic field in the imaging space, disposed on the imaging space side of the gradient magnetic field generating means In a resonance imaging apparatus,
A magnetic resonance imaging apparatus is provided in which a cross-sectional shape of the high-frequency magnetic field generating means on the imaging space side is an upwardly convex substantially triangular shape.

また、前記静磁場発生手段は、前記撮影空間側の断面形状が円形であり、前記傾斜磁場発生手段は、その撮影空間側の断面形状が、上に凸の略三角形に形成されていることを特徴とする磁気共鳴イメージング装置が提供される。   Further, the static magnetic field generating means has a circular cross-sectional shape on the imaging space side, and the gradient magnetic field generating means has a cross-sectional shape on the imaging space side formed in a substantially triangular shape protruding upward. A featured magnetic resonance imaging apparatus is provided.

また、前記静磁場発生手段は、前記撮影空間側の断面形状が、円形であり、前記傾斜磁場発生手段は、その静磁場発生手段側と撮影空間側共に、断面形状が円形であることを特徴とする磁気共鳴イメージング装置が提供される。   Further, the static magnetic field generating means has a circular cross-sectional shape on the imaging space side, and the gradient magnetic field generating means has a circular cross-sectional shape on both the static magnetic field generating means side and the imaging space side. A magnetic resonance imaging apparatus is provided.

また、前記傾斜磁場発生手段は、断面が円形のシールドコイルと、断面が上に凸の略三角形状のメインコイルから構成されるアクティブシールド型傾斜磁場コイルである磁気共鳴イメージング装置が提供される。   In addition, a magnetic resonance imaging apparatus is provided in which the gradient magnetic field generating means is an active shield type gradient magnetic field coil composed of a shield coil having a circular cross section and a substantially triangular main coil having a convex cross section.

また、前記傾斜磁場発生手段の撮影空間側の内面およびその表面にあるRFシールドと、RFコイルとの間隔が一定でないことを特徴とする磁気共鳴イメージング装置が提供される。   In addition, there is provided a magnetic resonance imaging apparatus characterized in that an inner surface of the gradient magnetic field generating means on the imaging space side and an RF shield on the surface and an RF coil are not constant.

また、RFコイルは、前記RFシールドとの距離が短い個所の近傍におけるコイル導体の密度が、前記RFシールドとの距離が長い個所の近傍にけるコイル導体の密度より、大きいことを特徴とする磁気共鳴イメージング装置が提供される。
Furthermore, RF coils, magnetic distance between the RF shield the density of the coil conductor in the vicinity of the short point, than the density of the RF shield and the distance the coil conductors kick in the vicinity of the long point of the to be being greater A resonance imaging apparatus is provided.

また、前記RFコイルは、前記RFシールドとの距離が短い個所の近傍において、コイル導体の長さが長くなっていることを特徴とする磁気共鳴イメージング装置が提供される。


Further, the RF coil is in the vicinity of the location distance is short and the RF shield, the magnetic resonance imaging apparatus characterized by the length of the coil conductor is longer is provided.


本発明によれば、傾斜磁場コイルや高周波コイルも組み合わせて、閉塞感の少ない磁気共鳴イメージング装置を提供できる。   According to the present invention, a magnetic resonance imaging apparatus with little occlusion can be provided by combining a gradient magnetic field coil and a high-frequency coil.

特に、被検体の入るボアは上に凸の略三角形状となっており、視線方向距離は従来よりも長く取ることが出来る。また、略三角の底辺に横たわる被検体にとっては、ボア内の横方向の距離は従来より広くなっており、従来よりも開放感を感じることが出来る。   In particular, the bore into which the subject enters has a substantially triangular shape that is convex upward, and the distance in the line-of-sight direction can be made longer than before. In addition, for the subject lying on the base of a substantially triangular shape, the distance in the horizontal direction in the bore is wider than before, and a sense of openness can be felt more than before.

