JP5552977B2 - Method for measuring dissolved substance concentration - Google Patents

Method for measuring dissolved substance concentration Download PDF

Info

Publication number
JP5552977B2
JP5552977B2 JP2010203274A JP2010203274A JP5552977B2 JP 5552977 B2 JP5552977 B2 JP 5552977B2 JP 2010203274 A JP2010203274 A JP 2010203274A JP 2010203274 A JP2010203274 A JP 2010203274A JP 5552977 B2 JP5552977 B2 JP 5552977B2
Authority
JP
Japan
Prior art keywords
water
concentration
dissolved
dissolved substance
substance concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010203274A
Other languages
Japanese (ja)
Other versions
JP2012058137A (en
Inventor
裕人 床嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2010203274A priority Critical patent/JP5552977B2/en
Publication of JP2012058137A publication Critical patent/JP2012058137A/en
Application granted granted Critical
Publication of JP5552977B2 publication Critical patent/JP5552977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は溶存物質濃度の測定方法に係り、特に水中の有機物濃度を測定するのに好適な方法に関する。 The present invention relates to measuring how the dissolved substance concentration, particularly relates to a preferred way to measure the concentration of organic substances in the water.

電子部品の洗浄ないし表面処理のために、高濃度の薬液や洗剤と、それを濯ぐために大量の純水が用いられており、電子部品の高度化にともなう超純水の水質向上と使用量低減を狙った排水回収による水回収率向上が課題となっている。その中で水中の有機物成分(TOC)を効率的に、より低濃度まで低減させることが、水質向上および水回収率向上の両面で重要な課題であり、その濃度をオンラインでモニターすることが重要である。   High-concentration chemicals and detergents and a large amount of pure water are used for rinsing them for cleaning and surface treatment of electronic components. Improvement of water quality and reduction of usage due to advancement of electronic components. The improvement of the water recovery rate by wastewater recovery aiming at the problem has become an issue. Efficiently reducing the organic component (TOC) in water to a lower concentration is an important issue in terms of both improving water quality and improving the water recovery rate, and monitoring the concentration online is important. It is.

超純水系においてオンラインでTOCを測定する方法としては、UV法によるTOCモニターが主に用いられている。これは試料水に185nmの低圧UV光を照射して、試料水中のTOCを酸化分解して低分子化/イオン化し、その前後での抵抗率からTOC濃度を求める方法である(特許文献1,2)。   As a method for measuring TOC online in an ultrapure water system, a TOC monitor based on the UV method is mainly used. This is a method of irradiating a sample water with low-pressure UV light of 185 nm, oxidizing and decomposing TOC in the sample water to lower the molecular weight / ionization, and obtaining the TOC concentration from the resistivity before and after that (Patent Document 1, Patent Document 1). 2).

しかし、この方法では185nmのUV光に吸収のないTOC成分、例えば尿素などはUVでは分解しないため測定できないといった課題があった。
特開2004−177164号 特開2008−111721号
However, this method has a problem that a TOC component that does not absorb 185 nm UV light, such as urea, cannot be measured because it is not decomposed by UV.
JP 2004-177164 A JP 2008-1111721 A

本発明は、尿素などの有機物であっても高精度に測定することができる溶存物質濃度の測定方法を提供することを目的とする。 The present invention aims at providing a measuring how the dissolved substance concentration which can be organic such as urea measured with high accuracy.

本発明(請求項1)の溶存物質濃度の測定方法は、白金族金属触媒を充填した容器に水素を供給する工程と、溶存酸素及び溶存物質を含む試料水を該容器に通水する工程と、その後、該容器に水素水を通水し、流出水中の特定物質濃度又はそれに対応した特性値を測定し、この測定結果から試料水中の溶存物質濃度を求める工程と、を有するものである。   The dissolved substance concentration measuring method of the present invention (Claim 1) includes a step of supplying hydrogen to a container filled with a platinum group metal catalyst, and a step of passing sample water containing dissolved oxygen and dissolved substances through the container. Thereafter, hydrogen water is passed through the container, a specific substance concentration in the effluent water or a characteristic value corresponding thereto is measured, and a dissolved substance concentration in the sample water is obtained from the measurement result.

請求項2の溶存物質濃度の測定方法は、請求項1において、前記溶存物質は有機物であることを特徴とするものである。   A method for measuring a dissolved substance concentration according to claim 2 is characterized in that, in claim 1, the dissolved substance is an organic substance.

