JP5544588B2 - Peptide bond compatible polyurethane resin composition and molded product thereof - Google Patents

Peptide bond compatible polyurethane resin composition and molded product thereof Download PDF

Info

Publication number
JP5544588B2
JP5544588B2 JP2010244129A JP2010244129A JP5544588B2 JP 5544588 B2 JP5544588 B2 JP 5544588B2 JP 2010244129 A JP2010244129 A JP 2010244129A JP 2010244129 A JP2010244129 A JP 2010244129A JP 5544588 B2 JP5544588 B2 JP 5544588B2
Authority
JP
Japan
Prior art keywords
polyurethane resin
peptide bond
solution
resin composition
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010244129A
Other languages
Japanese (ja)
Other versions
JP2012097157A (en
Inventor
義宏 野村
敏彦 北浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Original Assignee
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY filed Critical NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority to JP2010244129A priority Critical patent/JP5544588B2/en
Publication of JP2012097157A publication Critical patent/JP2012097157A/en
Application granted granted Critical
Publication of JP5544588B2 publication Critical patent/JP5544588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、ペプチド結合を有する高分子化合物を均一に包含し得るペプチド結合適合性ポリウレタン樹脂組成物、及びそれから得られる成型品に関する。   The present invention relates to a peptide bond-compatible polyurethane resin composition that can uniformly include a polymer compound having a peptide bond, and a molded product obtained therefrom.

畜肉・魚肉生産に伴って生じる皮、骨、獣毛、角、蹄、羽毛、ウロコなどの副産物は、ゼラチンやケラチンを多く含む天然の蛋白質資源である。例えば、皮は鞣された後に革製品として、その他の副産物は加水分解された後に飼料や肥料等として利用されている。しかし、その処理コストが製品単価に反映するのが困難であることから、産業廃棄物として処理される場合も多く、利用方法も限られている。   By-products such as skin, bone, animal hair, horns, hoofs, feathers, and scales that accompany livestock and fish production are natural protein resources that are rich in gelatin and keratin. For example, the leather is used as a leather product after being peeled, and the other by-products are used as feed, fertilizer, etc. after being hydrolyzed. However, since it is difficult to reflect the processing cost on the product unit price, it is often treated as industrial waste, and its usage is limited.

その一方で、特にゼラチンは、加温するとゾル化し、冷却するとゲル化する特性を生かし、グミやゼリー、電子レンジ用加熱食品等の食品用途としてのほか、漆加工品を始めとした木工用、壁紙の接着剤として、さらに注射助剤やカプセルなどの医療用材料、写真用フィルムコーティング剤としても利用されており、注目すべき蛋白質資源である。これらゼラチン等の蛋白質資源を活用しようとする際、機械的強度や熱耐性等を充分に確保できないおそれがある。こうした弱点となる蛋白質資源の物性を克服しながら所望の用途に活用すべく、種々の開発がなされてきた。   On the other hand, especially gelatin is sol-formed when heated, and gelled when cooled. For food applications such as gummi, jelly, and heated food for microwave ovens, As an adhesive for wallpaper, it is also used as a medical material such as injection aids and capsules, and as a film coating agent for photography, and is a remarkable protein resource. When trying to utilize protein resources such as gelatin, there is a fear that sufficient mechanical strength, heat resistance, etc. cannot be secured. Various developments have been made in order to utilize the desired properties while overcoming the physical properties of protein resources, which are such weak points.

例えば、特許文献1〜2には、ポリウレタン等の樹脂と、膠やゼラチン等の蛋白質とを特定の量比で配合することにより、多孔性を付与した樹脂製品が開示されている。また、特許文献3には、合成樹脂中に不溶化された蛋白質を包含させた樹脂製品が開示されている。しかしながら、これらはいずれも人工皮革の改質を目的としたものであり、樹脂中において充分に均一かつ安定的に蛋白質を包含させるものではない。   For example, Patent Documents 1 and 2 disclose resin products that are given porosity by blending a resin such as polyurethane and a protein such as glue or gelatin in a specific quantitative ratio. Patent Document 3 discloses a resin product including a protein insolubilized in a synthetic resin. However, these are all aimed at modifying artificial leather, and do not contain proteins sufficiently uniformly and stably in the resin.

他方、特許文献4には、水性化可能な蛋白質素材と、特定の水性ポリウレタン樹脂とからなる組成物が開示されている。しかしながら、これによって形成される皮膜は、水に浸漬すると溶解するおそれが高く、かかる樹脂を用いてフィルムやシートを形成した際、耐久性に問題があり、より有用な工業的活用の観点からすれば依然として改善の余地がある。   On the other hand, Patent Document 4 discloses a composition comprising a protein material that can be made aqueous and a specific aqueous polyurethane resin. However, the film formed thereby has a high possibility of dissolving when immersed in water, and when a film or sheet is formed using such a resin, there is a problem in durability, and it is necessary from the viewpoint of more useful industrial utilization. There is still room for improvement.

特許第2566799号公報Japanese Patent No. 2566799 特許第3981242号公報Japanese Patent No. 3981242 特許第3053879号公報Japanese Patent No. 3053879 特開2003−238810号公報JP 2003-238810 A

本発明は、本来的に水溶性であるゼラチン等の蛋白質資源を包含しながら、耐久性の高い樹脂組成物及びその成型品を提供することに関する。   The present invention relates to providing a highly durable resin composition and a molded product thereof while including protein resources such as gelatin that are inherently water-soluble.

本発明者らは、シラノール基を含むポリエーテル系ポリウレタン樹脂を用いることにより、ゼラチン等のペプチド結合を有する高分子化合物を有効に包含しつつ、優れた耐久性を発揮することのできる樹脂組成物を見出し、本発明を完成させるに至った。   By using a polyether-based polyurethane resin containing a silanol group, the present inventors can effectively include a polymer compound having a peptide bond such as gelatin and can exhibit excellent durability. As a result, the present invention has been completed.

すなわち、本発明は、ペプチド結合を有する高分子化合物と、シラノール基含有ポリエーテル系ポリウレタン樹脂とを含み、
前記シラノール基含有ポリエーテル系ポリウレタン樹脂に含まれる少なくとも一部のシラノール基が、シロキサン結合を形成していることを特徴とするペプチド結合適合性ポリウレタン樹脂組成物に係るものである。
That is, the present invention includes a polymer compound having a peptide bond and a silanol group-containing polyether polyurethane resin,
The present invention relates to a peptide bond-compatible polyurethane resin composition characterized in that at least a part of silanol groups contained in the silanol group-containing polyether polyurethane resin forms a siloxane bond.

また、本発明は、上記ペプチド結合適合性ポリウレタン樹脂組成物を用いることを特徴とする成型品に係るものである。
さらに、本発明は、(A)ペプチド結合を有する高分子化合物を含む溶液と、シラノール基含有ポリエーテル系ポリウレタン樹脂を含む溶液とを混合して混合溶液を得る工程、
(B)前記混合溶液を用いて予備成型品を得る工程、及び
(C)前記予備成型品を加熱乾燥させて、成型品を得る工程
を含むことを特徴とするペプチド結合適合性ポリウレタン樹脂組成物からなる成型品の製造方法に係るものである。
The present invention also relates to a molded article characterized by using the peptide bond-compatible polyurethane resin composition.
Furthermore, the present invention includes (A) a step of mixing a solution containing a polymer compound having a peptide bond and a solution containing a silanol group-containing polyether polyurethane resin to obtain a mixed solution,
(B) A step of obtaining a preformed product using the mixed solution, and (C) a step of obtaining a molded product by heating and drying the preformed product, to obtain a peptide bond-compatible polyurethane resin composition The manufacturing method of the molded article which consists of.

本発明のペプチド結合適合性ポリウレタン樹脂組成物によれば、シラノール基含有ポリエーテル系ポリウレタン樹脂が含む−CO−NH−結合により、ペプチド結合を有する高分子化合物との良好な親和性を確保して、樹脂組成物中で均一にかかる高分子化合物を分散させることができる。また、上記ポリウレタン樹脂が有するシラノール基がシロキサン結合を形成することによって、分散されたペプチド結合を有する高分子化合物を堅固に包囲することができ、かかる高分子化合物の溶出を有効に抑制しつつ、優れた機械的強度及び熱耐性を発揮する樹脂組成物を得ることができる。   According to the peptide bond-compatible polyurethane resin composition of the present invention, the —CO—NH— bond contained in the silanol group-containing polyether polyurethane resin ensures good affinity with a polymer compound having a peptide bond. The polymer compound can be uniformly dispersed in the resin composition. In addition, the silanol group of the polyurethane resin forms a siloxane bond, so that a polymer compound having a dispersed peptide bond can be tightly surrounded, while effectively suppressing elution of the polymer compound, A resin composition exhibiting excellent mechanical strength and heat resistance can be obtained.