実施例1を示す図。FIG. 3 shows Example 1. 実施例2を示す図。FIG. 5 shows a second embodiment. ほぼ等間隔のラングによって、RF照射コイルを形成する例を示す図。The figure which shows the example which forms RF irradiation coil by the rung of substantially equal intervals. 不均等な配置感覚でラング導体を配置する例を示す図。The figure which shows the example which arrange | positions a rung conductor with an uneven arrangement | positioning feeling. ラング導体の長さを異ならせる例を示す図。The figure which shows the example which varies the length of a rung conductor. 実施例3を示す図。FIG. 5 shows Example 3. MRI装置の一例の全体概要Overview of an example of an MRI system 静磁場磁石の従来例を示す図。The figure which shows the prior art example of a static magnetic field magnet.

以下、添付図面に従って本発明のMRI装置用超電導磁石の好ましい実施形態について詳説する。なお、発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。   Hereinafter, preferred embodiments of the superconducting magnet for an MRI apparatus of the present invention will be described in detail with reference to the accompanying drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments of the invention, and the repetitive description thereof is omitted.

最初に、MRI装置の一例の全体概要を図7に基づいて説明する。図7に示すMRI装置は、テーブル19に載置された被検体10に印加する静磁場を発生する静磁場磁石12と、被検体10に印加する互いに異なる3方向、例えば、X、Y、Z軸方向の傾斜磁場を発生する傾斜磁場コイル14が設けられている。これらの3方向のいずれかをスライス方向、位相エンコード方向、周波数エンコード方向として傾斜磁場を印加する。また、被検体10に印加する高周波磁場パルスすなわちRFパルスを発生するRFコイル16と、被検体10から発生するNMR信号すなわちエコー信号を検出するRFプローブ18が備えられている。また、RFプローブ18により得られたエコー信号に基づいて画像を再構成する信号処理部20と、信号処理部20により再構成された画像を表示する表示部22とが設けられている。   First, an overall outline of an example of an MRI apparatus will be described with reference to FIG. The MRI apparatus shown in FIG. 7 includes a static magnetic field magnet 12 that generates a static magnetic field to be applied to the subject 10 placed on the table 19, and three different directions that are applied to the subject 10, for example, X, Y, and Z A gradient coil 14 for generating an axial gradient magnetic field is provided. A gradient magnetic field is applied with one of these three directions as a slice direction, a phase encoding direction, and a frequency encoding direction. Further, an RF coil 16 that generates a high-frequency magnetic field pulse to be applied to the subject 10, that is, an RF pulse, and an RF probe 18 that detects an NMR signal or echo signal generated from the subject 10 are provided. Further, a signal processing unit 20 that reconstructs an image based on an echo signal obtained by the RF probe 18 and a display unit 22 that displays an image reconstructed by the signal processing unit 20 are provided.

