JP5546777B2 - Hydrazone polymer and hydrazone polymer for metal complex formation - Google Patents

Hydrazone polymer and hydrazone polymer for metal complex formation Download PDF

Info

Publication number
JP5546777B2
JP5546777B2 JP2009045349A JP2009045349A JP5546777B2 JP 5546777 B2 JP5546777 B2 JP 5546777B2 JP 2009045349 A JP2009045349 A JP 2009045349A JP 2009045349 A JP2009045349 A JP 2009045349A JP 5546777 B2 JP5546777 B2 JP 5546777B2
Authority
JP
Japan
Prior art keywords
hydrazone
metal
catalyst
metal complex
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009045349A
Other languages
Japanese (ja)
Other versions
JP2010196002A (en
Inventor
治通 中西
英一 有川
寛宜 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ihara Chemical Industry Co Ltd
Toyota Motor Corp
Original Assignee
Ihara Chemical Industry Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihara Chemical Industry Co Ltd, Toyota Motor Corp filed Critical Ihara Chemical Industry Co Ltd
Priority to JP2009045349A priority Critical patent/JP5546777B2/en
Publication of JP2010196002A publication Critical patent/JP2010196002A/en
Application granted granted Critical
Publication of JP5546777B2 publication Critical patent/JP5546777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、ヒドラゾンポリマー及び金属錯体形成用ヒドラゾンポリマーに関する。   The present invention relates to a hydrazone polymer and a hydrazone polymer for forming a metal complex.

燃料電池における電極触媒としては、例えば、白金、コバルト、ニッケル、鉄、及び、白金−ルテニウム合金のような合金等が知られている。燃料電池の発電性能を高めるには、これら触媒金属の触媒作用を高めることが重要であり、例えば、触媒金属の微粒子化等による触媒利用率の向上が図られている。しかしながら、微細な粒子は非常に凝集しやすいため、従来、長期間にわたってその分散状態を保持することが困難であり、触媒利用率は充分に高められていない。触媒金属の安定した微細分散を実現すべく、触媒金属微粒子を炭素粒子や金属粒子等の導電性粒子に担持させることも行われているが、その効果は充分ではない。
また、従来の電極触媒や該電極触媒を分散させた電極の製造方法は、煩雑な操作や工程を要するため、より簡便な操作又は工程で製造可能な電極触媒原料化合物の開発が望まれている。
As electrode catalysts in fuel cells, for example, platinum, cobalt, nickel, iron, alloys such as platinum-ruthenium alloys, and the like are known. In order to improve the power generation performance of the fuel cell, it is important to enhance the catalytic action of these catalytic metals. For example, the catalyst utilization rate is improved by making fine particles of the catalytic metal. However, since fine particles are very likely to aggregate, it has been difficult to maintain the dispersion state for a long period of time, and the catalyst utilization rate has not been sufficiently increased. In order to realize stable fine dispersion of the catalyst metal, the catalyst metal fine particles are supported on conductive particles such as carbon particles and metal particles, but the effect is not sufficient.
Moreover, since the conventional electrode catalyst and the method for producing an electrode in which the electrode catalyst is dispersed require complicated operations and processes, development of an electrode catalyst raw material compound that can be produced by a simpler operation or process is desired. .

一方、ある種のヒドラゾン化合物を原料として製造される合成高分子に金属を配位させ
て錯体化した後、この合成高分子金属錯体を焼成することにより、燃料電池用触媒を製造
しうることが知られている(特許文献1参照)。
On the other hand, a catalyst for a fuel cell can be produced by coordinating a metal to a synthetic polymer produced using a certain hydrazone compound as a raw material, and then firing the synthetic polymer metal complex. It is known (see Patent Document 1).

国際公開公報WO2004/036674号International Publication No. WO2004 / 036674

本発明者らは、上記のような状況に鑑み、種々の新規ヒドラゾン化合物について鋭意研究を重ねた結果、特定の一般式で表されるヒドラゾンポリマーが電極触媒の原料化合物として適していることを見出した。
すなわち、本発明は、触媒金属の微細分散を可能とする電極触媒原料化合物として有用なヒドラゾンポリマーを提供することを目的とする。
In view of the above situation, the present inventors have conducted extensive research on various novel hydrazone compounds, and as a result, have found that hydrazone polymers represented by a specific general formula are suitable as raw materials for electrode catalysts. It was.
That is, an object of the present invention is to provide a hydrazone polymer useful as an electrode catalyst raw material compound that enables fine dispersion of a catalyst metal.

本発明のヒドラゾンポリマーは、下記式(6)で表される繰り返し単位を有することを特徴とする。 The hydrazone polymer of the present invention has a repeating unit represented by the following formula (6) .

Figure 0005546777
(上記式(6)中、Pyは2−ピリジル基、3−ピリジル基又は4−ピリジル基を示す。また、上記式(6)中、lは2以上の整数であり、m及びnはそれぞれ1以上の整数である。
Figure 0005546777
(In said formula (6) , Py shows 2-pyridyl group, 3-pyridyl group, or 4-pyridyl group. Moreover, in said formula (6), l is an integer greater than or equal to 2, m and n are respectively It is an integer greater than or equal to 1. )

このようなヒドラゾンポリマーは、ヒドラゾノ基(=NNH−)のヒドラゾン窒素(=N−)、フェノール類のヒドロキシル基及び/又はピリジン環の窒素(ピリジン窒素)において、金属種に対する配位能を有しており、しかもその分子構造から安定な金属錯体を形成することができる。   Such a hydrazone polymer has a coordination ability to a metal species in the hydrazone nitrogen (= N-) of the hydrazono group (= NNH-), the hydroxyl group of phenols and / or the nitrogen of the pyridine ring (pyridine nitrogen). In addition, a stable metal complex can be formed from the molecular structure.

本発明の金属錯体形成用ヒドラゾンポリマーは、上記式(6)で表される繰り返し単位を有し、少なくとも1種の金属種に配位して金属錯体を形成することを特徴とする。 The hydrazone polymer for forming a metal complex of the present invention has a repeating unit represented by the above formula (6) and is characterized by forming a metal complex by coordinating with at least one metal species.

このような金属錯体形成用ヒドラゾンポリマーは、触媒金属種に配位させることによって、触媒金属を安定した状態で微細分散させることができる。   Such a hydrazone polymer for forming a metal complex can be finely dispersed in a stable state by coordinating with a catalytic metal species.

本発明によれば、触媒金属の微細分散を可能とする電極触媒原料化合物として有用なヒドラゾンポリマーを提供することが可能である。   According to the present invention, it is possible to provide a hydrazone polymer useful as an electrode catalyst raw material compound that enables fine dispersion of a catalyst metal.

アルカリ燃料電池用セルの概略を説明する断面図である。It is sectional drawing explaining the outline of the cell for alkaline fuel cells. 実施例の触媒製造において用いた熱処理装置の概略図である。It is the schematic of the heat processing apparatus used in the catalyst manufacture of an Example. 実施例におけるアノード用触媒(a)の評価結果を示すグラフである。It is a graph which shows the evaluation result of the catalyst for anodes (a) in an Example. 実施例におけるアノード用触媒(A)の評価結果を示すグラフである。It is a graph which shows the evaluation result of the catalyst for anodes (A) in an Example. ヒドラゾンポリマーのIRスペクトルである。It is IR spectrum of a hydrazone polymer.

本発明のヒドラゾンポリマーは、下記一般式(1)で表される繰り返し単位を有することを特徴とする。   The hydrazone polymer of the present invention has a repeating unit represented by the following general formula (1).

Figure 0005546777
(上記式(1)中、Pyは2−ピリジル基、3−ピリジル基又は4−ピリジル基を示す。)
Figure 0005546777
(In the above formula (1), Py represents a 2-pyridyl group, a 3-pyridyl group or a 4-pyridyl group.)

上記一般式(1)で表される繰り返し単位において、Pyで表される基は、2−ピリジル基、3−ピリジル基、及び4−ピリジル基のいずれであってもよいが、分子内で三座配位を形成しうると考えられる点からは2−ピリジル基が好ましい。上記一般式(1)で表される繰り返し単位には、E(Entgegen)体、Z(Zusammen)体の異性体が存在し、E体の純粋物、Z体の純粋物、又は両異性体を任意の割合で含む混合物として得られるが、代表して一般式(1)で表記する。
上記一般式(1)で表される繰り返し単位を形成するヒドラゾンモノマーの具体例としては、例えば、4−{1−[(2−ピリジン−2−イル)ヒドラゾノ]エチル}ベンゼン−1,3−ジオール、4−{1−[(3−ピリジン−2−イル)ヒドラゾノ]エチル}ベンゼン−1,3−ジオール、4−{1−[(4−ピリジン−2−イル)ヒドラゾノ]エチル}ベンゼン−1,3−ジオールが挙げられる。
上記式(1)の繰り返し単位においては、他の繰り返し単位との結合位置は、ベンゼン環上であれば特に限定されない。結合位置の例としては、ベンゼン環上の2位及び5位、又は2位及び6位、又は5位及び6位等を挙げることができる。
In the repeating unit represented by the general formula (1), the group represented by Py may be any of a 2-pyridyl group, a 3-pyridyl group, and a 4-pyridyl group. A 2-pyridyl group is preferred from the point that it can be considered to form a conformation. In the repeating unit represented by the general formula (1), there are isomers of E (Endgegen) form and Z (Zusammen) form, and pure form of E form, pure form of Z form, or both isomers. Although obtained as a mixture containing an arbitrary ratio, it is represented by the general formula (1) as a representative.
Specific examples of the hydrazone monomer forming the repeating unit represented by the general formula (1) include 4- {1-[(2-pyridin-2-yl) hydrazono] ethyl} benzene-1,3- Diol, 4- {1-[(3-pyridin-2-yl) hydrazono] ethyl} benzene-1,3-diol, 4- {1-[(4-pyridin-2-yl) hydrazono] ethyl} benzene- 1,3-diol may be mentioned.
In the repeating unit of the above formula (1), the bonding position with other repeating units is not particularly limited as long as it is on the benzene ring. Examples of the bonding position include 2-position and 5-position, or 2-position and 6-position, or 5-position and 6-position on the benzene ring.

本明細書においては、まず、上記一般式(1)で表される繰り返し単位を形成するヒドラゾン化合物のモノマー(以下、ヒドラゾンモノマーという)について説明した後、該繰り返し単位を有する本発明のヒドラゾンポリマーについて説明する。   In the present specification, first, a hydrazone compound monomer (hereinafter referred to as hydrazone monomer) that forms the repeating unit represented by the general formula (1) will be described, and then the hydrazone polymer of the present invention having the repeating unit will be described. explain.

1.ヒドラゾンモノマーについて
ヒドラゾンモノマーは、下記式(2)で表される。
1. About the hydrazone monomer The hydrazone monomer is represented by the following formula (2).

