JP5544186B2 - Method for forming planar lipid bilayer membrane - Google Patents

Method for forming planar lipid bilayer membrane Download PDF

Info

Publication number
JP5544186B2
JP5544186B2 JP2010032567A JP2010032567A JP5544186B2 JP 5544186 B2 JP5544186 B2 JP 5544186B2 JP 2010032567 A JP2010032567 A JP 2010032567A JP 2010032567 A JP2010032567 A JP 2010032567A JP 5544186 B2 JP5544186 B2 JP 5544186B2
Authority
JP
Japan
Prior art keywords
resin
lipid bilayer
needle
micropores
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010032567A
Other languages
Japanese (ja)
Other versions
JP2011167609A (en
Inventor
裕行 田中
晃宜 橘田
知二 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2010032567A priority Critical patent/JP5544186B2/en
Publication of JP2011167609A publication Critical patent/JP2011167609A/en
Application granted granted Critical
Publication of JP5544186B2 publication Critical patent/JP5544186B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電気生理学、バイオテクノロジー、バイオチップ、膜タンパク質分析、創薬スクリーニング、バイオセンサー、DNAシークエンシングなどの分野で用いられる平面脂質二重膜の形成技術に関する。   The present invention relates to a technique for forming a planar lipid bilayer membrane used in fields such as electrophysiology, biotechnology, biochip, membrane protein analysis, drug discovery screening, biosensor, and DNA sequencing.

1976年にNeherとSakmannによって開発されたパッチクランプ法によって、チャネルタンパクの機能が理解できるようになった。この方法は生細胞膜上に存在するチャネルタンパクをガラスピペットでパッチし、その構造変化に伴うイオンの流れを電流に増幅して検出するものであり、チャネル「1分子」の挙動を実時間で捉えたという点において、1分子計測法の先駆けである。   The patch clamp method developed by Neher and Sakmann in 1976 has made it possible to understand the function of channel proteins. In this method, the channel protein existing on the living cell membrane is patched with a glass pipette, and the flow of ions accompanying the structural change is detected by amplifying the current. The behavior of the channel “one molecule” is captured in real time. It is a pioneer in single molecule measurement methods.

一方、疎水性のプラスチックフィルムに開けた100μm〜数十μmの穴に人工脂質二重膜を展開し、測定対象となるイオンチャネルの電流測定を行う人工平面膜法と呼ばれる研究手法が近年になって盛んに行われている。本手法の特徴は、パッチクランプ法と異なり細胞膜を人工的に再現した単純な再構成系で実験を行えると言うところにある。これにより脂質の種類や、溶液の塩濃度、組成、pH等の外的条件を自由に選択した系にチャネルを再構成できるため、実験条件を明確に限定することが可能となる。このように、できるだけ単純でコントロールされた系で実験を行うことによりイオンチャネルの基本的な機構をより深く研究できる点で、人工平面膜法はパッチクランプ法よりも優れた方法である。現在では人工平面膜法を高精度な1分子検出や薬物の診断、DNAの塩基識別などの種々のデバイス、バイオセンサーへと応用しようとする試みも多く報告されている。   On the other hand, a research technique called an artificial planar membrane method has recently been developed in which an artificial lipid bilayer membrane is developed in a hole of 100 μm to several tens of μm opened in a hydrophobic plastic film, and the current of an ion channel to be measured is measured. It is done actively. The feature of this method is that, unlike the patch clamp method, the experiment can be performed with a simple reconstruction system that artificially reproduces the cell membrane. As a result, the channel can be reconfigured in a system in which external conditions such as lipid type, solution salt concentration, composition, pH and the like are freely selected, so that experimental conditions can be clearly limited. Thus, the artificial planar membrane method is superior to the patch clamp method in that the basic mechanism of the ion channel can be studied more deeply by conducting experiments in a system that is as simple and controlled as possible. At present, many attempts have been made to apply the artificial planar membrane method to various devices and biosensors such as highly accurate single molecule detection, drug diagnosis, and DNA base identification.

人工平面膜法を上記のような測定系へと拡張する場合、平面膜の不安定性が大きな問題である。その一方、膜を展開する孔の直径を縮小することで二重膜の安定性が向上すると言った報告が既になされている。また、孔径の縮小によって膜容量が低下し、電流のノイズが軽減することも報告されている。従って孔径の縮小は人工平面膜法を応用する上で重要であると考えられている。   When the artificial planar membrane method is extended to the above measurement system, the instability of the planar membrane is a big problem. On the other hand, it has already been reported that the stability of the double membrane is improved by reducing the diameter of the hole that expands the membrane. It has also been reported that the reduction of the hole diameter reduces the membrane capacity and reduces current noise. Therefore, the reduction of the pore diameter is considered to be important in applying the artificial planar membrane method.

例えば特許文献1に記載されている平面脂質二重膜の形成方法では、シリコン基板の上下面に酸化膜を形成し、その酸化膜をパターニングして反応性イオンエッチングにより幅50〜100μmの微小孔を形成している。また、特許文献2に記載されているような、樹脂にステンレス棒を押し付けて凹凸を形成し、その凸部分を剃刀などで削り取って微小孔を形成する方法も知られている。非特許文献1には、微細加工技術によりシリコンウェハに直径20〜30μmの微小孔を設け、疎水処理を行った上で脂質二重膜を形成したところ、1Vの電圧をかけても破壊されない安定した膜が得られたことが開示されている。   For example, in the method for forming a planar lipid bilayer described in Patent Document 1, an oxide film is formed on the upper and lower surfaces of a silicon substrate, the oxide film is patterned, and micropores having a width of 50 to 100 μm are formed by reactive ion etching. Is forming. In addition, as described in Patent Document 2, a method is also known in which a stainless steel rod is pressed against a resin to form irregularities, and the convex portions are scraped off with a razor or the like to form minute holes. In Non-Patent Document 1, when a micropore is formed on a silicon wafer with a micropore having a diameter of 20 to 30 μm, and a lipid bilayer membrane is formed after performing a hydrophobic treatment, it is stable even when a voltage of 1 V is applied. It is disclosed that the obtained film was obtained.

