JP5550931B2 - 超音波診断装置 - Google Patents

超音波診断装置 Download PDF

Info

Publication number
JP5550931B2
JP5550931B2 JP2010020940A JP2010020940A JP5550931B2 JP 5550931 B2 JP5550931 B2 JP 5550931B2 JP 2010020940 A JP2010020940 A JP 2010020940A JP 2010020940 A JP2010020940 A JP 2010020940A JP 5550931 B2 JP5550931 B2 JP 5550931B2
Authority
JP
Japan
Prior art keywords
images
image
tissue
doppler
division
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010020940A
Other languages
English (en)
Other versions
JP2011156191A (ja
Inventor
英司 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Aloka Medical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Aloka Medical Ltd filed Critical Hitachi Aloka Medical Ltd
Priority to JP2010020940A priority Critical patent/JP5550931B2/ja
Priority to US12/755,045 priority patent/US8852106B2/en
Priority to EP10003745.6A priority patent/EP2241256B1/en
Priority to CN201010148456.4A priority patent/CN101897601B/zh
Publication of JP2011156191A publication Critical patent/JP2011156191A/ja
Application granted granted Critical
Publication of JP5550931B2 publication Critical patent/JP5550931B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明は、周期的に運動する対象組織の表示画像を形成する超音波診断装置に関する。
心臓などの運動を伴う組織の三次元超音波画像を形成する超音波診断装置が知られている。例えば、三次元空間内において超音波ビームをスキャン(走査)して三次元空間内からエコーデータを収集し、収集したエコーデータに基づいて三次元超音波画像を形成してリアルタイム表示する技術が知られている。但し、リアルタイム表示の場合には、スキャンレートとビーム密度とビーム範囲が互いにトレードオフの関係になるという原理的な制約がある。
三次元超音波画像のリアルタイム表示における原理的な制約を回避するための技術も提案されている。例えば、特許文献1には、心電信号などに同期させて三次元空間内において走査面を少しずつ移動させながら、走査面の各位置において複数の時相に亘って複数の断層画像データを収集し、収集された複数の断層画像データを並べ替えて再構築して三次元画像データを形成する技術(再構成処理または再構築処理)が記載されている。この技術は、直接的に心電信号を得ることが困難な胎児などに適用することが難しい。
また、特許文献2には、心電信号に換えて、ある時間間隔ごとにスキャンして再構築する技術が記載されている。しかし、この技術では、データ収集中における心臓などの周期が一定と仮定しており、そのため、例えば心臓の周期が一定ではない場合に、再構築後の画像における心臓の形態が実際のものから歪められて信頼性が低くなる可能性がある。
特許第3537594号公報 特開2005−74225号公報
上述した背景技術に鑑み、本願の発明者は、再構成処理により超音波画像を形成する技術について研究開発を重ねてきた。特に、複数のドプラ画像を含んだ画像列の再構成処理に注目した。
本発明は、その研究開発の過程において成されたものであり、その目的は、複数のドプラ画像を含んだ画像列の再構成処理に関する信頼性を高めることにある。