Figure 0005546777
(上記式(2)中、Pyは2−ピリジル基、3−ピリジル基又は4−ピリジル基を示す。)
Figure 0005546777
(In the above formula (2), Py represents a 2-pyridyl group, a 3-pyridyl group or a 4-pyridyl group.)

ヒドラゾンモノマーは、ヒドラゾン窒素、ピリジン窒素及び/又はフェノール類のヒドロキシル基が金属種に対する配位性を有しており、そのため配位子として機能し、錯体を形成することができる。しかも、ヒドラゾンモノマーが配位して得られる錯体は安定性に優れる。得られる錯体の安定性は、ヒドラゾンモノマーの配位性部位の構造に起因すると考えられる。すなわち、ヒドラゾンモノマーの配位部位であるヒドラゾノ基の窒素(=N−)が、該窒素に隣接する炭素と、該ヒドラゾノ基が結合するフェノール類の4位と3位の炭素と、該フェノール類のベンゼン環の3位に結合する酸素(ヒドロキシル基)と共に、C字型構造を形成しており、該ヒドラゾン窒素(=N−)と金属、さらにはフェノール類のヒドロキシル基と金属が配位結合を形成することによって、該中心金属と、上記C字型構造を形成している該ヒドラゾン窒素(=N−)、該ヒドラゾン窒素に隣接する炭素、該ヒドラゾノ基が結合するフェノール類の4位と3位の炭素、及び、該フェノール類のベンゼン環の3位に結合する酸素とによって、六角形構造が形成されるためと推測される(下記式(3)参照)。   In the hydrazone monomer, the hydroxyl group of hydrazone nitrogen, pyridine nitrogen and / or phenols has a coordination property with respect to a metal species, and therefore functions as a ligand and can form a complex. Moreover, the complex obtained by coordination of the hydrazone monomer is excellent in stability. The stability of the resulting complex is considered to be due to the structure of the coordination site of the hydrazone monomer. That is, the nitrogen of the hydrazono group that is the coordination site of the hydrazone monomer (= N-) is the carbon adjacent to the nitrogen, the 4-position and 3-position carbons of the phenols to which the hydrazono group is bonded, and the phenols. It forms a C-shaped structure with oxygen (hydroxyl group) bonded to the 3-position of the benzene ring, and the hydrazone nitrogen (= N-) and metal, and further, the hydroxyl group and metal of phenols are coordinated. By forming the central metal, the hydrazone nitrogen (= N-) forming the C-shaped structure, the carbon adjacent to the hydrazone nitrogen, the 4-position of the phenols to which the hydrazono group is bonded, It is presumed that a hexagonal structure is formed by the carbon at the 3-position and the oxygen bonded to the 3-position of the benzene ring of the phenol (see the following formula (3)).

Figure 0005546777
Figure 0005546777

さらに、ヒドラゾンモノマーにおいては、ヒドラゾノ基に結合するピリジン環の窒素(ピリジン窒素)も金属種に対する配位能を有しており、金属錯体の形成に関与することが推測される。その配位については、当該ピリジン窒素がピリジン環の3位又は4位に存する場合には、複数のヒドラゾンモノマーの関与により金属錯体を形成することも推測され、また一方、当該窒素がピリジン環の2位に存するものにおいては、いわゆる三座配位を分子内で形成することにより金属錯体を形成することも推測される。
上記式(3)に示した構造は、ヒドラゾンモノマーを用いて得られる金属錯体の構造の典型例である。なお、本明細書においては、ヒドラゾンモノマーを用いて得られる金属錯体の構造を式(3)のごとき表記で代表させるが、該金属錯体の構造としては式(3)に示した構造の他にも、例えば、「窒素原子とともに金属錯体形成に寄与している水酸基以外のもう1つの水酸基を用いて、2以上のヒドラゾンモノマー分子と金属との間で配位結合あるいはイオン結合を形成した構造」等を挙げることができる。
Furthermore, in the hydrazone monomer, the nitrogen of the pyridine ring (pyridine nitrogen) bonded to the hydrazono group also has a coordination ability to the metal species, and it is presumed that it participates in the formation of a metal complex. Regarding the coordination, when the pyridine nitrogen is located at the 3rd or 4th position of the pyridine ring, it is also presumed that a metal complex is formed by the involvement of a plurality of hydrazone monomers, while the nitrogen is a pyridine ring. In what exists in 2nd-position, it is also estimated that a metal complex is formed by forming what is called a tridentate coordination in a molecule | numerator.
The structure shown in the above formula (3) is a typical example of the structure of a metal complex obtained using a hydrazone monomer. In the present specification, the structure of a metal complex obtained by using a hydrazone monomer is represented by a notation such as formula (3). The structure of the metal complex is not limited to the structure shown in formula (3). For example, “a structure in which a coordinate bond or an ionic bond is formed between two or more hydrazone monomer molecules and a metal by using another hydroxyl group other than the hydroxyl group contributing to metal complex formation together with the nitrogen atom”. Etc.

錯体を形成することによって、金属種は凝集が抑制されており、その分散性を高めることができる。上述したように、ヒドラゾンモノマーを配位子とする錯体は、錯体の安定性が高いため、金属種の分散性をさらに高めることが可能であり、しかも、その分散性を長期間にわたって維持することができる。
ゆえに、ヒドラゾンモノマーを配位子(金属錯体形成用配位子)とし、触媒金属種に配位させて錯体を形成することによって、触媒金属の微細分散が可能となり、その結果、触媒金属の利用率を向上させることができる。従って、ヒドラゾンモノマーを用いることによって、触媒金属微粒子の製造工程や使用中において生じる粒成長が抑制されており、少量の触媒金属で優れた触媒作用を発現する触媒を得ることが可能である。そして、このようにヒドラゾンモノマーと触媒金属を用いて得られる金属錯体を、電極触媒の原料化合物として用いることにより、発電性能に優れた燃料電池を得ることも可能である。しかも、ヒドラゾンモノマーと触媒金属とを配位結合させてなる錯体は、従来の一般的な方法に準じて製造することが可能であり、非常に簡便な操作、工程で得られ、生産性に優れるものである。
By forming the complex, aggregation of the metal species is suppressed, and the dispersibility can be improved. As described above, a complex containing a hydrazone monomer as a ligand has a high stability of the complex, so that the dispersibility of the metal species can be further increased, and the dispersibility can be maintained over a long period of time. Can do.
Therefore, by using a hydrazone monomer as a ligand (ligand for forming a metal complex) and coordinating with a catalytic metal species to form a complex, it becomes possible to finely disperse the catalytic metal. The rate can be improved. Therefore, by using the hydrazone monomer, the growth of particles produced during the production process and use of the catalyst metal fine particles is suppressed, and it is possible to obtain a catalyst that exhibits excellent catalytic action with a small amount of catalyst metal. In addition, by using a metal complex obtained by using the hydrazone monomer and the catalyst metal as described above as a raw material compound for the electrode catalyst, it is possible to obtain a fuel cell having excellent power generation performance. Moreover, a complex formed by coordination of a hydrazone monomer and a catalytic metal can be produced according to a conventional general method, and can be obtained by a very simple operation and process, and has excellent productivity. Is.

ヒドラゾンモノマーの製造方法は特に限定されないが、例えば、下記に示す反応スキームに従って製造することができる。   Although the manufacturing method of a hydrazone monomer is not specifically limited, For example, it can manufacture according to the reaction scheme shown below.

Figure 0005546777
(式中、Pyは2−ピリジル基、3−ピリジル基又は4−ピリジル基を示す。)
Figure 0005546777
(In the formula, Py represents a 2-pyridyl group, a 3-pyridyl group or a 4-pyridyl group.)

一般式(2)で表されるヒドラゾンモノマーは、適当な溶媒中又は無溶媒で、縮合剤の存在下又は非存在下で、一般式(4)で表されるケトン化合物(2,4−ジヒドロキシアセトフェノン)と一般式(5)で表されるヒドラジン化合物(ヒドラジノピリジン)とを反応させることにより製造することができる。
一般式(4)で表されるケトン化合物及び一般式(5)で表されるヒドラジン化合物は、共に公知であり、市販品として入手又は一般的な方法に準じて合成することができる。
上記反応における各化合物の使用量としては、一般式(4)で表されるケトン化合物1モルに対して、一般式(5)で表されるヒドラジン化合物を、通常、0.8〜10モル、好ましくは、1.0〜5.0モル、より好ましくは1.0〜2.0モルの範囲とする。
The hydrazone monomer represented by the general formula (2) is a ketone compound (2,4-dihydroxy) represented by the general formula (4) in an appropriate solvent or without a solvent, in the presence or absence of a condensing agent. It can be produced by reacting acetophenone) with a hydrazine compound (hydrazinopyridine) represented by the general formula (5).
The ketone compound represented by the general formula (4) and the hydrazine compound represented by the general formula (5) are both known and can be obtained as commercially available products or synthesized according to a general method.
As the usage-amount of each compound in the said reaction, the hydrazine compound represented by General formula (5) is normally 0.8-10 mol with respect to 1 mol of ketone compounds represented by General formula (4), Preferably, the range is 1.0 to 5.0 mol, more preferably 1.0 to 2.0 mol.

上記反応は、酸触媒の存在下で進行するが、反応を促進するために縮合剤を用いることが好ましい。酸触媒の具体例としては、例えば、塩化水素、濃硫酸、リン酸、酢酸、等のプロトン酸を用いることができ、また、縮合剤の具体例としては、例えば、DCC(ジシクロヘキシルカルボジイミド)等の一般的なもの用いることができる。酸触媒、縮合剤の使用量としては、一般式(4)で表されるケトン化合物1モルに対して、酸触媒、縮合剤それぞれを、通常、0.0001〜10モル、好ましくは0.0001〜5モル、より好ましくは0.0001〜2モルの範囲とする。   The above reaction proceeds in the presence of an acid catalyst, but it is preferable to use a condensing agent to accelerate the reaction. Specific examples of the acid catalyst include proton acids such as hydrogen chloride, concentrated sulfuric acid, phosphoric acid, and acetic acid. Specific examples of the condensing agent include, for example, DCC (dicyclohexylcarbodiimide). A general thing can be used. As for the usage-amount of an acid catalyst and a condensing agent, 0.0001-10 mol normally with respect to 1 mol of ketone compounds represented by General formula (4), respectively, an acid catalyst and a condensing agent are 0.0001. -5 mol, more preferably in the range of 0.0001-2 mol.