したがって、上記ペプチド結合適合性ポリウレタン樹脂組成物を用いれば、耐久性に優れたフィルムやシート等の成型品を容易に得ることができ、ペプチド結合を有する高分子化合物の特性を充分に発揮させることが可能となる。   Therefore, if the above-mentioned peptide bond-compatible polyurethane resin composition is used, it is possible to easily obtain molded products such as films and sheets having excellent durability, and sufficiently exhibit the characteristics of polymer compounds having peptide bonds. Is possible.

本発明品による湿潤状態でのフィルム引張試験の結果を示す図である。(a)の縦軸は荷重(N)、(b)の縦軸は伸び(mm)を示す。It is a figure which shows the result of the film tension test in the wet state by this-article product. The vertical axis of (a) indicates load (N), and the vertical axis of (b) indicates elongation (mm). 本発明品における熱的安定性を評価した結果を示す図である。縦軸は熱流、横軸は温度(℃)を示す。It is a figure which shows the result of having evaluated the thermal stability in this invention goods. The vertical axis represents heat flow and the horizontal axis represents temperature (° C.). 本発明品におけるゼラチン溶出率を示す図である。縦軸はゼラチン溶出率(%)を示す。It is a figure which shows the gelatin elution rate in this invention goods. The vertical axis represents gelatin elution rate (%). 本発明品における吸水速度を評価した結果を示す図である。縦軸は吸水率(%)、横軸は時間(min)を示す。It is a figure which shows the result of having evaluated the water absorption rate in this invention goods. The vertical axis represents water absorption (%), and the horizontal axis represents time (min).

以下、本発明について詳細に説明する。
本発明におけるペプチド結合を有する高分子化合物とは、分子内にペプチド結合を有する天然由来の高分子化合物又は化学合成によって得られる高分子化合物を意味する。例えば、牛、豚、羊、山羊、馬、鶏又は魚の真皮や骨或いは真皮、靭帯、腱、血管壁等、魚の鱗、羽毛、羊毛、豚毛、牛毛等の原料から得ることができる蛋白質等の天然由来の高分子化合物や、分子内における所望の官能基のペプチド結合への置換等の化学合成によって得られる高分子化合物が挙げられる。上記ペプチド結合を有する高分子化合物としては、より具体的には、例えば、ゼラチン、コラーゲン、加水分解コラーゲン等が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なかでも、ゼラチンが好ましい。
Hereinafter, the present invention will be described in detail.
The polymer compound having a peptide bond in the present invention means a naturally occurring polymer compound having a peptide bond in the molecule or a polymer compound obtained by chemical synthesis. For example, protein obtained from raw materials such as cattle, pig, sheep, goat, horse, chicken or fish dermis or bone or dermis, ligament, tendon, blood vessel wall, fish scales, feathers, wool, pig hair, cow hair, etc. Or a polymer compound obtained by chemical synthesis such as substitution of a desired functional group in a molecule with a peptide bond. More specifically, examples of the polymer compound having a peptide bond include gelatin, collagen, hydrolyzed collagen, and the like. These may be used alone or in combination of two or more. Of these, gelatin is preferable.

本発明におけるシラノール基含有ポリエーテル系ポリウレタン樹脂とは、ポリエーテル骨格を有し、かつ分子内に少なくとも1個のシラノール基を有するポリウレタン樹脂を意味する。シラノール基含有ポリエーテル系ポリウレタン樹脂は、界面活性剤等の乳化剤の添加を要する強制乳化型のポリウレタン樹脂とは違い、乳化剤を添加することなく、水中で良好に乳化かつ分散し得る自己乳化型のポリウレタン樹脂である。かかるポリウレタン樹脂を製造するには、通常、ポリイソシアネートとポリエーテルポリオールとを反応させながらポリアミン化合物で鎖延長反応させたウレタンプレポリマーを、水に分散させてウレタンプレポリマー溶液とし、該溶液にシラノール基導入剤を添加して、ポリマー鎖の一部にシラノール基を導入することによって得る。   The silanol group-containing polyether polyurethane resin in the present invention means a polyurethane resin having a polyether skeleton and having at least one silanol group in the molecule. Unlike the forced emulsification type polyurethane resin that requires the addition of an emulsifier such as a surfactant, the silanol group-containing polyether polyurethane resin is a self-emulsifying type that can be well emulsified and dispersed in water without the addition of an emulsifier. Polyurethane resin. In order to produce such a polyurethane resin, a urethane prepolymer obtained by chain extension reaction with a polyamine compound while reacting polyisocyanate and polyether polyol is usually dispersed in water to obtain a urethane prepolymer solution, and silanol is added to the solution. It is obtained by adding a group introducing agent and introducing silanol groups into part of the polymer chain.

上記ポリイソシアネートとしては、分子内にイソシアネート基を複数有する化合物であれば特に限定されず、具体的には、2,4‐トリレンジイソシアネート(2,4‐TDI)、2,6‐トリレンジイソシアネート(2,6‐TDI)、4,4'‐ジフェニルメタンジイソシアネート(4,4'‐MDI)、2,4'‐ジフェニルメタンジイソシアネート(2,4'‐MDI)、1,4‐フェニレンジイソシアネート、キシリレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、トリジンジイソシアネート(TODI)、1,5‐ナフタレンジイソシアネート(NDI)等の芳香族ポリイソシアネート、ヘキサメチレンジイソシアネート(HDI)、トリメチルヘキサメチレンジイソシアネート(TMHDI)、リジンジイソシアネート、ノルボルナンジイソシアナートメチル(NBDI)等の脂肪族ポリイソシアネート、トランスシクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート(IPDI)、H6XDI(水添XDI)、H12MDI(水添MDI)、H6TDI(水添TDI)等の脂環式ポリイソシアネートなどのジイソシアネート化合物;ポリメチレンポリフェニレンポリイソシアネートなどのポリイソシアネート化合物;これらのイソシアネート化合物のカルボジイミド変性ポリイソシアネート;これらのイソシアネート化合物のイソシアヌレート変性ポリイソシアネート等が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。 The polyisocyanate is not particularly limited as long as it is a compound having a plurality of isocyanate groups in the molecule. Specifically, 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI), 4,4'-diphenylmethane diisocyanate (4,4'-MDI), 2,4'-diphenylmethane diisocyanate (2,4'-MDI), 1,4-phenylene diisocyanate, xylylene diisocyanate Aromatic polyisocyanates such as (XDI), tetramethylxylylene diisocyanate (TMXDI), tolidine diisocyanate (TODI), 1,5-naphthalene diisocyanate (NDI), hexamethylene diisocyanate (HDI), trimethylhexamethylene diisocyanate (TMH) DI), lysine diisocyanate, aliphatic polyisocyanate such as norbornane diisocyanate methyl (NBDI), transcyclohexane-1,4-diisocyanate, isophorone diisocyanate (IPDI), H 6 XDI (hydrogenated XDI), H 12 MDI (water) Added MDI), diisocyanate compounds such as alicyclic polyisocyanates such as H 6 TDI (hydrogenated TDI); polyisocyanate compounds such as polymethylene polyphenylene polyisocyanate; carbodiimide-modified polyisocyanates of these isocyanate compounds; Examples include isocyanurate-modified polyisocyanate. These may be used alone or in combination of two or more.

上記ポリエーテルポリオールとしては、分子内に複数の水酸基を有するポリエーテル骨格を含む化合物であれば特に限定されず、具体的には、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、ビスフェノールA等のジオール類;トリメチロールエタン、トリメチロールプロパン、グリセリン等のトリオール類;ソルビトール等;更にアンモニア、エチレンジアミン、尿素、モノメチルジエタノールアミン、モノエチルジエタノールアミン等のアミン類の1種又は2種以上の存在下、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド等を開環重合して得られるランダム又はブロック共重合体;この他エチレン・α−オレフィン骨格を有するポリオレフィン骨格のポリオール;アクリル骨格のポリオール等のポリアルキレンポリエーテルポリオールのほか、エポキシポリオール、ブタジエンポリオール等のポリエーテルポリオールが挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。   The polyether polyol is not particularly limited as long as it is a compound containing a polyether skeleton having a plurality of hydroxyl groups in the molecule. Specifically, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3- Diols such as butanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, bisphenol A; triols such as trimethylolethane, trimethylolpropane, glycerin; sorbitol, etc .; further ammonia, ethylenediamine, Ring-opening polymerization of ethylene oxide, propylene oxide, butylene oxide, styrene oxide, etc. in the presence of one or more amines such as urea, monomethyldiethanolamine and monoethyldiethanolamine Random or block copolymer obtained in this way; Polyolefin skeleton polyol having ethylene / α-olefin skeleton; Polyalkylene polyether polyol such as acrylic skeleton polyol, and polyether polyol such as epoxy polyol and butadiene polyol Can be mentioned. These may be used alone or in combination of two or more.

ポリアミン化合物としては、アミノ基又はイミノ基を少なくとも2個以上有するものでれば特に限定されず、具体的には、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレントリアミン、テトラエチレンペンタミン、フェニレンジアミン、ペンタメチレンヘキサミン、ヘキサメチレンヘプタミン、ヒドラジン、フェニルヒドラジン、ポリエチレンイミン等が挙げられる。   The polyamine compound is not particularly limited as long as it has at least two amino groups or imino groups. Specifically, ethylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetriamine, tetraethylenepentamine, phenylenediamine, Examples include pentamethylenehexamine, hexamethyleneheptamine, hydrazine, phenylhydrazine, and polyethyleneimine.

鎖延長反応させる際、さらに、ポリアミン化合物以外の他の鎖延長剤を用いてもよい。かかる鎖延長剤としては、1,4−ブタンジオール、1,6−ヘキサンジオール、1,4−ビス(2−ヒドロキシエトキシ)ベンゼン等が挙げられる。そのほか、本発明の目的とする効果を損なわない範囲内で、任意の添加剤を用いてよい。   When performing the chain extension reaction, another chain extender other than the polyamine compound may be used. Examples of such chain extenders include 1,4-butanediol, 1,6-hexanediol, 1,4-bis (2-hydroxyethoxy) benzene, and the like. In addition, any additive may be used as long as the effects of the present invention are not impaired.

なお、上記ウレタンプレポリマーの調製においては、ウレタン化反応用の触媒を用いることが好ましい。かかるウレタン化反応用触媒としては、ジブチルスズジラウレート、ジブチルスズジアセテート、ジブチルスズチオカルボキシレート、ジブチルスズジマレエート、ジオクチルスズチオカルボキシレート、オクテン酸スズ、モノブチルスズオキシド等の有機スズ化合物;塩化第一スズ等の無機スズ化合物;オクテン酸鉛等の有機鉛化合物;トリエチレンジアミン等の環状アミン類;p-トルエンスルホン酸、メタンスルホン酸、フルオロ硫酸等の有機スルホン酸;硫酸、リン酸、過塩素酸等の無機酸;ナトリウムアルコラート、水酸化リチウム、アルミニウムアルコラート、水酸化ナトリウム等の塩基類;テトラブチルチタネート、テトラエチルチタネート、テトライソプロピルチタネート等のチタン化合物;ビスマストリス(2−エチルヘキサノエート)等のビスマス系化合物;四級アンモニウム塩等が挙げられる。これら触媒は、1種単独で用いてもよく、2種以上組み合わせて用いてもよい。   In the preparation of the urethane prepolymer, a catalyst for urethanization reaction is preferably used. Examples of the catalyst for urethanization reaction include dibutyltin dilaurate, dibutyltin diacetate, dibutyltin thiocarboxylate, dibutyltin dimaleate, dioctyltin thiocarboxylate, tin octenoate, monobutyltin oxide and the like; stannous chloride, etc. Inorganic lead compounds; organic lead compounds such as lead octenoate; cyclic amines such as triethylenediamine; organic sulfonic acids such as p-toluenesulfonic acid, methanesulfonic acid, fluorosulfuric acid; sulfuric acid, phosphoric acid, perchloric acid, etc. Inorganic acids; bases such as sodium alcoholate, lithium hydroxide, aluminum alcoholate, sodium hydroxide; titanium compounds such as tetrabutyl titanate, tetraethyl titanate, tetraisopropyl titanate; bismuth tris (2-ethylhexyl) Bismuth compounds such as sanoates); quaternary ammonium salts and the like. These catalysts may be used alone or in combination of two or more.

上記のように調製されたウレタンプレポリマーにシラノール基含有導入剤を反応させることによって、ポリマー鎖にシラノール基を付加させる。シラノール基導入剤とは、分子内にイソシアネート基と反応する活性水素基と、加水分解性ケイ素基とを有する化合物を意味する。イソシアネート基と反応する活性水素基としては、例えば、メルカプト基、水酸基、アミノ基等が挙げられる。加水分解性ケイ素基としては、加水分解を受け得る加水分解性基が1個のケイ素原子に1〜3個の範囲で結合している基を意味し、かかる加水分解性基としては、具体的には、水素原子、ハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基等が挙げられる。   By reacting the urethane prepolymer prepared as described above with a silanol group-containing introduction agent, a silanol group is added to the polymer chain. The silanol group introducing agent means a compound having an active hydrogen group that reacts with an isocyanate group in the molecule and a hydrolyzable silicon group. Examples of the active hydrogen group that reacts with an isocyanate group include a mercapto group, a hydroxyl group, and an amino group. The hydrolyzable silicon group means a group in which a hydrolyzable group that can be hydrolyzed is bonded to one silicon atom in the range of 1 to 3, and specific examples of the hydrolyzable group include Examples include a hydrogen atom, a halogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an aminooxy group, a mercapto group, and an alkenyloxy group.

上記シラノール基導入剤としては、具体的には、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリエトキシシラン、γ−(2−アミノエチル)アミノプロピルジメトキシシラン、γ−(2−アミノエチル)アミノプロピルジエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルジメトキシシラン、γ−アミノプロピルジエトキシシラン等が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。   Specific examples of the silanol group introducing agent include γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropylmethyldiethoxysilane, γ- (2 -Aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropyltriethoxysilane, γ- (2-aminoethyl) aminopropyldimethoxysilane, γ- (2-aminoethyl) aminopropyldiethoxysilane , Γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyldimethoxysilane, γ-aminopropyldiethoxysilane, and the like. These may be used alone or in combination of two or more.

上記のようにして得られるシラノール基含有ポリエーテル系ポリウレタン樹脂は、水中では、かかる樹脂が有するポリエーテル骨格とポリアミン化合物で鎖延長された骨格とが作用し、ポリマー鎖に含まれる一部の基がイオンを形成するために樹脂が安定に分散し、樹脂を乾燥(脱水)することによって、これらの基が−CO−NH−結合を形成するものと考えられる。   The silanol group-containing polyether-based polyurethane resin obtained as described above is such that, in water, the polyether skeleton of the resin and the skeleton extended with a polyamine compound act, and some groups contained in the polymer chain It is considered that these groups form a —CO—NH— bond when the resin is stably dispersed to form ions and the resin is dried (dehydrated).

上記−CO−NH−結合は、ペプチド結合に類似した構造であり、ペプチド結合と非常に親和性が高い。そのため、ペプチド結合を有する高分子化合物が樹脂内部に堅固に保持されやすく、外部に溶出されるのを有効に抑制することが可能となる。また、同様に、イソシアネート基と水酸基とで形成されるウレタン結合もペプチド結合と親和性が高く、シラノール基含有ポリエーテル系ポリウレタン樹脂が有するウレタン結合もペプチド結合を有する高分子化合物を保持するのに大きく寄与しているものと考えられる。   The -CO-NH- bond has a structure similar to a peptide bond, and has a very high affinity with the peptide bond. Therefore, the polymer compound having a peptide bond is easily held firmly inside the resin, and can be effectively suppressed from being eluted to the outside. Similarly, a urethane bond formed by an isocyanate group and a hydroxyl group has a high affinity with a peptide bond, and the urethane bond of a silanol group-containing polyether polyurethane resin also holds a polymer compound having a peptide bond. It is thought that it contributes greatly.

上記シラノール基含有ポリエーテル系ポリウレタン樹脂を得るにあたり、ポリイソシアネートとポリエーテルポリオールとポリアミン化合物とを含むポリウレタンプレポリマー100質量部(固形分)に対し、シラノール基導入剤を通常1〜100質量部、好ましくは20〜60質量部、より好ましくは40〜60質量部の量で配合するのが望ましい。シラノール基の配合量が上記範囲内であると、ペプチド結合を有する高分子化合物の溶出を充分に抑制しつつ、得られるペプチド結合適合性ポリウレタン樹脂組成物が固くなり過ぎるのをも回避することができる。また、ポリマー鎖へのシラノール基の導入が飽和状態となるのを有効に回避することもできる。   In obtaining the silanol group-containing polyether-based polyurethane resin, the silanol group introducing agent is usually 1 to 100 parts by mass with respect to 100 parts by mass (solid content) of the polyurethane prepolymer containing polyisocyanate, polyether polyol and polyamine compound. It is desirable to blend in an amount of preferably 20 to 60 parts by mass, more preferably 40 to 60 parts by mass. When the blending amount of the silanol group is within the above range, it is possible to prevent the resulting peptide bond-compatible polyurethane resin composition from becoming too hard while sufficiently suppressing elution of the polymer compound having a peptide bond. it can. In addition, it can be effectively avoided that the introduction of silanol groups into the polymer chain becomes saturated.

本発明のペプチド結合適合性ポリウレタン樹脂組成物は、上記ペプチド結合を有する高分子化合物と、上記シラノール基含有ポリエーテル系ポリウレタン樹脂とを含み、かかるポリウレタン樹脂に含まれる少なくとも一部のシラノール基が、シロキサン結合を形成してなる。上記ポリウレタン樹脂がこのシロキサン結合を形成することによって複雑な三次元構造を呈し、かかる構造内にペプチド結合を有する高分子化合物を堅固に包含することができ、さらにペプチド結合との間に高い親和性を有する−CO−NH−結合の作用とも相まって、上記高分子化合物が外部に放出されるのを有効に抑制することが可能となる。   The peptide bond-compatible polyurethane resin composition of the present invention comprises the polymer compound having the peptide bond and the silanol group-containing polyether polyurethane resin, and at least a part of the silanol groups contained in the polyurethane resin is A siloxane bond is formed. The polyurethane resin forms a complex three-dimensional structure by forming this siloxane bond, and can firmly include a polymer compound having a peptide bond in such a structure, and also has a high affinity with the peptide bond. Combined with the action of the —CO—NH— bond having the above, it is possible to effectively suppress the release of the polymer compound to the outside.

さらに、ペプチド結合を有する高分子化合物の少なくとも一部の反応基が、シラノール基含有ポリエーテル系ポリウレタン樹脂の反応基の一部と結合を形成しているとも考えられる。かかる結合により、上記高分子化合物とポリウレタン樹脂とが一体化し、かかる高分子化合物の外部への溶出を有効に阻止できるものと推定される。   Furthermore, it is considered that at least a part of the reactive group of the polymer compound having a peptide bond forms a bond with a part of the reactive group of the silanol group-containing polyether polyurethane resin. It is presumed that the polymer compound and the polyurethane resin are integrated by such a bond, and the elution of the polymer compound to the outside can be effectively prevented.

上記ペプチド結合適合性ポリウレタン樹脂組成物は、ペプチド結合を有する高分子化合物を含む溶液と、シラノール基含有ポリエーテル系ポリウレタン樹脂を含む溶液とを混合することによって得られる。得られた混合溶液に、さらに必要に応じて糖類を添加してもよい。糖類を添加することで、ペプチド結合を有する高分子化合物の作用に加え、所望に応じて糖類の有する作用をも付加させた製品を得ることができる。   The peptide bond-compatible polyurethane resin composition can be obtained by mixing a solution containing a polymer compound having a peptide bond and a solution containing a silanol group-containing polyether polyurethane resin. You may add saccharides to the obtained mixed solution further as needed. By adding a saccharide, in addition to the action of a polymer compound having a peptide bond, a product to which the action of a saccharide is added as desired can be obtained.

上記糖類としては、例えば、グルコース、フルクトース、ガラクトース、マンノース等の単糖類;麦芽糖、乳糖、ショ糖等の二糖類やオリゴ糖類;アミロース、アミロペクチン、グリコーゲン、セルロース、アルギン酸等の多糖類である糖質のほか、糖タンパク質や糖脂質等が挙げられる。   Examples of the saccharide include monosaccharides such as glucose, fructose, galactose, and mannose; disaccharides and oligosaccharides such as maltose, lactose, and sucrose; and saccharides that are polysaccharides such as amylose, amylopectin, glycogen, cellulose, and alginic acid. In addition, glycoproteins and glycolipids can be mentioned.

シラノール基含有ポリエーテル系ポリウレタン樹脂が有するシラノール基同士の間でシロキサン結合を形成させるには、加熱をして水分を蒸発させるのがよい。通常、100〜150℃、好ましくは110〜120℃の温度で、0.5〜2時間、好ましくは0.5〜1時間かけて乾燥させる。このように、比較的低温で短時間の脱水処理によってシロキサン結合を形成させることが可能である。   In order to form a siloxane bond between silanol groups of the silanol group-containing polyether polyurethane resin, it is preferable to evaporate moisture by heating. Usually, it is dried at a temperature of 100 to 150 ° C., preferably 110 to 120 ° C., for 0.5 to 2 hours, preferably 0.5 to 1 hour. As described above, siloxane bonds can be formed by dehydration at a relatively low temperature for a short time.

上記ペプチド結合適合性ポリウレタン樹脂組成物は、常法に従って各種加工を施すことにより、成型品を得ることができる。かかる成型品としては、皮膚保湿用シートやフェイスマスク等の化粧用フィルム;家庭菜園用フィルム、ハウス栽培用フィルムシート、トンネル栽培用フィルムシート、堆肥用シート、農業用暴風・防水シート等の農業用シート;米、穀類などの食品類用包装材、文具・雑貨品用包装材、産業資材用包装材、建築資材用包装材等の包装用フィルム等が挙げられる。ナイロン、ポリエステル等の他の基材と貼り合わせて、多層フィルム又はシートとして用いることも可能である。   The peptide bond-compatible polyurethane resin composition can be formed into a molded product by various processes according to a conventional method. Such molded products include cosmetic films such as skin moisturizing sheets and face masks; household garden films, house cultivation film sheets, tunnel cultivation film sheets, compost sheets, agricultural storms and waterproof sheets, etc. Sheets: packaging materials for foods such as rice and cereals, packaging materials for stationery and miscellaneous goods, packaging materials for industrial materials, packaging materials for building materials, and the like. It is also possible to use it as a multilayer film or sheet by laminating with another base material such as nylon or polyester.

フィルムを作製する場合、常法に従ってフィルム成形することにより加工することができる。かかるフィルム成形としては、例えば、押出ラミネ−ト成形、Tダイフィルム成形、インフレ−ション成形(空冷、水冷、多段冷却、高速加工)等が挙げられる。フィルム厚は、その用途に応じて変動し得るものであるが、例えば化粧用シートの場合、通常100〜5000μmである。   When producing a film, it can be processed by forming a film according to a conventional method. Examples of such film molding include extrusion lamination molding, T-die film molding, inflation molding (air cooling, water cooling, multistage cooling, high-speed processing) and the like. The film thickness can vary depending on the application, but for example, in the case of a cosmetic sheet, it is usually 100 to 5000 μm.

上記のようなフィルムやシート等の成型品は、
(A)ペプチド結合を有する高分子化合物を含む溶液と、上記シラノール基含有ポリエーテル系ポリウレタン樹脂を含む溶液とを混合して混合溶液を得る工程、
(B)前記混合溶液を用いて予備成型品を得る工程、及び
(C)前記予備成型品を加熱乾燥させて、成型品を得る工程
を含む方法により、製造することができる。
Molded products such as the above film and sheet,
(A) A step of mixing a solution containing a polymer compound having a peptide bond with a solution containing the silanol group-containing polyether polyurethane resin to obtain a mixed solution;
(B) It can be manufactured by a method including a step of obtaining a preform using the mixed solution, and (C) a step of obtaining the molded product by heating and drying the preform.

(A)工程については、上述のとおり、ペプチド結合を有する高分子化合物を含む溶液及び上記シラノール基含有ポリエーテル系ポリウレタン樹脂を含む溶液を調製し、これらを撹拌機等で混合して混合溶液を得る。
(B)工程では、上記混合溶液を用いて予備成型品を得るにあたり、かかる溶液を型に流し込んでもよく、基材上に塗布してもよく、成型機によって予備成型してもよい。
About (A) process, as above-mentioned, the solution containing the high molecular compound which has a peptide bond, and the solution containing the said silanol group containing polyether polyurethane resin are prepared, these are mixed with a stirrer etc., and a mixed solution is prepared. obtain.
In the step (B), in obtaining a preformed product using the above mixed solution, the solution may be poured into a mold, applied onto a substrate, or preformed by a molding machine.