このように構成されたMRI装置の動作について説明する。静磁場磁石12により被検体10に静磁場が印加される。静磁場を印加された被検体10の観察部位(例えば心臓)に対して、制御部24の指令に基づいた傾斜磁場電源26からの電流に応じて、傾斜磁場コイル14からスライス選択傾斜磁場が印加される。さらに、スライス選択傾斜磁場の印加とともに、制御部24の指令に基づいた高周波送信部28からの高周波電流に応じてRFコイル16からRFパルスが観察部位に対して印加される。その結果、観察部位の構成物質中の原子核(例えば水素原子核)にNMR現象が誘起されてエコー信号が発生する。NMR現象が誘起された観察部位の位置情報を取得するために、傾斜磁場コイル14から位相エンコード傾斜磁場と周波数エンコード傾斜磁場がエコー信号に印加される。このエコー信号が制御部24の指令に基づいてRFプローブ18から信号検出部30により検出される。検出されたエコー信号に基づいて信号処理部20により観察部位の断層像が2次元的又は3次元的に再構成され、再構成された2次元又は3次元画像が表示部22に表示される。   The operation of the MRI apparatus configured as described above will be described. A static magnetic field is applied to the subject 10 by the static magnetic field magnet 12. A slice selection gradient magnetic field is applied from the gradient magnetic field coil 14 to the observation site (for example, the heart) of the subject 10 to which the static magnetic field is applied in accordance with the current from the gradient magnetic field power supply 26 based on the command of the control unit 24. Is done. Further, along with the application of the slice selective gradient magnetic field, an RF pulse is applied from the RF coil 16 to the observation site in accordance with the high-frequency current from the high-frequency transmission unit 28 based on the command of the control unit 24. As a result, an NMR phenomenon is induced in a nucleus (for example, a hydrogen nucleus) in the constituent material of the observation site, and an echo signal is generated. In order to acquire position information of the observation site where the NMR phenomenon has been induced, a phase encoding gradient magnetic field and a frequency encoding gradient magnetic field are applied from the gradient coil 14 to the echo signal. This echo signal is detected by the signal detection unit 30 from the RF probe 18 based on a command from the control unit 24. Based on the detected echo signal, the tomographic image of the observation site is reconstructed two-dimensionally or three-dimensionally by the signal processing unit 20, and the reconstructed two-dimensional or three-dimensional image is displayed on the display unit 22.

上記静磁場磁石12の従来例を図8に示す。図8は軸長Lのトンネル型超電導磁石12aであり、円筒形状の空隙空間50(以下、被検体が配置される静磁場が印加された空隙空間を「被検体空間」と表記する。)内に被検体10が配置されて撮影される。   A conventional example of the static magnetic field magnet 12 is shown in FIG. FIG. 8 shows a tunnel-type superconducting magnet 12a having an axial length L, and in a cylindrical void space 50 (hereinafter, a void space to which a static magnetic field in which a subject is placed is applied is referred to as “subject space”). The subject 10 is placed and photographed.

次に、本発明の実施例1について説明する。実施例1は、少なくとも被検体空間の静磁場方向に垂直な断面形状が略三角形となる形態である。   Next, Example 1 of the present invention will be described. Example 1 is a form in which at least the cross-sectional shape perpendicular to the direction of the static magnetic field in the subject space is a substantially triangular shape.

図1に実施例1を示す。図1ではトンネル型超電導磁石は、円筒形状の内筒を持ち、その内側に傾斜磁場コイル14が配置されている。傾斜磁場コイル14は、外側の形状が磁石の内筒に併せて円筒形状である一方で、内側は略三角の形状をしている。ここで言う略三角とは3つの頂点を持つ形状を言うこととし、必ずしもその辺は直線でなくても良い。また、頂点は変曲点であれば良く、図1の様に尖った頂点で無くとも構わない。   Example 1 is shown in FIG. In FIG. 1, the tunnel superconducting magnet has a cylindrical inner cylinder, and a gradient magnetic field coil 14 is disposed inside thereof. The gradient magnetic field coil 14 has a cylindrical shape on the outer side together with the inner cylinder of the magnet, while the inner side has a substantially triangular shape. The term “substantially triangular” as used herein refers to a shape having three vertices, and the side is not necessarily a straight line. Further, the vertex may be an inflection point and may not be a sharp vertex as shown in FIG.

傾斜磁場コイルの構成については、当業者らにとっては公知の部分が多いので詳細を省略するが、今日の円筒型傾斜磁場コイルは、その殆どがメインコイルとシールドコイルからなるアクティブシールド形の傾斜磁場コイルであり、図1のような傾斜磁場コイルを実装する為には、円筒状の外側のシールドコイルと略三角形状の内側のメインコイルとで形成すればよい。   A detailed description of the configuration of the gradient coil is omitted because there are many portions known to those skilled in the art. However, most of today's cylindrical gradient coils are active shield type gradient magnetic fields composed of a main coil and a shield coil. In order to mount the gradient magnetic field coil as shown in FIG. 1, it may be formed of a cylindrical outer shield coil and a substantially triangular inner coil.