また、上記反応は、無溶媒でも進行するが、より円滑に反応を進行させるために溶媒を用いることが好ましい。該反応に用いうる溶媒としては、反応を阻害せず安定なものであれば良く、例えば、メタノール、エタノール、イソプロパノール等のアルコール類;フェニルエーテル、アニソール等のエーテル類:トルエン、キシレン、メシチレン、テトラリン等の芳香族炭化水素類:デカリンその他脂環式炭化水素類:N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAC)、N,N−ジメチルイミダゾリジノン(DMI)、N−メチルピロリドン(NMP)、ジメチルスルホキシド(DMSO)、スルホラン(TMSO)等の非プロトン性極性溶媒類:ニトロベンゼン、p−ニトロトルエン等の芳香族系ニトロ化合物:クロロベンゼン、o−ジクロロベンゼン、トリクロロベンゼン等の芳香族系ハロゲン化合物等を例示できる。溶媒の使用量としては、一般式(4)で表されるケトン化合物1モルに対して、通常、0〜3.0L、好ましくは0.05〜1.5Lの範囲である。 Moreover, although the said reaction advances even without solvent, in order to advance reaction more smoothly, it is preferable to use a solvent. The solvent that can be used in the reaction is not particularly limited as long as it does not inhibit the reaction. For example, alcohols such as methanol, ethanol, and isopropanol; ethers such as phenyl ether and anisole: toluene, xylene, mesitylene, and tetralin Aromatic hydrocarbons such as: Decalin and other alicyclic hydrocarbons: N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), N, N-dimethylimidazolidinone (DMI), N -Aprotic polar solvents such as methylpyrrolidone (NMP), dimethyl sulfoxide (DMSO), sulfolane (TMSO 2 ): aromatic nitro compounds such as nitrobenzene and p-nitrotoluene: chlorobenzene, o-dichlorobenzene, trichlorobenzene, etc. Aromatic halogen compounds, etc. It can be shown. As a usage-amount of a solvent, it is 0-3.0L normally with respect to 1 mol of ketone compounds represented by General formula (4), Preferably it is the range of 0.05-1.5L.

上記反応の反応温度は、反応が進行する限りにおいて、特に制限はないが、通常、−20℃〜150℃、好ましくは10℃〜120℃、より好ましくは20〜100℃の範囲である。
また、反応時間は特に制限されないが、副生成物抑制の観点等から、好ましくは0.5〜40時間である。
反応後は、析出した結晶をろ過等により分離し、必要に応じてメタノール等の有機溶媒や水、これらの混合物等を用いて洗浄し、乾燥すればよい。乾燥温度は特に限定されず、本発明のヒドラゾンモノマーの融点又は分解点未満であれば差し支えないが、通常、20〜200℃、好ましくは30〜180℃、さらに好ましくは40〜150℃の範囲を例示できる。
The reaction temperature of the above reaction is not particularly limited as long as the reaction proceeds, but is usually in the range of −20 ° C. to 150 ° C., preferably 10 ° C. to 120 ° C., more preferably 20 to 100 ° C.
The reaction time is not particularly limited, but is preferably 0.5 to 40 hours from the viewpoint of suppressing byproducts.
After the reaction, the precipitated crystals are separated by filtration or the like, washed with an organic solvent such as methanol, water, a mixture thereof, or the like, if necessary, and dried. The drying temperature is not particularly limited, and may be any temperature as long as it is lower than the melting point or decomposition point of the hydrazone monomer of the present invention, but is usually 20 to 200 ° C, preferably 30 to 180 ° C, more preferably 40 to 150 ° C. It can be illustrated.

上述したように、ヒドラゾンモノマーは、金属種(金属原子、金属イオン)に配位結合し、錯体を形成する(上記式(3)参照)。
配位する金属種としては、特に限定されず、例えば、遷移金属、具体的には8〜10族(第VIIIA族)遷移金属、より具体的には、鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金を例示することができる。中でも、鉄、コバルト、ニッケルを好適に用いることができる。ヒドラゾンモノマーを金属種に配位させてなるヒドラゾン金属錯体は、配位する金属種を選択し、必要に応じて金属種を還元することによって、特定の化学反応に対して触媒活性を示しうる(例えばオレフィン重合用触媒などが考えられる)。
As described above, the hydrazone monomer is coordinated to a metal species (metal atom, metal ion) to form a complex (see the above formula (3)).
The metal species to be coordinated is not particularly limited. For example, transition metals, specifically, Group 8 to 10 (Group VIIIA) transition metals, more specifically, iron, cobalt, nickel, ruthenium, rhodium, Palladium, osmium, iridium and platinum can be exemplified. Among these, iron, cobalt, and nickel can be preferably used. A hydrazone metal complex obtained by coordinating a hydrazone monomer to a metal species can exhibit catalytic activity for a specific chemical reaction by selecting the metal species to be coordinated and reducing the metal species as necessary ( For example, a catalyst for olefin polymerization may be considered.

ヒドラゾンモノマーを金属種に配位させてなるヒドラゾン金属錯体を得る方法は、特に限定されず、一般的な方法に準じることができる。例えば、まず、ヒドラゾンモノマーを、該ヒドラゾンモノマー及び生成した金属錯体に対しての溶解性が小なる極性溶媒、具体的には水、アセトンに代表されるケトン類、メタノール、エタノールに代表されるアルコール類等の適当な溶媒もしくはその混合溶媒に分散させ、該溶液中に金属種の原料となる金属塩を加え混合し、pH調節剤を加え、さらに混合することでヒドラゾン金属錯体が得られる。上記溶媒としては、さらにはアルキルニトリル、クロロホルム、ジクロロメタン、酢酸エチル等の溶媒も使用可能である。
該ヒドラゾン金属錯体の製造は、通常、20〜60℃の温度範囲で行うことが好ましい。得られたヒドラゾン金属錯体は、ろ過等により分離し、必要に応じて、生成した金属錯体に対しての溶解性が小なる極性溶媒、具体的には水、アセトンに代表されるケトン類、メタノール、エタノールに代表されるアルコール類等の適当な溶媒により洗浄、乾燥することで、単離することができる。
A method for obtaining a hydrazone metal complex obtained by coordinating a hydrazone monomer to a metal species is not particularly limited, and can be based on a general method. For example, first of all, a hydrazone monomer is a polar solvent that is less soluble in the hydrazone monomer and the metal complex formed, specifically water, ketones typified by acetone, alcohols typified by methanol, and ethanol. A hydrazone metal complex can be obtained by dispersing in a suitable solvent such as a liquid or a mixed solvent thereof, adding and mixing a metal salt as a raw material of the metal species into the solution, adding a pH regulator, and further mixing. As the solvent, a solvent such as an alkyl nitrile, chloroform, dichloromethane, ethyl acetate or the like can be used.
The production of the hydrazone metal complex is usually preferably carried out in the temperature range of 20 to 60 ° C. The obtained hydrazone metal complex is separated by filtration or the like, and if necessary, a polar solvent having a low solubility in the generated metal complex, specifically water, ketones typified by acetone, methanol, and the like. It can be isolated by washing and drying with an appropriate solvent such as alcohols typified by ethanol.

金属塩としては、例えば、酢酸塩、塩化物、硫酸塩、硝酸塩、スルホン酸塩、リン酸塩等を用いることができる。用途に応じて、これら金属塩は1種のみでも或いは複数種を組み合わせてもよい。複数種の金属塩を用いる場合、各金属塩の仕込み比(金属原子換算)を反映した比率で、各金属種に配位したヒドラゾン金属錯体が混在した混合物を得ることができる。
また、pH調節剤としては、例えば有機酸塩、有機酸、無機酸塩、無機酸を包含する一般的な塩基及び/又は酸であればよく、具体的には、トリチルアミン等の三級アミン類、及びピリジン類等を包含する有機塩基;メタンスルホン酸、p−トルエンスルホン酸等のスルホン酸類、及び酢酸等のカルボン酸類を包含する有機酸;水酸化ナトリウム、水酸化カリウム等の水酸化金属類、炭酸ナトリウム、炭酸カリウム等の金属炭酸塩類、炭酸水素ナトリウム、及び炭酸水素カリウム等の金属炭酸水素塩類を包含する無機塩基;塩酸等のハロゲン化水素酸類、硫酸、リン酸、及び硝酸等を包含する無機酸が挙げられ、NaOH、KOH、NaCO、NaHCO、HCl、HSO、HNO、KHSO、CHCOOH等を例示できる。
As the metal salt, for example, acetate, chloride, sulfate, nitrate, sulfonate, phosphate and the like can be used. Depending on the application, these metal salts may be used alone or in combination. When a plurality of types of metal salts are used, a mixture in which hydrazone metal complexes coordinated to each metal species are mixed can be obtained at a ratio reflecting the charging ratio (converted to metal atoms) of each metal salt.
The pH adjuster may be a general base and / or acid including, for example, an organic acid salt, an organic acid, an inorganic acid salt, and an inorganic acid, and specifically, a tertiary amine such as tritylamine. And organic bases including pyridines; organic acids including sulfonic acids such as methanesulfonic acid and p-toluenesulfonic acid; and carboxylic acids such as acetic acid; metal hydroxides such as sodium hydroxide and potassium hydroxide Inorganic bases including metal carbonates such as sodium carbonate and potassium carbonate, sodium hydrogen carbonate and metal hydrogen carbonates such as potassium hydrogen carbonate; hydrohalic acids such as hydrochloric acid, sulfuric acid, phosphoric acid and nitric acid Examples include inorganic acids, including NaOH, KOH, Na 2 CO 3 , NaHCO 3 , HCl, H 2 SO 4 , HNO 3 , KHSO 4 , CH 3 COOH, and the like. It can be illustrated.

2.本発明のヒドラゾンポリマーについて
本発明のヒドラゾンポリマーは、上記一般式(1)で表される繰り返し単位を有することを特徴とする。本発明のヒドラゾンポリマーの製造方法は特に限定されないが、上述したヒドラゾンモノマーを用いて製造することが好ましい。
ヒドラゾンモノマーを用いる際には、他の化合物と重合させることで、該ヒドラゾンモノマーから誘導される構成単位を含有するヒドラゾンポリマーを製造することができる。具体的には、例えば、少なくとも、ヒドラゾンモノマー、フェノール類、及びアルデヒド類を重合させることにより、本発明のヒドラゾンポリマーを得ることができる。さらに具体的には、ヒドラゾンモノマーと、フェノールと、ホルムアルデヒドとを、塩基又は酸触媒存在下、重合することによって、下記式(6)で表されるヒドラゾンポリマーが得られる。
2. About the hydrazone polymer of this invention The hydrazone polymer of this invention has a repeating unit represented by the said General formula (1), It is characterized by the above-mentioned. Although the manufacturing method of the hydrazone polymer of this invention is not specifically limited, It is preferable to manufacture using the hydrazone monomer mentioned above.
When a hydrazone monomer is used, a hydrazone polymer containing a structural unit derived from the hydrazone monomer can be produced by polymerizing with another compound. Specifically, for example, the hydrazone polymer of the present invention can be obtained by polymerizing at least a hydrazone monomer, phenols, and aldehydes. More specifically, a hydrazone polymer represented by the following formula (6) is obtained by polymerizing a hydrazone monomer, phenol, and formaldehyde in the presence of a base or an acid catalyst.