国際公開2005/071405号International Publication No. 2005/071405 特開2005−91305号JP 2005-91305 A

Langmuir 2010, 26(3), pp. 1949-1952Langmuir 2010, 26 (3), pp. 1949-1952

しかし、特許文献1や非特許文献1のように微細加工技術を用いて微小孔を形成するには高価で大掛かりな装置が必要となる。また、微小孔を設ける材質としてシリコン基板を選択すると、加工途中で割れが生じるおそれがある。特許文献2のように樹脂を用いた場合には、そのような割れが生じるおそれはないが、同文献に記載されているような凹凸を形成し剃刀で削り取る方法では、樹脂に0.1〜1mm程度の大きさの孔をあけるのが限界であり、数μmオーダーの微小孔をあけるのは困難である。そこで、簡単な操作で安定した平面脂質二重膜を形成する方法が求められている。   However, as in Patent Document 1 and Non-Patent Document 1, an expensive and large-scale apparatus is required to form micropores using a microfabrication technique. In addition, if a silicon substrate is selected as the material for forming the micropores, there is a risk of cracking during the processing. When a resin is used as in Patent Document 2, there is no risk of such cracking, but in the method of forming irregularities as described in the same document and scraping with a razor, 0.1 to It is the limit to make a hole with a size of about 1 mm, and it is difficult to make a microhole of the order of several μm. Therefore, there is a demand for a method for forming a stable planar lipid bilayer membrane by a simple operation.

本発明者らは、非常に簡便かつ安価な方法で樹脂フィルムに微小孔を設けることに成功した。そして、その微小孔に平面脂質二重膜を形成すると、非常に安定した膜が得られ、チャネル電流記録が可能であることを見出した。本発明の要旨は以下のとおりである。
(1)先鋭化した金属針を加熱して樹脂フィルムに押し当てることにより樹脂フィルムに微小孔を設けること、および前記樹脂フィルムに設けた微小孔に脂質二重膜を形成することを含む、平面脂質二重膜の形成方法。
(2)前記微小孔が幅50μm未満である、(1)に記載の方法。
The present inventors have succeeded in providing micropores in a resin film by a very simple and inexpensive method. Then, it was found that when a planar lipid bilayer membrane was formed in the micropores, a very stable membrane was obtained and channel current recording was possible. The gist of the present invention is as follows.
(1) A plane including heating a sharpened metal needle and pressing it against the resin film to form micropores in the resin film, and forming a lipid bilayer in the micropores provided in the resin film Formation method of lipid bilayer membrane.
(2) The method according to (1), wherein the micropore has a width of less than 50 μm.

(3)前記樹脂がフッ素樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、ABS樹脂、AS樹脂、アクリル樹脂、ポリエチレンテレフタラートおよびポリブチレンテレフタラートから選択される、(1)または(2)に記載の方法。
(4)前記金属針が、電解研磨によって先鋭化されたタングステン、白金、白金合金およびニッケルから選択される金属からなる針である、(1)〜(3)のいずれかに記載の方法。
(3) The resin is selected from fluorine resin, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, ABS resin, AS resin, acrylic resin, polyethylene terephthalate and polybutylene terephthalate, (1) or ( The method according to 2).
(4) The method according to any one of (1) to (3), wherein the metal needle is a needle made of a metal selected from tungsten, platinum, a platinum alloy, and nickel sharpened by electrolytic polishing.

本発明の平面脂質二重膜の形成方法によれば、簡便な操作で安価に安定した平面脂質二重膜を形成することができる。本発明の方法により形成することができる脂質二重膜は非常に小さな孔に展開されているため、機械的特性(耐ショック性)において優れている。本発明の平面脂質二重膜の形成方法は、脂質二重膜を用いた実験研究や応用において非常に有用である。   According to the method for forming a planar lipid bilayer membrane of the present invention, a stable planar lipid bilayer membrane can be formed at a low cost by a simple operation. Since the lipid bilayer membrane that can be formed by the method of the present invention is developed into very small pores, it is excellent in mechanical properties (shock resistance). The method for forming a planar lipid bilayer membrane of the present invention is very useful in experimental studies and applications using lipid bilayer membranes.

樹脂フィルムに微小孔を形成する本発明の方法の一例を示した図である。It is the figure which showed an example of the method of this invention which forms a micropore in a resin film. 図1に示した方法により微小孔を形成する際に観察された顕微鏡像である。樹脂フィルムを通して針の影が映っている。It is the microscope image observed when forming a micropore by the method shown in FIG. The shadow of the needle is reflected through the resin film. A〜C、E、G〜Hは樹脂フィルムに形成された微小孔のSEM像である。D、Fは針先のSEM像である。Iは想定される微小孔の断面図を説明する図である。A to C, E, and G to H are SEM images of micropores formed in the resin film. D and F are SEM images of the needle tip. I is a diagram for explaining a cross-sectional view of an assumed minute hole. 脂質二重膜形成用セルの構成を説明する図である。It is a figure explaining the structure of the cell for lipid bilayer membrane formation. 電流測定時の装置の状態を説明する図である。It is a figure explaining the state of the apparatus at the time of an electric current measurement. チャネル電流記録の結果である。It is a result of channel current recording. A〜Cは厚さ15μmのポリエチレンフィルムに、D〜Eは厚さ15μmのポリプロピレンフィルムに形成した微小孔のSEM像である。A to C are SEM images of micropores formed in a polyethylene film having a thickness of 15 μm, and D to E are formed in a polypropylene film having a thickness of 15 μm. AおよびBは厚さ13μmのPETフィルムに、C〜Eは厚さ13μmのPTFEフィルムに形成した微小孔のSEM像である。A and B are SEM images of micropores formed in a PET film having a thickness of 13 μm, and C to E are formed in a PTFE film having a thickness of 13 μm. A〜Cは厚さが25μm、D、Eは50μmおよびF、Gは125μmのFEPフィルムに形成した微小孔のSEM像である。A to C are SEM images of micropores formed in an FEP film having a thickness of 25 μm, D and E of 50 μm and F and G of 125 μm.