この時の傾斜磁場パターンは公知の多くの技術を用いて最適化することが出来る。   The gradient magnetic field pattern at this time can be optimized using many known techniques.

傾斜磁場コイルの略三角形の内側の面には、図示していないRFシールドとしての金属箔もしくは金属網が貼り付けられ、そこから等間隔を空けてRF照射コイルが配置される。RF照射コイルの内側に配置されたカバーによって、被験者の空間が形成される。   A metal foil or metal net (not shown) as an RF shield (not shown) is attached to the inner surface of the substantially triangular magnetic field coil, and the RF irradiation coils are arranged at equal intervals therefrom. A subject's space is formed by a cover disposed inside the RF irradiation coil.

こうして形成された上に凸の略三角形ボアにおいては、図に示す様に、被検体の視線方向距離をより長く取ることが出来る。また、同様に被検体が寝た時の横方向距離も長くなる。   As shown in the figure, the upwardly convex substantially triangular bore formed in this way makes it possible to take a longer gaze direction distance of the subject. Similarly, the distance in the lateral direction when the subject goes to bed also becomes longer.

こうして、閉塞感を感じさせない被験者空間を提供することができる。
この実施例における超伝導磁石は、既存の磁気共鳴イメージング装置と性能が同等であり、超伝導磁石の高い磁場強度、磁場安定性等の特徴をそのまま享受することができる。
In this way, it is possible to provide a subject space that does not cause a sense of blockage.
The superconducting magnet in this embodiment has the same performance as the existing magnetic resonance imaging apparatus, and can enjoy the characteristics of the superconducting magnet such as high magnetic field strength and magnetic field stability as it is.

磁場均一度の調整手段については、図示していないが傾斜磁場コイル内に配置した鉄片がよく用いられる。図1の様な実施例の場合、傾斜磁場コイルの内径に沿って略三角柱の表面に配置してもよいし、シールドコイル側に円筒形状に沿って配置しても良い。いずれにしても鉄片を配置するのには十分なスペースがあり、本発明の適用によっても十分な均一度を確保する事が出来る。   As the means for adjusting the magnetic field homogeneity, although not shown, an iron piece arranged in the gradient magnetic field coil is often used. In the case of the embodiment as shown in FIG. 1, it may be arranged on the surface of the substantially triangular prism along the inner diameter of the gradient coil, or may be arranged along the cylindrical shape on the shield coil side. In any case, there is a sufficient space for arranging the iron pieces, and sufficient uniformity can be ensured even by applying the present invention.

次に、本発明の実施例2について、図2を用いて説明する。
本実施例では、超伝導磁石および傾斜磁場コイルまでは従来構造と同じであり、RF照射コイルのみが異なる。図2の様に、円筒形状の超伝導磁石ボアに対して、円筒形状の外形、内形を持つ傾斜磁場コイルが配置される。そして傾斜磁場コイルの内側に配置されるRF照射コイルと傾斜磁場コイルとの距離を変えることによって、RF照射コイルの形状が略三角形状となるようにする。具体的には図のように頂部および左右において、傾斜磁場コイルとの距離が狭くなるようにすることで、略三角形状のRF照射コイルの形状を形成することができる。図から明かなように、この様な方法で得た略三角ボアの効果は実施例1と同じである。
Next, Example 2 of the present invention will be described with reference to FIG.
In this embodiment, the superconducting magnet and the gradient magnetic field coil are the same as those in the conventional structure, and only the RF irradiation coil is different. As shown in FIG. 2, a gradient magnetic field coil having a cylindrical outer shape and an inner shape is arranged with respect to a cylindrical superconducting magnet bore. Then, by changing the distance between the RF irradiation coil and the gradient magnetic field coil arranged inside the gradient magnetic field coil, the shape of the RF irradiation coil is made substantially triangular. Specifically, by making the distance from the gradient magnetic field coil narrow at the top and left and right as shown in the figure, a substantially triangular RF irradiation coil shape can be formed. As is apparent from the figure, the effect of the substantially triangular bore obtained by such a method is the same as that of the first embodiment.