Figure 0005546777
Figure 0005546777

上記式(6)中、n、mはそれぞれ1以上の整数である。また、lは2以上の整数である。
ここでフェノール類としては、フェノールの他、フェノールに1つ又は2つ以上の置換基が結合しているものが挙げられる。フェノールに導入される置換基としては、例えば、−OH、−OR、−NR’R”、炭素数1〜15のアリール基又はアルキル基(分岐構造を有していてもよい)が挙げられ、高い重合反応性が期待できることから、電子供与性を有しているものが好ましい。尚、Rは、アルキル置換基又はアリール置換基であれば特に限定されないが、炭素数1〜10のアルキル基又はアリール基が好ましい。また、R’及びR”は一価の有機基であれば特に限定されないが、好ましくは、それぞれ独立して、水素、炭素数1〜10のアルキル基又はアリール基のいずれかであることが好ましい。
In the above formula (6), n and m are each an integer of 1 or more. L is an integer of 2 or more.
Here, examples of the phenols include those in which one or two or more substituents are bonded to phenol in addition to phenol. Examples of the substituent introduced into phenol include —OH, —OR, —NR′R ″, an aryl group having 1 to 15 carbon atoms, or an alkyl group (which may have a branched structure). Those having an electron donating property are preferable since high polymerization reactivity can be expected, and R is not particularly limited as long as it is an alkyl substituent or an aryl substituent, but an alkyl group having 1 to 10 carbon atoms or An aryl group is preferable. R ′ and R ″ are not particularly limited as long as they are monovalent organic groups. Preferably, they are each independently any one of hydrogen, an alkyl group having 1 to 10 carbon atoms, or an aryl group. It is preferable that

アルデヒド類としては、例えば、ホルムアルデヒド、パラホルムアルデヒドが好適である。   As the aldehydes, for example, formaldehyde and paraformaldehyde are suitable.

上記式(6)で表されるヒドラゾンポリマーの具体的な製造方法としては、ヒドラゾンモノマー、フェノール類、アルデヒド類を適当な溶媒(例えば、水、アセトンに代表されるケトン類、メタノール、エタノールに代表されるアルコール類等の適当な溶媒又はこれらの混合物)中に溶解又は分散させ、NaOH等の塩基又はHCl等の酸存在下、所定の温度条件(例えば、20℃〜150℃)とすることで、ヒドラゾンモノマーとアルデヒド類及びフェノール類とアルデヒド類を縮合させる方法が挙げられる。   As a specific method for producing the hydrazone polymer represented by the above formula (6), hydrazone monomers, phenols, and aldehydes are used in an appropriate solvent (for example, water, ketones typified by acetone, methanol and ethanol typified). In a suitable solvent such as alcohols or a mixture thereof) and in the presence of a base such as NaOH or an acid such as HCl, and a predetermined temperature condition (for example, 20 ° C. to 150 ° C.). And a method of condensing a hydrazone monomer and an aldehyde and a phenol and an aldehyde.

上記式(6)で表されるヒドラゾンポリマーにおいて、ヒドラゾンモノマーから誘導される構成単位とフェノール類から誘導される構成単位の割合は特に限定されず、適宜選択することができる。   In the hydrazone polymer represented by the above formula (6), the ratio between the structural unit derived from the hydrazone monomer and the structural unit derived from the phenol is not particularly limited and can be appropriately selected.

なお、本発明のヒドラゾンポリマーは、上記式(6)に示した構造を有するポリマーには必ずしも限定されることはなく、ヒドラゾンモノマーを、上記フェノール類や、アルデヒド類以外のその他の化合物と重合することによっても、製造が可能である。
具体的には、塩基触媒存在下において合成したレゾール樹脂を酸化条件下にて加熱・攪拌を行うこと、もしくは酸性条件下において合成したノボラック樹脂に、ヘキサメチレンテトラミン等の架橋剤を添加することにより、より高分子化された本発明のヒドラゾンポリマーを合成することが可能である。
The hydrazone polymer of the present invention is not necessarily limited to the polymer having the structure shown in the above formula (6), and the hydrazone monomer is polymerized with other compounds other than the phenols and aldehydes. It is also possible to manufacture.
Specifically, the resole resin synthesized in the presence of a base catalyst is heated and stirred under oxidizing conditions, or a crosslinking agent such as hexamethylenetetramine is added to a novolak resin synthesized under acidic conditions. It is possible to synthesize the hydrazone polymer of the present invention having a higher molecular weight.

なお、ヒドラゾンポリマーを構成する繰り返し単位の連結の順番に関しては、上記式(1)に示された繰り返し単位、及び他の化合物から誘導される繰り返し単位のそれぞれが、どのような順番で何回ずつ連結されていても構わない。たとえば、一定数同じ繰り返し単位が連結されたブロックが、互いに共重合するブロック共重合体であってもよいし、あるいは異なる繰り返し単位が交互に重合する交互共重合体であってもよい。また、繰り返し単位の配列に全く秩序が無いランダム共重合体であってもよい。   In addition, regarding the connection order of the repeating units constituting the hydrazone polymer, the repeating unit represented by the above formula (1) and the repeating units derived from other compounds are each in any order and how many times. It may be connected. For example, a block in which a certain number of the same repeating units are linked may be a block copolymer that is copolymerized with each other, or may be an alternating copolymer in which different repeating units are alternately polymerized. Further, it may be a random copolymer having no order in the arrangement of repeating units.

以下、本発明のヒドラゾンポリマーを利用したヒドラゾン高分子金属錯体、及び該錯体を用いた金属触媒(製造方法、触媒の用途等)について説明する。   Hereinafter, a hydrazone polymer metal complex using the hydrazone polymer of the present invention and a metal catalyst (manufacturing method, use of the catalyst, etc.) using the complex will be described.

3.ヒドラゾン高分子金属錯体について
ヒドラゾンモノマー同様、本発明のヒドラゾンポリマーも、ヒドラゾンモノマーに由来するヒドラゾン窒素、ピリジン窒素及び/又はフェノール類のヒドロキシル基において金属種に配位してヒドラゾン高分子金属錯体を形成することができる(下記式(7)参照)。本発明のヒドラゾンポリマーを金属種に配位させる方法は、ヒドラゾンモノマーからヒドラゾン金属錯体を製造する方法と同様である。
本発明のヒドラゾンポリマーに、複数種の金属塩を用いる場合、各金属塩の仕込み比(金属原子換算)を反映した比率で、各金属種を含有するヒドラゾン高分子金属錯体が得られる。本発明のヒドラゾンポリマーの全体的な分子骨格の違いにより、各金属に対する親和性に違いが見られるのが一般的であり、これを利用して分子の構造により金属含有量をコントロールすることができる。
3. About the hydrazone polymer metal complex Like the hydrazone monomer, the hydrazone polymer of the present invention forms a hydrazone polymer metal complex by coordinating with a metal species at the hydroxyl group of hydrazone nitrogen, pyridine nitrogen and / or phenols derived from the hydrazone monomer. (See the following formula (7)). The method for coordinating the hydrazone polymer of the present invention to a metal species is the same as the method for producing a hydrazone metal complex from a hydrazone monomer.
When a plurality of types of metal salts are used in the hydrazone polymer of the present invention, a hydrazone polymer metal complex containing each metal species is obtained at a ratio reflecting the charging ratio (converted to metal atoms) of each metal salt. Due to the difference in the overall molecular skeleton of the hydrazone polymer of the present invention, it is common that the affinity for each metal is different, and this can be used to control the metal content by the molecular structure. .

Figure 0005546777
Figure 0005546777

或いは、上記したようなヒドラゾン金属錯体を他の化合物と重合させることにより、該ヒドラゾン金属錯体から誘導される構成単位を含有するヒドラゾン高分子金属錯体を得ることもできる。具体的には、ヒドラゾン金属錯体と、フェノール類、アルデヒド類と重合させることによって上記式(7)と同様の構造を有するヒドラゾン高分子金属錯体を製造することができる。
上記式(7)に示した構造は、本発明に係るヒドラゾンポリマーを用いて得られる金属錯体の構造の典型例である。なお、本明細書においては、ヒドラゾンポリマーを用いて得られる金属錯体の構造を式(7)のごとき表記で代表させるが、該金属錯体の構造としては式(7)に示した構造の他にも、例えば、「窒素原子とともに金属錯体形成に寄与している水酸基以外のもう1つの水酸基を用いて、ヒドラゾンポリマー中の2以上のヒドラゾン部位と金属との間で配位結合あるいはイオン結合を形成した構造」や、「ポリマー製造において、ヒドラゾンモノマーと共に用いられるフェノール原料由来の2以上のフェノール性水酸基と金属との間で、配位結合あるいはイオン結合を形成した構造」等を挙げることができる。
このようにヒドラゾンポリマーを触媒金属に配位させたり、或いは、ヒドラゾン金属錯体を他のモノマーと重合させたりすることによって得られるヒドラゾン高分子金属錯体においては、上記ヒドラゾン金属錯体(モノマー)と比較して、触媒金属の分散性のさらなる向上が可能である。
ヒドラゾン金属錯体と、フェノール類と、アルデヒド類との重合は、上記ヒドラゾンモノマーとフェノール類とアルデヒド類との重合反応と同様の条件において行うことができる。
Alternatively, a hydrazone polymer metal complex containing a structural unit derived from the hydrazone metal complex can be obtained by polymerizing the hydrazone metal complex as described above with another compound. Specifically, a hydrazone polymer metal complex having a structure similar to the above formula (7) can be produced by polymerizing a hydrazone metal complex with phenols and aldehydes.
The structure shown in the above formula (7) is a typical example of the structure of a metal complex obtained using the hydrazone polymer according to the present invention. In this specification, the structure of a metal complex obtained using a hydrazone polymer is represented by a notation such as formula (7). The structure of the metal complex is not limited to the structure shown in formula (7). For example, “Coordination bond or ionic bond is formed between two or more hydrazone sites in a hydrazone polymer and a metal by using another hydroxyl group other than the hydroxyl group contributing to metal complex formation together with the nitrogen atom. And “a structure in which a coordination bond or an ionic bond is formed between two or more phenolic hydroxyl groups derived from a phenol raw material used together with a hydrazone monomer and a metal in polymer production”.
Thus, in the hydrazone polymer metal complex obtained by coordinating the hydrazone polymer to the catalyst metal or polymerizing the hydrazone metal complex with another monomer, the hydrazone polymer complex (monomer) is compared with the above hydrazone metal complex (monomer). Thus, the dispersibility of the catalyst metal can be further improved.
Polymerization of the hydrazone metal complex, phenols, and aldehydes can be performed under the same conditions as the polymerization reaction of the hydrazone monomer, phenols, and aldehydes.