本発明の方法は、樹脂フィルムに設けられた微小孔に脂質二重膜を形成することを含む。脂質二重膜の形成は任意の公知の方法により行うことができる。脂質二重膜の形成方法としては、例えばペインティング法、張り合わせ法、ベシクルフュージョン法、あるいは細胞そのものを直接キャプチャーする方法が挙げられる。   The method of the present invention includes forming a lipid bilayer membrane in micropores provided in a resin film. Formation of the lipid bilayer membrane can be performed by any known method. Examples of the method for forming the lipid bilayer membrane include a painting method, a bonding method, a vesicle fusion method, and a method for directly capturing cells.

ペインティング法では、脂質分子をデカン溶媒に分散させ、その溶液を刷毛やピペットによって微小孔を塞ぐように塗布する。そうすると、脂質溶液が微小孔の両側から水溶液に挟まれた状態になり、疎水性相互作用によって脂質分子が自発的に二重層を形成するという原理である。張り合わせ法は、ラングミュア・ブロジェット(Langmuir-Blodgette)法という単分子膜形成技術を平面膜形成に応用したものである。まず、微小孔を挟んだ2つの溶液の気−液界面に脂質分子の単分子層を形成させる。次に、その単分子膜の界面を上昇させ、両側の単分子膜同士が微小孔の中で張り合わせるようにする。それにより、目的とする平面脂質二重層が形成される原理である。ベシクルフュージョン法は、溶液中に脂質分子を加えそれを分散させることにより、脂質二分子膜が溶液中で丸くなった球状小胞体(ベシクルと呼ばれる)を作製しておき、目的の基板をこの溶液に浸漬させることにより、ベシクルと基板表面との相互作用によって脂質二分子膜を基板表面に転写する手法である。   In the painting method, lipid molecules are dispersed in a decane solvent, and the solution is applied with a brush or pipette so as to close the micropores. If it does so, it will be in the state where the lipid solution became the state pinched | interposed into the aqueous solution from the both sides of a micropore, and it is a principle that a lipid molecule spontaneously forms a bilayer by hydrophobic interaction. The laminating method applies a monomolecular film forming technique called a Langmuir-Blodgette method to planar film formation. First, a monolayer of lipid molecules is formed at the gas-liquid interface between two solutions sandwiching micropores. Next, the interface of the monomolecular film is raised so that the monomolecular films on both sides are bonded together in the micropores. This is the principle by which the intended planar lipid bilayer is formed. In the vesicle fusion method, lipid molecules are added and dispersed in a solution to produce a spherical endoplasmic reticulum (called a vesicle) in which the lipid bilayer is rounded in the solution. In this method, the lipid bilayer is transferred to the substrate surface by the interaction between the vesicle and the substrate surface.

本発明の方法で利用可能な樹脂フィルムは特に制限されないが、熱可塑性樹脂からなるフィルムであることが好ましい。そのような熱可塑性樹脂としては、例えばフッ素樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、ABS樹脂、AS樹脂、アクリル樹脂、ポリエチレンテレフタラートおよびポリブチレンテレフタラートが挙げられる。ここでフッ素樹脂とはテフロン(登録商標)の一般名で知られる一群の樹脂であり、本明細書においてフッ素樹脂にはPTFE(ポリテトラフルオロエチレン)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)、ETFE(テトラフルオロエチレン・エチレン共重合体)、PVDF(ポリビニリデンフルオライド)PCTFE(ポリクロロトリフルオロエチレン)およびECTFE(クロロトリフルオエチレン・エチレン共重合体)が含まれる。熱可塑性樹脂としては、融点が100℃以下のものから400℃を超えるものまで、様々な樹脂を用いることができる。上記の樹脂の中でも、特にフッ素樹脂、ポリエチレン、ポリプロピレンおよびポリエチレンテレフタラートが好ましく、とりわけPTFE、FEP、ETFE、ポリプロピレンおよびポリエチレンテレフタラートが好ましい。樹脂フィルムの厚さは1〜500μmの範囲、特に5〜200μmの範囲、とりわけ10〜150μmの範囲であることが好ましい。   The resin film that can be used in the method of the present invention is not particularly limited, but is preferably a film made of a thermoplastic resin. Examples of such thermoplastic resins include fluororesin, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, ABS resin, AS resin, acrylic resin, polyethylene terephthalate and polybutylene terephthalate. Here, the fluororesin is a group of resins known by the general name of Teflon (registered trademark). In this specification, the fluororesin includes PTFE (polytetrafluoroethylene) and PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether). Polymer), FEP (tetrafluoroethylene / hexafluoropropylene copolymer), ETFE (tetrafluoroethylene / ethylene copolymer), PVDF (polyvinylidene fluoride) PCTFE (polychlorotrifluoroethylene) and ECTFE (chlorotrifluoro) Ethylene / ethylene copolymer). As the thermoplastic resin, various resins can be used from those having a melting point of 100 ° C. or lower to those exceeding 400 ° C. Among the above resins, fluorine resin, polyethylene, polypropylene, and polyethylene terephthalate are particularly preferable, and PTFE, FEP, ETFE, polypropylene, and polyethylene terephthalate are particularly preferable. The thickness of the resin film is preferably in the range of 1 to 500 μm, more preferably in the range of 5 to 200 μm, and particularly preferably in the range of 10 to 150 μm.