この際、図3から図5に示すようにRF照射コイルについて次のような工夫をすれば良い。すなわち、実施例1の様に、RF照射コイルと傾斜磁場コイルの内側に配置されるRFシールドの距離が一定な場合は、図3のようにほぼ等間隔のラングによって、RF照射コイルを形成すれば良い。ただし、簡単に表現するためにバードケージ型RF照射コイルの例で示している。   At this time, as shown in FIGS. 3 to 5, the following measures may be taken for the RF irradiation coil. That is, as in Example 1, when the distance between the RF irradiation coil and the RF shield arranged inside the gradient magnetic field coil is constant, the RF irradiation coil is formed by a substantially equidistant rung as shown in FIG. It ’s fine. However, for simplicity, an example of a birdcage type RF irradiation coil is shown.

これに対して、図2のように傾斜磁場コイルの内側に配置されるRFシールドとRF照射コイル導体の距離が変化している場合は、RFシールドとRF照射コイルの間隔が近接している位置でRF照射コイルの照射効率が互いの干渉により落ちる。これを回避する為に、RF照射コイル導体の密度を高くしたり、もしくはRF照射コイル導体の長さを長くしたりすることによって、被検体への均一な高周波の照射分布を得ることができる。   On the other hand, when the distance between the RF shield and the RF irradiation coil conductor arranged inside the gradient coil is changed as shown in FIG. 2, the position where the distance between the RF shield and the RF irradiation coil is close. Therefore, the irradiation efficiency of the RF irradiation coil falls due to mutual interference. In order to avoid this, by increasing the density of the RF irradiation coil conductor or increasing the length of the RF irradiation coil conductor, a uniform high-frequency irradiation distribution on the subject can be obtained.

図4、5はその例である。図4では、略三角形の頂点付近で照射効率を高める為にラング導体が不均等な配置間隔で並んでいる。より具体的に、ラング導体の配置間隔を、略三角形の頂点付近で狭めている。図5では、略三角形の頂点付近で照射効率を高める為にラング導体の長さを異ならせている。図5では略三角の頂点付近、すなわち、RFシールドとの距離が近い領域でラング導体の長さを長くしている。   4 and 5 are examples. In FIG. 4, the rung conductors are arranged at unequal arrangement intervals in order to increase the irradiation efficiency near the apex of the approximately triangle. More specifically, the arrangement interval of the rung conductors is reduced in the vicinity of the apex of the substantially triangle. In FIG. 5, the lengths of the rung conductors are varied in order to increase the irradiation efficiency near the apex of the substantially triangle. In FIG. 5, the length of the rung conductor is increased near the apex of the triangle, that is, in the region where the distance from the RF shield is close.

次に、本発明の実施例3について、図6を用いて説明する。
本実施例では、略三角形状の断面を持つ傾斜磁場コイルを用いるのに加え、傾斜磁場コイルとRF照射コイルの距離をさらに変化させている。より具体的には、傾斜磁場コイルの内側の内面の断面形状が頂点の鋭角が少ない略三角形であるのに比して、RF照射コイルの断面形状は、頂点の鋭角の鋭い略三角形とすることにより、傾斜磁場コイルとRF照射コイルの距離を変化させている。このような構成とすることにより、傾斜磁場コイルが頂点の鋭角が少な略三角形である場合に、より撮影空間側のスペースを広くするように、RF照射コイルの形状を形成することができる。
Next, Example 3 of the present invention will be described with reference to FIG.
In this embodiment, in addition to using the gradient magnetic field coil having a substantially triangular cross section, the distance between the gradient magnetic field coil and the RF irradiation coil is further changed. More specifically, the cross-sectional shape of the inner surface of the gradient magnetic field coil should be a substantially triangular shape with a sharp apex angle, as compared to the triangular shape having a small apex angle. Thus, the distance between the gradient magnetic field coil and the RF irradiation coil is changed. By adopting such a configuration, when the gradient magnetic field coil is a substantially triangular shape with a small acute angle at the apex, the shape of the RF irradiation coil can be formed so as to further widen the space on the imaging space side.