4.金属触媒について
4−1.金属触媒の製造方法について
ヒドラゾン金属錯体及びヒドラゾン高分子金属錯体(以下、まとめて単に金属錯体ということがある)は、焼成することにより電気化学反応に対して触媒活性を発現し得る。さらにこれら金属錯体単独よりも導電性担持材料と共に焼成することでより強く触媒活性を発現し得る。
具体的には、Pt、Ni、Fe、Co、Ag、Pd、Cu、Mn、Mo、Ru、Rh、Cr等の金属触媒種にヒドラゾンモノマー又はヒドラゾンポリマーが配位したヒドラゾン金属錯体又はヒドラゾン高分子金属錯体と、活性炭等の炭素質導電性担持材料と、を焼成することにより、ヒドラゾンと炭素質導電性担持材料に部分的な結合が生じ、ヒドラゾン金属錯体又はヒドラゾン高分子金属錯体が炭素質導電性担持材料表面に固定化される。これにより生成するヒドラゾン金属錯体・炭素質導電性担持材料複合体又はヒドラゾン高分子金属錯体・炭素質導電性担持材料複合体は、触媒金属の導電性担体として機能し得るようになり、該複合体に担持された触媒金属が電気化学反応に対して触媒活性を発現できるようになる。
4). About metal catalyst 4-1. Method for Producing Metal Catalyst A hydrazone metal complex and a hydrazone polymer metal complex (hereinafter, sometimes simply referred to as a metal complex) can exhibit catalytic activity for an electrochemical reaction by firing. Furthermore, the catalytic activity can be expressed more strongly by firing together with the conductive support material than these metal complexes alone.
Specifically, a hydrazone metal complex or hydrazone polymer in which a hydrazone monomer or a hydrazone polymer is coordinated to a metal catalyst species such as Pt, Ni, Fe, Co, Ag, Pd, Cu, Mn, Mo, Ru, Rh, and Cr By firing a metal complex and a carbonaceous conductive support material such as activated carbon, partial bonding occurs between the hydrazone and the carbonaceous conductive support material, and the hydrazone metal complex or hydrazone polymer metal complex becomes carbonaceous conductive. Immobilized on the surface of the conductive support material. The resulting hydrazone metal complex / carbonaceous conductive support material composite or hydrazone polymer metal complex / carbonaceous conductive support material composite can function as a conductive support for catalytic metal, and the composite The catalytic metal supported on the catalyst can exhibit catalytic activity for electrochemical reaction.

上記金属錯体の焼成は、不活性ガス雰囲気下、或いは、水素ガス雰囲気等の還元条件下で行うことが好ましい。不活性雰囲気又は還元条件下で行うことによって、触媒金属に配位するヒドラゾンモノマー又は本発明のヒドラゾンポリマーを酸化させることなく、電気化学反応に対する触媒活性の付与、及び、触媒金属とヒドラゾンモノマー又は本発明のヒドラゾンポリマーとの配位構造の維持が可能となる。
焼成温度及び焼成時間等の焼成条件は、ヒドラゾン金属錯体又はヒドラゾン高分子金属錯体を構成する、ヒドラゾンノマー又は本発明のヒドラゾンポリマー、並びに金属触媒の種類、さらに、触媒の使用用途等を考慮して適宜決定すればよい。但し、焼成温度及び焼成時間は、電気化学反応に対する触媒活性の付与と共に、焼成後も触媒金属とヒドラゾンモノマー又は本発明のヒドラゾンポリマーの由来の窒素との配位部位の構造が保持されるように、それぞれ設定することが重要である。焼成温度が高すぎたり、或いは焼成時間が長すぎたりすると、触媒金属の配位状態が保持されず、ヒドラゾンモノマーの焼成体又は本発明のヒドラゾンポリマーの焼成体に金属触媒が担持されず、触媒金属の微細分散状態の保持が困難となる。
The firing of the metal complex is preferably performed under an inert gas atmosphere or a reducing condition such as a hydrogen gas atmosphere. By performing the reaction under an inert atmosphere or under reducing conditions, without oxidizing the hydrazone monomer coordinated to the catalyst metal or the hydrazone polymer of the present invention, imparting catalytic activity to the electrochemical reaction, and the catalyst metal and hydrazone monomer or The coordination structure with the hydrazone polymer of the invention can be maintained.
Firing conditions such as calcining temperature and calcining time take into account the hydrazone monomer or the hydrazone polymer of the present invention constituting the hydrazone metal complex or hydrazone polymer metal complex, the type of metal catalyst, and the intended use of the catalyst. What is necessary is just to determine suitably. However, the calcination temperature and the calcination time are such that the structure of the coordination site between the catalytic metal and the hydrazone monomer or the nitrogen derived from the hydrazone polymer of the present invention is retained after the calcination, as well as imparting catalytic activity to the electrochemical reaction. , It is important to set each. If the calcination temperature is too high or the calcination time is too long, the coordination state of the catalyst metal is not maintained, and the metal catalyst is not supported on the hydrazone monomer calcined product or the hydrazone polymer calcined product of the present invention. It becomes difficult to maintain a finely dispersed state of the metal.

また、上記ヒドラゾン金属錯体及びヒドラゾン高分子金属錯体の焼成を、該焼成により得られる触媒を担持しうる導電性担持材料の存在下行う場合、上記したような強い触媒活性の発現の他、これら金属錯体の触媒化と同時に、得られる触媒を該導電性担持材料に担持させることができるという利点もある。ヒドラゾン金属錯体又はヒドラゾン高分子金属錯体を焼成して得られる触媒を導電性担持材料に担持させることで、金属触媒のさらなる微細分散を実現することが可能となる。
導電性担持材料としては、触媒金属を担持させる担体として一般的に使用されている導電性材料、例えば、活性炭(具体的には、Vulcan XC−72R(商品名)、Ketjen black(商品名)等)のようなカーボン粒子、Al、SiO、CeOのような多孔質酸化物のような金属粒子、等が挙げられる。また、これら導電性材料をシート状等に成型したものでもよい。
尚、ヒドラゾン金属錯体又はヒドラゾン高分子金属錯体は、触媒の用途に応じて、上記焼成の前に、配位金属を還元する還元処理を施してもよい。還元処理方法としては、一般的な方法が挙げられ、例えば、水素ガスや水素化ホウ素アルカリ金属塩、水素化ホウ素4級アンモニウム塩、ジボラン、ヒドラジン、アルコール、アルコールアミン等の還元剤を用いる方法等が挙げられる。
In addition, when the hydrazone metal complex and the hydrazone polymer metal complex are baked in the presence of a conductive support material capable of supporting the catalyst obtained by the calcination, in addition to the above-described strong catalytic activity, these metals There is also an advantage that the catalyst obtained can be supported on the conductive support material simultaneously with the catalysis of the complex. By supporting a catalyst obtained by firing a hydrazone metal complex or a hydrazone polymer metal complex on a conductive support material, further fine dispersion of the metal catalyst can be realized.
As the conductive support material, a conductive material generally used as a carrier for supporting a catalyst metal, for example, activated carbon (specifically, Vulcan XC-72R (trade name), Ketjen black (trade name), etc.) ), Metal particles such as porous oxides such as Al 2 O 3 , SiO 2 , and CeO 2 . Moreover, what shape | molded these electroconductive materials in the sheet form etc. may be used.
The hydrazone metal complex or hydrazone polymer metal complex may be subjected to a reduction treatment for reducing the coordination metal before the calcination, depending on the use of the catalyst. Examples of the reduction treatment method include general methods such as a method using a reducing agent such as hydrogen gas, alkali metal borohydride, quaternary ammonium borohydride, diborane, hydrazine, alcohol, alcoholamine, and the like. Is mentioned.

具体的な焼成条件として、例えば、燃料電池のアノード触媒(燃料の酸化反応用触媒)を得るためには、まず、水素ガス雰囲気又はNaBH、KBH、LiBH、テトラアルキルアンモニウム(NR )等をカチオンとするテトラハイドロボレート塩(XBH)、NaHPO等の化学的還元剤の存在下、250〜450℃で1〜10時間半焼成し、ヒドラゾンモノマー又は本発明のヒドラゾンポリマーに配位した金属種を還元する。その後、還元条件(具体的には水素ガス雰囲気下)、350〜400℃で1〜2時間焼成する。このとき、上述したように、導電性担持材料と混合した状態で焼成を行うことによって、焼成により得られる触媒を導電性担持材料に担持させること、より強い触媒活性を示す触媒を作製することが可能である。
一方、燃料電池のカソード触媒(酸化剤の還元用触媒)を得るためには、窒素ガス雰囲気やアルゴンガス雰囲気等の不活性ガス雰囲気下、500〜1000℃、好ましくは800℃で1〜2時間焼成する。このとき、アノード触媒同様、上述したように、導電性担持材料と混合した状態で焼成を行うことによって、焼成により得られる触媒を導電性担持材料に担持させること、より強い触媒活性を示す触媒を作製することが可能である。
As specific firing conditions, for example, in order to obtain an anode catalyst (fuel oxidation reaction catalyst) of a fuel cell, first, a hydrogen gas atmosphere or NaBH 4 , KBH 4 , LiBH 4 , tetraalkylammonium (NR 4 + ) And the like, and baked at 250 to 450 ° C. for 1 to 10 hours in the presence of a chemical reducing agent such as tetrahydroborate salt (XBH 4 ) or NaH 2 PO 2. The metal species coordinated to is reduced. Thereafter, firing is performed at 350 to 400 ° C. for 1 to 2 hours under reducing conditions (specifically, in a hydrogen gas atmosphere). At this time, as described above, by firing in a state mixed with the conductive support material, the catalyst obtained by the firing can be supported on the conductive support material, and a catalyst exhibiting stronger catalytic activity can be produced. Is possible.
On the other hand, in order to obtain a cathode catalyst (catalyst for reducing oxidant) of a fuel cell, it is 500 to 1000 ° C., preferably 800 ° C. for 1 to 2 hours under an inert gas atmosphere such as a nitrogen gas atmosphere or an argon gas atmosphere. Bake. At this time, like the anode catalyst, as described above, the catalyst obtained by firing is supported on the conductive support material by performing the firing in a mixed state with the conductive support material, and a catalyst exhibiting stronger catalytic activity is obtained. It is possible to produce.

