JP5550503B2 - Engine exhaust gas recirculation system - Google Patents

Engine exhaust gas recirculation system Download PDF

Info

Publication number
JP5550503B2
JP5550503B2 JP2010207574A JP2010207574A JP5550503B2 JP 5550503 B2 JP5550503 B2 JP 5550503B2 JP 2010207574 A JP2010207574 A JP 2010207574A JP 2010207574 A JP2010207574 A JP 2010207574A JP 5550503 B2 JP5550503 B2 JP 5550503B2
Authority
JP
Japan
Prior art keywords
egr
gas
engine
pipe
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010207574A
Other languages
Japanese (ja)
Other versions
JP2012062817A (en
Inventor
登 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2010207574A priority Critical patent/JP5550503B2/en
Publication of JP2012062817A publication Critical patent/JP2012062817A/en
Application granted granted Critical
Publication of JP5550503B2 publication Critical patent/JP5550503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、エンジンの排気通路から排ガスの一部をEGR通路に還流する排ガスの再循環装置に関するものである。   The present invention relates to an exhaust gas recirculation device that recirculates a part of exhaust gas from an exhaust passage of an engine to an EGR passage.

従来、この種の排ガス再循環装置として、エンジンの排気通路を流れる排ガスの一部(EGRガス)を吸気通路に供給するために排気通路及び吸気通路がEGR通路により連通され、EGR通路を流れるEGRガスを冷却するEGRクーラがEGR通路に設けられ、EGR通路から吸気通路に供給されるEGRガスの流量を調整するEGR弁がEGR通路に設けられたEGR装置が開示されている(例えば、特許文献1参照。)。このEGR装置では、EGRクーラがEGR通路に複数設けられ、EGR弁が複数のEGRクーラのうち隣接するいずれか2つのEGRクーラの間に配置される。例えば、第1及び第2EGRクーラがEGR通路に直列に設けられ、これらのEGRクーラの間にEGR弁が配置された場合、EGR弁より上流側に位置する第1EGRクーラがEGRガスを100℃より高い温度に冷却し、EGR弁より下流側に位置する第2EGRクーラがEGRガスを100℃以下に冷却するように構成される。   Conventionally, as this type of exhaust gas recirculation device, an exhaust passage and an intake passage are connected by an EGR passage to supply a part of exhaust gas (EGR gas) flowing through an exhaust passage of an engine to the intake passage, and the EGR flows through the EGR passage. There is disclosed an EGR device in which an EGR cooler for cooling gas is provided in the EGR passage, and an EGR valve for adjusting the flow rate of EGR gas supplied from the EGR passage to the intake passage is provided in the EGR passage (for example, Patent Documents). 1). In this EGR device, a plurality of EGR coolers are provided in the EGR passage, and an EGR valve is disposed between any two adjacent EGR coolers among the plurality of EGR coolers. For example, when the first and second EGR coolers are provided in series in the EGR passage, and an EGR valve is disposed between these EGR coolers, the first EGR cooler positioned upstream of the EGR valve causes the EGR gas to flow from 100 ° C. The second EGR cooler, which is cooled to a high temperature and located downstream of the EGR valve, is configured to cool the EGR gas to 100 ° C. or lower.

このように構成されたEGR装置では、第2EGRクーラの入口の排ガス温度がEGRガスに含まれる水分や炭化水素成分の凝縮温度及び凝固温度よりも高くなるので、EGRガスがEGR弁を通過する際に、凝縮水(酸)や炭化水素成分の付着が起きない。そして第2EGRクーラの出口のEGRガス温度がEGRガスに含まれる炭化水素成分の凝縮温度及び凝固温度(約100℃)よりも低くなり、このガスが吸気通路に供給されるEGRガスの温度となる。この結果、EGR弁より下流側の第2EGRクーラでEGRガスを炭化水素成分の凝縮温度又は凝固温度以下まで冷却しても、EGR弁の作動不良が発生することはない。   In the EGR device configured as described above, the exhaust gas temperature at the inlet of the second EGR cooler is higher than the condensation temperature and the solidification temperature of the moisture and hydrocarbon components contained in the EGR gas, so that the EGR gas passes through the EGR valve. In addition, there is no adhesion of condensed water (acid) or hydrocarbon components. Then, the EGR gas temperature at the outlet of the second EGR cooler becomes lower than the condensation temperature and solidification temperature (about 100 ° C.) of the hydrocarbon component contained in the EGR gas, and this gas becomes the temperature of the EGR gas supplied to the intake passage. . As a result, even if the EGR gas is cooled to a temperature equal to or lower than the condensation temperature or solidification temperature of the hydrocarbon component by the second EGR cooler downstream of the EGR valve, the EGR valve does not malfunction.

特開2006−200381号公報(請求項1、段落[0015]、[0021]〜[0023]、[0029]、[0030]、図1)Japanese Patent Laying-Open No. 2006-200381 (Claim 1, paragraphs [0015], [0021] to [0023], [0029], [0030], FIG. 1)

しかし、上記従来の特許文献1に示されたEGR装置では、EGRガスが第2EGRクーラで約100℃以下に冷却されて、EGRガス中の水分が凝縮して凝縮水が発生するとともに、炭化水素成分が凝縮して凝縮液が発生するけれども、凝縮水若しくは凝縮液又はこれらの混合物がエンジンの特定の気筒に流れ込むことにより、エンジンの各気筒間におけるEGR率のバラツキを増大させ、エンジン性能を低下させたり、或いは凝縮水が特定の気筒に集中することによるウォーターハンマーでエンジンを損傷させるおそれがあった。   However, in the conventional EGR device shown in Patent Document 1, the EGR gas is cooled to about 100 ° C. or less by the second EGR cooler, the moisture in the EGR gas is condensed to generate condensed water, and hydrocarbons are generated. Condensate is generated by condensing components, but condensate or condensate or a mixture of these flows into a specific cylinder of the engine, increasing the variation in EGR rate between each cylinder of the engine and reducing engine performance There is a risk that the engine may be damaged by a water hammer caused by the condensation of condensed water on a specific cylinder.