以上までが、本発明の傾斜磁場コイルもしくはRF照射コイルの各実施形態の説明である。しかし、本発明の傾斜磁場コイルもしくはRF照射コイルは、上記実施形態の説明で開示された内容にとどまらず、本発明の趣旨を踏まえた上で他の形態を取り得る。   The above is description of each embodiment of the gradient magnetic field coil or RF irradiation coil of this invention. However, the gradient magnetic field coil or the RF irradiation coil of the present invention is not limited to the contents disclosed in the description of the above embodiment, but can take other forms in consideration of the gist of the present invention.

例えば、静磁場発生源として超電導コイルを用いる例を説明したが、起磁力を発生させるために、静磁場発生源として永久磁石を用いても、上記と同様の効果を得ることができる。   For example, although an example in which a superconducting coil is used as a static magnetic field generation source has been described, the same effect as described above can be obtained even if a permanent magnet is used as a static magnetic field generation source in order to generate magnetomotive force.

本発明はMRI装置に利用することができる。   The present invention can be used in an MRI apparatus.

10 被検体、12 超電導磁石(内筒)、14 傾斜磁場コイル、16 RF照射コイル   10 subject, 12 superconducting magnet (inner cylinder), 14 gradient coil, 16 RF irradiation coil

Claims (7)