4−2.金属触媒の用途について
以上のような、本発明のヒドラゾンポリマーを用いて得られる触媒は、白金に代表される希少な金属を用いる場合には、その使用量を低減することが可能であり、また、白金等の希少な金属を用いずとも、優れた触媒作用を示すという点で、産業上の利用価値が高い。
触媒の用途としては、例えば、燃料電池の電極触媒、自動車等の排ガスの浄化触媒、アンモニアの分解触媒等の様々な分野において使用可能である。燃料電池としては、電荷キャリアが水酸化物イオン(OH)であるアルカリ燃料電池の他、電荷キャリアがプロトン(H)である固体高分子電解質型燃料電池、固体酸化物型燃料電池、リン酸型燃料電池等が挙げられる。本発明のヒドラゾンポリマーを用いて得られる上記触媒を用いることによって、触媒金属の分散性に優れた電極を容易に製造することが可能である。中でも、電荷キャリアが水酸化物イオンであり、Ni、Fe、Co等の卑金属を電極触媒として好適に用いることが可能なアルカリ燃料電池において好ましく用いられる。
アルカリ燃料電池用触媒として利用する場合には、8族の遷移金属、9族の遷移金属、10族の遷移金属及び11族の遷移金属を中心金属とするヒドラゾン金属錯体又はヒドラゾン高分子金属錯体を用いることが好ましい。特に、8族遷移金属に配位してなるヒドラゾン金属錯体、9族遷移金属に配位してなるヒドラゾン金属錯体、10族遷移金属に配位してなるヒドラゾン金属錯体、及び、11族遷移金属に配位してなるヒドラゾン金属錯体のうち、少なくとも2種以上又は3種以上を組み合わせた混合物や、8族遷移金属、9族遷移金属、10族遷移金属及び11族遷移金属から選ばれる2種以上又は3種以上の遷移金属に配位したヒドラゾン高分子金属錯体等、多元系とすることが好ましい。
4-2. Use of metal catalyst As described above, the catalyst obtained using the hydrazone polymer of the present invention can reduce the amount of use when a rare metal typified by platinum is used. Even if rare metals such as platinum are not used, the industrial utility value is high in that it exhibits excellent catalytic action.
The catalyst can be used in various fields such as an electrode catalyst for a fuel cell, an exhaust gas purification catalyst for automobiles, an ammonia decomposition catalyst, and the like. Examples of the fuel cell include an alkaline fuel cell in which charge carriers are hydroxide ions (OH ), a solid polymer electrolyte fuel cell in which charge carriers are protons (H + ), a solid oxide fuel cell, phosphorus Examples include acid type fuel cells. By using the catalyst obtained by using the hydrazone polymer of the present invention, it is possible to easily produce an electrode excellent in the dispersibility of the catalyst metal. Among them, the charge carrier is a hydroxide ion, and it is preferably used in an alkaline fuel cell in which a base metal such as Ni, Fe, Co or the like can be suitably used as an electrode catalyst.
When used as a catalyst for an alkaline fuel cell, a hydrazone metal complex or a hydrazone polymer metal complex having a transition metal of Group 8, a transition metal of Group 9, a transition metal of Group 10, a transition metal of Group 10, and a transition metal of Group 11 as a central metal is used. It is preferable to use it. In particular, a hydrazone metal complex coordinated to a group 8 transition metal, a hydrazone metal complex coordinated to a group 9 transition metal, a hydrazone metal complex coordinated to a group 10 transition metal, and a group 11 transition metal Among the hydrazone metal complexes coordinated to, two kinds selected from a mixture of at least two kinds or three kinds or more, a group 8 transition metal, a group 9 transition metal, a group 10 transition metal and a group 11 transition metal A multicomponent system such as a hydrazone polymer metal complex coordinated to the above or three or more transition metals is preferable.

具体的には、アルカリ型直接エタノール燃料電池のアノード用触媒としては、触媒金属として、Ni、Co、Feが好ましく、特にこれらの触媒金属を2種以上用いた多元系、中でもNi、Co及びFeの三元系であることが好ましい。一方、アルカリ燃料電池のカソード用触媒としては、触媒金属として、Ni、Co、Fe、Mnが好ましく、特にこれらの触媒金属を2種以上用いた多元系、中でもNi及びCoの二元系であることが好ましい。   Specifically, as a catalyst for an anode of an alkaline direct ethanol fuel cell, Ni, Co, and Fe are preferable as catalyst metals. Particularly, a multi-component system using two or more of these catalyst metals, particularly Ni, Co, and Fe. The ternary system is preferable. On the other hand, the catalyst for the cathode of the alkaline fuel cell is preferably Ni, Co, Fe, or Mn as the catalyst metal, and in particular, a multi-component system using two or more of these catalyst metals, particularly Ni and Co. It is preferable.

ここで、アルカリ燃料電池の一形態例について図1を用いて説明する。尚、アルカリ燃料電池は、以下に示す構造に限定されるものではない。
アルカリ燃料電池は、電解質1として水酸化カリウム水溶液やアニオン交換樹脂膜等を用い、酸化剤極3において、酸素と水との反応(1/2O+HO→2HO)により生成した水酸化物イオンが、電解質1を通って燃料極2へと移動し、燃料極2において燃料(水素ガス等)と反応により水と電子を生じる(H+2OH→2HO+2e)。燃料極2で生成した水は、電解質1を経て酸化剤極へと移動し、酸化剤極3の電極反応原料となる。
アニオン交換膜としては、酸化剤極で生成した水酸化物イオンを燃料極へと移動させることができるものであれば、特に限定されないが、例えば、4級アンモニウム基、ピリジニウム基などのアニオン交換基を有するアニオン交換樹脂を含有する固体高分子膜が挙げられる。
Here, an example of an alkaline fuel cell will be described with reference to FIG. The alkaline fuel cell is not limited to the structure shown below.
The alkaline fuel cell uses a potassium hydroxide aqueous solution, an anion exchange resin membrane, or the like as the electrolyte 1, and the hydroxide produced by the reaction of oxygen and water ( 1/2 O 2 + H 2 O → 2HO ) at the oxidizer electrode 3. Object ions move to the fuel electrode 2 through the electrolyte 1, and water and electrons are generated in the fuel electrode 2 by reaction with fuel (hydrogen gas or the like) (H 2 + 2OH → 2H 2 O + 2e ). The water generated at the fuel electrode 2 moves to the oxidant electrode through the electrolyte 1 and becomes an electrode reaction raw material of the oxidant electrode 3.
The anion exchange membrane is not particularly limited as long as it can move hydroxide ions generated at the oxidant electrode to the fuel electrode. For example, anion exchange groups such as a quaternary ammonium group and a pyridinium group can be used. And a solid polymer membrane containing an anion exchange resin having

燃料極は、上記水素と水酸化物イオンから水を生成させる触媒作用を有する電極触媒を含み、酸化剤極は、上記酸素と水から水酸化物イオンを生成させる触媒作用を有する電極触媒を含む。各電極の構成としては、これら電極触媒を、該電極触媒へ燃料又は酸化物を供給できる多孔質構造及び電子伝導性を有する多孔質導電体上に配置した構成が挙げられる。多孔質導電体としては、例えば、カーボンペーパー、カーボンシート等の導電性炭素質の他、Ni、Ti等の金属メッシュ、金属発泡体等が挙げられる。各電極は、電極触媒が固定されれば、上記のような多孔質導電体がなくてもよい。
燃料極の外側には、燃料不透過性且つ導電性を有する燃料極側セパレータ4、酸化剤の外側には、酸化剤不透過性且つ導電性を有する酸化剤極側セパレータ5が配置され、燃料電池用単セルが構成される。
そして、燃料極には燃料極側セパレータを介して水素を含有又は水素発生化合物を含有する燃料が供給され、酸化剤極には酸化剤極側セパレータを介して空気を含有又は空気発生化合物を含有する酸化剤が供給され、発電する。
The fuel electrode includes an electrode catalyst having a catalytic action for generating water from the hydrogen and hydroxide ions, and the oxidant electrode includes an electrode catalyst having a catalytic action for generating hydroxide ions from the oxygen and water. . Examples of the configuration of each electrode include a configuration in which these electrode catalysts are arranged on a porous conductor capable of supplying fuel or oxide to the electrode catalyst and a porous conductor having electronic conductivity. Examples of the porous conductor include conductive carbonaceous materials such as carbon paper and carbon sheets, metal meshes such as Ni and Ti, and metal foams. Each electrode may not have the porous conductor as described above as long as the electrode catalyst is fixed.
A fuel electrode side separator 4 having fuel impermeability and conductivity is disposed outside the fuel electrode, and an oxidant electrode side separator 5 having oxidant impermeability and conductivity is disposed outside the oxidant. A battery single cell is constructed.
The fuel electrode is supplied with a fuel containing hydrogen or containing a hydrogen generating compound via a fuel electrode side separator, and the oxidant electrode contains air or contains an air generating compound via an oxidant electrode side separator. To generate electricity.

(ヒドラゾンモノマーの製造)
還流冷却管、温度計、攪拌機を備えた3Lの4つ口フラスコに、2−ヒドラジノピリジン33.8g(0.309mol)及びメタノール2Lを仕込み、攪拌下、室温で濃硫酸1mLを滴下した。その後、2,4−ジヒドロキシアセトフェノン44.0g(0.289mol)を仕込み、40℃で8時間攪拌して反応させた。
析出した結晶をろ過で取り出し、メタノール及び水で洗浄し、60℃で乾燥後、淡黄色の結晶として33.0gの4−{1−[(2−ピリジン−2−イル)ヒドラゾノ]エチル}ベンゼン1,3−ジオールを得た。収率は50%だった。
得られた結晶について、GC/MS、H−NMR、IR測定を行った。結果を以下に示す。
(Manufacture of hydrazone monomer)
Into a 3 L four-necked flask equipped with a reflux condenser, a thermometer, and a stirrer was charged 33.8 g (0.309 mol) of 2-hydrazinopyridine and 2 L of methanol, and 1 mL of concentrated sulfuric acid was added dropwise at room temperature with stirring. Thereafter, 44.0 g (0.289 mol) of 2,4-dihydroxyacetophenone was charged, and the reaction was stirred at 40 ° C. for 8 hours.
The precipitated crystals were removed by filtration, washed with methanol and water, dried at 60 ° C., and then 33.0 g of 4- {1-[(2-pyridin-2-yl) hydrazono] ethyl} benzene as pale yellow crystals. 1,3-diol was obtained. The yield was 50%.
About the obtained crystal | crystallization, GC / MS, < 1 > H-NMR, and IR measurement were performed. The results are shown below.

・融点 : 230℃
・GC/MS(EI) : M/Z=243(M)、228(M−CH
H−NMR(300MHz、DMSO−d) : δ=2.33(s,3H),6.26(d,1H,J=2.4Hz),6.31(dd,1H,J=2.4Hz,J=8.7Hz),6.80(ddd,1H,J=0.7Hz,J=5.1Hz,J=7.2Hz),6.89(d,1H,J=8.4Hz),7.36(d,1H,J=8.7Hz),7.64(ddd,1H,J=1.8Hz,J=7.2Hz,J=8.4Hz),8.18(ddd,1H,J=0.7Hz,J=1.8Hz,J=5.1Hz),δ=9.65(s,1H),δ=9.93(s,1H),δ=13.36(s,1H),
・IR(KBr、cm−1) : 3440,3372,1630,1598,1578,1506,1454,1255,767
Melting point: 230 ° C
GC / MS (EI): M / Z = 243 (M + ), 228 (M + -CH 3 )
· 1 H-NMR (300MHz, DMSO-d 6): δ = 2.33 (s, 3H), 6.26 (d, 1H, J = 2.4Hz), 6.31 (dd, 1H, J = 2.4 Hz, J = 8.7 Hz), 6.80 (ddd, 1H, J = 0.7 Hz, J = 5.1 Hz, J = 7.2 Hz), 6.89 (d, 1H, J = 8. 4 Hz), 7.36 (d, 1 H, J = 8.7 Hz), 7.64 (ddd, 1 H, J = 1.8 Hz, J = 7.2 Hz, J = 8.4 Hz), 8.18 (ddd , 1H, J = 0.7 Hz, J = 1.8 Hz, J = 5.1 Hz), δ = 9.65 (s, 1H), δ = 9.93 (s, 1H), δ = 13.36 ( s, 1H),
IR (KBr, cm −1 ): 3440, 3372, 1630, 1598, 1578, 1506, 1454, 1255, 767

(ヒドラゾンポリマーの製造)
200mLフラスコで上記にて得られたヒドラゾンモノマー8gをエタノール水溶液(水:エタノール=1:2)100mLに懸濁させ、ヒドラゾン溶液を調製した。次に、該ヒドラゾン溶液に、フェノール4.0g、ホルムアルデヒド(37wt%)4.0mL、NaOH0.25gを加え、110℃にて加熱還流を行い、6時間反応させた。
反応後、HCl水溶液にてpH2〜3に調整し、さらに1時間反応を継続した。得られた懸濁液をNaOH水溶液にて中和した後、濾過し、濾物をアセトン水溶液[アセトン:水=1:1]で3回洗浄した。得られた固形物(ヒドラゾンポリマー)を65℃で3日間乾燥させた。
(Manufacture of hydrazone polymer)
In a 200 mL flask, 8 g of the hydrazone monomer obtained above was suspended in 100 mL of an aqueous ethanol solution (water: ethanol = 1: 2) to prepare a hydrazone solution. Next, 4.0 g of phenol, 4.0 mL of formaldehyde (37 wt%), and 0.25 g of NaOH were added to the hydrazone solution, and the mixture was heated to reflux at 110 ° C. and reacted for 6 hours.
After the reaction, the pH was adjusted to 2-3 with an aqueous HCl solution, and the reaction was further continued for 1 hour. The obtained suspension was neutralized with an aqueous NaOH solution and then filtered, and the residue was washed three times with an aqueous acetone solution [acetone: water = 1: 1]. The obtained solid (hydrazone polymer) was dried at 65 ° C. for 3 days.

得られた固形物について、示差走査熱量測定(DSC:Differential scanning calorimetry)を行ったところ、400℃までは吸熱を示す負のピークが観測されなかった。   When the obtained solid was subjected to differential scanning calorimetry (DSC), no negative peak indicating endotherm was observed up to 400 ° C.

また、得られたポリマーについて、IR測定を行った。図5は、ヒドラゾンポリマーのIRスペクトルである。また、IRスペクトルの代表的なピークを以下に示す。
IR(KBr、cm−1) : 3300,1600,1480,1443,1371,1306,1148,1092,989,770,512
Moreover, IR measurement was performed about the obtained polymer. FIG. 5 is an IR spectrum of the hydrazone polymer. In addition, typical peaks of the IR spectrum are shown below.
IR (KBr, cm −1 ): 3300, 1600, 1480, 1443, 1371, 1306, 1148, 1092, 989, 770, 512

(ヒドラゾン金属錯体(1)の製造)
まず、上記にて得られたヒドラゾンモノマー0.5gを100mLのアセトンと混合し、攪拌した。続いて、0.08gのCo(AcO)・4HO、0.13gのNi(AcO)・4HO、0.08gのFe(AcO)・4HOを加え、攪拌した。さらに、1MのNaOH水溶液約100mLを加え、pH9付近に調整した。
10時間攪拌した後、ろ過し、得られた濾物を数回水で洗浄した。得られた固形物(ヒドラゾン金属錯体(1))を、65℃で真空乾燥した。
(Production of hydrazone metal complex (1))
First, 0.5 g of the hydrazone monomer obtained above was mixed with 100 mL of acetone and stirred. Subsequently, 0.08 g of Co (AcO) 2 .4H 2 O, 0.13 g of Ni (AcO) 2 .4H 2 O, and 0.08 g of Fe (AcO) 2 .4H 2 O were added and stirred. Furthermore, about 100 mL of 1M NaOH aqueous solution was added, and it adjusted to pH9 vicinity.
After stirring for 10 hours, the mixture was filtered, and the obtained residue was washed several times with water. The obtained solid (hydrazone metal complex (1)) was vacuum-dried at 65 ° C.

(ヒドラゾン高分子金属錯体(1)の製造)
まず、上記にて得られたヒドラゾンポリマー1.0gを20mLのアセトンと混合し、攪拌した。続いて、0.5gのCo(AcO)・4HO、0.5gのNi(AcO)・4HO、0.5gのFe(AcO)・4HO、及び、アセトン15mLを加え、攪拌した。さらに、1MのNaOH水溶液約20mLを加え、pH9付近に調整した。
10時間攪拌した後、ろ過し、得られた濾物を数回水で洗浄した。得られた固形物(ヒドラゾン高分子金属錯体(1))を、65℃で真空乾燥した。
(Production of hydrazone polymer metal complex (1))
First, 1.0 g of the hydrazone polymer obtained above was mixed with 20 mL of acetone and stirred. Subsequently, 0.5 g of Co (AcO) 2 .4H 2 O, 0.5 g of Ni (AcO) 2 .4H 2 O, 0.5 g of Fe (AcO) 2 .4H 2 O, and 15 mL of acetone were added. Added and stirred. Furthermore, about 20 mL of 1M NaOH aqueous solution was added, and it adjusted to pH9 vicinity.
After stirring for 10 hours, the mixture was filtered, and the obtained residue was washed several times with water. The obtained solid (hydrazone polymer metal complex (1)) was vacuum-dried at 65 ° C.

(アノード用触媒(a)の製造)
上記にて得られたヒドラゾン金属錯体(1)0.10gとカーボン粒子(Valkan XC−72R)1.00gとを混合した。該混合物を石英ガラス管内に設置し、石英ガラス管内に水素ガスを導入(250mL/min)して昇温速度6.5℃で360℃まで昇温した(図2に示す熱処理装置参照)。360℃を2時間保持し、ヒドラゾン金属錯体(1)の酢酸塩を還元すると共に、該金属錯体を焼成した。その後、室温まで降温させ、水素ガスを停止し、アノード用触媒(a)を得た。
尚、図2に示す熱処理装置において、石英ガラス管内の温度は熱電対によりモニターし、温調のマントルヒーターによりコントールした。また、石英ガラス管に導入されるガスの流量はフローメーターにより調節した。ガラスウールは、管内の試料がガス流で移動しないようにするために用いた。
(Production of catalyst for anode (a))
0.10 g of the hydrazone metal complex (1) obtained above and 1.00 g of carbon particles (Valkan XC-72R) were mixed. The mixture was placed in a quartz glass tube, hydrogen gas was introduced into the quartz glass tube (250 mL / min), and the temperature was raised to 360 ° C. at a heating rate of 6.5 ° C. (see the heat treatment apparatus shown in FIG. 2). At 360 ° C. for 2 hours, the hydrazone metal complex (1) acetate was reduced and the metal complex was calcined. Thereafter, the temperature was lowered to room temperature, hydrogen gas was stopped, and an anode catalyst (a) was obtained.
In the heat treatment apparatus shown in FIG. 2, the temperature in the quartz glass tube was monitored with a thermocouple and controlled with a temperature-controlled mantle heater. The flow rate of the gas introduced into the quartz glass tube was adjusted with a flow meter. Glass wool was used to keep the sample in the tube from moving with the gas flow.

(アノード用触媒(A)の製造)
上記にて得られたヒドラゾン高分子金属錯体(1)0.10gとカーボン粒子(Valkan XC−72R)1.00gとを混合した。該混合物を石英ガラス管内に設置し、石英ガラス管内に水素ガスを導入(250mL/min)して昇温速度6.5℃で360℃まで昇温した(図2参照)。360℃を2時間保持し、ヒドラゾン高分子金属錯体(1)の酢酸塩を還元すると共に、該高分子金属錯体を焼成した。その後、室温まで降温させ、水素ガスを停止し、アノード用触媒(A)を得た。
(Manufacture of anode catalyst (A))
0.10 g of the hydrazone polymer metal complex (1) obtained above and 1.00 g of carbon particles (Valkan XC-72R) were mixed. The mixture was placed in a quartz glass tube, hydrogen gas was introduced into the quartz glass tube (250 mL / min), and the temperature was raised to 360 ° C. at a temperature rising rate of 6.5 ° C. (see FIG. 2). The temperature of 360 ° C. was maintained for 2 hours to reduce the acetate of the hydrazone polymer metal complex (1) and to fire the polymer metal complex. Thereafter, the temperature was lowered to room temperature, hydrogen gas was stopped, and an anode catalyst (A) was obtained.

[触媒の評価]
(アノード用触媒(a)の評価)
上記にて得られたアノード用触媒(a)0.5gを、約10mLの水に分散させ、該触媒分散液をニッケル製の多孔体シート(ニッケルフォーム、厚さ約1mm)に塗布し(36mm角、0.3mm)、乾燥してアノード電極(厚さ0.3mm)とした。一方、カソード用触媒(上記アノード用触媒(a)と同じもの)0.5gを、テトラフルオロエチレン0.05gと共に、超音波分散により約10mLの水に分散させ、該触媒分散液をカーボン製の多孔体シート(カーボンシート、厚さ約1mm)にスプレー塗布し(36mm角、0.2mm)、乾燥してカソード電極とした。
アニオン交換膜(炭化水素系膜、膜厚40μm、65mm角)を、アノード電極及びカソード電極の触媒分散液塗布面と接するように、アノード電極及びカソード電極で挟み込み、さらに、セル治具に設置して評価用燃料電池セル1を作製した。
評価用燃料電池セル1について、以下の条件下、ガルバノスタットによりI−V特性を測定した。結果を図3に示す。
[Evaluation of catalyst]
(Evaluation of anode catalyst (a))
0.5 g of the anode catalyst (a) obtained above was dispersed in about 10 mL of water, and the catalyst dispersion was applied to a nickel porous sheet (nickel foam, thickness of about 1 mm) (36 mm). Corner, 0.3 mm) and dried to obtain an anode electrode (thickness 0.3 mm). On the other hand, 0.5 g of a cathode catalyst (same as the above-mentioned anode catalyst (a)) is dispersed in about 10 mL of water together with 0.05 g of tetrafluoroethylene by ultrasonic dispersion, and the catalyst dispersion is made of carbon. A porous sheet (carbon sheet, thickness of about 1 mm) was spray-coated (36 mm square, 0.2 mm) and dried to obtain a cathode electrode.
An anion exchange membrane (hydrocarbon-based membrane, film thickness 40 μm, 65 mm square) is sandwiched between the anode electrode and the cathode electrode so as to be in contact with the catalyst dispersion liquid application surface of the anode electrode and the cathode electrode, and further installed in the cell jig. Thus, a fuel cell 1 for evaluation was produced.
About the evaluation fuel cell 1, the IV characteristics were measured with a galvanostat under the following conditions. The results are shown in FIG.