本発明の目的は、EGRガスから分離された凝縮液をエンジンの各気筒にほぼ均等に導くことにより、各気筒間におけるEGR率のバラツキを抑制し、エンジン性能の低下を防止できる、エンジンの排ガス再循環装置を提供することにある。   An object of the present invention is to introduce engine condensate separated from EGR gas almost uniformly into each cylinder of the engine, thereby suppressing variations in the EGR rate between the cylinders and preventing engine performance from being deteriorated. It is to provide a recirculation device.

本発明の第1の観点は、図1及び図2に示すように、エンジン11の排気通路13を流れる排ガスの一部をEGRガスとして吸気通路12に還流するEGRパイプ17と、EGRパイプ17に設けられEGRパイプ17を流れるEGRガスを冷却するEGRクーラ22と、EGRパイプ17に設けられEGRパイプ17を通過するEGRガスの流量を調整するEGR弁23と、エンジン11の運転状況に応じてEGR弁23を制御するコントローラ33とを備えたエンジンの排ガス再循環装置において、EGRパイプ17に設けられEGRクーラ22により冷却されてEGRクーラ22内で発生した凝縮液26をEGRガスから分離する気液分離手段24と、気液分離手段24により分離された凝縮液26をエンジン11の各吸気ポート21aに導く凝縮液供給通路27と、凝縮液供給通路27に設けられこの凝縮液供給通路27を開閉する開閉弁28と、吸気ポート21aに設けられこの吸気ポート21aの温度を検出する温度センサ32と更に備え、温度センサ32の検出出力に基づいてコントローラ33が開閉弁28を制御するように構成されたことを特徴とする。 The first aspect of the present invention is that, as shown in FIGS. 1 and 2, an EGR pipe 17 that recirculates a part of the exhaust gas flowing through the exhaust passage 13 of the engine 11 to the intake passage 12 as EGR gas, and an EGR pipe 17 An EGR cooler 22 that cools the EGR gas that is provided and flows through the EGR pipe 17, an EGR valve 23 that is provided in the EGR pipe 17 and adjusts the flow rate of the EGR gas that passes through the EGR pipe 17, and EGR according to the operating condition of the engine 11 In an exhaust gas recirculation device for an engine having a controller 33 for controlling the valve 23, a gas-liquid that is provided in the EGR pipe 17 and is cooled by the EGR cooler 22 to separate the condensate 26 generated in the EGR cooler 22 from the EGR gas. The separation means 24 and the condensate 26 separated by the gas-liquid separation means 24 are supplied to each intake port 21 of the engine 11. A condensed liquid supply passage 27 leading to, provided condensate supply passage 27 and the on-off valve 28 for opening and closing the condensate supply passage 27 is provided in the intake port 21a and a temperature sensor 32 for detecting the temperature of the intake port 21a further comprising, wherein the controller 33 is configured to control the opening and closing valve 28 on the basis of the detection output of the temperature sensor 32.

本発明の第2の観点は、第1の観点に基づく発明であって、更に図2に示すように、凝縮液供給通路27の気液分離手段24側が吸気ポート21a側より高位置になるように凝縮液供給通路27に高低差を付けたことを特徴とする。   The second aspect of the present invention is an invention based on the first aspect, and as shown in FIG. 2, the gas-liquid separation means 24 side of the condensate supply passage 27 is positioned higher than the intake port 21a side. Further, the condensate supply passage 27 has a height difference.

本発明の第3の観点は、第1の観点に基づく発明であって、更に図1に示すように、EGRクーラ22が、EGRパイプ17に排気通路13から吸気通路12に向って順に直列に設けられた第1及び第2EGRクーラ22a,22bからなり、EGR弁23が第1EGRクーラ22aと第2EGRクーラ22bとの間のEGRパイプ17に設けられ、EGRガスが第1EGRクーラ22aで150℃以上の所定温度まで冷却された後に第2EGRクーラ22bで100℃未満の所定温度まで冷却されるように構成されたことを特徴とする。 The third aspect of the present invention is an invention based on the first aspect, and further, as shown in FIG. 1, the EGR cooler 22 is connected in series to the EGR pipe 17 from the exhaust passage 13 to the intake passage 12 in order. The EGR valve 23 is provided in the EGR pipe 17 between the first EGR cooler 22a and the second EGR cooler 22b, and EGR gas is 150 ° C. or more in the first EGR cooler 22a. The second EGR cooler 22b is cooled to a predetermined temperature of less than 100 ° C. after being cooled to the predetermined temperature.

本発明の第1の観点の排ガス再循環装置では、EGRガスをEGRクーラにて冷却することによりEGRガス中に発生した凝縮液を気液分離手段がEGRガスから分離し、この分離された凝縮液が凝縮液供給通路を通ってエンジンの各吸気ポートに導かれるように構成したので、凝縮液はエンジンの各気筒にほぼ均等に導かれる。この結果、エンジンの各気筒間におけるEGR率のバラツキを抑制することができるので、エンジン性能の低下を防止できるとともに、凝縮水が特定の気筒に集中することによるウォーターハンマーを防止できる。また、温度センサの検出出力に基づいてコントローラが開閉弁を制御するので、エンジンの始動直後等のエンジンが冷えているときに、凝縮液が吸気ポートに導かれるのを阻止できる。この結果、エンジン性能の低下を防止できる。 In the exhaust gas recirculation device according to the first aspect of the present invention, the gas-liquid separation means separates the condensate generated in the EGR gas from the EGR gas by cooling the EGR gas with the EGR cooler, and the separated condensation Since the liquid is guided to each intake port of the engine through the condensate supply passage, the condensate is guided to each cylinder of the engine almost evenly. As a result, variations in the EGR rate between the cylinders of the engine can be suppressed, so that a decrease in engine performance can be prevented and a water hammer caused by condensing condensed water in a specific cylinder can be prevented. Further, since the controller controls the on-off valve based on the detection output of the temperature sensor, it is possible to prevent the condensate from being led to the intake port when the engine is cold, such as immediately after the engine is started. As a result, it is possible to prevent a decrease in engine performance.

本発明の第2の観点の排ガス再循環装置では、凝縮液供給通路の気液分離手段側が吸気ポート側より高位置になるように凝縮液供給通路に高低差を付けたので、気液分離手段によりEGRガスから分離された凝縮液はその自重により各吸気ポートに導かれる。この結果、上記凝縮液を吸気ポートに供給するためのポンプ等の動力を用いずに済む。   In the exhaust gas recirculation device according to the second aspect of the present invention, since the condensate supply passage has a height difference so that the gas-liquid separation means side of the condensate supply passage is positioned higher than the intake port side, the gas-liquid separation means The condensate separated from the EGR gas is guided to each intake port by its own weight. As a result, it is not necessary to use power such as a pump for supplying the condensate to the intake port.

本発明の第3の観点の排ガス再循環装置では、EGRガスが第1EGRクーラで150℃以上の所定温度まで冷却された後に第2EGRクーラで100℃未満の所定温度まで冷却されるので、第1EGRクーラと第2EGRクーラとの間のEGRパイプに設けられたEGR弁で凝縮液が発生しない。この結果、EGR弁の弁軸や弁シール等が凝縮液の付着や酸による腐蝕にて固着することはない。
In the exhaust gas recirculation device according to the third aspect of the present invention, the EGR gas is cooled to a predetermined temperature of 150 ° C. or higher by the first EGR cooler and then cooled to a predetermined temperature of less than 100 ° C. by the second EGR cooler. Condensate is not generated by the EGR valve provided in the EGR pipe between the cooler and the second EGR cooler. As a result, the valve shaft and valve seal of the EGR valve are not fixed due to the adhesion of the condensate or corrosion due to acid.

本発明実施形態のエンジンのシリンダヘッドを破断しかつ吸気マニホルド及び排気マニホルドの要部を破断した状態を示す図2の矢視Aから見た構成図である。It is the block diagram seen from the arrow A of FIG. 2 which shows the state which fractured | ruptured the cylinder head of the engine of this invention embodiment, and fractured | ruptured the principal part of the intake manifold and the exhaust manifold. 図1のB−B線断面図である。It is the BB sectional view taken on the line of FIG.

次に本発明を実施するための形態を図面に基づいて説明する。図1に示すように、ディーゼルエンジン11の吸気ポート21aには吸気マニホルド12aを介して吸気管12bが接続され、排気ポート21bには排気マニホルド13aを介して排気管13bが接続される。吸気マニホルド12a及び吸気管12bにより吸気通路12が構成され、排気マニホルド13a及び排気管13bにより排気通路13が構成される。吸気管12bには、ターボ過給機14のコンプレッサハウジング14aと、ターボ過給機14により圧縮された吸気を冷却する水冷式のインタクーラ16とがそれぞれ設けられる。また排気管13bにはターボ過給機14のタービンハウジング14bが設けられる。コンプレッサハウジング14aにはコンプレッサ回転翼14cが回転可能に収容され、タービンハウジング14bにはタービン回転翼14dが回転可能に収容される。コンプレッサ回転翼14cとタービン回転翼14dとはシャフト14eにより連結され、エンジン11から排出される排ガスのエネルギによりタービン回転翼14d及びシャフト14eを介してコンプレッサ回転翼14cが回転し、このコンプレッサ回転翼14cの回転により吸気管12b内の吸気が圧縮されるように構成される。なお、図1中の符号15は吸気管12aの吸気上流端に取付けられたエアクリーナである。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings. As shown in FIG. 1, an intake pipe 12b is connected to the intake port 21a of the diesel engine 11 via an intake manifold 12a, and an exhaust pipe 13b is connected to the exhaust port 21b via an exhaust manifold 13a. The intake manifold 12a and the intake pipe 12b constitute an intake passage 12, and the exhaust manifold 13a and the exhaust pipe 13b constitute an exhaust passage 13. The intake pipe 12b is provided with a compressor housing 14a of the turbocharger 14 and a water-cooled intercooler 16 that cools the intake air compressed by the turbocharger 14. The exhaust pipe 13b is provided with a turbine housing 14b of the turbocharger 14. The compressor rotor 14c is rotatably accommodated in the compressor housing 14a, and the turbine rotor 14d is rotatably accommodated in the turbine housing 14b. The compressor rotor blade 14c and the turbine rotor blade 14d are connected by a shaft 14e, and the compressor rotor blade 14c rotates through the turbine rotor blade 14d and the shaft 14e by the energy of the exhaust gas discharged from the engine 11, and the compressor rotor blade 14c. , The intake air in the intake pipe 12b is compressed. In addition, the code | symbol 15 in FIG. 1 is the air cleaner attached to the intake upstream end of the intake pipe 12a.

一方、排気マニホルド13aと吸気管12bとはEGRパイプ17によりエンジン11をバイパスして連通接続される。具体的には、EGRパイプ17の一端は排気マニホルド13aに接続され、EGRパイプ17の他端はインタクーラ16より吸気下流側の吸気管12bに設けられたEGRガス混合部18に接続される。これによりエンジン11の排気マニホルド13a内の排ガスの一部がEGRガスとしてEGRパイプ17を通って吸気管12bのEGRガス混合部18に還流され、このEGRガス混合部18で吸気に混合されたEGRガスは吸気マニホルド12a及び吸気ポート21aを通って各気筒19aに導入される。ここで、エンジン11は、各気筒19a(図1)が所定の間隔をあけて設けられたシリンダブロック19(図2)と、このシリンダブロック19の上面に取付けられたシリンダヘッド21(図1及び図2)とを有する。上記吸気ポート21a及び排気ポート21bはシリンダヘッド21の対向する側面にそれぞれ設けられる(図1)。また吸気マニホルド12aは吸気ポート21aに連通するようにシリンダヘッド21の側面に取付けられ(図1及び図2)、排気マニホルド13aは排気ポート21bに連通するようにシリンダヘッド21の側面に取付けられる(図1)。   On the other hand, the exhaust manifold 13a and the intake pipe 12b are connected to bypass the engine 11 by the EGR pipe 17. Specifically, one end of the EGR pipe 17 is connected to the exhaust manifold 13 a, and the other end of the EGR pipe 17 is connected to an EGR gas mixing unit 18 provided in the intake pipe 12 b on the intake downstream side of the intercooler 16. As a result, part of the exhaust gas in the exhaust manifold 13a of the engine 11 is recirculated as EGR gas through the EGR pipe 17 to the EGR gas mixing unit 18 of the intake pipe 12b, and the EGR mixed with the intake air in the EGR gas mixing unit 18 The gas is introduced into each cylinder 19a through the intake manifold 12a and the intake port 21a. Here, the engine 11 includes a cylinder block 19 (FIG. 2) in which each cylinder 19 a (FIG. 1) is provided at a predetermined interval, and a cylinder head 21 (FIG. 1 and FIG. 1) attached to the upper surface of the cylinder block 19. 2). The intake port 21a and the exhaust port 21b are provided on opposite side surfaces of the cylinder head 21 (FIG. 1). The intake manifold 12a is attached to the side surface of the cylinder head 21 so as to communicate with the intake port 21a (FIGS. 1 and 2), and the exhaust manifold 13a is attached to the side surface of the cylinder head 21 so as to communicate with the exhaust port 21b (see FIG. FIG. 1).

上記EGRパイプ17には、このEGRパイプ17を流れるEGRガスを冷却するEGRクーラ22が設けられる(図1及び図2)。EGRクーラ22は、この実施の形態では、EGRパイプ17に排気マニホルド13aから吸気管12bに向って順に直列に設けられた第1及び第2EGRクーラ22a,22bからなる。第1EGRクーラ22aは、EGRパイプ17を通るEGRガスを150℃以上の所定温度(例えば、160℃程度)まで冷却する能力を有し、第2EGRクーラ22bは、第1EGRクーラ22aから排出されたEGRガスを100℃未満の所定温度(例えば、80℃程度)まで冷却する能力を有する。また第1EGRクーラ22aと第2EGRクーラ22bとの間のEGRパイプ17にはEGR弁23が設けられる。このEGR弁23は排気マニホルド13aからEGRパイプ17を通って吸気管12bに還流されるEGRガスの流量を調整するように構成される。EGR弁23は、この実施の形態では、バタフライ弁により構成される。具体的には、EGR弁23は、EGRパイプ17より大径の円筒状に形成された弁ケース23aと、この弁ケース23a内に回動可能に挿通された回動軸23bと、この回動軸23bに固着され弁ケース23a内の開度を変更可能な円板状の弁本体23cと、回動軸23bを介して弁本体23cを駆動し弁ケース23a内の開度を段階的又は連続的に変更する弁駆動手段23d(図1)とを有する。弁駆動手段23dとしては、減速機付きステッピングモータや減速機付きサーボモータ等が用いられる。   The EGR pipe 17 is provided with an EGR cooler 22 for cooling the EGR gas flowing through the EGR pipe 17 (FIGS. 1 and 2). In this embodiment, the EGR cooler 22 includes first and second EGR coolers 22a and 22b provided in series in the EGR pipe 17 in order from the exhaust manifold 13a toward the intake pipe 12b. The first EGR cooler 22a has the ability to cool the EGR gas passing through the EGR pipe 17 to a predetermined temperature of 150 ° C. or higher (for example, about 160 ° C.), and the second EGR cooler 22b is EGR discharged from the first EGR cooler 22a. It has the ability to cool the gas to a predetermined temperature below 100 ° C. (for example, about 80 ° C.). An EGR valve 23 is provided in the EGR pipe 17 between the first EGR cooler 22a and the second EGR cooler 22b. The EGR valve 23 is configured to adjust the flow rate of EGR gas recirculated from the exhaust manifold 13a through the EGR pipe 17 to the intake pipe 12b. In this embodiment, the EGR valve 23 is constituted by a butterfly valve. Specifically, the EGR valve 23 includes a valve case 23a formed in a cylindrical shape having a diameter larger than that of the EGR pipe 17, a rotation shaft 23b rotatably inserted in the valve case 23a, and the rotation A disc-shaped valve main body 23c fixed to the shaft 23b and capable of changing the opening degree in the valve case 23a, and the valve main body 23c is driven via the rotating shaft 23b to gradually or continuously increase the opening degree in the valve case 23a. The valve drive means 23d (FIG. 1) which changes automatically. As the valve driving means 23d, a stepping motor with a reduction gear, a servo motor with a reduction gear, or the like is used.

一方、第2EGRクーラ22bよりEGRガス下流側のEGRパイプ17には気液分離手段24が設けられる(図1及び図2)。気液分離手段24は、この実施の形態では、所定メッシュの金属製網又はプラスチック製網を用いたフィルタ(図示せず)を有する。このフィルタはEGRパイプ17より大径の分離用短管24aに収容され、分離用短管24aの下部には液溜まり部24bが設けられる。第2EGRクーラ22bにより冷却されて、この第2EGRクーラ22b内で発生した凝縮液26(図2)が上記フィルタによりEGRガスから分離され、この分離された凝縮液26が液溜まり部24bに貯留されるように構成される。また気液分離手段24により分離された凝縮液26は凝縮液供給通路27を通ってエンジン11の各吸気ポート21aに導かれるように構成される(図1及び図2)。この凝縮液供給通路27は、基端が液溜まり部24bの底部に接続された導出管27aと、吸気マニホルド12aの下面に沿いかつその長手方向に延びて設けられ長手方向中央に導出管27aの先端が接続された分配管27bと、分配管27bのうち各気筒19aに対向する位置からシリンダヘッド21に向って突設された複数の供給用短管27c(図2)と、シリンダヘッド21に形成され各供給用短管27cと各吸気ポート21aとをそれぞれ連通接続する複数の連通孔27dとを有する。また気液分離手段24はシリンダヘッド21より高位置に設けられる(図2)。これにより凝縮液供給通路27の気液分離手段24側が吸気ポート21a側より高位置になるように凝縮液供給通路27に高低差を付けられる。更に凝縮液供給通路27の導出管27aには、この導出管27aを開閉する開閉弁28が設けられる。この開閉弁28は導出管27aを開閉する電磁弁である(図1)。   On the other hand, the gas-liquid separation means 24 is provided in the EGR pipe 17 downstream of the EGR gas from the second EGR cooler 22b (FIGS. 1 and 2). In this embodiment, the gas-liquid separation means 24 has a filter (not shown) using a metal mesh or plastic mesh of a predetermined mesh. This filter is accommodated in a separation short pipe 24a having a diameter larger than that of the EGR pipe 17, and a liquid reservoir 24b is provided at a lower portion of the separation short pipe 24a. The condensate 26 (FIG. 2) cooled by the second EGR cooler 22b and generated in the second EGR cooler 22b is separated from the EGR gas by the filter, and the separated condensate 26 is stored in the liquid reservoir 24b. Configured to be Further, the condensate 26 separated by the gas-liquid separation means 24 is configured to be guided to each intake port 21a of the engine 11 through the condensate supply passage 27 (FIGS. 1 and 2). The condensate supply passage 27 includes a lead-out pipe 27a whose base end is connected to the bottom of the liquid reservoir 24b, and extends in the longitudinal direction along the lower surface of the intake manifold 12a. A distribution pipe 27b having a tip connected thereto, a plurality of supply short pipes 27c (FIG. 2) projecting from the position of the distribution pipe 27b facing each cylinder 19a toward the cylinder head 21, and the cylinder head 21 A plurality of communication holes 27d are formed to connect each short supply pipe 27c and each intake port 21a. The gas-liquid separation means 24 is provided at a position higher than the cylinder head 21 (FIG. 2). Thus, the condensate supply passage 27 is provided with a height difference so that the gas-liquid separation means 24 side of the condensate supply passage 27 is positioned higher than the intake port 21a side. Further, the outlet pipe 27a of the condensate supply passage 27 is provided with an on-off valve 28 for opening and closing the outlet pipe 27a. This on-off valve 28 is an electromagnetic valve that opens and closes the outlet pipe 27a (FIG. 1).

エンジン11には、このエンジン11の回転速度を検出する回転センサ29と、エンジン11の負荷を検出する負荷センサ31と、エンジン11の冷却水温度を検出する水温センサ35とが設けられる(図1)。また吸気ポート21aには、この吸気ポート21aの温度を検出する温度センサ32が設けられる。上記回転センサ29、負荷センサ31、温度センサ32及び水温センサ35の各検出出力はコントローラ33の制御入力に接続され、コントローラ33の制御出力はEGR弁23の弁駆動手段23d及び開閉弁28に接続される。またコントローラ33にはメモリ34が設けられる。このメモリ34には、回転センサ29、負荷センサ31及び水温センサ35の各検出出力に応じた最適なEGR弁23の開度がマップとして記憶される。またメモリ34には、開閉弁28を開閉する吸気ポート21aの温度(例えば、80℃)が記憶される。   The engine 11 is provided with a rotation sensor 29 for detecting the rotation speed of the engine 11, a load sensor 31 for detecting the load of the engine 11, and a water temperature sensor 35 for detecting the coolant temperature of the engine 11 (FIG. 1). ). The intake port 21a is provided with a temperature sensor 32 that detects the temperature of the intake port 21a. The detection outputs of the rotation sensor 29, load sensor 31, temperature sensor 32, and water temperature sensor 35 are connected to the control input of the controller 33, and the control output of the controller 33 is connected to the valve drive means 23d of the EGR valve 23 and the on-off valve 28. Is done. The controller 33 is provided with a memory 34. In this memory 34, the optimum opening degree of the EGR valve 23 corresponding to the respective detection outputs of the rotation sensor 29, the load sensor 31 and the water temperature sensor 35 is stored as a map. Further, the memory 34 stores the temperature (for example, 80 ° C.) of the intake port 21a that opens and closes the on-off valve 28.

このように構成されたエンジン11の排ガス再循環装置の動作を説明する。コントローラ33は、エンジン11の運転状況、即ち回転センサ29及び負荷センサ31の各検出出力に基づいてEGR弁23を所定の開度で開く。またコントローラ33は、温度センサ32が所定の温度(例えば、80℃)以上であることを検出すると、温度センサ32の検出出力に基づいて開閉弁28を開く。コントローラ33が弁駆動手段23dを制御してEGR弁23を所定の開くことにより、排ガスの一部がEGRガスとしてEGRパイプ17に流入する。このEGRガスは先ず第1EGRクーラ22aで150℃程度まで冷却された後、EGR弁23に流入する。EGR弁23に流入したEGRガスの温度は150℃以上であるので、EGRガス中に含まれる水分や炭化水素成分は凝縮しない。この結果、EGR弁23の回動軸23bや弁本体23c等に凝縮液26が付着することがないため、回動軸23bや弁本体23c等への凝縮液26の付着による回動軸23bや弁本体23c等の動作不良という事態が発生することはない。   Operation | movement of the exhaust gas recirculation apparatus of the engine 11 comprised in this way is demonstrated. The controller 33 opens the EGR valve 23 at a predetermined opening based on the operating state of the engine 11, that is, the detection outputs of the rotation sensor 29 and the load sensor 31. Further, when the controller 33 detects that the temperature sensor 32 is equal to or higher than a predetermined temperature (for example, 80 ° C.), the controller 33 opens the on-off valve 28 based on the detection output of the temperature sensor 32. When the controller 33 controls the valve driving means 23d to open the EGR valve 23 by a predetermined amount, a part of the exhaust gas flows into the EGR pipe 17 as EGR gas. The EGR gas is first cooled to about 150 ° C. by the first EGR cooler 22 a and then flows into the EGR valve 23. Since the temperature of the EGR gas flowing into the EGR valve 23 is 150 ° C. or higher, moisture and hydrocarbon components contained in the EGR gas are not condensed. As a result, since the condensate 26 does not adhere to the rotating shaft 23b, the valve body 23c, etc. of the EGR valve 23, the rotating shaft 23b or the like due to the attachment of the condensate 26 to the rotating shaft 23b, the valve body 23c, etc. A situation of malfunction of the valve body 23c or the like does not occur.

EGR弁23を通過したEGRガスは第2EGRクーラ22bで80℃程度まで冷却される。このとき第2EGRクーラ22b内のEGRガスの温度が100℃未満になるので、EGRガス中に含まれる水分や炭化水素成分が凝縮されて凝縮液26が発生する。この凝縮液26は気液分離手段24でEGRガスから分離されて液溜まり部24bに溜まった後、その自重により凝縮液供給通路27の導出管27aを通って分配管27bに流入し、更に供給用短管27c及び連通孔27dを通って各吸気ポート21aに流入し気化する。このとき凝縮液供給通路27の導入管27aの気液分離手段24側が吸気ポート21a側より高位置になるように導入管27aに高低差を付けて、所定の下り勾配で傾斜させることにより凝縮液26の流下流量を抑制するとともに、導入管27aの先端を分配管27bの長手方向中央に接続したので、凝縮液26は各気筒19aにほぼ均等に供給されるとともに、凝縮液26を各吸気ポート21aに供給するためのポンプ等の動力を用いずに凝縮液26を各気筒19aに供給できる。一方、気液分離手段24を通過したEGRガスはEGRガス混合部18に流入して吸気と混合された後に、各気筒19aに流入する。この結果、エンジン11の各気筒19a間におけるEGR率のバラツキを抑制することができるので、エンジン11性能の低下を防止できる。また各吸気ポート21aは凝縮液26の気化により吸気温度が低下するので、エンジン11の体積効率を向上できるとともに、エンジン11の各気筒21a内での燃料の最高燃焼温度が低く抑えられるので、NOxの発生を抑制できる。   The EGR gas that has passed through the EGR valve 23 is cooled to about 80 ° C. by the second EGR cooler 22b. At this time, since the temperature of the EGR gas in the second EGR cooler 22b is less than 100 ° C., the moisture and hydrocarbon components contained in the EGR gas are condensed and the condensate 26 is generated. The condensate 26 is separated from the EGR gas by the gas-liquid separation means 24 and accumulated in the liquid reservoir 24b, and then flows into the distribution pipe 27b through the outlet pipe 27a of the condensate supply passage 27 by its own weight, and further supplied. The gas flows into the intake ports 21a through the short pipes 27c and the communication holes 27d and is vaporized. At this time, the condensate is provided by making a difference in level to the introduction pipe 27a so that the gas-liquid separation means 24 side of the introduction pipe 27a of the condensate supply passage 27 is positioned higher than the intake port 21a side, and inclining with a predetermined downward gradient. 26, and the leading end of the introduction pipe 27a is connected to the center in the longitudinal direction of the distribution pipe 27b, so that the condensate 26 is supplied to each cylinder 19a almost equally and the condensate 26 is supplied to each intake port. The condensate 26 can be supplied to each cylinder 19a without using power such as a pump for supplying to 21a. On the other hand, the EGR gas that has passed through the gas-liquid separation means 24 flows into the EGR gas mixing section 18 and is mixed with the intake air, and then flows into each cylinder 19a. As a result, variations in the EGR rate between the cylinders 19a of the engine 11 can be suppressed, so that deterioration of the engine 11 performance can be prevented. Further, since the intake air temperature of each intake port 21a is reduced due to the vaporization of the condensate 26, the volume efficiency of the engine 11 can be improved and the maximum combustion temperature of the fuel in each cylinder 21a of the engine 11 can be kept low. Can be suppressed.

一方、エンジン11の始動直後は、コントローラ33は、回転センサ29、負荷センサ31及び水温センサ35の各検出出力に基づいてエンジン11が暖機運転時であると判断し、比較的小さい開度でEGR弁23を開く。またコントローラ33は、温度センサ32が所定の温度(例えば、80℃)未満であることを検出すると、温度センサ32の検出出力に基づいて開閉弁28を閉じる。EGR弁23を比較的小さい開度で開くことにより、排ガスの一部がEGRガスとしてEGRパイプ17を通って吸気管12bに還流されるので、このEGRガスによりエンジン11の各気筒21a内での燃料の最高燃焼温度が低く抑えられ、NOxの発生が抑制される。また開閉弁28を閉じることにより、第2EGRクーラ22bでEGRガスから凝縮液26が分離されても、この凝縮液26が各吸気ポート21aに供給されないため、エンジン11の始動直後の低い温度の吸気が凝縮液26の気化により更に低下することはない。この結果、エンジン11始動直後のエンジン11性能の低下を防止できる。ここで、開閉弁28を閉じても、EGRパイプ17の第2EGRクーラ22bを通過するEGRガス量は少なく、また暖機時間も比較的短いため、このEGRガスから分離されて気液分離手段24の液溜まり部24bに溜まる凝縮液26の量は少なく、凝縮液26が液溜まり部24bから溢れることはない。   On the other hand, immediately after the engine 11 is started, the controller 33 determines that the engine 11 is in the warm-up operation based on the detection outputs of the rotation sensor 29, the load sensor 31, and the water temperature sensor 35, and has a relatively small opening. Open the EGR valve 23. Further, when the controller 33 detects that the temperature sensor 32 is lower than a predetermined temperature (for example, 80 ° C.), the controller 33 closes the on-off valve 28 based on the detection output of the temperature sensor 32. By opening the EGR valve 23 with a relatively small opening, a part of the exhaust gas is recirculated to the intake pipe 12b through the EGR pipe 17 as EGR gas. The maximum combustion temperature of the fuel is kept low, and the generation of NOx is suppressed. Further, by closing the on-off valve 28, even if the condensate 26 is separated from the EGR gas by the second EGR cooler 22b, the condensate 26 is not supplied to each intake port 21a. Is not further reduced by vaporization of the condensate 26. As a result, it is possible to prevent a decrease in the performance of the engine 11 immediately after the engine 11 is started. Here, even if the on-off valve 28 is closed, the amount of EGR gas passing through the second EGR cooler 22b of the EGR pipe 17 is small and the warm-up time is relatively short. Therefore, the gas-liquid separation means 24 is separated from the EGR gas. The amount of the condensate 26 collected in the liquid reservoir 24b is small, and the condensate 26 does not overflow from the liquid reservoir 24b.

なお、上記実施の形態では、エンジンとしてディーゼルエンジンを挙げたが、排ガス再循環装置を備えたエンジンであればガソリンエンジンでもよい。また、上記実施の形態では、2つのEGRクーラをEGRパイプに直列に設けたが、1つのEGRクーラをEGRパイプに設けてもよく、或いは3つのEGRクーラ又は4つ以上のEGRクーラをEGRパイプに直列に設けてもよい。更に、上記実施の形態では、気液分離手段として所定メッシュの金属製網又はプラスチック製網を用いたフィルタを挙げたが、遠心分離によりEGRガスから凝縮液を分離する装置でもよい。   In the above embodiment, a diesel engine is used as the engine. However, a gasoline engine may be used as long as the engine includes an exhaust gas recirculation device. In the above embodiment, two EGR coolers are provided in series with the EGR pipe. However, one EGR cooler may be provided in the EGR pipe, or three EGR coolers or four or more EGR coolers may be provided in the EGR pipe. May be provided in series. Furthermore, in the above embodiment, a filter using a metal mesh or a plastic mesh having a predetermined mesh is used as the gas-liquid separating means. However, an apparatus that separates the condensate from the EGR gas by centrifugation may be used.

11 ディーゼルエンジン(エンジン)
12 吸気通路
13 排気通路
17 EGRパイプ
21a 吸気ポート
22 EGRクーラ
22a 第1EGRクーラ
22b 第2EGRクーラ
23 EGR弁
24 気液分離手段
26 凝縮液
27 凝縮液供給通路
28 開閉弁
32 温度センサ
33 コントローラ
11 Diesel engine (engine)
DESCRIPTION OF SYMBOLS 12 Intake passage 13 Exhaust passage 17 EGR pipe 21a Intake port 22 EGR cooler 22a 1st EGR cooler 22b 2nd EGR cooler 23 EGR valve 24 Gas-liquid separation means 26 Condensate 27 Condensate supply passage 28 On-off valve 32 Temperature sensor 33 Controller

Claims (3)

エンジン(11)の排気通路(13)を流れる排ガスの一部をEGRガスとして吸気通路(12)に還流するEGRパイプ(17)と、前記EGRパイプ(17)に設けられ前記EGRパイプ(17)を流れるEGRガスを冷却するEGRクーラ(22)と、前記EGRパイプ(17)に設けられ前記EGRパイプ(17)を通過するEGRガスの流量を調整するEGR弁(23)と、前記エンジン(11)の運転状況に応じて前記EGR弁(23)を制御するコントローラ(33)とを備えたエンジンの排ガス再循環装置において、
前記EGRパイプ(17)に設けられ前記EGRクーラ(22)により冷却されて前記EGRクーラ(22)内で発生した凝縮液(26)を前記EGRガスから分離する気液分離手段(24)と、
前記気液分離手段(24)により分離された凝縮液(26)を前記エンジン(11)の各吸気ポート(21a)に導く凝縮液供給通路(27)と
前記凝縮液供給通路(27)に設けられこの凝縮液供給通路(27)を開閉する開閉弁(28)と、
前記吸気ポート(21a)に設けられこの吸気ポート(21a)の温度を検出する温度センサ(32)と
更に備え
前記温度センサ(32)の検出出力に基づいて前記コントローラ(33)が前記開閉弁(28)を制御するように構成されたことを特徴とするエンジンの排ガス再循環装置。
An EGR pipe (17) that recirculates a part of the exhaust gas flowing through the exhaust passage (13) of the engine (11) to the intake passage (12) as EGR gas, and the EGR pipe (17) provided in the EGR pipe (17) An EGR cooler (22) that cools the EGR gas flowing through the EGR pipe, an EGR valve (23) that is provided in the EGR pipe (17) and adjusts the flow rate of the EGR gas that passes through the EGR pipe (17), and the engine (11 In an exhaust gas recirculation device for an engine comprising a controller (33) for controlling the EGR valve (23) in accordance with the operation status of
Gas-liquid separation means (24) provided in the EGR pipe (17) and cooled by the EGR cooler (22) and separating the condensate (26) generated in the EGR cooler (22) from the EGR gas;
A condensate supply passage (27) for guiding the condensate (26) separated by the gas-liquid separation means (24) to each intake port (21a) of the engine (11) ;
An on-off valve (28) provided in the condensate supply passage (27) for opening and closing the condensate supply passage (27);
The temperature further comprising a temperature sensor (32) for detecting the intake port provided in the intake port (21a) (21a),
An exhaust gas recirculation device for an engine, wherein the controller (33) controls the on-off valve (28) based on a detection output of the temperature sensor (32) .
前記凝縮液供給通路(27)の前記気液分離手段(24)側が前記吸気ポート(21a)側より高位置になるように前記凝縮液供給通路(27)に高低差を付けた請求項1記載のエンジンの排ガス再循環装置。   The height difference is given to the said condensate supply path (27) so that the said gas-liquid separation means (24) side of the said condensate supply path (27) may become a position higher than the said intake port (21a) side. Engine exhaust gas recirculation device. 前記EGRクーラ(22)が、前記EGRパイプ(17)に前記排気通路(13)から前記吸気通路(12)に向って順に直列に設けられた第1及び第2EGRクーラ(22a,22b)からなり、前記EGR弁(23)が前記第1EGRクーラ(22a)と前記第2EGRクーラ(22b)との間のEGRパイプ(17)に設けられ、前記EGRガスが前記第1EGRクーラ(22a)で150℃以上の所定温度まで冷却された後に前記第2EGRクーラ(22b)で100℃未満の所定温度まで冷却されるように構成された請求項1記載のエンジンの排ガス再循環装置。   The EGR cooler (22) includes first and second EGR coolers (22a, 22b) provided in series in the EGR pipe (17) in order from the exhaust passage (13) to the intake passage (12). The EGR valve (23) is provided in an EGR pipe (17) between the first EGR cooler (22a) and the second EGR cooler (22b), and the EGR gas is 150 ° C. in the first EGR cooler (22a). The engine exhaust gas recirculation device according to claim 1, wherein the exhaust gas recirculation device is configured to be cooled to a predetermined temperature of less than 100 ° C by the second EGR cooler (22b) after being cooled to the predetermined temperature.
JP2010207574A 2010-09-16 2010-09-16 Engine exhaust gas recirculation system Active JP5550503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010207574A JP5550503B2 (en) 2010-09-16 2010-09-16 Engine exhaust gas recirculation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010207574A JP5550503B2 (en) 2010-09-16 2010-09-16 Engine exhaust gas recirculation system

Publications (2)

Publication Number Publication Date
JP2012062817A JP2012062817A (en) 2012-03-29
JP5550503B2 true JP5550503B2 (en) 2014-07-16

Family

ID=46058778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010207574A Active JP5550503B2 (en) 2010-09-16 2010-09-16 Engine exhaust gas recirculation system

Country Status (1)

Country Link
JP (1) JP5550503B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5772707B2 (en) * 2012-05-10 2015-09-02 株式会社デンソー EGR device for internal combustion engine
JP6015378B2 (en) * 2012-11-22 2016-10-26 マツダ株式会社 Engine exhaust gas recirculation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117223A (en) * 1992-09-30 1994-04-26 Mitsubishi Motors Corp Exhaust emission control device
JP3928642B2 (en) * 2005-01-18 2007-06-13 いすゞ自動車株式会社 EGR device
JP2010025034A (en) * 2008-07-22 2010-02-04 Hino Motors Ltd Egr device for internal combustion engine

Also Published As

Publication number Publication date
JP2012062817A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
US10302048B2 (en) Methods and systems for controlling air flow paths in an engine
CN102140979B (en) Moisture in gas recirculation system is removed
CN103906901B (en) The air-changing control device of internal-combustion engine
RU150916U1 (en) INFLATED COMBUSTION ENGINE
US8302400B2 (en) Internal combustion engine comprising an exhaust gas recirculation system
JP4739453B2 (en) Exhaust gas circulation system for supercharged combustion engine
EP2122145B1 (en) Exhaust gas control system for internal combustion engine and method for controlling the same
JP3928642B2 (en) EGR device
US8584458B2 (en) Exhaust power turbine driven EGR pump for diesel engines
US8726657B2 (en) Air turbine driven EGR pump for diesel engines
SE532245C2 (en) Cooling arrangement of a supercharged internal combustion engine
SE531200C2 (en) Radiator arrangement in a vehicle
US20120174578A1 (en) Supercharged internal combustion engine and method for operating an internal combustion engine of said type
US20120174576A1 (en) Supercharged internal combustion engine and method for operating an internal combustion engine of said type
SE532361C2 (en) Cooling arrangement of a supercharged internal combustion engine
JP5893549B2 (en) EGR device and engine system
SE530239C2 (en) Radiator arrangement of a vehicle
EP2199585B1 (en) Exhaust gas recirculation device for internal combustion engine
SE1050854A1 (en) Arrangement for injecting a reducing agent into an exhaust line of an internal combustion engine
JP6122300B2 (en) Engine system and ship
JP2010096143A (en) Device and system for controlling internal combustion engine
JP2010071186A (en) Control device for internal combustion engine, and control system for internal combustion engine
EP2569524A1 (en) Arrangement and method for exhaust gas recirculation and turbocharging
JP5550503B2 (en) Engine exhaust gas recirculation system
JP2008121635A (en) Engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5550503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250