被検体が配置される撮影空間の周りに配置され、前記撮影空間に水平方向の静磁場を発生させる静磁場発生手段と、
前記静磁場発生手段の前記撮影空間側に配置され、該撮影空間に傾斜磁場を発生させる傾斜磁場発生手段と、
前記傾斜磁場発生手段の前記撮影空間側に配置され、該撮影空間に高周波磁場を発生させる高周波磁場発生手段を備え、
前記静磁場発生手段は、前記撮影空間側の断面形状が円形であり、
前記高周波磁場発生手段の前記撮影空間側の断面形状が、上に凸の略三角形であることを特徴とする磁気共鳴イメージング装置。
A static magnetic field generating means that is arranged around an imaging space in which the subject is arranged and generates a static magnetic field in the horizontal direction in the imaging space;
A gradient magnetic field generating means that is arranged on the imaging space side of the static magnetic field generating means and generates a gradient magnetic field in the imaging space;
A high-frequency magnetic field generating means disposed on the imaging space side of the gradient magnetic field generating means for generating a high-frequency magnetic field in the imaging space;
The static magnetic field generating means has a circular cross-sectional shape on the imaging space side,
2. A magnetic resonance imaging apparatus according to claim 1, wherein a cross-sectional shape of the high-frequency magnetic field generating means on the imaging space side is a substantially triangular shape protruding upward.
前記傾斜磁場発生手段は、前記静磁場発生源側に配置され断面が円形のシールドコイルと、前記撮影空間側に配置され断面が上に凸の略三角形状のメインコイルから構成されるアクティブシールド型であることを特徴とする請求項1に記載の磁気共鳴イメージング装置。The gradient magnetic field generating means is an active shield type comprising a shield coil having a circular cross section disposed on the static magnetic field generation source side and a substantially triangular main coil disposed on the imaging space side and having a convex cross section. The magnetic resonance imaging apparatus according to claim 1, wherein: 前記傾斜磁場発生手段は、前記撮影空間側と反対側及び前記撮影空間側の断面形状が、円形であり、前記高周波磁場発生手段は、前記傾斜磁場発生手段の撮影空間側の内表面に配置された円筒形状のRFシールドと、断面の形状が上に凸の略三角形であるRFコイルを含むことを特徴とする請求項1に記載の磁気共鳴イメージング装置。The gradient magnetic field generating means has a circular cross-sectional shape on the side opposite to the imaging space side and the imaging space side, and the high-frequency magnetic field generating means is disposed on the inner surface of the gradient magnetic field generating means on the imaging space side. The magnetic resonance imaging apparatus according to claim 1, further comprising: an RF shield having a cylindrical shape, and an RF coil whose cross-sectional shape is an upwardly convex triangular shape. 前記RFコイルは、前記RFシールドとの距離が短い個所の近傍におけるコイル導体の密度が、前記RFシールドとの距離が長い個所の近傍におけるコイル導体の密度より、大きいことを特徴とする請求項3に記載の磁気共鳴イメージング装置。4. The RF coil according to claim 3, wherein the density of the coil conductor in the vicinity of the portion where the distance from the RF shield is short is larger than the density of the coil conductor in the vicinity of the portion where the distance from the RF shield is long. The magnetic resonance imaging apparatus described in 1. 前記RFコイルは、前記RFシールドとの距離が短い個所の近傍において、コイル導体の長さが長くなっていることを特徴とする請求項3又は4記載の磁気共鳴イメージング装置。5. The magnetic resonance imaging apparatus according to claim 3, wherein the RF coil has a coil conductor having a long length in the vicinity of a portion where the distance from the RF shield is short. 被検体が配置される撮影空間の周りに配置され、前記撮影空間に水平方向の静磁場を発生させる静磁場発生手段と、A static magnetic field generating means that is arranged around an imaging space in which the subject is arranged and generates a static magnetic field in the horizontal direction in the imaging space;
前記静磁場発生手段の前記撮影空間側に配置され、該撮影空間に傾斜磁場を発生させる傾斜磁場発生手段と、A gradient magnetic field generating means that is arranged on the imaging space side of the static magnetic field generating means and generates a gradient magnetic field in the imaging space;
前記傾斜磁場発生手段の前記撮影空間側に配置され、該撮影空間に高周波磁場を発生させる高周波磁場発生手段を備え、A high-frequency magnetic field generating means disposed on the imaging space side of the gradient magnetic field generating means for generating a high-frequency magnetic field in the imaging space;
前記高周波磁場発生手段の前記撮影空間側の断面形状が、上に凸の略三角形であり、The cross-sectional shape on the imaging space side of the high-frequency magnetic field generating means is a substantially triangular convex upward,
前記高周波磁場発生手段は、RFコイルを備え、The high-frequency magnetic field generating means includes an RF coil,
前記傾斜磁場発生手段の撮影空間側の内表面に配置されたRFシールドと、前記RFコイルとの間隔が一定でなく、The interval between the RF shield disposed on the imaging space side inner surface of the gradient magnetic field generating means and the RF coil is not constant,
前記RFコイルは、前記RFシールドとの距離が短い個所の近傍におけるコイル導体の密度が、前記RFシールドとの距離が長い個所の近傍におけるコイル導体の密度より、大きいことを特徴とする磁気共鳴イメージング装置。The magnetic resonance imaging characterized in that the RF coil has a density of a coil conductor in the vicinity of a portion where the distance to the RF shield is short than a density of the coil conductor in the vicinity of a portion where the distance to the RF shield is long. apparatus.
前記RFコイルは、前記RFシールドとの距離が短い個所の近傍において、コイル導体の長さが長くなっていることを特徴とする請求項6に記載の磁気共鳴イメージング装置。The magnetic resonance imaging apparatus according to claim 6, wherein the RF coil has a coil conductor having a long length in the vicinity of a portion where the distance from the RF shield is short.
JP2010162391A 2010-07-20 2010-07-20 Magnetic resonance imaging system Active JP5555081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010162391A JP5555081B2 (en) 2010-07-20 2010-07-20 Magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010162391A JP5555081B2 (en) 2010-07-20 2010-07-20 Magnetic resonance imaging system