<I−V特性測定条件>
・アノード燃料:KOHエタノール水溶液(エタノール10wt%、KOH 1M)
・アノード燃料流量:約600mL/min
・カソードガス:空気
・カソードガス流量:130mL/min
・温度(恒温槽温度):50℃
<IV characteristics measurement conditions>
・ Anode fuel: KOH ethanol aqueous solution (ethanol 10wt%, KOH 1M)
・ Anode fuel flow rate: Approximately 600 mL / min
・ Cathode gas: Air ・ Cathode gas flow rate: 130 mL / min
・ Temperature (constant temperature): 50 ℃

(アノード用触媒(A)の評価)
上記アノード用触媒(a)の評価において、アノード用触媒(a)の代わりにアノード用触媒(A)を用いる(アノード用触媒及びカソード用触媒共に)以外は、同様にして、評価用燃料電池セル2を作製し、I−V特性を測定した。結果を図4に示す。
(Evaluation of anode catalyst (A))
In the evaluation of the anode catalyst (a), a fuel cell for evaluation was similarly obtained except that the anode catalyst (A) was used instead of the anode catalyst (a) (both the anode catalyst and the cathode catalyst). 2 was prepared and the IV characteristics were measured. The results are shown in FIG.

(結果)
図3に示すように、ヒドラゾンモノマーを原料とするアノード用触媒(a)を用いた燃料電池セル1は、OCV約0.65V、最高出力密度約0.88mW/cm(電流密度3.8mA/cmの時)という良好な発電性能を示した。
また、図4に示すように、ヒドラゾンポリマーを原料とするアノード用触媒(A)を用いた燃料電池セル2は、OCV約0.58V、最高出力密度約1.4mW/cm(電流密度6.4mA/cmの時)という良好な発電性能を示した。
これらの結果から、ヒドラゾン高分子金属錯体を焼成して得られたアノード用触媒Aの方が、ヒドラゾン金属錯体を焼成して得られたアノード用触媒aよりも、大幅に高い出力密度が得られることがわかる。これは、ヒドラゾン金属錯体を用いる場合と比較して、ヒドラゾン高分子金属錯体を用いることによって、電極における触媒金属の分散性が向上したためと推測される。
(result)
As shown in FIG. 3, the fuel cell 1 using the anode catalyst (a) using hydrazone monomer as a raw material has an OCV of about 0.65 V, a maximum output density of about 0.88 mW / cm 2 (current density of 3.8 mA). The power generation performance was as high as / cm 2 .
As shown in FIG. 4, the fuel cell 2 using the anode catalyst (A) made of hydrazone polymer as a raw material has an OCV of about 0.58 V and a maximum output density of about 1.4 mW / cm 2 (current density of 6 Excellent power generation performance of 4 mA / cm 2 .
From these results, the anode catalyst A obtained by calcining the hydrazone polymer metal complex has a significantly higher output density than the anode catalyst a obtained by calcining the hydrazone metal complex. I understand that. This is presumably because the dispersibility of the catalyst metal in the electrode was improved by using the hydrazone polymer metal complex as compared with the case of using the hydrazone metal complex.

1 電解質
2 燃料極
3 酸化剤極
4 燃料極側セパレータ
4a 燃料流路
5 酸化剤極側セパレータ
5a 酸化剤流路
DESCRIPTION OF SYMBOLS 1 Electrolyte 2 Fuel electrode 3 Oxidant electrode 4 Fuel electrode side separator 4a Fuel flow path 5 Oxidant electrode side separator 5a Oxidant flow path

Claims (2)

下記式(6)で表される繰り返し単位を有することを特徴とする、ヒドラゾンポリマー。
Figure 0005546777
(上記式(6)中、Pyは2−ピリジル基、3−ピリジル基又は4−ピリジル基を示す。また、上記式(6)中、lは2以上の整数であり、m及びnはそれぞれ1以上の整数である。
A hydrazone polymer having a repeating unit represented by the following formula (6):
Figure 0005546777
(In said formula (6) , Py shows 2-pyridyl group, 3-pyridyl group, or 4-pyridyl group. Moreover, in said formula (6), l is an integer greater than or equal to 2, m and n are respectively It is an integer greater than or equal to 1. )
下記式(6)で表される繰り返し単位を有し、少なくとも1種の金属種に配位して金属錯体を形成することを特徴とする、金属錯体形成用ヒドラゾンポリマー。
Figure 0005546777
(上記式(6)中、Pyは2−ピリジル基、3−ピリジル基又は4−ピリジル基を示す。また、上記式(6)中、lは2以上の整数であり、m及びnはそれぞれ1以上の整数である。
A hydrazone polymer for forming a metal complex, which has a repeating unit represented by the following formula (6) and coordinates to at least one metal species to form a metal complex.
Figure 0005546777
(In said formula (6) , Py shows 2-pyridyl group, 3-pyridyl group, or 4-pyridyl group. Moreover, in said formula (6), l is an integer greater than or equal to 2, m and n are respectively It is an integer greater than or equal to 1. )
JP2009045349A 2009-02-27 2009-02-27 Hydrazone polymer and hydrazone polymer for metal complex formation Active JP5546777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009045349A JP5546777B2 (en) 2009-02-27 2009-02-27 Hydrazone polymer and hydrazone polymer for metal complex formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009045349A JP5546777B2 (en) 2009-02-27 2009-02-27 Hydrazone polymer and hydrazone polymer for metal complex formation

Publications (2)

Publication Number Publication Date
JP2010196002A JP2010196002A (en) 2010-09-09
JP5546777B2 true JP5546777B2 (en) 2014-07-09

Family

ID=42821041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009045349A Active JP5546777B2 (en) 2009-02-27 2009-02-27 Hydrazone polymer and hydrazone polymer for metal complex formation

Country Status (1)

Country Link
JP (1) JP5546777B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194513A (en) * 2009-02-27 2010-09-09 Toyota Motor Corp Method of producing metal catalyst

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITFI20040220A1 (en) * 2004-10-27 2005-01-27 Acta Spa USE OF METALLIC NANOSTRUCTURED CATALYSTS FOR THE PRODUCTION OF SYNTHESIS GASES AND GASY BLENDS RICH IN H2
JP4464997B2 (en) * 2007-08-31 2010-05-19 トヨタ自動車株式会社 Fuel cell electrode catalyst using hydrazone compound and fuel cell electrode catalyst using hydrazone polymer compound
JP4430698B2 (en) * 2007-08-31 2010-03-10 トヨタ自動車株式会社 Hydrazone compounds, hydrazone compounds for forming complexes, ligands for forming metal complexes, and monomers for producing polymer compounds
JP2010199018A (en) * 2009-02-27 2010-09-09 Hitachi Zosen Corp Iron group metal-containing electrode catalyst
JP2010194516A (en) * 2009-02-27 2010-09-09 Hitachi Zosen Corp Ammonia decomposition catalyst
JP2010194519A (en) * 2009-02-27 2010-09-09 Hitachi Zosen Corp Ammonia decomposition catalyst
JP2010194513A (en) * 2009-02-27 2010-09-09 Toyota Motor Corp Method of producing metal catalyst
JP2010194517A (en) * 2009-02-27 2010-09-09 Hitachi Zosen Corp Ammonia decomposition catalyst

Also Published As

Publication number Publication date
JP2010196002A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP5796813B2 (en) Sulfonate compound, polymer electrolyte membrane containing the same, and fuel cell containing the same
JP7460089B2 (en) ammonia fuel cell
EP1556916B1 (en) Platinum-free electrocatalyst materials
Du et al. Regio-and stereoselective electrochemical synthesis of sulfonylated enethers from alkynes and sulfonyl hydrazides
JP6275730B2 (en) Non-PGM catalyst for thermal decomposition multi-complex compound system ORR
JP6653434B2 (en) Method for producing anion exchange resin, method for producing electrolyte membrane for fuel cell, method for producing binder for forming electrode catalyst layer, method for producing battery electrode catalyst layer, and method for producing fuel cell
JP4464997B2 (en) Fuel cell electrode catalyst using hydrazone compound and fuel cell electrode catalyst using hydrazone polymer compound
JP4430698B2 (en) Hydrazone compounds, hydrazone compounds for forming complexes, ligands for forming metal complexes, and monomers for producing polymer compounds
JP2005133099A (en) Method for producing poly(2,5-benzimidazole), poly(2,5-benzimidazole), method for producing poly(2,5-benzimidazole) polyelectrolyte film, poly(2,5-benzimidazole) polyelectrolyte film and fuel cell comprising poly(2,5-benzimidazole) polyelectrolyte film
US20120237855A1 (en) Fuel Cells with Improved Durability
TW201217411A (en) Polymer composite modified product
JP5546777B2 (en) Hydrazone polymer and hydrazone polymer for metal complex formation
JP2010194513A (en) Method of producing metal catalyst
WO2022210641A1 (en) Fluorine-containing compound having sulfonic acid group and polymer electrolyte fuel cell
CN110064436B (en) Catalyst based on pyridyl tetrazine ring based metal coordination polymer and preparation method and application thereof
JP2018502821A (en) New compound and polymer electrolyte membrane using the same
Gao et al. Viologens-based redox mediators with tunable HOMO–LUMO energy gap for highly effective hydrogen peroxide electrosynthesis
JP2005171087A (en) Proton-conductive electrolyte and fuel cell
JP5384289B2 (en) Catalyst supporting method and membrane-electrode assembly
KR102533960B1 (en) Silver nanoclusters doped with rhodium hydride, manufacturing method thereof, and electrochemical catalyst for hydrogen gas generation
JP2010199018A (en) Iron group metal-containing electrode catalyst
JP2017010853A (en) Electrochemical oxygen reduction catalyst
Godoi et al. Application of Binary PdSb/C as an Anode in a Polymeric Electrolyte Reactor-Fuel Cell Type for Electrosynthesis of Methanol from Methane
JP4248837B2 (en) Sulfonic acid group-containing aromatic compound and method for producing the same
KR20230059141A (en) Silver nanoclusters doped with metal hydride, manufacturing method thereof, and electrochemical catalyst for hydrogen gas generation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120124

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140514

R151 Written notification of patent or utility model registration

Ref document number: 5546777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250