上記目的にかなう好適な超音波診断装置は、周期的に運動する対象組織を含む三次元空間内で超音波を送受するプローブと、前記プローブを制御することにより、対象組織に関する運動の複数の周期に亘って走査面を移動させつつ三次元空間内で複数の走査面を形成する送受信制御部と、対象組織に関する運動の仮想周期に対応した間隔で、前記複数の走査面に対応した複数の画像のうちのエコー強度に基づいた複数の組織画像の中から複数の組織基準画像を探索し、前記複数の画像のうちのドプラ情報に基づいた複数のドプラ画像の中から複数のドプラ基準画像を探索する基準画像探索部と、複数の組織基準画像と複数のドプラ基準画像に基づいて、分割の基準となる複数の基準位置を設定する分割前処理部と、前記複数の画像で構成される画像列内において、前記複数の基準位置の各々を分割の単位とすることにより当該画像列を複数の画像群に分割し、複数の画像群の各々から互いに周期的に対応した複数の画像を抽出する画像再構成部と、互いに周期的に対応した複数の画像に基づいて対象組織の表示画像を形成する表示画像形成部と、を有することを特徴とする。
望ましい具体例において、前記分割前処理部は、互いに隣接する各組織基準画像と各ドプラ基準画像の間に各基準位置を設定する、ことを特徴とする。
望ましい具体例において、前記分割前処理部は、互いに最も近接する組織基準画像とドプラ基準画像が重なるように、複数の組織基準画像と複数のドプラ基準画像のうちの少なくとも一方を移動させてから、互いに隣接する各組織基準画像と各ドプラ基準画像の間に各基準位置を設定する、ことを特徴とする。
望ましい具体例において、前記分割前処理部は、互いに隣接する各組織基準画像と各ドプラ基準画像の中間位置を各基準位置とする、ことを特徴とする。
望ましい具体例において、前記分割前処理部は、複数の基準位置の各々から指定間隔だけ離れた箇所に複数の分割位置を設定し、前記画像再構成部は、前記複数の分割位置の各々を分割の境界とすることにより前記画像列を複数の画像群に分割する、ことを特徴とする。
望ましい具体例において、前記画像再構成部は、三次元空間内における複数の走査面の配列順に複数の組織画像と複数のドプラ画像が混在して配列された混在画像列内において、前記複数の分割位置の各々を分割の境界とすることにより当該混在画像列を複数の画像群に分割し、複数の画像群の各々から互いに周期的に対応した複数の画像を抽出する、ことを特徴とする。
望ましい具体例において、前記超音波診断装置は、前記複数の組織画像から得られる周期性に関する特徴量に基づいて、前記複数の組織基準画像の探索と前記複数のドプラ基準画像の探索とにおいて共用される共用仮想周期を算出する仮想周期算出部をさらに有することを特徴とする。
本発明により、複数のドプラ画像を含んだ画像列の再構成処理に関する信頼性を高めることが可能になる。
本発明の実施において好適な超音波診断装置の全体構成を示す図である。 三次元的な走査を説明するための図である。 断面差分値の変化を示す図である。 相互差分値の変化を示す図である。 基準画像の探索を説明するための図である。 基準位置の設定を説明するための図である。 再構築処理部による処理を説明するための図である。 再構築処理部による別の好適な処理を説明するための図である。
以下に本発明の好適な実施形態を説明する。
図1は、本発明の実施において好適な超音波診断装置の全体構成を示す図である。プローブ10は、対象組織を含む三次元空間内において超音波を送受波する。プローブ10は超音波を送受波する複数の振動素子を備えており、複数の振動素子がビームフォーマ12によって送信制御されて送信ビームが形成される。また、複数の振動素子が対象組織から反射された超音波を受波し、これにより得られた信号がビームフォーマ12へ出力され、ビームフォーマ12が受信ビームを形成する。
本実施形態のプローブ10は、超音波ビーム(送信ビームと受信ビーム)を三次元空間内において走査して立体的にエコーデータを収集する3Dプローブである。例えば、一次元的に配列された複数の振動素子(1Dアレイ振動子)によって電子的に形成される走査面を機械的に動かすことにより超音波ビームが三次元的に走査される。また、二次元的に配列された複数の振動素子(2Dアレイ振動子)を電子的に制御して超音波ビームを三次元的に走査してもよい。
ビームフォーマ12は、プローブ10が備える複数の振動素子の各々に対応した送信信号を供給することにより超音波の送信ビームを形成する。また、ビームフォーマ12は、プローブ10が備える複数の振動素子の各々から得られる受信信号に対して整相加算処理などを施すことにより超音波の受信ビームを形成し、受信ビームに沿って得られるエコーデータを出力する。本実施形態において、対象組織は、周期的に運動する組織であり、例えば胎児の心臓などである。そして、対象組織に関する運動の複数の周期に亘って走査面を移動させつつ三次元空間内で複数の走査面が形成される。
断層画像形成部13は、ビームフォーマ12から得られるエコーデータに基づいて、複数の走査面の各々に対応した断層画像を形成する。断層画像形成部13は、エコーデータから得られるエコー強度(エコーの大きさ)に基づいてBモード画像と同等の組織画像を形成し、また、エコーデータから得られるドプラ情報に基づいてカラードプラなどのドプラ画像を形成する。
図2は、本実施形態における三次元的な走査を説明するための図である。図2において対象組織を含む三次元空間はXYZ直交座標系で表現されている。本実施形態では、XY平面に対してほぼ平行となるように走査面が形成され、その走査面をZ軸方向にゆっくりと移動させつつ、Z軸方向に沿って複数の走査面が形成される。走査面は、胎児の心臓などの周期的な運動に関する複数の周期に亘って、例えば約8秒で約20心拍を含む期間に亘って、Z軸方向にゆっくりと移動する。
本実施形態においては、組織画像に対応した走査面Bとドプラ画像に対応した走査面DがZ軸方向に沿って交互に形成される。なお、複数枚の走査面Bと1枚の走査面Dを交互に形成するなど、走査面Bと走査面Dの並び方は適宜変更されてもよい。
図1に戻り、胎児の心拍の複数の周期に亘ってZ軸方向に沿って複数の走査面が形成されると、上述したように断層画像形成部13により各走査面ごとに断層画像が形成され、複数の走査面に対応した複数の断層画像のデータが次々に前メモリ14に記憶される。
エラー判定部16は、前メモリ14に記憶された複数の断層画像データから得られる画像間の差分量に基づいて、複数の断層画像データが良好か否かを判定する。例えば胎児や母体やプローブの動きにより画像内で胎児の心臓が大きく動いてしまい、良好な画像が得られない可能性がある。そこで、エラー判定部16は、前メモリ14に記憶された例えば組織画像に関する複数の断層画像データを利用して、診断のための良好な画像が得られるか否かを判定する。その判定にあたって、エラー判定部16は、次式で定義される断面差分値を利用する。
Figure 0005550931
数1式におけるx,y,zは、図2のXYZ直交座標系における各軸上の座標値でありpは組織画像に関する断層画像データ内の各座標に対応した画素値である。数1式によりZ軸方向に隣接する2つの組織画像間の差分値が算出される。
図3は、断面差分値の変化を示す図であり、図3の横軸は、各断層画像データの位置(各組織画像の位置)を示している。つまり、図3の横軸は、図2の各走査面Bの位置を示しており、図2のZ軸(時間の経過に伴う位置の変化方向)に対応している。
胎児の心臓が大きく移動してしまうことが無ければ、隣接する断層画像データは互いに似たものとなり、数1式により得られる差分値は比較的小さくなる。一方、例えば胎児自身の動き、母体の呼吸動作、プローブ10の位置の大きなずれなどがあると、断層画像内において胎児の心臓が大きく動いてしまい、隣接する断層画像データ間の差分値が比較的大きくなる。そこで、エラー判定部16は、断面差分値が所定の閾値を超えた場合に、画像内において心臓が大きくずれてしまったと判断する。
図1に戻り、エラー判定部16により心臓が大きくずれてしまったと判断されると、制御部40は、例えば、ビームフォーマ12などを制御して、断層画像データの収集を中止させる。なお、制御部40は、図1内の各部を集中的に制御しており、例えば、エラー判定部16によりエラーであると判断された場合に、エラーである旨を示す表示や警告などを表示部30に表示させてもよい。エラー判定部16によりエラーの判定が成されなければ、前メモリ14に記憶された複数の断層画像データに基づいて、後述する処理が実行される。
仮想周期算出部22は、前メモリ14に記憶された複数の断層画像データに基づいて、胎児の心臓に関する仮の周期となる仮想周期を算出する。仮想周期算出部22は、組織画像に関する複数の断層画像データから組織画像の仮想周期を算出し、また、ドプラ画像に関する複数の断層画像データからドプラ画像の仮想周期を算出する。各仮想周期の算出にあたって、仮想周期算出部22は、次式で定義される相互差分値を利用する。
Figure 0005550931
数2式おけるx,y,zは、図2のXYZ直交座標系における各軸上の座標値であり、pは断層画像データ内の各座標に対応した画素値である。数2式においては、Z軸方向に隣接する2つの断層画像データ間の2つの画素値の差分に対して、一方の画素値が乗算されている。これにより、心臓が収縮する場合に比べて心臓が拡張する場合に相互差分値が比較的大きな値となり、単純な差分値では識別が難しい拡張と収縮を相互差分値により識別することが可能になる。
例えば、組織画像に関するある断層画像データz内において、画素p(x,y,z)が心臓内壁の近傍の心筋であると仮定し、その画素値をp(x,y,z)=100とする。心臓が拡張して心腔が大きくなると、断層画像データzに続いて得られる組織画像に関する断層画像データz+1内において画素p(x,y,z+1)が心腔の画素となる。心筋に比べて心腔の画素値は小さいためその画素値をp(x,y,z+1)=10とする。この例において、数2式の右辺の絶対値を算出すると100×(100−10)=9000となる。心臓が拡張する場合には、心臓内壁の周辺において、心筋から心腔に変化する画素が多く発生するため、数2式の相互差分値の値が比較的大きくなる。