Publications (3)

Publication Number Publication Date
JP2012024114A JP2012024114A (en) 2012-02-09
JP2012024114A5 JP2012024114A5 (en) 2013-08-08
JP5555081B2 true JP5555081B2 (en) 2014-07-23

Family

ID=45777823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010162391A Active JP5555081B2 (en) 2010-07-20 2010-07-20 Magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP5555081B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105074489B (en) * 2013-03-28 2019-02-15 皇家飞利浦有限公司 For the multizone radio frequency coil arrays of variable patient size

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216410A (en) * 1985-03-22 1986-09-26 Fuji Electric Co Ltd Core type uniform field magnetic
JPH0653111B2 (en) * 1991-12-03 1994-07-20 株式会社東芝 Magnetic resonance imaging equipment
JP3372099B2 (en) * 1994-02-14 2003-01-27 株式会社日立メディコ RF probe
WO2007007630A1 (en) * 2005-07-08 2007-01-18 Hitachi Medical Corporation Magnetic resonance imaging apparatus
WO2008073512A2 (en) * 2006-06-09 2008-06-19 Koninklijke Philips Electronics, N.V. Integrated system of mri rf loop coil modules and spacing fixtures with biocontainment uses
JP5248557B2 (en) * 2010-07-29 2013-07-31 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Magnetic resonance imaging system

Also Published As

Publication number Publication date
JP2012024114A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
JP4188384B2 (en) Magnetic resonance imaging system
JP6246129B2 (en) Apparatus and method for detecting magnetic particles having a wide field of view and / or affecting magnetic particles
US9846206B2 (en) Systems and methods for magnetic material imaging
US20210003649A1 (en) Unilateral magnetic resonance scanning device for medical diagnostics
Wang et al. Real‐time active MR‐tracking of metallic stylets in MR‐guided radiation therapy
WO2003005902A1 (en) Endoscopic image pickup method and magnetic resonance imaging device using the same
JP2013544613A (en) Apparatus and method for influencing and / or detecting magnetic particles
JP5226319B2 (en) Arrangement and method for determining the spatial distribution of magnetic particles
US11269034B2 (en) Basic field magnet arrangement for a magnetic resonance tomography system
US20150338477A1 (en) An active tracking system and method for mri
US11675034B2 (en) Magnetic resonance scanner and magnetic resonance imaging system
US20190170838A1 (en) Coil apparatus, magnetic resonance imaging apparatus, and method of controlling the coil apparatus
JP5072284B2 (en) Magnetic resonance imaging apparatus, coil support unit, high-frequency coil unit, and control method for controlling magnetic resonance imaging apparatus
JP5555081B2 (en) Magnetic resonance imaging system
JP2012115299A (en) Magnetic resonance imaging apparatus
JP5771354B2 (en) Receiving coil device for magnetic resonance imaging apparatus and magnetic resonance imaging apparatus using the same
JP3702106B2 (en) Magnetic resonance imaging system
KR102290276B1 (en) Radio frequency surface coil and Magnetic resonance imaging system comprising the same
WO2014196525A1 (en) Measurement apparatus and measurement method
Sengupta Modeling of active shimming of metallic needles for interventional MRI
JP5258968B2 (en) Magnetic resonance measuring device
Eyüboğlu Magnetic resonance current density imaging
JP5865626B2 (en) Receiving coil for magnetic resonance imaging apparatus and magnetic resonance imaging apparatus using the same
KR102468547B1 (en) Magnetic resonance imaging generating apparatus and method for generating angiography image
Wald et al. Portable brain scanner technology for use in emergency medicine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140530

R150 Certificate of patent or registration of utility model

Ref document number: 5555081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350