請求項3の溶存物質濃度の測定方法は、請求項1又は2において、溶存物質濃度が既知の試料水を用いて前記特性値と試料水中の溶存物質濃度との相関関係を求めておき、溶存物質濃度が未知の試料水について測定した特性値と該相関関係とに基いて該試料水中の溶存物質濃度を求めることを特徴とするものである。   The method for measuring the dissolved substance concentration according to claim 3 is the method according to claim 1 or 2, wherein a sample water having a known dissolved substance concentration is used to obtain a correlation between the characteristic value and the dissolved substance concentration in the sample water. The dissolved substance concentration in the sample water is obtained based on the characteristic value measured for the sample water whose substance concentration is unknown and the correlation.

請求項4の溶存物質濃度の測定方法は、請求項1ないし3のいずれか1項において、前記溶存物質は尿素であり、前記特性値として流出水の抵抗率を測定することを特徴とするものである。   The dissolved substance concentration measuring method according to claim 4 is characterized in that, in any one of claims 1 to 3, the dissolved substance is urea, and the resistivity of the effluent water is measured as the characteristic value. It is.

請求項5の溶存物質濃度の測定方法は、請求項1ないし4のいずれか1項において、前記容器を複数個並列に設けておき、一部の容器と他の容器とで別工程を行うことを特徴とするものである。   A method for measuring a dissolved substance concentration according to claim 5 is the method according to any one of claims 1 to 4, wherein a plurality of the containers are provided in parallel, and a separate process is performed in some containers and other containers. It is characterized by.

本発明の溶存物質濃度の測定方法では、白金族金属触媒を充填したカラム等の容器にまず水素を供給して白金族金属触媒に水素を吸着させる。次いで、この容器に溶存酸素濃度が調整された試料水を通水し、白金族金属触媒に試料水中の溶存物質を吸着させる。その後、この容器に再度水素を供給し、白金族金属触媒から吸着物質を脱離させ、この脱離した物質の濃度を測定することにより、試料水中の当該物質濃度を計測する。 In the measurement how the dissolved substance concentration of the present invention, first supplying hydrogen to the vessel such as a column filled with a platinum group metal catalyst is adsorbed hydrogen on platinum group metal catalyst. Next, the sample water with the dissolved oxygen concentration adjusted is passed through the container, and the dissolved substances in the sample water are adsorbed on the platinum group metal catalyst. Thereafter, hydrogen is supplied again to the container, the adsorbed substance is desorbed from the platinum group metal catalyst, and the concentration of the desorbed substance is measured to measure the concentration of the substance in the sample water.

この方法によると、従来モニターでは監視できなかった尿素などのUV難分解性物質の濃度測定も可能となる。 According to this method, it becomes possible concentration measurement of UV flame decomposable substance such as urea could not be monitored in conventional monitors.

本発明の溶存物質濃度の測定方法の実施の形態を示す系統図である。Is a system diagram showing an embodiment of the measuring how the dissolved substance concentration of the present invention. 実施例の結果を示すグラフである。It is a graph which shows the result of an Example.

以下、本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明で測定対象となる試料水中の溶存物質としては、尿素、アミン類(エタノールアミン、メチルアミン、ジエタノールアミン、トリエタノールアミン、トリメチルアミンなど)、DMSOなどが挙げられるが、これに限定されない。   Examples of dissolved substances in sample water to be measured in the present invention include urea, amines (ethanolamine, methylamine, diethanolamine, triethanolamine, trimethylamine, etc.), DMSO, and the like, but are not limited thereto.

溶存物質が尿素である場合、試料水中の濃度は炭素濃度として0.5〜10μg/LasC特に0.5〜5μg/LasC程度であることが好ましい。このような尿素濃度の水としては、電子部品製造に供される純水や超純水などが挙げられる。   When the dissolved substance is urea, the concentration in the sample water is preferably about 0.5 to 10 μg / LasC, particularly about 0.5 to 5 μg / LasC as the carbon concentration. Examples of water having such a urea concentration include pure water and ultrapure water used for electronic component manufacturing.

この白金族金属触媒の白金族金属としては、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金を挙げることができる。これらの白金族金属は、1種を単独で用いることができ、2種以上を組み合わせて用いることもできる。また、2種以上の金属よりなる合金として用いることもできる。また、天然に産出される混合物の精製品を単体に分離することなく用いることもできる。これらの中で、白金、パラジウム、白金/パラジウム合金の単独又はこれらの2種以上の混合物は、触媒活性が強いので特に好適に用いることができる。   Examples of the platinum group metal of the platinum group metal catalyst include ruthenium, rhodium, palladium, osmium, iridium and platinum. These platinum group metals can be used individually by 1 type, and can also be used in combination of 2 or more type. It can also be used as an alloy made of two or more metals. Moreover, the refined product of the mixture produced naturally can also be used without isolate | separating into a single-piece | unit. Among these, platinum, palladium, a platinum / palladium alloy alone or a mixture of two or more of them is particularly suitable because of its strong catalytic activity.