樹脂フィルムに設けられた微小孔の幅は、50μm未満、特に20μm未満、とりわけ5μm未満であることが好ましい。微小孔のサイズが小さいほど、形成した平面脂質二重膜の安定性が高まる。なお、微小孔のサイズが非常に小さい場合は、脂質二重膜の形成をペインティング法で行った場合に溶媒が穴を塞ぎ膜が形成されないおそれがあるが、そのような場合はペインティング法以外の方法で脂質二重膜を形成すればよい。   The width of the micropores provided in the resin film is preferably less than 50 μm, particularly less than 20 μm, particularly less than 5 μm. The smaller the micropore size, the greater the stability of the formed planar lipid bilayer. In addition, when the size of the micropore is very small, there is a possibility that when the lipid bilayer membrane is formed by the painting method, the solvent may block the hole and the membrane may not be formed. In such a case, the painting method is used. What is necessary is just to form a lipid bilayer membrane by methods other than.

本発明の方法において、樹脂フィルム上の微小孔は、先鋭化した金属針を加熱して樹脂フィルムに押し当てることにより形成する。本明細書において「押し当てる」とは、樹脂フィルムに金属針の少なくとも一部を接触させること、あるいは金属針により樹脂フィルムを貫通させることを意味する。本発明の方法により得られる樹脂フィルム上の微小孔は、エッジが非常にシャープとなり、脂質二重膜の展開に有利である。   In the method of the present invention, the micropores on the resin film are formed by heating a sharpened metal needle and pressing it against the resin film. In this specification, “pressing” means bringing at least a part of a metal needle into contact with the resin film, or penetrating the resin film with the metal needle. The micropores on the resin film obtained by the method of the present invention have a very sharp edge, which is advantageous for the development of the lipid bilayer membrane.

金属針の材質は、加熱した際に溶融するものでなければ特に制限されるものではないが、例えばタングステン、白金、白金−イリジウムなどの白金合金あるいはニッケルなどを挙げることができる。金属針の先鋭化は、電解研磨、化学研磨および機械研磨など任意の研磨法により行うことができるが、特に電解研磨が好ましい。電解研磨により針を先鋭化する手法は、例えばSTM探針の分野において当業者に知られている。電解研磨による金属針の先鋭化とは、一般的に、針の母材先端部を電解液に浸し、電気化学反応により探針をエッチングして、形状の制御および最先端部の先鋭化を行うことをいう。   The material of the metal needle is not particularly limited as long as it does not melt when heated, and examples thereof include platinum alloys such as tungsten, platinum, platinum-iridium, and nickel. The sharpening of the metal needle can be performed by any polishing method such as electrolytic polishing, chemical polishing, and mechanical polishing, and electrolytic polishing is particularly preferable. Techniques for sharpening the needle by electropolishing are known to those skilled in the art, for example, in the field of STM probes. Sharpening a metal needle by electrolytic polishing is generally performed by immersing the tip of the needle base material in an electrolytic solution and etching the probe by an electrochemical reaction to control the shape and sharpen the most advanced part. That means.

金属針の加熱は、例えばニクロム線などの発熱体を接触させるなどの任意の方法により行うことができる。加熱は、金属針の温度が樹脂の融点付近の温度、例えば樹脂の融点±10℃、±5℃、±3℃あるいは±1℃となるよう行うことが好ましい。ニクロム線を針に接触させて加熱する場合には、ニクロム線に流す電流量により針の温度を調節することができる。電流量は所望の孔の大きさに応じて適宜調節すればよい。例えばニクロム線の太さが0.2mm、金属針の太さが0.5mmであり、ニクロム線を金属針の先鋭部近傍に数回程度(例えば2回)巻き付ける場合、電流量は数A程度、例えば0.5〜2.5A程度が適切である。   The heating of the metal needle can be performed by any method such as bringing a heating element such as a nichrome wire into contact therewith. The heating is preferably performed so that the temperature of the metal needle is a temperature near the melting point of the resin, for example, the melting point of the resin is ± 10 ° C., ± 5 ° C., ± 3 ° C., or ± 1 ° C. When the nichrome wire is brought into contact with the needle and heated, the temperature of the needle can be adjusted by the amount of current passed through the nichrome wire. The amount of current may be appropriately adjusted according to the desired hole size. For example, when the thickness of the nichrome wire is 0.2 mm and the thickness of the metal needle is 0.5 mm, and the nichrome wire is wound around the sharp portion of the metal needle several times (for example, twice), the current amount is about several A For example, about 0.5 to 2.5 A is appropriate.

加熱した針を樹脂フィルムに押し当てる際、樹脂フィルムの針が当たる側と反対の側には、例えばガラス板のような支持体があることが好ましい。ガラス板がある場合には、針が刺さりすぎて孔が大きくなりすぎるのを防ぐ効果、および孔のエッジが丸くなるという効果が生じる。孔のエッジがなめらかであると、形成した脂質膜がより安定する。また、孔のエッジの断面がシャープであることも、形成した脂質膜の安定性に寄与する。さらに、例えば透明導電膜(ITO)を設けたガラス板を用いると、針のガラス板への接触を電気的に検出することが可能となり、針の制御がより容易になる。ただし、ガラス板などの支持体がなくとも、幅が50μm未満、20μm未満、あるいは5μm未満の微小孔を設けることは可能である。また、支持体をガラス板よりも硬度が低いもの、たとえば樹脂板にすると、支持体との接触により針が損傷することを防ぐことができる。   When the heated needle is pressed against the resin film, it is preferable that there is a support such as a glass plate on the side opposite to the side on which the needle of the resin film hits. When there is a glass plate, the effect of preventing the needle from being stuck too much and the hole from becoming too large, and the effect of rounding the edge of the hole are produced. When the pore edge is smooth, the formed lipid membrane is more stable. Further, the fact that the cross section of the edge of the pore is sharp also contributes to the stability of the formed lipid membrane. Furthermore, for example, when a glass plate provided with a transparent conductive film (ITO) is used, the contact of the needle with the glass plate can be detected electrically, and the control of the needle becomes easier. However, even without a support such as a glass plate, it is possible to provide micropores having a width of less than 50 μm, less than 20 μm, or less than 5 μm. In addition, when the support is made of a material having a lower hardness than the glass plate, for example, a resin plate, the needle can be prevented from being damaged by contact with the support.