(C)工程では、通常0.5〜2時間、好ましくは0.5〜1時間をかけて加熱することによって乾燥させる。加熱するには、乾燥機等を用いて通常100〜150℃、好ましくは110〜120℃の温度を保持しながら乾燥させるのがよい。この工程(C)を経ることによって、上記ポリエーテル系ポリウレタン樹脂の有するシラノール基同士がシロキサン結合を形成することとなる。   In the step (C), drying is usually performed by heating for 0.5 to 2 hours, preferably 0.5 to 1 hour. In order to heat, it is good to dry using a drier etc., normally maintaining the temperature of 100-150 degreeC, Preferably 110-120 degreeC. By passing through this step (C), silanol groups of the polyether-based polyurethane resin form siloxane bonds.

このように、本発明のペプチド結合適合性ポリウレタン樹脂組成物を用いてフィルム又はシートを形成すれば、水に浸漬して適度な柔軟性を確保しながらフィルム又はシートとしての形状を有効に保持することができるので、ペプチド結合を有する高分子化合物の溶出を効果的に抑制することが可能となる。したがって、かかるフィルム又はシートを貼着するだけで、被貼着体に対して上記高分子化合物の有する作用を持続的にもたらすことが可能となる。また、ペプチド結合を有する高分子化合物を適宜選択することで、種々の用途に適応した成型品、例えば、創傷治癒剤、化粧用皺伸ばし剤又は保湿剤を包含したフィルム又はシートを実現することもできる。さらに、肥料効果を奏する高分子化合物を選択すれば、農業用資材に適したフィルム又はシートを実現することも可能である。   Thus, if a film or sheet is formed using the peptide bond-compatible polyurethane resin composition of the present invention, the shape as a film or sheet is effectively retained while ensuring appropriate flexibility by dipping in water. Therefore, elution of the polymer compound having a peptide bond can be effectively suppressed. Therefore, it becomes possible to bring about the action which the above-mentioned polymer compound has continuously to a pasting object only by sticking such a film or sheet. In addition, by appropriately selecting a polymer compound having a peptide bond, it is possible to realize a molded article adapted to various uses, for example, a film or sheet containing a wound healing agent, a cosmetic spreader or a moisturizing agent. it can. Furthermore, if a polymer compound exhibiting a fertilizer effect is selected, a film or sheet suitable for agricultural materials can be realized.

以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。
なお、必要に応じて次のポリウレタン樹脂溶液及びシラノール基導入剤を用いた。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.
In addition, the following polyurethane resin solution and the silanol group introduction | transduction agent were used as needed.

1)ポリウレタン樹脂溶液(溶液b1)
ポリエーテル系ポリウレタン樹脂溶液:タケラックWS-6061、三井化学ポリウレタン(株)製、ポリエーテル系ポリウレタン樹脂(シラノール基を含まず)含有、水溶媒
2)ポリウレタン樹脂溶液(溶液b2)
ポリエーテル系ポリウレタン樹脂溶液:タケラックWS-6021、三井化学ポリウレタン(株)製、シラノール基含有ポリエーテル系ポリウレタン樹脂(ポリウレタンプレポリマー(固形分)100質量部に対するシラノール基導入剤の配合量=20質量部)含有、水溶媒
3)シラノール基導入剤:γ−メルカプトプロピルトリメトキシシラン(KBM−430、信越化学工業社製)
1) Polyurethane resin solution (solution b1)
Polyether-based polyurethane resin solution: Takelac WS-6061, manufactured by Mitsui Chemicals Polyurethanes, containing polyether-based polyurethane resin (excluding silanol groups), aqueous solvent 2) Polyurethane resin solution (solution b2)
Polyether-based polyurethane resin solution: Takelac WS-6021, manufactured by Mitsui Chemicals Polyurethanes, Silanol group-containing polyether-based polyurethane resin (blending amount of silanol group introducing agent with respect to 100 parts by mass of polyurethane prepolymer (solid content) = 20 mass Part) contained, aqueous solvent 3) Silanol group introducing agent: γ-mercaptopropyltrimethoxysilane (KBM-430, manufactured by Shin-Etsu Chemical Co., Ltd.)

[ゼラチン溶液(溶液a1)の調製]
300mlビーカーにミリ(Milli)Q水を185g、マグネチックスターラーで攪拌しながら、ゼラチン(Nippi 469−1−6 牛皮ゼラチン高分子量30Mesh品)15gを、ダマができないように注意しながら少量ずつ加えていった。15gを分散させた後、ビーカーにラップをして、80℃にしたインキュベーター中で30分加温し、ゼラチンを溶解させた。温める前に濁っていた溶液の透明度が上がっていることを確認し、インキュベーターから取り出し、マグネチックスターラーでさらに5分間攪拌して、5%ゼラチン水溶液(300g)(溶液a1)を調製した。
[Preparation of gelatin solution (solution a1)]
While stirring with a magnetic stirrer, 185 g of Milli Q water in a 300 ml beaker, 15 g of gelatin (Nippi 469-1-6 cowhide gelatin high molecular weight 30 mesh product) was added little by little, taking care not to cause lumps. It was. After dispersing 15 g, the beaker was wrapped and heated in an incubator at 80 ° C. for 30 minutes to dissolve the gelatin. After confirming that the transparency of the turbid solution before warming was increased, the solution was taken out from the incubator and stirred for 5 minutes with a magnetic stirrer to prepare a 5% gelatin aqueous solution (300 g) (solution a1).

[ゼラチン溶液(溶液a2)の調製]
上記ゼラチンを45gとした以外、上記溶液a1の調製に従って、15%ゼラチン溶液(溶液a2)を調製した。
[Preparation of gelatin solution (solution a2)]
A 15% gelatin solution (solution a2) was prepared according to the preparation of the solution a1 except that the gelatin was 45 g.

[ポリウレタン樹脂溶液(溶液b3)の調製]
撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、1,3−ビス(1−イソシアネート−1−メチルエチル)ベンゼン71.49g、ジメチロールプロピオン酸13.41g、及び溶剤としてアセトン90.00gを投入し、窒素雰囲気下、50℃に昇温し、さらにジブチル錫ジラウレート0.05gを添加して4時間撹拌した。撹拌終了後、反応液が所定のアミン当量に達したことを確認し、アジピン酸、ネオペンチルグリコール、及び1,6−ヘキサンジオールの反応により生成した分子量1000のポリエステルポリオール125.10gを添加し、さらに5時間撹拌した。撹拌終了後、反応液が所定のアミン当量に達したことを確認し、この反応液を40℃にまで降温した後、トリエチルアミン9.62gを添加し、10分間撹拌することにより中和反応を行い、ポリウレタンプレポリマー溶液を得た。
[Preparation of polyurethane resin solution (solution b3)]
In a four-necked flask equipped with a stirrer, a Dimroth condenser, a nitrogen inlet tube, a silica gel drying tube, and a thermometer, 71.49 g of 1,3-bis (1-isocyanate-1-methylethyl) benzene, dimethylolpropion 13.41 g of acid and 90.00 g of acetone as a solvent were added, the temperature was raised to 50 ° C. in a nitrogen atmosphere, 0.05 g of dibutyltin dilaurate was further added, and the mixture was stirred for 4 hours. After completion of the stirring, it was confirmed that the reaction solution reached a predetermined amine equivalent, and 125.10 g of a polyester polyol having a molecular weight of 1000 generated by the reaction of adipic acid, neopentyl glycol, and 1,6-hexanediol was added, Stir for another 5 hours. After completion of the stirring, it was confirmed that the reaction liquid reached a predetermined amine equivalent, and after the temperature of the reaction liquid was lowered to 40 ° C., 9.62 g of triethylamine was added and a neutralization reaction was performed by stirring for 10 minutes. A polyurethane prepolymer solution was obtained.

次に、得られたポリウレタンプレポリマー溶液(固形分)100質量部に対し、シラノール基導入剤を50質量部の量となるように添加し、2−[(2−アミノエチル)アミノ]エタノール3.34gを水537.16gに溶解した水溶液中に、上記反応で得られたポリウレタンプレポリマー溶液300.00gをホモディスパーを用い撹拌しながら滴下することにより鎖延長化反応、及びエマルション化を行った。次に、このエマルションに硬化触媒として1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)0.21gを加え、さらに60℃に加熱、撹拌し、ポリウレタンプレポリマー合成時に使用したアセトンを留去することにより、ポリウレタン樹脂溶液(溶液b3)を得た。   Next, a silanol group introducing agent is added to 100 parts by mass of the obtained polyurethane prepolymer solution (solid content) so as to have an amount of 50 parts by mass, and 2-[(2-aminoethyl) amino] ethanol 3 In an aqueous solution in which .34 g was dissolved in 537.16 g of water, 300.00 g of the polyurethane prepolymer solution obtained by the above reaction was added dropwise with stirring using a homodisper to carry out chain extension reaction and emulsification. . Next, 0.21 g of 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) is added to the emulsion as a curing catalyst, and the mixture is further heated and stirred at 60 ° C. to obtain acetone used for the synthesis of the polyurethane prepolymer. Was distilled off to obtain a polyurethane resin solution (solution b3).

[ポリウレタン樹脂溶液(溶液b4)の調製]
得られたポリウレタンプレポリマー溶液(固形分)100質量部に対し、シラノール基導入剤を100質量部の量となるように添加した以外、上記溶液b3と同様にしてポリウレタン樹脂溶液(溶液b4)を得た。
[Preparation of polyurethane resin solution (solution b4)]
A polyurethane resin solution (solution b4) was prepared in the same manner as the solution b3 except that the silanol group introducing agent was added to 100 parts by mass with respect to 100 parts by mass of the obtained polyurethane prepolymer solution (solid content). Obtained.

[比較例1:フィルム(試料a1−1)の作製]
上記ゼラチン溶液(溶液a1)4g(固形分換算1.2g)をバットに注入し、風乾して試料a1−1を得た。
[Comparative Example 1: Production of Film (Sample a1-1)]
4 g (1.2 g in terms of solid content) of the gelatin solution (solution a1) was poured into a vat and air-dried to obtain sample a1-1.

[比較例2:フィルム(試料b1−1)の作製]
上記ポリウレタン樹脂溶液(溶液b1)にゼラチン溶液(溶液a2)(固形分質量比=ウレタン樹脂:ゼラチン=2:1)になるように添加し、水で希釈してアルミ製バットに注入し、風乾して試料b1−1を得た。
[Comparative Example 2: Production of Film (Sample b1-1)]
Add the gelatin solution (solution a2) to the polyurethane resin solution (solution b1) (solid content mass ratio = urethane resin: gelatin = 2: 1), dilute with water, pour into an aluminum vat, air dry As a result, Sample b1-1 was obtained.

[比較例3:フィルム(試料b2−1)の作製]
上記ポリウレタン樹脂溶液(溶液b2)8g(固形分換算2.4g)に対し、水20gを加えビーカー中で混合し、アルミバット(200mm×170mm)に注入し、風乾して試料b2−1を得た。
[Comparative Example 3: Production of Film (Sample b2-1)]
20 g of water was added to 8 g of the polyurethane resin solution (solution b2) (2.4 g in terms of solid content), mixed in a beaker, poured into an aluminum bat (200 mm × 170 mm), and air-dried to obtain sample b2-1. .

[実施例1:フィルム(試料b2−2)の作製]
上記ポリウレタン樹脂溶液(溶液b2)にゼラチン溶液(溶液a2)(固形分質量比=ウレタン樹脂:ゼラチン=2:1)になるように添加し、水で希釈してアルミ製バットに注入し、風乾した後、120℃で30分加熱して試料b2−2を得た。
[Example 1: Production of film (sample b2-2)]
Add to the above polyurethane resin solution (solution b2) to be a gelatin solution (solution a2) (solid mass ratio = urethane resin: gelatin = 2: 1), dilute with water, pour into an aluminum vat, air dry And heated at 120 ° C. for 30 minutes to obtain Sample b2-2.

《成型性評価》
比較例1〜3、実施例1で得られたフィルムを用い、作製者の触感及び目視により成型性を評価した。比較例1及び3では、ともにバットに透明なフィルムが生成したが、バリバリになり、剥がすことができなかった。特に比較例1では柔らかいフィルムが得られたが、バットへの接着が強く、1枚の大きなフィルムとしては剥がすことができなかった。
実施例1及び比較例2では、ともに透明なフィルムが得られたが、水に浸漬した際、比較例2は崩壊したのに対し、実施例1のフィルムはシロキサン結合が有効に形成されていたため、しっかりしたフィルムの形状を保持した。
<< Formability evaluation >>
Using the films obtained in Comparative Examples 1 to 3 and Example 1, the moldability was evaluated by the tactile sensation and visual observation of the creator. In Comparative Examples 1 and 3, a transparent film was formed on the bat, but it became crisp and could not be peeled off. In particular, in Comparative Example 1, a soft film was obtained, but the adhesion to the bat was strong and could not be peeled off as one large film.
In Example 1 and Comparative Example 2, a transparent film was obtained, but when immersed in water, Comparative Example 2 collapsed, whereas in the film of Example 1, siloxane bonds were effectively formed. Retained a firm film shape.

[比較例4:フィルム(試料a1−2)の作製]
上記ゼラチン溶液(溶液a1)を固形分で2.4gになるように量り取り、150mm×100mm×40mmのポリプロピレン容器に流し込んで、全体に薄く延ばし、25℃、湿度50%の室内で水平な台上に24時間静置した。得られたフィルムをデシケーター内で保存して試料a1−2を得た。
[Comparative Example 4: Production of Film (Sample a1-2)]
Weigh out the gelatin solution (solution a1) to a solid content of 2.4 g, pour it into a 150 mm x 100 mm x 40 mm polypropylene container, spread it thinly, and place it on a horizontal table in a room at 25 ° C and 50% humidity For 24 hours. The obtained film was preserve | saved in the desiccator and sample a1-2 was obtained.

[比較例5:フィルム(試料b1−2)の作製]
上記ポリウレタン樹脂溶液(溶液b1)を固形分で1.2gになるように量り取り、上記ゼラチン溶液:溶液a1を24g(固形分で1.2g)加え、ゼラチン溶液及びウレタン樹脂溶液が固形分比で1:1となるように混合し、フィルムの固形分総量が2.4gになるようにした。マグネチックスターラーで1分間攪拌した後、150mm×100mm×40mmのポリプロピレン容器に流し込んで、全体に薄く延ばし、25℃、湿度50%の室内で水平な台上に24時間静置した。得られたフィルムをデシケーター内で保存して試料b1−2を得た。
[Comparative Example 5: Production of film (sample b1-2)]
The polyurethane resin solution (solution b1) is weighed to a solid content of 1.2 g, the gelatin solution: 24 g of solution a1 (1.2 g of the solid content) is added, and the gelatin solution and the urethane resin solution have a solid content ratio of 1 The total solid content of the film was 2.4 g. After stirring for 1 minute with a magnetic stirrer, the mixture was poured into a 150 mm × 100 mm × 40 mm polypropylene container, thinly spread over the whole, and left on a horizontal table in a room at 25 ° C. and 50% humidity for 24 hours. The obtained film was preserve | saved in the desiccator and sample b1-2 was obtained.

[実施例2:フィルム(試料b2−3)の作製]
上記ポリウレタン樹脂溶液(溶液b2)を固形分で1.2gになるように量り取り、上記ゼラチン溶液:溶液a1を24g(固形分で1.2g)加え、ゼラチン溶液及びウレタン樹脂溶液が固形分比で1:1となるように混合し、フィルムの固形分総量が2.4gになるようにした。マグネチックスターラーで1分間攪拌した後、150mm×100mm×40mmのポリプロピレン容器に流し込んで、全体に薄く延ばし、25℃、湿度50%の室内で水平な台上に24時間静置した。得られたフィルムをデシケーター内で保存した後、120℃の乾燥機内で30分間乾燥することによって架橋(シロキサン結合形成)させ、試料b2−3を得た。
[Example 2: Production of film (sample b2-3)]
The polyurethane resin solution (solution b2) is weighed to a solid content of 1.2 g, the gelatin solution: 24 g of solution a1 (1.2 g of the solid content) is added, and the gelatin solution and the urethane resin solution have a solid content ratio of 1 The total solid content of the film was 2.4 g. After stirring for 1 minute with a magnetic stirrer, the mixture was poured into a 150 mm × 100 mm × 40 mm polypropylene container, thinly spread over the whole, and left on a horizontal table in a room at 25 ° C. and 50% humidity for 24 hours. The obtained film was stored in a desiccator and then crosslinked (siloxane bond formation) by drying in a dryer at 120 ° C. for 30 minutes to obtain sample b2-3.