この白金族金属触媒は、白金族金属の微粒子でもよく、白金族金属のナノコロイド粒子を担体の表面に担持させた金属担持触媒でもよい。また、白金族金属触媒は、セラミックボール等の基体に白金等の白金族の金属の被膜をめっき等により形成したものでもよい。   The platinum group metal catalyst may be a platinum group metal fine particle or a metal supported catalyst in which platinum group metal nanocolloid particles are supported on the surface of a carrier. In addition, the platinum group metal catalyst may be formed by forming a coating of a platinum group metal such as platinum on a substrate such as a ceramic ball by plating or the like.

白金族金属のナノコロイド粒子を製造する方法に特に制限はなく、例えば、金属塩還元反応法、燃焼法などを挙げることができる。これらの中で、金属塩還元反応法は、製造が容易であり、安定した品質の金属ナノコロイド粒子を得ることができるので好適に用いることができる。金属塩還元反応法による場合、例えば、白金などの白金族金属の塩化物、硝酸塩、硫酸塩、金属錯化物などの0.1〜0.4mmol/L水溶液に、アルコール、クエン酸又はその塩、ギ酸、アセトン、アセトアルデヒドなどの還元剤を白金族金属に対して4〜20当量倍添加し、1〜3時間煮沸することにより、白金族金属のナノコロイド粒子を製造することができる。また、例えば、ポリビニルピロリドン水溶液に、ヘキサクロロ白金酸、ヘキサクロロ白金酸カリウムなどを1〜2mmol/L溶解し、エタノールなどの還元剤を加え、窒素雰囲気下で2〜3時間加熱還流することにより、白金ナノコロイド粒子を製造することができる。   There is no particular limitation on the method for producing platinum group metal nanocolloid particles, and examples thereof include a metal salt reduction reaction method and a combustion method. Among these, the metal salt reduction reaction method can be suitably used because it is easy to produce and stable metal nanocolloid particles can be obtained. In the case of the metal salt reduction reaction method, for example, 0.1 to 0.4 mmol / L aqueous solution of platinum group metal such as platinum, nitrate, sulfate, metal complex, etc., alcohol, citric acid or a salt thereof, By adding a reducing agent such as formic acid, acetone, or acetaldehyde 4 to 20 equivalents with respect to the platinum group metal and boiling for 1 to 3 hours, platinum group metal nanocolloid particles can be produced. Further, for example, by dissolving 1-2 mmol / L of hexachloroplatinic acid, potassium hexachloroplatinate, etc. in an aqueous polyvinylpyrrolidone solution, adding a reducing agent such as ethanol, and heating and refluxing in a nitrogen atmosphere for 2 to 3 hours, Nanocolloid particles can be produced.

白金族金属のナノコロイド粒子の重量平均粒子径は好ましくは1〜50nmであり、より好ましくは1.2〜20nmであり、さらに好ましくは1.4〜5nmである。金属ナノコロイド粒子の重量平均粒子径が1nm未満であると、TOCの分解除去に対する触媒活性が低下するおそれがある。金属ナノコロイド粒子の重量平均粒子径が50nmを超えると、ナノコロイド粒子の比表面積が小さくなって、TOCの分解除去に対する触媒活性が低下するおそれがある。   The weight average particle diameter of the platinum group metal nanocolloid particles is preferably 1 to 50 nm, more preferably 1.2 to 20 nm, and still more preferably 1.4 to 5 nm. If the weight average particle diameter of the metal nanocolloid particles is less than 1 nm, the catalytic activity for TOC decomposition and removal may be reduced. When the weight average particle diameter of the metal nanocolloid particles exceeds 50 nm, the specific surface area of the nanocolloid particles becomes small, and the catalytic activity for TOC decomposition and removal may be reduced.

白金族金属のナノコロイド粒子を担持させる担体に特に制限はなく、例えば、アニオン交換樹脂などのイオン交換樹脂のほか、マグネシア、チタニア、アルミナ、シリカ−アルミナ、ジルコニア、活性炭、ゼオライト、ケイソウ土などを挙げることができる。これらの中で、アニオン交換樹脂が好適である。白金族金属のナノコロイド粒子は電気二重層を有し、負に帯電しているので、アニオン交換樹脂に安定に担持され、剥離しにくい。このアニオン交換樹脂は、スチレン−ジビニルベンゼン共重合体を母体とした強塩基性アニオン交換樹脂であることが好ましく、特にゲル型樹脂であることがより好ましい。アニオン交換樹脂の交換基は、OH形であることが好ましい。アニオン交換樹脂等の担体への白金族金属のナノコロイド粒子の担持量は、0.01〜0.2重量%であることが好ましく、0.04〜0.1重量%であることがより好ましい。   There is no particular limitation on the carrier for supporting the platinum group metal nano colloidal particles. Can be mentioned. Of these, anion exchange resins are preferred. Since the platinum group metal nanocolloid particles have an electric double layer and are negatively charged, they are stably supported on the anion exchange resin and are difficult to peel off. This anion exchange resin is preferably a strongly basic anion exchange resin based on a styrene-divinylbenzene copolymer, and more preferably a gel resin. The exchange group of the anion exchange resin is preferably in the OH form. The amount of platinum group metal nanocolloid particles supported on a carrier such as an anion exchange resin is preferably 0.01 to 0.2% by weight, more preferably 0.04 to 0.1% by weight. .

次に第1図を参照して本発明の実施の形態に係る溶存物質濃度測定装置と、この装置を用いた溶存物質濃度の測定方法について説明する。   Next, a dissolved substance concentration measuring apparatus according to an embodiment of the present invention and a dissolved substance concentration measuring method using this apparatus will be described with reference to FIG.

第1図の通り、試料水供給配管1が触媒充填カラム3に接続されている。このカラム3には白金族金属触媒3aが充填されている。この配管1のカラム3近傍部分に溶存酸素濃度計2が設けられている。この溶存酸素濃度計2よりも上流側の配管1に対し水素供給配管4と酸素供給配管5とが接続されている。なお、水素供給配管4は、溶存酸素濃度計2よりも下流側に接続されてもよく、カラム3に直接に接続されてもよい。試料水配管1と酸素供給配管5とは、酸素透過性の低いステンレス等の金属やナイロン等にて構成されることが好ましい。カラム3の流出口には抵抗率計7を備えた流出配管6が接続されている。   As shown in FIG. 1, a sample water supply pipe 1 is connected to a catalyst packed column 3. This column 3 is packed with a platinum group metal catalyst 3a. A dissolved oxygen concentration meter 2 is provided in the vicinity of the column 3 of the pipe 1. A hydrogen supply pipe 4 and an oxygen supply pipe 5 are connected to the pipe 1 upstream of the dissolved oxygen concentration meter 2. The hydrogen supply pipe 4 may be connected to the downstream side of the dissolved oxygen concentration meter 2 or may be directly connected to the column 3. The sample water pipe 1 and the oxygen supply pipe 5 are preferably made of a metal such as stainless steel having a low oxygen permeability, nylon, or the like. An outlet pipe 6 having a resistivity meter 7 is connected to the outlet of the column 3.

水素供給配管4に供給する水素は、水素ガスでもよく、水素水(水素溶解水)でもよいが、吸着工程において試料水を流通させたときにガスロックが生じないようにするために水素水を用いるのが好ましい。   The hydrogen supplied to the hydrogen supply pipe 4 may be hydrogen gas or hydrogen water (hydrogen-dissolved water), but hydrogen water is used to prevent gas lock when sample water is circulated in the adsorption process. It is preferable to use it.

試料水中の溶存物質濃度を測定する手順は、好ましくは次の通りである。   The procedure for measuring the dissolved substance concentration in the sample water is preferably as follows.

(1) 水素吸着工程
まず、水素水を水素供給配管4から触媒充填カラム3に通水し、触媒3aに水素を吸着させる。このときの水素水の水素濃度は0.1〜1.6mg/L、特に0.2〜1.6mg/L程度が好適である。また、水素水の供給量は、水素供給配管の容積と触媒充填カラムの容積の和を1とした場合、0.1〜10特に1〜5程度が好適である。なお、白金族金属触媒の体積を基準とする場合には、白金族金属触媒3aの体積の1〜5倍特に1〜3倍の水素水を通水するのが好ましい。
(1) Hydrogen adsorption step First, hydrogen water is passed from the hydrogen supply pipe 4 to the catalyst-filled column 3 to adsorb hydrogen to the catalyst 3a. The hydrogen concentration at this time is preferably about 0.1 to 1.6 mg / L, particularly about 0.2 to 1.6 mg / L. Moreover, when the sum of the volume of the hydrogen supply pipe and the volume of the catalyst packed column is 1, the supply amount of hydrogen water is preferably about 0.1 to 10, particularly about 1 to 5. When the volume of the platinum group metal catalyst is used as a reference, it is preferable to pass hydrogen water 1 to 5 times, particularly 1 to 3 times, the volume of the platinum group metal catalyst 3a.