以下、実施例を用いて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。
[実施例1]
(1)フッ素樹脂(ETFE)フィルムへの微小孔の形成
中央に0.4mmの穴を開けた銀板(25mm四方、厚さ0.5mm)を用意した。銀板は、予め1M KClO水溶液に一晩浸した後にAg−AgCl処理を施した。この銀板にETFEフィルム(20mm四方、厚さ12μm)をエポキシ接着剤で貼り付け、ガラス板の上に裏返して乗せた。これを倒立型顕微鏡(オリンパスIX−50)の対物レンズ上に固定したステージにセットした。タングステン線(φ=0.5mm)を電解研磨(10% KOH、60Hz、20Vp−p)することで先鋭化して、孔をあけるための針とした。針にニクロム線(太さ0.2mm)を数回巻きつけ、このニクロム線に電気を流すことにより針を加熱できるようにし、針の加熱の程度はニクロム線に流す電流の大きさにより調整した。針を固定し、針の位置を顕微鏡で確認しながら(図2)、顕微鏡の照準装置を利用して針をETFEフィルムに押し付けて孔をあけた。図1に上述した微小孔の形成方法を模式的に示した。
EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to these Examples.
[Example 1]
(1) Formation of micropores in fluororesin (ETFE) film A silver plate (25 mm square, thickness 0.5 mm) having a 0.4 mm hole in the center was prepared. The silver plate was preliminarily soaked overnight in a 1M KClO 2 aqueous solution and then subjected to Ag-AgCl treatment. An ETFE film (20 mm square, thickness 12 μm) was attached to this silver plate with an epoxy adhesive, and it was turned over and placed on a glass plate. This was set on a stage fixed on the objective lens of an inverted microscope (Olympus IX-50). A tungsten wire (φ = 0.5 mm) was sharpened by electrolytic polishing (10% KOH, 60 Hz, 20 Vp-p) to obtain a needle for making a hole. A nichrome wire (thickness 0.2 mm) was wound around the needle several times, and electricity was passed through the nichrome wire so that the needle could be heated. The degree of heating of the needle was adjusted by the magnitude of the current passed through the nichrome wire. . While the needle was fixed and the position of the needle was confirmed with a microscope (FIG. 2), the needle was pressed against the ETFE film using a microscope aiming device to make a hole. FIG. 1 schematically shows the method for forming the micropores described above.

図3に種々の条件で作成した微小孔のSEM像を示した。(A)は加熱していない針を押し付けたETFEのSEM像である。ETFEの変形が不十分で微小孔が形成されないことが分かる。一方、加熱した針を用いた場合(B)、直径が3μmの微小孔が形成され、その周囲は美しい円錐形をしていた。これはETFEが針先の形状を反映して熱溶融形成された為であると考えられた。ただし、針を加熱しすぎた場合には、美しい円錐形の微小孔が形成されなかった(C)。   FIG. 3 shows SEM images of micropores created under various conditions. (A) is a SEM image of ETFE in which an unheated needle is pressed. It can be seen that the deformation of ETFE is insufficient and micropores are not formed. On the other hand, when a heated needle was used (B), a microhole having a diameter of 3 μm was formed, and the periphery thereof had a beautiful conical shape. This was thought to be due to the fact that ETFE was heat-melted to reflect the shape of the needle tip. However, when the needle was heated too much, no beautiful conical micropores were formed (C).

先鋭度の高い針(D)を用いて作成した微小孔(E)は、より先鋭度の低い針(F)によって加工された微小孔(G)に比べてその開口角が小さくなっていた。このことから、微小孔の形状は針先の温度だけでなく、用いる針先の形状にも依存して変化すると考えられる。   The opening angle of the microhole (E) created using the needle (D) having a high degree of sharpness was smaller than that of the microhole (G) processed by the needle (F) having a low degree of sharpness. From this, it is considered that the shape of the microhole changes depending on not only the temperature of the needle tip but also the shape of the needle tip used.

以上より、針先の温度とその先鋭度を調節することによって微小孔の形状を有る程度自由にコントロールすることが出来ると考えられる。先鋭度の低い針を最適な温度で用いることで開口角の大きい円錐形の微小孔を容易に加工できると考えられる。そのような微小孔は浮遊容量およびアクセス抵抗が小さく、チャネル電流測定に理想的であると考えられる。   From the above, it is considered that the shape of the micropores can be freely controlled to some extent by adjusting the temperature of the needle tip and the sharpness thereof. It is considered that a conical minute hole having a large opening angle can be easily processed by using a needle having a low sharpness at an optimum temperature. Such microholes have low stray capacitance and access resistance and are considered ideal for channel current measurement.