[実施例3:フィルム(試料b3−1)の作製]
上記ポリウレタン樹脂溶液(溶液b3)を固形分で1.2gになるように量り取り、上記ゼラチン溶液:溶液a1を24g(固形分で1.2g)加え、ゼラチン溶液及びウレタン樹脂溶液が固形分比で1:1となるように混合し、フィルムの固形分総量が2.4gになるようにした。マグネチックスターラーで1分間攪拌した後、150mm×100mm×40mmのポリプロピレン容器に流し込んで、全体に薄く延ばし、25℃、湿度50%の室内で水平な台上に24時間静置した。得られたフィルムをデシケーター内で保存した後、120℃の乾燥機内で30分間乾燥することによって架橋(シロキサン結合形成)させ、試料b3−1を得た。
[実施例4:フィルム(試料b4−1)の作製]
溶液b3を溶液b4に代えた以外、実施例2と同様にして、試料b4−1を得た。
[Example 3: Production of film (sample b3-1)]
The polyurethane resin solution (solution b3) is weighed to a solid content of 1.2 g, the gelatin solution: 24 g of solution a1 (1.2 g of the solid content) is added, and the gelatin solution and the urethane resin solution have a solid content ratio of 1 The total solid content of the film was 2.4 g. After stirring for 1 minute with a magnetic stirrer, the mixture was poured into a 150 mm × 100 mm × 40 mm polypropylene container, thinly spread over the whole, and left on a horizontal table in a room at 25 ° C. and 50% humidity for 24 hours. The obtained film was stored in a desiccator and then crosslinked (siloxane bond formation) by drying in a dryer at 120 ° C. for 30 minutes to obtain sample b3-1.
[Example 4: Production of film (sample b4-1)]
Sample b4-1 was obtained in the same manner as in Example 2 except that the solution b3 was replaced with the solution b4.

《湿潤状態での引張試験の評価》
比較例4及び実施例2〜4で得られた試料を各々はさみで切断して10mm×100mmの試験片とし、試験前に室温20℃、湿度65%の恒温室に2時間静置した。標線間の長さは55mmとし、冶具に固定した。引張試験は、島津社製EZ−S、Trapeziumを用い、試験前に試験片を20℃の蒸留水に1時間浸け、両面をキムタオル(登録商標)で拭いたものを用いた。測定回数を15回とし、その平均値を求めた。
<< Evaluation of tensile test in wet condition >>
The samples obtained in Comparative Example 4 and Examples 2 to 4 were each cut with scissors to give a 10 mm × 100 mm test piece, and left in a temperature-controlled room at 20 ° C. and 65% humidity for 2 hours before the test. The length between the marked lines was 55 mm and fixed to a jig. For the tensile test, EZ-S, Trapezium manufactured by Shimadzu Corporation was used, and the test piece was immersed in distilled water at 20 ° C. for 1 hour before the test, and both surfaces were wiped with Kim Towel (registered trademark). The number of measurements was 15 and the average value was obtained.

湿潤状態でのフィルム引張試験の結果を図1に示す。比較例4はシロキサン結合が形成されなかったためか、引張試験を行うことができなかった。また、実施例3において最も荷重が大きくなり、最も伸びが大きかったことがわかる。これにより、湿潤状態において、ゼラチンとの混合フィルムの物性は、実施例3が最適であると考えられる。   The result of the film tensile test in the wet state is shown in FIG. In Comparative Example 4, a siloxane bond was not formed, so the tensile test could not be performed. It can also be seen that the load was the largest in Example 3 and the elongation was the largest. Thus, in the wet state, Example 3 is considered to be optimal for the physical properties of the mixed film with gelatin.

《熱的安定性(DSC)の評価》
比較例4及び実施例3〜4で得られた試料20mgを銀製セル(Seiko Instruments Inc.:AG70−CAPSULE P/N 560−003)に測り取り、サンプルシーラー(Seiko Instruments Inc.)で封入し、測定を行った。測定装置は、Seiko Instruments Inc.:SSC/5200を用いた。測定条件は、以下の通りとし、測定回数を5回としてその平均値を求めた。結果を図2に示す。
温度プログラム:15〜250℃
昇温速度:5.0 ℃/min
リファレンス:almina 30mg
炉内雰囲気:He, 40ml/min
データサンプリング速度:0.5sec/dot
<< Evaluation of thermal stability (DSC) >>
20 mg of the sample obtained in Comparative Example 4 and Examples 3 to 4 was measured in a silver cell (Seiko Instruments Inc .: AG70-CAPSULE P / N 560-003) and sealed with a sample sealer (Seiko Instruments Inc.). Measurements were made. Seiko Instruments Inc .: SSC / 5200 was used as a measuring apparatus. The measurement conditions were as follows, and the average value was obtained by setting the number of measurements to 5 times. The results are shown in FIG.
Temperature program: 15 ~ 250 ℃
Temperature increase rate: 5.0 ℃ / min
Reference: almina 30mg
Furnace atmosphere: He, 40ml / min
Data sampling rate: 0.5 sec / dot

比較例4は80℃および180℃に吸熱ピークを示した。80℃の吸熱ピークは、ゼラチンの溶解によるものであり、180℃の吸熱ピークは、ゼラチンの熱分解によるものであると思われる。実施例3〜4のフィルムにおいては、90℃および170℃に吸熱ピークを確認した。これは、ゼラチンが有効にウレタン樹脂内に包含され、ゼラチンとウレタン樹脂がこれら相互間に何らかの結合が形成されることでより一体化され、それぞれの吸熱ピークが平滑化されたものと考えられる。   Comparative Example 4 showed endothermic peaks at 80 ° C and 180 ° C. The endothermic peak at 80 ° C. is attributed to gelatin dissolution, and the endothermic peak at 180 ° C. is believed to be due to thermal decomposition of gelatin. In the films of Examples 3 to 4, endothermic peaks were confirmed at 90 ° C and 170 ° C. This is probably because gelatin is effectively included in the urethane resin, and the gelatin and the urethane resin are more integrated by forming some bonds between them, and the respective endothermic peaks are smoothed.

《ゼラチン溶出率の評価》
15mlのファルコンチューブに比較例4及び実施例2〜4で得られた試料0.07gを入れ、14gのミリQ水を入れ、温度設定した水槽で12時間振とうした。チューブから1mlの液をとり、0.5mlのミクロビュレット液を加え、310nmで吸光度を測定した。ブランクをミリQ水とした。検量線はゼラチン溶液(溶液a1)で作成した。原液を10mg/mlの濃度とし、2倍から4倍、8倍と倍々に希釈していき、128倍希釈液まで作成し、1mlの希釈液に0.5mlのミクロビュレット液を加え、310nmで吸光度を測定し、ブランクとの割合(%)を算出してゼラチンの溶出率とした。結果を図3に示す。
<Evaluation of gelatin dissolution rate>
In a 15 ml Falcon tube, 0.07 g of the sample obtained in Comparative Example 4 and Examples 2 to 4 was placed, 14 g of Milli Q water was added, and the mixture was shaken in a temperature-controlled water tank for 12 hours. 1 ml of liquid was taken from the tube, 0.5 ml of microburette liquid was added, and the absorbance was measured at 310 nm. The blank was Milli-Q water. A calibration curve was prepared with a gelatin solution (solution a1). Dilute the stock solution to a concentration of 10 mg / ml, doubling from 2 to 4 times to 8 times, make up to a 128-fold dilution, add 0.5 ml of microburette to 1 ml, and absorb at 310 nm Was measured, and the ratio (%) to the blank was calculated as the gelatin elution rate. The results are shown in FIG.

25℃及び37℃において、実施例2〜4では、ゼラチンの溶出を明らかに抑制した。これは、シラノール基含有ポリエーテル系ポリウレタン樹脂においてシロキサン結合が形成され、ゼラチンをより強固に保持していることを示す。特に実施例3において、最も溶出を抑制する傾向にあった。   At 25 ° C. and 37 ° C., the elution of gelatin was clearly suppressed in Examples 2 to 4. This indicates that a siloxane bond is formed in the silanol group-containing polyether polyurethane resin, and the gelatin is held more firmly. In particular, Example 3 tended to suppress elution most.

《吸水速度の評価》
150mm×100mm×40mmのポリプロピレン容器に150gのミリQ水を入れ、そこに0.20g程に切った比較例5及び実施例3〜4で得られた試料を浸した。60分まで10分ごとに、それ以降は30分ごとにフィルムを取り、両面の水気をキムタオル(登録商標)に吸わせ、重量を測定した。4回の重量の変化が、0.01g以内になったところで、終点とした。吸水前のフィルム重量と比較し、下記式により吸水量から吸水率を算出した。測定回数を3回とし、その平均値を求めた。得られたフィルムの吸水曲線を図4に示す。
吸水率={(吸水後の重量−吸水前の重量)÷吸水前の重量×100}
<< Evaluation of water absorption speed >>
150 g of Milli-Q water was placed in a 150 mm × 100 mm × 40 mm polypropylene container, and the samples obtained in Comparative Example 5 and Examples 3 to 4 cut to about 0.20 g were immersed therein. Films were taken every 10 minutes up to 60 minutes and every 30 minutes thereafter, and water on both sides was sucked into Kim Towel (registered trademark) and the weight was measured. The end point was determined when the weight change of 4 times was within 0.01 g. Compared with the film weight before water absorption, the water absorption was calculated from the amount of water absorption according to the following formula. The number of measurements was 3 and the average value was determined. The water absorption curve of the obtained film is shown in FIG.
Water absorption rate = {(weight after water absorption−weight before water absorption) ÷ weight before water absorption × 100}

図4の結果より、シラノール含有ポリエーテル系ポリウレタン樹脂を用いた場合、吸水率が減少することがわかる。比較例5では吸水率が400%を超えたが、実施例3及び実施例4では180%まで減少した。   From the results shown in FIG. 4, it can be seen that the water absorption decreases when a silanol-containing polyether polyurethane resin is used. In Comparative Example 5, the water absorption exceeded 400%, but in Examples 3 and 4, it decreased to 180%.