(2) 溶存物質吸着工程
次に、配管1に試料水を供給すると共に、必要に応じ、酸素供給配管5からこの配管1内の試料水に酸素水を添加する。このときの酸素水の添加量は、溶存酸素計2で検出される溶存酸素濃度が5〜500μg/L特に10〜100μg/L程度となるように調整されるのが好ましい。酸素水添加前の試料水中の溶存酸素濃度が過度に高いときには、酸素水の添加を行わないと共に、溶存酸素計2よりも上流側の配管1に脱気機構を設けておき、溶存酸素計2の検出溶存酸素濃度が上記範囲となるように脱気するのが好ましい。
(2) Dissolved substance adsorption process Next, while supplying sample water to the piping 1, oxygen water is added to the sample water in this piping 1 from the oxygen supply piping 5 as needed. The amount of oxygen water added at this time is preferably adjusted so that the dissolved oxygen concentration detected by the dissolved oxygen meter 2 is about 5 to 500 μg / L, particularly about 10 to 100 μg / L. When the dissolved oxygen concentration in the sample water before addition of oxygen water is excessively high, oxygen water is not added, and a degassing mechanism is provided in the pipe 1 upstream of the dissolved oxygen meter 2 so that the dissolved oxygen meter 2 It is preferable to deaerate so that the detected dissolved oxygen concentration in the above range falls within the above range.

このようにして溶存酸素濃度が調整された試料水をカラム3に通水すると、試料水中に含まれていた尿素などの溶存物質が水素を吸着した白金族金属触媒に吸着される。溶存物質が白金族金属触媒に吸着されるメカニズムは、白金族金属触媒の存在下で、白金族金属触媒に吸着されていた水素と試料水中の酸素とが結合し、金属触媒表面に電子の偏在が生じて金属触媒表面に電子が粗の部分が生じ、この電子が粗の部分に尿素などのN原子に内在する非共有電子対が結合するためであると推察される。   When the sample water having the dissolved oxygen concentration adjusted in this way is passed through the column 3, dissolved substances such as urea contained in the sample water are adsorbed by the platinum group metal catalyst adsorbing hydrogen. The mechanism by which dissolved substances are adsorbed on the platinum group metal catalyst is that in the presence of the platinum group metal catalyst, the hydrogen adsorbed on the platinum group metal catalyst and oxygen in the sample water are combined, and electrons are unevenly distributed on the surface of the metal catalyst. It is inferred that this is because a rough portion of electrons is generated on the surface of the metal catalyst, and the unshared electron pair inherent in N atoms such as urea is bonded to the rough portion of the electrons.

白金族金属触媒3aが、白金族金属のノナノコロイド粒子を0.01〜0.2重量%担持させたアニオン交換樹脂である場合、触媒充填カラム3への試料水の通水速度(SV)は、10〜500hr−1特に50〜300hr−1程度が好適であるが、これに限定されない。 When the platinum group metal catalyst 3a is an anion exchange resin in which 0.01 to 0.2% by weight of platinum group metal nonanocolloid particles are supported, the water flow rate (SV) of the sample water to the catalyst packed column 3 is 10 to 500 hr −1, especially about 50 to 300 hr −1 is preferable, but not limited thereto.

(3) 脱離工程
次に、上記(2)の吸着工程で溶存物質を吸着したカラム3に水素供給配管4からの水素水を通水する。これにより、触媒に吸着されていた吸着物質が脱離し、配管6に流出する。また、この際、白金族金属触媒3aに吸着されていた吸着物質がイオン化又はイオン化及び低分子化する。このイオン化等が進行する理由としては、必ずしも明確ではないが、この(3)の工程で供給される水素水中の水素が、触媒に吸着されていた酸素と反応して水が生成し、その際に非共有電子対の結合も切れ、尿素に部分的に加水分解が進行するためであると推察される。
(3) Desorption Step Next, hydrogen water from the hydrogen supply pipe 4 is passed through the column 3 that has adsorbed dissolved substances in the adsorption step (2). As a result, the adsorbed material adsorbed on the catalyst is desorbed and flows out to the pipe 6. At this time, the adsorbed material adsorbed on the platinum group metal catalyst 3a is ionized or ionized and reduced in molecular weight. The reason why this ionization proceeds is not necessarily clear, but hydrogen in the hydrogen water supplied in the step (3) reacts with oxygen adsorbed on the catalyst to produce water, It is speculated that this is because the bond of the lone pair is also broken and the hydrolysis partially proceeds to urea.

白金族金属触媒に吸着する物質量は、試料水中の溶存物質濃度に比例し、また、イオン化しながら白金族金属触媒から脱離する物質の量は触媒の吸着物質量に比例するので、脱離水中のイオン濃度は試料水中の溶存物質濃度に比例することになる。抵抗率計7の検出抵抗率は、脱離水中のイオン濃度が高くなるほど低下する。   The amount of substance adsorbed on the platinum group metal catalyst is proportional to the dissolved substance concentration in the sample water, and the amount of substance desorbed from the platinum group metal catalyst while ionizing is proportional to the amount of adsorbed substance on the catalyst. The ion concentration in the water is proportional to the dissolved substance concentration in the sample water. The detected resistivity of the resistivity meter 7 decreases as the ion concentration in the desorbed water increases.

従って、予め溶存物質濃度既知の試料水を用いて溶存物質濃度と脱離水の抵抗率との検量線を求めておき、溶存物質濃度未知の試料水を検量線作成時と同一条件で通水したときの脱離水の抵抗率計検出値から当該試料水中の溶存物質濃度を検知することができる。   Therefore, a calibration curve between the dissolved substance concentration and the resistivity of desorbed water was obtained in advance using sample water with a known dissolved substance concentration, and sample water with an unknown dissolved substance concentration was passed under the same conditions as when the calibration curve was created. The dissolved substance concentration in the sample water can be detected from the detected value of the desorbed water at that time.

この脱離工程における通水SVは3〜60hr−1特に5〜50hr−1程度が好適である。また、抵抗率計7による抵抗率の検出値としては水素水の通水開始後、最も高くなった値を採用するのが好ましい。 The water flow SV in this desorption step is preferably about 3 to 60 hr −1, especially about 5 to 50 hr −1 . Moreover, it is preferable to employ | adopt the value which became the highest after the water-flow start of hydrogenous water as a detected value of the resistivity by the resistivity meter 7.

脱離工程を継続すると、抵抗率計7の検出値が徐々に上昇する。この脱離工程の途中から前記(1)の水素吸着工程へと移行し、抵抗率計7の検出抵抗率が所定値以下に達したならば水素吸着工程を終了し、前記(2)の溶存物質吸着工程に移行する。   When the desorption process is continued, the detected value of the resistivity meter 7 gradually increases. In the middle of this desorption process, the process proceeds to the hydrogen adsorption process of (1). When the detected resistivity of the resistivity meter 7 reaches a predetermined value or less, the hydrogen adsorption process is terminated, and the dissolution of (2) above Move on to substance adsorption process.

このように、試料水の通水工程→水素水通水による脱離兼水素吸着工程を繰り返すことにより、試料水中の溶存物質濃度を繰り返し測定することができる。   Thus, by repeating the desorption and hydrogen adsorption step by the sample water flow step → hydrogen water flow step, the dissolved substance concentration in the sample water can be repeatedly measured.

なお、複数の触媒充填カラム3を並列に設け、一部の触媒充填カラムで試料水通水工程を行っているときに他の触媒充填カラムで別工程、例えば脱離工程を行うようにしてもよい。このようにすることにより、溶存物質濃度を高頻度にて測定することができる。   It should be noted that a plurality of catalyst packed columns 3 are provided in parallel, and another process such as a desorption process is performed in another catalyst packed column when a sample water flow process is performed in a part of the catalyst packed columns. Good. By doing in this way, a dissolved substance density | concentration can be measured with high frequency.

以下に実施例及び比較例について説明する。   Examples and comparative examples will be described below.

[実施例1]
第1図の装置を用い、以下の条件で尿素濃度既知の試料水を通水して流出水の抵抗率を測定した。
[Example 1]
Using the apparatus shown in FIG. 1, the sample water having a known urea concentration was passed under the following conditions to measure the resistivity of the effluent water.

白金族金属触媒(触媒樹脂)として栗田工業(株)製「ナノセイバー」(白金ナノコロイド担持樹脂)500mLを直径30mmのカラムに充填した。このカラムに水素濃度1.2mg/Lの水素水をSV=12hr−1で10min通水した。 As a platinum group metal catalyst (catalyst resin), 500 mL of “Nano Saver” (platinum nano colloid support resin) manufactured by Kurita Kogyo Co., Ltd. was packed in a 30 mm diameter column. Hydrogen water having a hydrogen concentration of 1.2 mg / L was passed through the column at SV = 12 hr −1 for 10 minutes.

次に、溶存酸素濃度が30μg/Lであり、かつ尿素濃度が0.2μg/LasCの試料水をSV=60hr−1で30min通水した。 Next, sample water having a dissolved oxygen concentration of 30 μg / L and a urea concentration of 0.2 μg / LasC was passed for 30 min at SV = 60 hr −1 .

試料水の通水後、上記濃度の水素水をSV=12hr−1で通水し、カラム流出水の抵抗率を測定した。その結果を第2図に示す。 After passing the sample water, hydrogen water having the above concentration was passed at SV = 12 hr −1 and the column effluent resistivity was measured. The results are shown in FIG.

試料水として、尿素濃度が1.4μg/LasC、2.8μg/LasC又は3.8μg/LasCの試料水をそれぞれ用いたこと以外は同様にして水素水、試料水及び水素水を順次に通水し、カラム流出水の抵抗率を測定した。その結果を第2図に示す。   Hydrogen water, sample water, and hydrogen water were sequentially passed in the same manner except that sample water having a urea concentration of 1.4 μg / LasC, 2.8 μg / LasC, or 3.8 μg / LasC was used as the sample water. Then, the resistivity of the column effluent was measured. The results are shown in FIG.

第2図の通り、試料水の尿素濃度と上記抵抗率との間には、尿素濃度が高くなるほど抵抗率が小さくなる線形の関係(第2図では、y=0.3775x−0.3481x+17.443,R=0.9997)が存在することが認められ、流出水の抵抗率から試料水中の尿素濃度をモニターできることが認められた。 As shown in FIG. 2, a linear relationship between the urea concentration of the sample water and the resistivity is such that the resistivity decreases as the urea concentration increases (in FIG. 2, y = 0.3775x 2 −0.3481x + 17 .443, R 2 = 0.9997), and the urea concentration in the sample water can be monitored from the resistivity of the effluent.

[比較例]
UV法のTOCオンラインモニター((株)ハック・ウルトラ製 ANATEL A1000−XP)を用い、上記試料水に波長185nmの低圧紫外線を照射してその前後の抵抗率変化を測定したが、抵抗率の変化は検出されず、尿素濃度のモニターはできなかった。
[Comparative example]
Using a UV method TOC online monitor (ANATEL A1000-XP, manufactured by Hack Ultra Co., Ltd.), the sample water was irradiated with low-pressure ultraviolet light having a wavelength of 185 nm, and the change in resistivity before and after that was measured. Was not detected, and the urea concentration could not be monitored.

2 溶存酸素濃度計
3 触媒充填カラム
3a 白金族金属触媒
7 抵抗率計
2 dissolved oxygen concentration meter 3 catalyst packed column 3a platinum group metal catalyst 7 resistivity meter

Claims (5)

白金族金属触媒を充填した容器に水素を供給する工程と、
溶存酸素及び溶存物質を含む試料水を該容器に通水する工程と、
その後、該容器に水素水を通水し、流出水中の特定物質濃度又はそれに対応した特性値を測定し、この測定結果から試料水中の溶存物質濃度を求める工程と、
を有する溶存物質濃度の測定方法。
Supplying hydrogen to a container filled with a platinum group metal catalyst;
Passing sample water containing dissolved oxygen and dissolved substances through the container;
Thereafter, hydrogen water is passed through the container, the specific substance concentration in the effluent water or the characteristic value corresponding thereto is measured, and the dissolved substance concentration in the sample water is obtained from this measurement result;
Method for measuring the concentration of dissolved substances having
請求項1において、前記溶存物質は有機物であることを特徴とする溶存物質濃度の測定方法。   2. The method for measuring a dissolved substance concentration according to claim 1, wherein the dissolved substance is an organic substance. 請求項1又は2において、溶存物質濃度が既知の試料水を用いて前記特性値と試料水中の溶存物質濃度との相関関係を求めておき、溶存物質濃度が未知の試料水について測定した特性値と該相関関係とに基いて該試料水中の溶存物質濃度を求めることを特徴とする溶存物質濃度の測定方法。   3. The characteristic value measured in the sample water according to claim 1 or 2, wherein a correlation between the characteristic value and the dissolved substance concentration in the sample water is obtained using a sample water having a known dissolved substance concentration, and the dissolved substance concentration is measured. And measuring the dissolved substance concentration in the sample water based on the correlation. 請求項1ないし3のいずれか1項において、前記溶存物質は尿素であり、前記特性値として流出水の抵抗率を測定することを特徴とする溶存物質濃度の測定方法。   4. The dissolved substance concentration measuring method according to claim 1, wherein the dissolved substance is urea, and the resistivity of the effluent water is measured as the characteristic value. 請求項1ないし4のいずれか1項において、前記容器を複数個並列に設けておき、一部の容器と他の容器とで別工程を行うことを特徴とする溶存物質濃度の測定方法。   5. The dissolved substance concentration measuring method according to any one of claims 1 to 4, wherein a plurality of the containers are provided in parallel, and a separate process is performed in some containers and other containers.
JP2010203274A 2010-09-10 2010-09-10 Method for measuring dissolved substance concentration Active JP5552977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010203274A JP5552977B2 (en) 2010-09-10 2010-09-10 Method for measuring dissolved substance concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010203274A JP5552977B2 (en) 2010-09-10 2010-09-10 Method for measuring dissolved substance concentration