また、ガラス板側の微小孔の形状は針をあてた側と異なり平坦であった(H:Gの微小孔のガラス板側のSEM像)。そのため、作成した微小孔のエッジ部は、剃刀で削り取る従来法で得られる微小孔と同様、非常にシャープであると考えられる(I:想定される微小孔の断面図)。微小孔のエッジがシャープであると、脂質の薄膜化が促進される為、直径3μmの微小孔にもペインティング法を用いた脂質二重膜を展開する事が可能になると考えられる。   Further, the shape of the microhole on the glass plate side was flat unlike the side to which the needle was applied (HEM: SEM image of the G microhole on the glass plate side). Therefore, it is thought that the edge part of the created microhole is very sharp like the microhole obtained by the conventional method of scraping with a razor (I: sectional view of assumed microhole). If the edges of the micropores are sharp, lipid thinning is promoted, so it is considered possible to develop a lipid bilayer membrane using a painting method even in micropores with a diameter of 3 μm.

(2)脂質二重膜形成用セル
二つのシリコン製O−リング(内径11.0mm、太さ2.6mm)と新たな銀板(25mm四方、厚さ0.8mm)を用意し、新たな銀板の上にO−リング、上記(1)のETFEフィルムが貼り付けられた銀板、O−リングの順に重ねた。二枚の銀板の四方には予め穴(φ2mm)を開けておき、そのそれぞれをM2ネジとビスで固定した。図4に上述したセルの作成方法を模式的に示した。シリコン製O−リングによりシス側(上側)とトランス側(下側)のそれぞれにチェンバーが設けられている。
(2) Cell for forming a lipid bilayer membrane Two silicon O-rings (inner diameter 11.0 mm, thickness 2.6 mm) and a new silver plate (25 mm square, thickness 0.8 mm) were prepared. The O-ring, the silver plate on which the ETFE film of (1) above was pasted, and the O-ring were stacked in this order on the silver plate. Holes (φ2 mm) were made in advance on the four sides of the two silver plates, and each was fixed with M2 screws and screws. FIG. 4 schematically shows the above-described cell creation method. Chambers are provided on each of the cis side (upper side) and the transformer side (lower side) by a silicon O-ring.

(3)人工脂質二重膜の形成
上記(2)のセルを用いて平面脂質二重膜を形成した。セルのトランス側とシス側のチェンバーを予めベース溶液(2M KCl、Hepes 10mM at pH7.4)で満たした。脂質二重膜の形成はペインティング法によって行った。脂質溶液として、1,2−ジフィタノイル−sn−グリセロ−3−ホスホコリン(DphPC)(Avanti polar lipid社)をn−デカン(和光純薬工業社)に分散させ、最終濃度をDphPC 20mg/ml n−デカンとしたものを用いた。脂質溶液をマイクロピペット(20μL用)のチップ先端にごく少量付着させ、純水中で余分な溶媒を吹き飛ばした。その後、シス側のベース溶液中でピペット先端に気泡を作り、ETFEフィルムに設けられた微小孔を通過させることで脂質溶液を塗布した。大量の脂質溶液が微小孔に塗布され薄膜化が進まない場合は、新しいピペットで気泡を吹き付け、余剰の脂質溶液を除去し薄膜化を促進した。脂質二重の形成が確認された後、シス側を2M KCl溶液で置換した。
(3) Formation of artificial lipid bilayer A planar lipid bilayer was formed using the cell of (2) above. The trans and cis chambers of the cell were pre-filled with base solution (2M KCl, Hepes 10 mM at pH 7.4). Formation of the lipid bilayer membrane was performed by a painting method. As a lipid solution, 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DphPC) (Avanti polar lipid) is dispersed in n-decane (Wako Pure Chemical Industries), and the final concentration is DphPC 20 mg / ml n- What was decanted was used. A very small amount of lipid solution was attached to the tip of a micropipette (for 20 μL), and excess solvent was blown off in pure water. Thereafter, bubbles were formed at the tip of the pipette in the base solution on the cis side, and the lipid solution was applied by passing through micropores provided in the ETFE film. When a large amount of lipid solution was applied to the micropores and the film formation did not progress, air bubbles were blown with a new pipette to remove the excess lipid solution and promote thinning. After the formation of lipid duplex was confirmed, the cis side was replaced with 2M KCl solution.

(4)電流測定
上記(3)の直径3μmのETEF微小孔に設けた平面脂質二重膜にグラミシジンチャネルを導入し、銀板をgroundの電極として+100mVを印可した状態で電流測定を行った。グラミシジンの最終濃度は0.1nMであった。電流の測定にはパッチクランプアンプ(CEZ−2400、日本光電社)を用い、サンプリング周波数1kHzでデジタル化した。市販ソフトウェア(pClamp10.2、Axon社)を用いてデータを分析した。図5に電流測定時の装置の状態を模式的に示した。図6Aに電流測定の結果を示した。
(4) Current measurement Gramicidin channels were introduced into the planar lipid bilayer provided in the ETEF micropores with a diameter of 3 μm in (3) above, and current measurement was performed with +100 mV applied using a silver plate as a ground electrode. The final concentration of gramicidin was 0.1 nM. For the measurement of current, a patch clamp amplifier (CEZ-2400, Nihon Kohden) was used and digitized at a sampling frequency of 1 kHz. Data were analyzed using commercial software (pClamp 10.2, Axon). FIG. 5 schematically shows the state of the apparatus during current measurement. FIG. 6A shows the result of current measurement.

図6Aに示した電流測定の結果からは数秒ごとに変化する3pAのコンダクタンスステップが観測され、グラミシジンチャネルの振る舞いがとらえられた。このことは、3μmのETFE微小孔に脂質二重膜を形成できたことを示している。微小孔直径が数μmと小さい場合、溶媒の排出並びに脂質の薄膜化が進まずペインティング法を用いた脂質二重膜の形成は難しいと考えられているが、実験の結果からは容易に脂質二重膜を形成可能であることが明らかとなった。また、得られた電流測定の結果は、例えば上記で引用した非特許文献1のものと比べても電流変化が明確によみとれるものであった。   From the result of the current measurement shown in FIG. 6A, a conductance step of 3 pA changing every few seconds was observed, and the behavior of the gramicidin channel was captured. This indicates that a lipid bilayer could be formed in 3 μm ETFE micropores. When the micropore diameter is as small as several μm, it is considered difficult to form a lipid bilayer using the painting method without draining the solvent and thinning the lipid. It became clear that a double membrane could be formed. Further, the obtained current measurement result clearly shows a change in current even when compared with the non-patent document 1 cited above, for example.