一方、心臓が収縮する場合には、上記の例とは反対の現象が発生する。つまり、心臓が収縮して心腔が小さくなるため、心腔に対応した画素p(x,y,z)=10から、心筋に対応した画素p(x,y,z+1)=100に変化する。この例において、数2式の右辺の絶対値を算出すると|10×(10−100)|=900となり、拡張の場合における値9000よりも小さくなる。そのため、拡張と収縮を相互差分値により識別することが可能になる。
図4は、相互差分値の変化を示す図である。図4の横軸は、各断層画像データの位置(各走査面の位置と時間)を示しており、図2のZ軸(時間の経過に伴う位置の変化方向)に対応している。数2式を利用して、例えば、組織画像に関する複数の断層画像データについて、Z軸上の各位置(z)において相互差分値が算出されると、心臓が拡張する場合に相互差分値が比較的大きな値となる。そこで、仮想周期算出部22は、相互差分値のピーク値(極大値)を検出し、隣接するピーク値の間隔を心臓の周期(心拍の周期)と判断する。
但し、例えば胎児の心臓は、心拍の周期が変動する場合があり、心拍の周期が変動するとピーク値の間隔も変動する。そこで、仮想周期算出部22は、例えば、ピーク値の間隔のうちの2番目に大きな間隔を仮想周期に設定する。なお、ピーク値の間隔のヒストグラムから得られる最多頻度の値や重心値などを仮想周期としてもよい。また、予め設定された複数の値の中からユーザまたは装置が仮想周期を選択するようにしてもよいし、ユーザが仮想周期の値を入力するようにしてもよい。仮想周期として、超音波診断装置の計測結果(例えばMモード計測の結果)に基づいて得られる値が利用されてもよいし、常に固定値が利用されてもよい。
図1に戻り、仮想周期算出部22は、組織画像に関する複数の断層画像データに対して数2式を利用して相互差分値を算出し、算出された相互差分値の変化(図4参照)から組織画像の仮想周期を得る。また、仮想周期算出部22は、ドプラ画像に関する複数の断層画像データに対して数2式を利用して相互差分値を算出し、算出された相互差分値の変化からドプラ画像の仮想周期を得る。なお、組織画像の場合には、数2式における画素値pは例えばエコーデータの大きさ(強度)であり、ドプラ画像の場合には、数2式における画素値pは例えばドプラシフト量(速度値)である。
また、仮想周期算出部22は、組織画像とドプラ画像に対して同一の仮想周期(共用仮想周期)を設定してもよい。例えば、組織画像に関する相互差分値の変化から得られる組織画像の仮想周期のみが算出され、この組織画像の仮想周期が共用仮想周期として設定される。もちろん、ドプラ画像に関する相互差分値の変化から得られるドプラ画像の仮想周期のみが算出され、このドプラ画像の仮想周期が共用仮想周期として設定されてもよい。さらに、ユーザが共用仮想周期の値を入力するようにしてもよい。
仮想周期が設定されると、基準画像探索部24は、複数の断層画像データの中から、仮想周期を利用して複数の基準画像を探索する。基準画像探索部24は、組織画像に関する複数の断層画像データから複数の組織基準画像を探索し、また、ドプラ画像に関する複数の断層画像データから複数のドプラ基準画像を探索する。
図5は、基準画像の探索を説明するための図である。図5(A)〜(C)の各々には、図4を利用して説明した相互差分値の変化が図示されている。基準画像探索部24は、組織画像に関する複数の断層画像に対して、組織画像の仮想周期を用いて図5に示す処理を実行して複数の組織基準画像を探索する。また、基準画像探索部24は、ドプラ画像に関する複数の断層画像に対しても、ドプラ画像の仮想周期を用いて図5に示す処理を実行して複数のドプラ基準画像を探索する。なお、共用仮想周期が設定されている場合には、共用仮想周期を用いて複数の組織基準画像が探索され、同じ共用仮想周期を用いて複数のドプラ基準画像が探索される。
基準画像探索部24は、まず、複数の断層画像の中から代表となる基準画像(代表基準画像)を探索する。基準画像探索部24は、図5(A)に示すように、相互差分値が最大となる位置に対応した断層画像データを代表基準画像(代表基準断面)とする。そして、基準画像探索部24は、代表基準画像を起点として、極大の相互差分値に対応した複数の断層画像の中から、仮想周期だけ離れた位置に最も近い断層画像を次々に探索する。
まず、図5(A)に示すように、代表基準画像からZ軸方向の正方向と負方向に仮想周期(VHR)だけ離れた位置に最も近い断層画像が探索されて基準画像とされる。次に、基準画像探索部24は、図5(B)に示すように、探索された基準画像から仮想周期(VHR)だけ離れた位置に最も近い断層画像を探索して新たな基準画像とする。図5(B)において、破線の矢印が複数の基準画像(基準断面)の位置を示している。
基準画像探索部24は、代表基準画像を起点として次々に複数の基準画像を探索する。こうして、極大の相互差分値に対応した複数の断層画像の中から、図5(C)に示すように複数の基準画像が探索される。図5(C)において、破線の矢印が複数の基準画像(基準断面)の位置を示している。組織画像の場合には図5(C)における複数の基準画像が複数の組織基準画像であり、ドプラ画像の場合には図5(C)における複数の基準画像が複数のドプラ基準画像である。
図1に戻り、複数の基準画像が探索されると、分割前処理部25は、複数の組織基準画像と複数のドプラ基準画像に基づいて、分割の基準となる複数の基準位置を設定する。
図6は、基準位置の設定を説明するための図である。図6(A)〜(C)の各々には、組織画像に関する相互差分値の変化(実線波形)とドプラ画像に関する相互差分値の変化(破線波形)が図示されている。また、図6(A)〜(C)の各々には、複数の組織基準画像(実線直線)と複数のドプラ基準画像(破線直線)も図示されている。
分割前処理部25は、まず、互いに隣接する組織基準画像とドプラ基準画像の中から、最も近接する組織基準画像とドプラ基準画像の組を検出する。これにより、図6(A)の例において、位置Pの組織基準画像とドプラ基準画像が検出される。
次に、分割前処理部25は、検出された位置Pの組織基準画像とドプラ基準画像が互いに重なるように、全てのドプラ基準画像を互いの間隔を維持したままZ軸方向に沿って移動させる。図6(B)には、全てのドプラ基準画像を移動させた後の状態が図示されており、位置Pにおける組織基準画像(実線直線)とドプラ基準画像(破線直線)が重なっている。なお、全てのドプラ基準画像を移動させる代わりに、全ての組織基準画像を移動させてもよいし、全ての組織基準画像と全てのドプラ基準画像を移動させて、位置Pに対応する組織基準画像とドプラ基準画像を重ねるようにしてもよい。
そして、分割前処理部25は、上述した移動後の互いに隣接する各組織基準画像と各ドプラ基準画像の中間位置を各基準位置とする。つまり、図6(B)に示される互いに隣接する組織基準画像(実線直線)とドプラ基準画像(破線直線)の中間位置を基準位置とする。これにより、図6(C)に示す複数の基準位置(鎖線直線)が決定される。なお、図6(B)の位置Pにおいては、組織基準画像とドプラ基準画像が重なっているため、その重なった位置に基準位置が設定される。
図1に戻り、複数の基準位置が設定されると、再構築処理部20は、複数の基準位置の各々を分割の単位とすることにより、複数の断層画像をいくつかの画像群に分割する。そして、再構築処理部20は、複数の画像群の各々から互いに周期的に対応した複数の断層画像を抽出することにより再構築処理を実現する。再構築処理部20は、前メモリ14に記憶された複数の断層画像データを再構築して後メモリ26に記憶する。
図7は、再構築処理部20による処理を説明するための図であり、図7には、前メモリ14に記憶されるデータと後メモリ26に記憶されるデータの対応関係が示されている。図7において、「断層画像Zn(n=1,2,3,・・・,60)」は、Z軸(図2参照)上における座標Znの位置の断層画像データを意味している。
前メモリ14には、Z軸方向に沿って次々に形成される複数の走査面に対応した複数の断層画像データが形成された順に記憶されている。つまり、前メモリ14には、いくつかの断層画像に続いて、断層画像Z1,断層画像Z2,・・・,断層画像Z60,・・・の順に複数の断層画像データが記憶されている。
例えば、前メモリ14に記憶された複数の断層画像Znのうち、nが奇数の断層画像が組織画像であり、nが偶数の断層画像がドプラ画像である。前メモリ14には、組織画像とドプラ画像が混在した状態で、例えば組織画像とドプラ画像が交互に記憶されている。なお、図6(B)を利用して説明した処理において、複数のドプラ基準画像を移動させているが、前メモリ14に記憶された断層画像の配列は、その移動前のものである。
再構築処理部20は、複数の基準位置の各々を分割の単位とすることにより、前メモリ14に記憶された複数の断層画像データを複数の画像群に分割する。そして、複数の画像群の各々から、互いに周期的に対応した複数の断層画像データが抽出される。
図7において、断層画像Z1,断層画像Z15,・・・,断層画像Z51が基準位置に対応した断層画像である。再構築処理部20は、互いに周期的に対応した複数の断層画像データとして、まず、基準位置における断層画像Z1,断層画像Z15,・・・,断層画像Z51を抽出する。そして、抽出された断層画像Z1,断層画像Z15,・・・,断層画像Z51が一つのデータブロックとなって後メモリ26内に記憶される。
次に、再構築処理部20は、互いに周期的に対応した複数の断層画像データとして、複数の基準位置の各々に対してZ軸方向の正方向に隣接する複数の断層画像を抽出する。つまり、断層画像Z2,断層画像Z16,・・・,断層画像Z52が抽出され、これらが一つのデータブロックとなって後メモリ26内に記憶される。
さらに、再構築処理部20は、断層画像Z2,断層画像Z16,・・・,断層画像Z52の各々に対してZ軸方向の正方向に隣接する複数の断層画像を抽出する。こうして、複数の基準位置の各々を起点として、互いに周期的に対応した複数の断層画像のデータブロックが次々に抽出されて、後メモリ26内に記憶される。
図7に示す例においては、基準位置に対応したデータブロックを複数のデータブロックの先頭としているが、例えば、基準位置に対応したデータブロックが中心となるように、複数のデータブロックを形成してもよい。
図8は、再構築処理部20による別の好適な処理を説明するための図であり、図7と同様に、図8には、前メモリ14に記憶されるデータと後メモリ26に記憶されるデータの対応関係が示されている。
図8に示す例においては複数の分割位置が設定されている。複数の分割位置は、例えば分割前処理部25により、複数の基準位置の各々から指定間隔だけ離れた箇所に設定される。指定間隔は、例えば、互いに隣接する基準位置同士の間隔のうちの最小間隔の半分に設定される。なお、ユーザが指定間隔(例えば時間やフレーム数など)を適宜設定できるようにしてもよい。
図8に示す例において、再構築処理部20は、複数の分割位置の各々を分割の境界とすることにより、前メモリ14に記憶された複数の断層画像(データ)を複数の画像群に分割する。そして、複数の画像群の各々から、互いに周期的に対応した複数の断層画像が抽出される。図8において、断層画像Z5,断層画像Z35,断層画像Z65が基準位置に対応した画像であり、また、断層画像Z1,断層画像Z31,断層画像Z61が分割位置に対応した画像である。
再構築処理部20は、互いに周期的に対応した複数の断層画像として、まず分割位置に対応した断層画像Z1,・・・,断層画像Z31,・・・,断層画像Z61を抽出する。そして、抽出された断層画像Z1,・・・,断層画像Z31,・・・,断層画像Z61が1つのデータブロックとなって後メモリ26内に記憶される。
次に、再構築処理部20は、互いに周期的に対応した複数の断層画像として、複数の分割位置の各々に対してZ軸方向の正方向に隣接する複数の断層画像を抽出し、抽出した複数の断層画像を1つのデータブロックとして後メモリ26内に記憶する。さらに、再構築処理部20は、互いに周期的に対応した複数の断層画像によるデータブロックを次々に形成して後メモリ26内に記憶する。
次々に複数のデータブロックが形成される過程において、基準位置に対応した断層画像Z5,・・・,断層画像Z35,・・・,断層画像Z65が1つのデータブロックとなって後メモリ26内に記憶され、そして、各画像群の最終画像である断層画像Z9,・・・,断層画像Z39,・・・,断層画像Z69が1つのデータブロックとなって後メモリ26内に記憶され、複数のデータブロックの形成が完了する。つまり、再構築処理が完了する。
図1に戻り、三次元画像形成部28は、後メモリ26に記憶された再構築後の複数の断層画像データに基づいて、胎児の心臓を立体的に映し出す三次元画像データを形成する。三次元画像形成部28は、後メモリ26に記憶された1つのデータブロックに基づいて各時相の三次元画像データを形成する。
三次元画像形成部28は、例えば、ボリュームレンダリング法や積算法や投影法などの各種の手法を適用して、各時相ごとに複数の時相に亘って三次元画像データを形成する。例えば、ボリュームレンダリング法においては、1つのデータブロックを構成する複数の断層画像データからなる三次元データ空間に対して複数のレイが設定され、各レイごとにボリュームレンダリングの演算が実行される。その際に、例えば、各レイ上の組織画像のデータを対象とする演算とドプラ画像のデータを対象とする演算が別々に実行される。そして、各レイ上における組織画像に関する演算結果とドプラ画像に関する演算結果とに基づいて、そのレイに関する最終的な演算結果が算出される。
こうして、複数の時相に亘って形成された三次元画像データに対応した画像が表示部30に表示され、擬似的にリアルタイムの三次元動画像が表示される。例えば、複数時相の三次元画像データに対応した画像が繰り返し表示されてループ再生が実行されてもよい。
上述した実施形態によれば、複数の組織基準画像と複数のドプラ基準画像とに基づいて複数の基準位置が設定され、それら複数の基準位置に基づいてデータブロックが再構成されるため、例えば、心拍の周期が不安定な胎児の心臓などを診断対象とする場合においても、周期の変動に伴う画像の乱れなどが軽減されて(望ましくは完全に除去されて)信頼性の高い表示画像を得ることが可能になる。
以上、本発明の好適な実施形態を説明したが、上述した実施形態は、あらゆる点で単なる例示にすぎず、本発明の範囲を限定するものではない。本発明は、その本質を逸脱しない範囲で各種の変形形態を包含する。
10 プローブ、12 ビームフォーマ、13 断層画像形成部、16 エラー判定部、20 再構築処理部、22 仮想周期算出部、24 基準画像探索部、25 分割前処理部、28 三次元画像形成部。

Claims (4)

  1. 周期的に運動する対象組織を含む三次元空間内で超音波を送受するプローブと、
    前記プローブを制御することにより、対象組織に関する運動の複数の周期に亘って走査面を移動させつつ三次元空間内で複数の走査面を形成する送受信制御部と、
    対象組織に関する運動の仮想周期を利用して、前記複数の走査面に対応した複数の画像のうちのエコー強度に基づいた複数の組織画像の中から複数の組織基準画像を探索し、前記複数の画像のうちのドプラ情報に基づいた複数のドプラ画像の中から複数のドプラ基準画像を探索する基準画像探索部と、
    複数の組織画像と複数のドプラ画像が混在して配列された画像列内において、複数の組織基準画像と複数のドプラ基準画像に基づいて、複数の基準位置を設定する分割前処理部と、
    複数の組織画像と複数のドプラ画像が混在して配列された前記画像列について、前記複数の基準位置の各々に基づいて当該画像列を複数の画像群に分割し、複数の画像群の各々から互いに周期的に対応した複数の画像を抽出する画像再構成部と、
    互いに周期的に対応した複数の画像に基づいて対象組織の表示画像を形成する表示画像形成部と、
    を有し、
    前記複数の組織画像から得られる周期性に関する特徴量に基づいて、前記複数の組織基準画像の探索と前記複数のドプラ基準画像の探索とにおいて共用される共用仮想周期を算出する仮想周期算出部をさらに有し、
    前記基準画像探索部は、前記共用仮想周期を利用して複数の組織画像の中から複数の組織基準画像を探索し、前記共用仮想周期を利用して複数のドプラ画像の中から複数のドプラ基準画像を探索し、
    前記分割前処理部は、複数の組織画像と複数のドプラ画像が混在して配列された前記画像列内において、互いに隣接する各組織基準画像と各ドプラ基準画像の間に各基準位置を設定する、
    ことを特徴とする超音波診断装置。
  2. 請求項に記載の超音波診断装置において、
    前記分割前処理部は、複数の組織画像と複数のドプラ画像が混在して配列された前記画像列内において、互いに最も近接する組織基準画像とドプラ基準画像が重なるように、複数の組織基準画像と複数のドプラ基準画像のうちの少なくとも一方を移動させてから、互いに隣接する各組織基準画像と各ドプラ基準画像の間に各基準位置を設定する、
    ことを特徴とする超音波診断装置。
  3. 請求項に記載の超音波診断装置において、
    前記分割前処理部は、複数の組織画像と複数のドプラ画像が混在して配列された前記画像列内において、互いに隣接する各組織基準画像と各ドプラ基準画像の中間位置を各基準位置とする、
    ことを特徴とする超音波診断装置。
  4. 請求項1から3のいずれか1項に記載の超音波診断装置において、
    前記分割前処理部は、複数の組織画像と複数のドプラ画像が混在して配列された前記画像列内において、複数の基準位置の各々から指定間隔だけ離れた箇所に複数の分割位置を設定し、
    前記画像再構成部は、前記複数の分割位置の各々を分割の境界とすることにより前記画像列を複数の画像群に分割する、
    ことを特徴とする超音波診断装置。
JP2010020940A 2009-04-13 2010-02-02 超音波診断装置 Active JP5550931B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010020940A JP5550931B2 (ja) 2010-02-02 2010-02-02 超音波診断装置
US12/755,045 US8852106B2 (en) 2009-04-13 2010-04-06 Ultrasound diagnostic apparatus
EP10003745.6A EP2241256B1 (en) 2009-04-13 2010-04-07 Ultrasound diagnostic apparatus
CN201010148456.4A CN101897601B (zh) 2009-04-13 2010-04-13 超声波诊断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010020940A JP5550931B2 (ja) 2010-02-02 2010-02-02 超音波診断装置

Publications (2)

Publication Number Publication Date
JP2011156191A JP2011156191A (ja) 2011-08-18
JP5550931B2 true JP5550931B2 (ja) 2014-07-16

Family

ID=44588714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010020940A Active JP5550931B2 (ja) 2009-04-13 2010-02-02 超音波診断装置

Country Status (1)

Country Link
JP (1) JP5550931B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5558931B2 (ja) * 2010-06-16 2014-07-23 日立アロカメディカル株式会社 超音波診断装置
KR101649725B1 (ko) 2015-05-14 2016-08-19 삼성전자주식회사 탄성 영상을 표시하는 방법 및 초음파 진단 장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3180958B2 (ja) * 1990-08-17 2001-07-03 株式会社東芝 超音波診断装置
US6966878B2 (en) * 2003-08-28 2005-11-22 Ge Medical Systems Global Technology Company, Llc Method and apparatus for obtaining a volumetric scan of a periodically moving object
JP4653454B2 (ja) * 2004-10-22 2011-03-16 株式会社東芝 超音波診断装置、及びこの装置の制御プログラム
WO2006136988A2 (en) * 2005-06-23 2006-12-28 Koninklijke Philips Electronics, N.V. Method and apparatus for 3d ultrasound imaging using a stationary beam to estimate a parameter
JP4763588B2 (ja) * 2006-12-12 2011-08-31 日立アロカメディカル株式会社 超音波診断装置
US8323198B2 (en) * 2007-01-29 2012-12-04 Siemens Medical Solutions Usa, Inc. Spatial and temporal alignment for volume rendering in medical diagnostic ultrasound
KR100961856B1 (ko) * 2007-03-08 2010-06-09 주식회사 메디슨 초음파 영상을 형성하는 초음파 시스템 및 방법
JP5576036B2 (ja) * 2007-10-23 2014-08-20 日立アロカメディカル株式会社 超音波診断装置

Also Published As

Publication number Publication date
JP2011156191A (ja) 2011-08-18

Similar Documents

Publication Publication Date Title
US5916168A (en) Three dimensional M-mode ultrasonic diagnostic imaging system
RU2010154468A (ru) Визуализация ультразвуковых изображений с расширенным полем обзора с помощью двумерного матричного зонда
JP2007319190A (ja) 超音波診断装置、医用画像処理装置及び医用画像処理プログラム
JP2007020908A (ja) 超音波診断装置及び超音波診断装置の制御プログラム
JP5558931B2 (ja) 超音波診断装置
JP2021045561A (ja) 医用4dイメージングにおける動き適応型可視化
US10856852B2 (en) Ultrasonic diagnostic system and ultrasonic diagnostic method
JP5550931B2 (ja) 超音波診断装置
JP5525748B2 (ja) 超音波診断装置
CN101897601B (zh) 超声波诊断装置
JP5801995B2 (ja) 超音波診断装置
JP5331313B2 (ja) 超音波診断装置
JP5369005B2 (ja) 超音波診断装置
JP2009112374A (ja) 超音波診断装置、超音波画像処理装置、及び超音波画像処理プログラム
JP5396285B2 (ja) 超音波診断装置
JP5665304B2 (ja) 超音波システム及び周期的に動く対象体の体積情報を提供する方法
JP5461934B2 (ja) 超音波診断装置
JP5475376B2 (ja) 超音波診断装置
KR101097645B1 (ko) 주기적으로 움직이는 대상체의 체적 정보를 제공하는 초음파 시스템 및 방법
JP6063154B2 (ja) 超音波診断装置
JP5461931B2 (ja) 超音波診断装置
JP2013176492A (ja) 超音波診断装置
JP2013017716A (ja) 超音波診断装置
JPH0630936A (ja) 超音波診断装置
JP2010017433A (ja) 超音波診断装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140521

R150 Certificate of patent or registration of utility model

Ref document number: 5550931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250