Publications (2)

Publication Number Publication Date
JP2012058137A JP2012058137A (en) 2012-03-22
JP5552977B2 true JP5552977B2 (en) 2014-07-16

Family

ID=46055400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010203274A Active JP5552977B2 (en) 2010-09-10 2010-09-10 Method for measuring dissolved substance concentration

Country Status (1)

Country Link
JP (1) JP5552977B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187249A (en) * 1983-04-07 1984-10-24 Fuji Electric Corp Res & Dev Ltd Analyzing device of urea nitrogen
JP3820163B2 (en) * 2002-02-22 2006-09-13 三井化学株式会社 Urea concentration measuring method and apparatus
JP2004177164A (en) * 2002-11-25 2004-06-24 Techno Morioka Kk Water quality analyzer, and analytical method for water quality
JP4926650B2 (en) * 2006-10-30 2012-05-09 株式会社 堀場アドバンスドテクノ Continuous total organic carbon concentration measuring method and apparatus
US8771522B2 (en) * 2008-07-28 2014-07-08 Kurita Water Industries Ltd. Method and apparatus for treating organic matter-containing water

Also Published As

Publication number Publication date
JP2012058137A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP5499753B2 (en) Water treatment method and apparatus
JP4978144B2 (en) Method and apparatus for removing dissolved oxygen in water
Shi et al. Selective reduction of nitrate into nitrogen using Fe–Pd bimetallic nanoparticle supported on chelating resin at near-neutral pH
JP5124946B2 (en) Removal method of hydrogen peroxide in ultrapure water in ultrapure water production equipment
Liou et al. Methods for accelerating nitrate reduction using zerovalent iron at near-neutral pH: effects of H2-reducing pretreatment and copper deposition
Grymonpré et al. Suspended activated carbon particles and ozone formation in aqueous-phase pulsed corona discharge reactors
JP5447378B2 (en) Method and apparatus for treating water containing organic matter
Mendow et al. A novel process for nitrate reduction in water using bimetallic Pd-Cu catalysts supported on ion exchange resin
WO2018105188A1 (en) Ultrapure water production apparatus and operation method for ultrapure water production apparatus
JP2015093226A (en) Method and apparatus for manufacturing pure water
Chen et al. Enhanced catalytic reduction of N-nitrosodimethylamine over bimetallic Pd-Ni catalysts
JP5552977B2 (en) Method for measuring dissolved substance concentration
JP2013220405A (en) Method for decomposing chemical substance
JP5320723B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP2007007541A (en) Method for treating nitrate nitrogen-containing water
JP4175002B2 (en) Oxidation / reducing agent injection rate control method
WO2017127728A1 (en) Ozone-activated nanoporous gold and methods of its use
JP2009190981A (en) Method for treating carbon dioxide
JP5919960B2 (en) Treatment method for organic water
JP5292136B2 (en) Method for measuring dissolved nitrogen concentration and measuring device for dissolved nitrogen concentration
JP5854163B2 (en) Ultrapure water production method and ultrapure water production facility
Zhao et al. A novel catalytic oxidation process for removing elemental mercury by using diperiodatoargentate (III) in the catalysis of trace ruthenium (III)
Sanchez et al. Hybrid process for nitrates elimination in water
JP2022002830A (en) Pure water production device and pure water production method
JP2018094531A (en) Ultra pure water manufacturing apparatus and operation method of ultra pure water manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5552977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150