(5)膜安定性試験
3μmのETFE微小孔に脂質二重膜を形成し、1000mVの膜電位を印可した場合どのような変化が起こるのか試験した。その結果を図6Bに示した。
(5) Membrane stability test A lipid bilayer membrane was formed in 3 μm ETFE micropores, and what changes occurred when a membrane potential of 1000 mV was applied was examined. The result is shown in FIG. 6B.

初めに+100mVを印可した状態で+1000mVを印可すると、膜電流は測定の飽和値に達した。しかし、膜電位を+100mVに戻すと電流が飽和値から回復していった。+1000mVの膜電位を印可する前にグラミシジンチャネルに由来するコンダクタンスの変化が記録されていることから、脂質二重膜が形成されている事は明らかであった。また、+1000mVを印可したことで二重膜が不可逆的に破壊された場合、電流値の回復現象は起こりえないため、この結果から二重膜が1000mVの膜電位を印可した状態でも破壊されずに安定に存在し続ける事がわかった。数十μm程度の微小孔に形成した二重膜は300〜400mVを印可すると不可逆的に破壊されてしまうことが知られている。すなわち、この結果は数μmオーダーの微小孔に形成した二重膜は、それよりも圧倒的に安定していることを示している。   When +1000 mV was applied with +100 mV initially applied, the membrane current reached the measured saturation value. However, when the membrane potential was returned to +100 mV, the current recovered from the saturation value. Since the change in conductance derived from the gramicidin channel was recorded before applying a membrane potential of +1000 mV, it was clear that a lipid bilayer was formed. In addition, when the double membrane is irreversibly destroyed due to the application of +1000 mV, the current value recovery phenomenon cannot occur. Therefore, even if the double membrane is applied with a membrane potential of 1000 mV, it is not destroyed. It has been found that it continues to exist stably. It is known that a double membrane formed in a micropore of about several tens of μm is irreversibly destroyed when 300 to 400 mV is applied. That is, this result shows that the double membrane formed in the micropores on the order of several μm is overwhelmingly stable.

[実施例2]
実施例1(1)の方法で他の材質の樹脂フィルムにも微小孔が形成可能であるかを検証した。図7A〜Cは厚さ15μmのポリエチレンフィルムに、D〜Eは厚さ15μmのポリプロピレンフィルムに形成した微小孔のSEM像である。図8AおよびBは厚さ13μmのPETフィルムに、C〜Eは厚さ13μmのPTFEフィルムに形成した微小孔のSEM像である。図中には、針を加熱するためのニクロム線に流した電流の値をそれぞれ記載している。「ITOガラス使用」とは、樹脂フィルムを支持するガラス板としてITO(透明導電膜)を表面に備えたガラス板を使用し、ガラス板と針との接触を電気的に検出しながら孔を開けたことを意味している。「ガラス不使用」とは、樹脂フィルムを支持するガラス板を使用しないで孔を開けたことを意味している。
[Example 2]
It was verified by the method of Example 1 (1) whether micropores could be formed in resin films of other materials. 7A to 7C are SEM images of micropores formed in a polyethylene film having a thickness of 15 μm, and D to E being formed in a polypropylene film having a thickness of 15 μm. 8A and 8B are SEM images of micropores formed on a 13 μm thick PET film, and C to E on a 13 μm thick PTFE film. In the figure, the value of the current passed through the nichrome wire for heating the needle is shown. “Using ITO glass” means using a glass plate with ITO (transparent conductive film) on the surface as a glass plate to support the resin film, and opening a hole while electrically detecting contact between the glass plate and the needle. It means that. “Glass not used” means that a hole is formed without using a glass plate that supports the resin film.

これらのSEM像からもわかるように、いずれの材質のフィルムでも本発明の方法により幅が数μm〜100μm程度の微小孔が形成可能であった。図9A〜Cは厚さが25μm、D、Eは50μmおよびF、Gは125μmのFEPフィルムに形成した微小孔のSEM像である。いずれの厚さのFEPフィルムでも本発明の方法により幅が数μm〜数十μm程度の微小孔が形成可能であることがわかった。これらの樹脂フィルムに形成した微小孔を利用することにより、安定した平面脂質二重膜が形成されることが期待される。   As can be seen from these SEM images, micropores having a width of several μm to 100 μm could be formed by the method of the present invention in any film. 9A to 9C are SEM images of micropores formed in an FEP film having a thickness of 25 μm, D and E of 50 μm, and F and G of 125 μm. It was found that micropores having a width of several μm to several tens of μm can be formed by the method of the present invention in any thickness of FEP film. It is expected that a stable planar lipid bilayer is formed by utilizing the micropores formed in these resin films.