Claims (6)

ペプチド結合を有する高分子化合物と、シラノール基含有ポリエーテル系ポリウレタン樹脂とを混合して得られ
混合後に、前記シラノール基含有ポリエーテル系ポリウレタン樹脂に含まれる少なくとも一部のシラノール基が、シロキサン結合を形成してなることを特徴とするペプチド結合適合性ポリウレタン樹脂組成物。
It is obtained by mixing a polymer compound having a peptide bond and a silanol group-containing polyether polyurethane resin,
After mixing, at least a portion of the silanol groups contained in the silanol-group-containing polyether-based polyurethane resin, the peptide bond compatible polyurethane resin composition characterized by comprising forming a siloxane bond.
前記ペプチド結合を有する高分子化合物が、ゼラチン、コラーゲン及び加水分解コラーゲンからなる群より選ばれる少なくとも1種であることを特徴とする請求項1に記載のペプチド結合適合性ポリウレタン樹脂組成物。   The peptide bond-compatible polyurethane resin composition according to claim 1, wherein the polymer compound having a peptide bond is at least one selected from the group consisting of gelatin, collagen and hydrolyzed collagen. 前記シラノール基含有ポリエーテル系ポリウレタン樹脂が、ポリイソシアネートとポリエーテルポリオールとポリアミン化合物とを含むポリウレタンプレポリマー100質量部(固形分)に対し、シラノール基導入剤を1〜100質量部の量で配合してなることを特徴とする請求項1又は2に記載のペプチド結合適合性ポリウレタン樹脂組成物。   The silanol group-containing polyether-based polyurethane resin is blended in an amount of 1 to 100 parts by mass of a silanol group introduction agent with respect to 100 parts by mass (solid content) of a polyurethane prepolymer containing polyisocyanate, polyether polyol and polyamine compound. The peptide bond-compatible polyurethane resin composition according to claim 1, wherein the composition is a peptide bond-compatible polyurethane resin composition. 請求項1〜3のいずれかに記載のペプチド結合適合性ポリウレタン樹脂組成物を用いることを特徴とする成型品。   A molded article comprising the peptide bond-compatible polyurethane resin composition according to claim 1. 前記成型品が、フィルム又はシートであることを特徴とする請求項4に記載の成型品。   The molded product according to claim 4, wherein the molded product is a film or a sheet. (A)ペプチド結合を有する高分子化合物を含む溶液と、シラノール基含有ポリエーテル系ポリウレタン樹脂を含む溶液とを混合して混合溶液を得る工程、
(B)前記混合溶液を用いて予備成型品を得る工程、及び
(C)前記予備成型品を加熱乾燥させることによって前記シラノール基含有ポリエーテル系ポリウレタン樹脂に含まれる少なくとも一部のシラノール基にシロキサン結合を形成させて、成型品を得る工程
を含むことを特徴とするペプチド結合適合性ポリウレタン樹脂組成物からなる成型品の製造方法。
(A) a step of mixing a solution containing a polymer compound having a peptide bond and a solution containing a silanol group-containing polyether polyurethane resin to obtain a mixed solution;
(B) the mixed solution obtaining a preform with, and (C) wherein the Rukoto the preform is heated and dried, the silanol group-containing polyether least some of the silanol groups contained in the polyurethane resin A method for producing a molded product comprising a peptide bond-compatible polyurethane resin composition, comprising the step of forming a siloxane bond in the product to obtain a molded product.
JP2010244129A 2010-10-29 2010-10-29 Peptide bond compatible polyurethane resin composition and molded product thereof Active JP5544588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010244129A JP5544588B2 (en) 2010-10-29 2010-10-29 Peptide bond compatible polyurethane resin composition and molded product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010244129A JP5544588B2 (en) 2010-10-29 2010-10-29 Peptide bond compatible polyurethane resin composition and molded product thereof

Publications (2)

Publication Number Publication Date
JP2012097157A JP2012097157A (en) 2012-05-24
JP5544588B2 true JP5544588B2 (en) 2014-07-09

Family

ID=46389440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010244129A Active JP5544588B2 (en) 2010-10-29 2010-10-29 Peptide bond compatible polyurethane resin composition and molded product thereof

Country Status (1)

Country Link
JP (1) JP5544588B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105732926A (en) * 2016-03-09 2016-07-06 陕西科技大学 Cationic-type skin collagen/waterborne polyurethane composite leather tanning agent and preparation method thereof
CN108997739A (en) * 2018-08-16 2018-12-14 陕西科技大学 A kind of preparation method of collagenous fibres base no-solvent polyurethane composite material
CN111925677B (en) * 2020-08-20 2021-12-10 瑞通高分子科技(浙江)有限公司 Ultraviolet-curable high-temperature-resistant coating for reflecting cover of illumination metal plate and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176277A (en) * 1995-12-27 1997-07-08 Shin Etsu Chem Co Ltd Silane-modified polymer and its preparation
JPH09291131A (en) * 1996-04-24 1997-11-11 Nitta Ind Corp Organic/inorganic hybrid polyurethane and its production
JP2003238810A (en) * 2002-02-19 2003-08-27 Dainippon Ink & Chem Inc Proteinaceous polymer composition and molded article using the same
JP2005194401A (en) * 2004-01-07 2005-07-21 Idemitsu Technofine Co Ltd Polyurethane resin composition, polyurethane resin film and method for producing the film, laminated body and method for producing the laminated body
JP2009062493A (en) * 2007-09-07 2009-03-26 Japan Gore Tex Inc Rubbery member for gradually releasing oils

Also Published As

Publication number Publication date
JP2012097157A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
Yoo et al. Synthesis and properties of waterborne polyurethane hydrogels for wound healing dressings
US9168324B2 (en) Production of polyurethane foams for wound management
JP4497245B2 (en) Method for producing alcohol-soluble urethane resin composition, porous polyurethane and moisture-permeable film
ES2250477T3 (en) LOW-TEMPERATURE THERMAL ACTIVATED ADHESIVES WITH HIGH-THERMRESISTANCE PROPERTIES.
TW201014617A (en) Layered composite wound dressing comprising a polyurethane foam layer, an absorbent layer and a covering layer
TW201023917A (en) Wound dressing comprising a polyurethane foam layer and a covering layer of thermoplastic polymer
JP2011515427A5 (en)
JP5544588B2 (en) Peptide bond compatible polyurethane resin composition and molded product thereof
PT828788E (en) MIXTURES OF POLYMERS CONTAINING STARCHES AND POLYURETHANES
TW201041924A (en) Two-component polyurethane dispersion foams
US20130011451A1 (en) Footbed with non-denatured collagen
KR101666472B1 (en) Process for producing porous object, and porous object, layered product, and leather-like sheet each obtained thereby
CZ201048A3 (en) Foam element with cellulose added therein
TW201026762A (en) Process for producing shaped polyurethane foam wound dressings
CN103834072A (en) Modified nature latex, preparation method and use thereof
CN105239371A (en) Manufacturing method of moisture-retention fabric, fabric, clothing and moisture-retention foam finishing agent
Sonker et al. Crosslinking of agar by diisocyanates
KR101908934B1 (en) Puff for make-up and manufacturing method thereof
CN104119493A (en) Soft dry-process waterproof air/moisture-permeable polyurethane resin and preparation method thereof
CN105367752A (en) Method for preparing polyurethane material with amino in side chain
CN114306734A (en) Chitosan and silk peptide protein compounded bionic material and preparation method and application thereof
CN106702723B (en) Fabric oriented moisture transfer polyurethane resin coating adhesive and preparation method thereof
CN102417579A (en) Preparation method of yellowing-resistant polyurethane spinning coating agent
JP5305320B2 (en) Thermoplastic resin
CN107827920A (en) A kind of novel amino silane and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5544588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250