Claims (4)

先鋭化した金属針を、発熱体を接触させることにより加熱した状態で、支持体上の樹脂フィルムに押し当てることにより樹脂フィルムに幅5μm未満の微小孔を設けること、および前記樹脂フィルムに設けた微小孔に脂質二重膜を形成することを含む、平面脂質二重膜の形成方法。 In a state where a sharpened metal needle is heated by bringing a heating element into contact with the resin film, the resin film is pressed against the resin film to provide micropores with a width of less than 5 μm , and provided in the resin film. A method for forming a planar lipid bilayer, comprising forming a lipid bilayer in a micropore. 発熱体が電流を流したニクロム線である、請求項1に記載の方法。The method according to claim 1, wherein the heating element is a nichrome wire carrying a current. 前記金属針が、電解研磨によって先鋭化されたタングステン、白金、白金合金およびニッケルから選択される金属からなる針である、請求項1または2に記載の方法。 The method according to claim 1 or 2 , wherein the metal needle is a needle made of a metal selected from tungsten, platinum, a platinum alloy and nickel sharpened by electropolishing. 前記樹脂がフッ素樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、ABS樹脂、AS樹脂、アクリル樹脂、ポリエチレンテレフタラートおよびポリブチレンテレフタラートから選択される、請求項1〜3のいずれか1項に記載の方法。 The resin according to any one of claims 1 to 3, wherein the resin is selected from fluororesin, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, ABS resin, AS resin, acrylic resin, polyethylene terephthalate and polybutylene terephthalate . 2. The method according to item 1 .
JP2010032567A 2010-02-17 2010-02-17 Method for forming planar lipid bilayer membrane Expired - Fee Related JP5544186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010032567A JP5544186B2 (en) 2010-02-17 2010-02-17 Method for forming planar lipid bilayer membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010032567A JP5544186B2 (en) 2010-02-17 2010-02-17 Method for forming planar lipid bilayer membrane

Publications (2)

Publication Number Publication Date
JP2011167609A JP2011167609A (en) 2011-09-01
JP5544186B2 true JP5544186B2 (en) 2014-07-09

Family

ID=44682292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010032567A Expired - Fee Related JP5544186B2 (en) 2010-02-17 2010-02-17 Method for forming planar lipid bilayer membrane

Country Status (1)

Country Link
JP (1) JP5544186B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021372121B2 (en) * 2020-10-28 2023-09-14 Kyushu University, National University Corporation Membrane protein analysis substrate, method of producing membrane protein analysis substrate, method of analyzing membrane protein, and membrane protein analysis grid

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5917420B2 (en) * 2013-01-25 2016-05-11 日本電信電話株式会社 Substrate, method for using the substrate for functional measurement of biomolecules, and method for manufacturing the substrate
JP6837234B2 (en) * 2017-01-13 2021-03-03 国立大学法人東海国立大学機構 Lipid bilayer structure and its manufacturing method
JP7162283B2 (en) * 2019-05-27 2022-10-28 国立大学法人山形大学 Lipid bilayer channel evaluation chip, manufacturing method thereof, and evaluation device
WO2022092208A1 (en) 2020-10-28 2022-05-05 国立大学法人九州大学 Membrane protein analysis substrate, method of producing membrane protein analysis substrate, method of analyzing membrane protein, and membrane protein analysis grid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3595120B2 (en) * 1997-08-27 2004-12-02 株式会社東芝 Substance identification system
JP3071831U (en) * 2000-03-16 2000-09-22 伊藤景パック産業株式会社 Food storage bag
JP4394916B2 (en) * 2003-09-19 2010-01-06 独立行政法人科学技術振興機構 Artificial lipid bilayer membrane formation apparatus, artificial lipid bilayer membrane formation method, and use thereof
JP4953044B2 (en) * 2005-05-09 2012-06-13 財団法人生産技術研究奨励会 Method and apparatus for forming lipid bilayer membrane
JP2008194573A (en) * 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd Lipid double film forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021372121B2 (en) * 2020-10-28 2023-09-14 Kyushu University, National University Corporation Membrane protein analysis substrate, method of producing membrane protein analysis substrate, method of analyzing membrane protein, and membrane protein analysis grid

Also Published As

Publication number Publication date
JP2011167609A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
Pevarnik et al. Polystyrene particles reveal pore substructure as they translocate
Dipalo et al. Cells adhering to 3D vertical nanostructures: cell membrane reshaping without stable internalization
Xiao et al. Biomimetic solid‐state nanochannels: from fundamental research to practical applications
Hou et al. A biomimetic asymmetric responsive single nanochannel
Qiu et al. Highly charged particles cause a larger current blockage in micropores compared to neutral particles
JP6124982B2 (en) System and method for forming nanopores
Zhang et al. Engineered asymmetric heterogeneous membrane: a concentration-gradient-driven energy harvesting device
Li et al. Conical nanopore membranes. Preparation and transport properties
Lin et al. Ultrathin silica membranes with highly ordered and perpendicular nanochannels for precise and fast molecular separation
US7849581B2 (en) Nanopore electrode, nanopore membrane, methods of preparation and surface modification, and use thereof
Lan et al. Nanoparticle transport in conical-shaped nanopores
Sa et al. Reversible cobalt ion binding to imidazole-modified nanopipettes
JP5544186B2 (en) Method for forming planar lipid bilayer membrane
Terejánszky et al. Calibration-less sizing and quantitation of polymeric nanoparticles and viruses with quartz nanopipets
Zhang et al. Fabrication and use of nanopipettes in chemical analysis
Gao et al. Method of creating a nanopore-terminated probe for single-molecule enantiomer discrimination
Qiu et al. Pores with longitudinal irregularities distinguish objects by shape
Zhao et al. Mimicking pH-gated ionic channels by polyelectrolyte complex confinement inside a single nanopore
Chinappi et al. Analytical model for particle capture in nanopores elucidates competition among electrophoresis, electroosmosis, and dielectrophoresis
Shan et al. Surface modification of graphene nanopores for protein translocation
Wang et al. Atomic layer deposition modified track-etched conical nanochannels for protein sensing
Thiruraman et al. Ions and water dancing through atom-scale holes: A perspective toward “size zero”
Sun et al. Electrophoretic transport of biomolecules through carbon nanotube membranes
US20130140192A1 (en) Method of Producing a Lipid Bilayer and Microstructure and Measuring Arrangement
Baek et al. Ion gating in nanopore electrode arrays with hierarchically organized pH-responsive block copolymer membranes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140512

R150 Certificate of patent or registration of utility model

Ref document number: 5544186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees