JP5542615B2 - Radar image processing device - Google Patents

Radar image processing device Download PDF

Info

Publication number
JP5542615B2
JP5542615B2 JP2010241289A JP2010241289A JP5542615B2 JP 5542615 B2 JP5542615 B2 JP 5542615B2 JP 2010241289 A JP2010241289 A JP 2010241289A JP 2010241289 A JP2010241289 A JP 2010241289A JP 5542615 B2 JP5542615 B2 JP 5542615B2
Authority
JP
Japan
Prior art keywords
azimuth
unit
azimuth direction
signal
fourier transform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010241289A
Other languages
Japanese (ja)
Other versions
JP2012093257A (en
Inventor
成宜 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010241289A priority Critical patent/JP5542615B2/en
Publication of JP2012093257A publication Critical patent/JP2012093257A/en
Application granted granted Critical
Publication of JP5542615B2 publication Critical patent/JP5542615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

この発明は、レーダ装置からの受信信号に対して、移動方向と平行な方向の分解能を向上する信号処理を行うことにより観測領域の画像を得るレーダ画像処理装置に関するものである。   The present invention relates to a radar image processing apparatus that obtains an image of an observation region by performing signal processing for improving the resolution in a direction parallel to a moving direction on a received signal from a radar apparatus.

合成開口レーダ(Synthetic Aperture Rader:SAR)は、航空機や衛星などの移動体に搭載され、地表面を観測するレーダである。移動中に受信した受信信号に信号処理を施すことにより角度分解能を向上し、観測対象となる地表面の画像を得ることが可能である。
サブアパーチャ法は合成開口SARによる画像再生アルゴリズムの1つであり、スポットライト観測や、スライディングスポットライト観測のような、受信データにおける全ドップラー帯域がパルス繰り返し周波数(以下、「PRF」と略記する)よりも大きい観測データを処理するためのアルゴリズムである。本法は、ドイツ航空宇宙センターが開発した商用衛星TerraSAR−Xの再生処理として用いられている(例えば、非特許文献1参照)。
A Synthetic Aperture Radar (SAR) is a radar that is mounted on a moving body such as an aircraft or a satellite and observes the ground surface. By performing signal processing on the received signal received during movement, it is possible to improve the angular resolution and obtain an image of the ground surface to be observed.
The sub-aperture method is one of image reproduction algorithms using the synthetic aperture SAR, and all Doppler bands in received data, such as spotlight observation and sliding spotlight observation, are pulse repetition frequencies (hereinafter abbreviated as “PRF”). It is an algorithm for processing larger observation data. This method is used as a regeneration process for the commercial satellite TerraSAR-X developed by the German Aerospace Center (see Non-Patent Document 1, for example).

本法の特徴は、ドップラー帯域がPRFを超えない範囲(サブアパーチャ)に受信データを分割した後、各サブアパーチャ単位で再生処理を行い、最終段でスペクトル解析法(SPECtral ANalysis:SPECAN)を利用して各サブアパーチャを合成して、高分解能な画像を形成することである。   The feature of this method is that after the received data is divided into a range (sub-aperture) in which the Doppler band does not exceed the PRF, reproduction processing is performed in units of each sub-aperture, and a spectrum analysis method (SPECtral ANAlysis: SPECAN) is used in the final stage. Then, the sub-apertures are combined to form a high-resolution image.

スポットライトモードやスライディングスポットライトモードでは、地上ターゲットまたは回転中心へビーム中心を向けながら観測する。そのため、軌道に対して垂直なゼロドップラー方向とビームの送信方向(視線方向)でなす角であるスクイント角は連続的に変化し、通常、観測中心位置でゼロ近傍、観測開始/終了位置で最も大きなスクイント角をとる。サブアパーチャ法では、観測データを時間領域で分割したサブアパーチャ単位で再生処理を行うため、各サブアパーチャにおけるスクイント角は異なる。   In the spotlight mode and sliding spotlight mode, observation is performed while directing the beam center toward the ground target or the center of rotation. Therefore, the squint angle, which is the angle between the zero Doppler direction perpendicular to the orbit and the beam transmission direction (line-of-sight direction), changes continuously, and is usually near zero at the observation center position and most at the observation start / end positions. Take a large squint angle. In the sub-aperture method, since the reproduction processing is performed in units of sub-apertures obtained by dividing the observation data in the time domain, the squint angle in each sub-aperture is different.

サブアパーチャ法では、ドップラー帯域がPRFを超えないサブアパーチャの範囲を決定する際、式(1)、(2)によりヒット毎に決定される観測の最大瞬時ドップラー周波数fdop_maxと最小瞬時ドップラー周波数fdop_minの差がPRFとなるアジマス時刻範囲をサブアパーチャとしている。 In the sub-aperture method, when determining the sub-aperture range in which the Doppler band does not exceed the PRF, the observed maximum instantaneous Doppler frequency f dop_max and minimum instantaneous Doppler frequency f determined for each hit by the equations (1) and (2). An azimuth time range in which the difference in dop_min is PRF is used as a sub-aperture.

Figure 0005542615
Figure 0005542615

ここで、fは送信周波数、cは光速度、Vはレーダの移動速度、Qsqはレーダの移動方向に対して垂直な方向とビームの送信方向(視線方向)とでなす角であるスクイント角、θはアジマス方向のビーム幅を示す。 Here, fr is the transmission frequency, c is the speed of light, Vp is the moving speed of the radar, and Q sq is the angle formed by the direction perpendicular to the moving direction of the radar and the transmission direction of the beam (line-of-sight direction). squint angle, theta a denotes the beam width of the azimuth direction.

分割再生処理したサブアパーチャを結合する時に使用するスペクトル解析法(SPECAN)は、入力信号のアジマス方向の位相が2次の変化(線形周波数変化)を持つ信号を前提としており、これにデランプ処理とフーリエ変換を施すことで周波数軸上に結像させる手法である。   The spectrum analysis method (SPECAN) used when combining sub-apertures that have been subjected to split reproduction processing is based on the assumption that the phase of the input signal in the azimuth direction has a second order change (linear frequency change). This is a method of forming an image on the frequency axis by performing Fourier transform.

そこでサブアパーチャ法では、分割した処理範囲ごとにレンジ・ドップラー領域でアジマス圧縮を行った信号に対し、式(3)に示すアジマススケーリング関数Hasの複素乗算処理とアジマス逆フーリエ変換を全レンジに対して行うことで正確な2次の位相変化を持つ処理信号を作成し、SPECAN処理によるサブアパーチャ結合の入力としている。 In Therefore subaperture method, to the signal subjected to azimuth compression in the range Doppler region for each divided processing range, the complex multiplication processing and azimuth inverse Fourier transform of the azimuth scaling function H the as shown in equation (3) in all ranges On the other hand, a processed signal having an accurate second-order phase change is created, and is used as an input for sub-aperture coupling by SPECAN processing.

Figure 0005542615
Figure 0005542615

ここで、fdop_rateは観測時のドップラー周波数変化速度、fはアジマス周波数を示す。 Here, f dop_rate Doppler frequency change rate during the observation, f a represents the azimuth frequency.

このとき、式(3)のアジマススケーリング関数Hasの乗算とアジマス逆フーリエ変換を行うことで時間領域に変換された信号の有効信号幅は、分割領域の受信信号が持つドップラー帯域をドップラー周波数変化速度で除した時間幅となる。 In this case, the effective signal range of the azimuth scaling function H the as multiplication and the transformed signal in time domain by performing azimuth inverse Fourier transform of equation (3) is the Doppler frequency change of Doppler band having received signal divided areas The time width divided by the speed.

スクイント角がほぼ0近傍のサブアパーチャでは、受信信号のドップラー帯域幅は、サブアパーチャの時間幅とドップラー周波数変化速度の積で与えられる。そのため、再生処理後、アジマススケーリング関数で補償した後にアジマス逆フーリエ変換を行うと、有効信号幅は元の時間幅とほぼ同じ幅にスケーリングされる。   In a sub-aperture whose squint angle is approximately 0, the Doppler bandwidth of the received signal is given by the product of the time width of the sub-aperture and the Doppler frequency change rate. Therefore, when the azimuth inverse Fourier transform is performed after the reproduction processing and compensated by the azimuth scaling function, the effective signal width is scaled to substantially the same width as the original time width.

スクイント観測したサブアパーチャのドップラー帯域幅は、送信パルスの線形周波数変調(レンジ帯域)に伴うドップラー周波数変化分のドップラー帯域が拡大する。そのため、アジマス逆フーリエ変換後の有効信号幅はサブアパーチャの時間幅よりも大きくなる。   The Doppler bandwidth of the sub-aperture observed by the squint enlarges the Doppler bandwidth corresponding to the Doppler frequency change accompanying the linear frequency modulation (range band) of the transmission pulse. Therefore, the effective signal width after the azimuth inverse Fourier transform becomes larger than the time width of the sub-aperture.

J.Mittermayer、他2名、Spotlight SAR Data Processing Using the Frequency Scaling Algorithm」、IEEE TRANSACTION ON GEOSCIENCE AND REMOTE SENSING、Sept.1999、Vol.37、No.5、p.2198−2214J. et al. Mittermayer, two others, Spotlight SAR Data Processing using the Frequency Scaling Algorithm, IEEE TRANSACTION ON GEOSCIENCE AND REMOTE SENSING. 1999, Vol. 37, no. 5, p. 2198-2214

従来のサブアパーチャアルゴリズムでは、切り出したサブアパーチャ幅で再生処理するため、アジマス逆フーリエ変換後の処理信号では、レンジ帯域によるドップラー帯域の拡大は折り返しとして現れる。そこで、その折り返しが影響する領域は、隣り合うサブアパーチャのオーバーラップ分となるように分割処理を行い、分割再生処理後に折り返しが影響しない領域のみを切り出して結合していた。
ところが、スクイントが大きい観測や、レンジ帯域幅が大きい観測ほどドップラー帯域の拡大幅が大きくなるため、必要とするオーバーラップ領域が拡大し、処理効率が低下した。
また、瞬時ドップラー帯域幅に対してPRFが十分大きくない場合、レンジ帯域によるドップラー帯域の拡大幅がサブアパーチャ幅より大きくなると折り返しが影響しない領域が消失し、サブアパーチャを結合できず、高分解能画像を作成できない問題が発生した。
In the conventional sub-aperture algorithm, reproduction processing is performed with the cut out sub-aperture width. Therefore, in the processed signal after the azimuth inverse Fourier transform, the expansion of the Doppler band due to the range band appears as a return. Therefore, the division process is performed so that the area affected by the aliasing overlaps the adjacent sub-apertures, and only the area where the aliasing does not influence is cut out and combined after the division reproduction process.
However, the observation with a large squint and the observation with a large range bandwidth have a larger Doppler bandwidth expansion, which increases the required overlap region and lowers the processing efficiency.
In addition, when the PRF is not sufficiently large with respect to the instantaneous Doppler bandwidth, if the expansion width of the Doppler bandwidth due to the range bandwidth becomes larger than the sub-aperture width, the region where the aliasing does not affect disappears, and the sub-aperture cannot be combined, and the high resolution image There was a problem that could not be created.

この発明は、前記のような課題を解決するためになされたものであり、合成開口時間が長いことで大きなスクイント角での観測や、レンジの帯域幅が大きい観測でも、処理効率を低下させずに画像劣化のない高分解能な画像を生成するレーダ画像処理装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and does not decrease the processing efficiency even in the observation with a large squint angle or the observation with a large range bandwidth due to the long synthetic aperture time. An object of the present invention is to obtain a radar image processing apparatus that generates a high-resolution image without image degradation.

この発明に係るレーダ画像処理装置は、受信信号をアジマス方向に分割することで、アジマス方向に分割された分割信号を生成するアジマス方向分割部と、前記アジマス方向に分割された分割信号にフーリエ変換をアジマス方向に施してアジマスフーリエ変換後受信信号を生成するアジマスフーリエ変換部と、前記アジマスフーリエ変換後受信信号にパルス圧縮処理をレンジ方向に施してレンジ方向圧縮受信信号を生成するレンジ方向圧縮部と、前記レンジ方向圧縮受信信号に対して、前記アジマス方向の変調を取り除くためのアジマス方向の参照関数を乗算して、前記アジマス方向の変調が取り除かれたアジマス方向位相補償信号を生成するアジマス参照関数乗算部と、前記アジマス方向位相補償信号にスケーリング処理をアジマス方向に施してアジマススケーリング後受信信号を生成するアジマススケーリング部と、前記アジマススケーリング後受信信号にアジマス方向の逆フーリエ変換を施してアジマス逆フーリエ変換後受信信号を生成するアジマス逆フーリエ変換部と、前記アジマス逆フーリエ変換後受信信号を合成して高分解能画像を生成するアジマス方向結合部とを備えレーダ画像処理装置であって、前記アジマス方向分割部は、送信周波数を示すf と、光速度を示すcと、レーダの移動速度を示すV と、レーダ装置の移動に伴うスクイント角を示すθ sq と、アジマス方向のビーム幅を示すθ と、送信波の中心周波数を示すf と、周波数変調を示すf τ と、レンジ帯域を示すB とを用いて明細書中の式(4)〜(7)によって、観測中のドップラー周波数の最大瞬時ドップラー周波数を示すf dop_max および最小瞬時ドップラー周波数を示すf dop_min を算出する最大/最小瞬時ドップラー周波数算出部と、前記最大瞬時ドップラー周波数と前記最小瞬時ドップラー周波数に挟まれた前記受信信号のドップラー周波数を、観測時間の方向に分割することで複数の分割領域を生成する場合に、前記複数の分割領域のそれぞれに含まれるドップラー周波数の最大値と最小値との差分がパルス繰り返し周波数を超えないように、前記複数の分割領域のそれぞれの分割領域幅を決定するアジマス方向切り出し範囲決定部と、前記受信信号を前記分割領域幅に従って切り出して切り出し後受信信号を生成するアジマス方向切り出し部と、前記レーダ装置の移動に伴うスクイント角と前記送信波のレンジ帯域によるドップラー周波数の拡大幅に相当する時間幅を算出するアジマス方向0詰め幅算出部と、前記ドップラー周波数の拡大幅に相当する時間幅分の0信号を、前記切り出し後受信信号に設定することで、前記アジマス方向に分割された分割信号を生成するアジマス方向0詰め部とを有し、前記アジマス方向結合部は、前記アジマス逆フーリエ変換後受信信号に対して、アジマス方向にデランプ処理用補償関数による位相補償を行うことで、アジマスデランプ後受信信号を生成するアジマスデランプ処理部と、前記アジマスデランプ後受信信号を加算処理により結合信号を生成する処理信号加算部と、前記結合信号にアジマス方向のフーリエ変換を施すことにより、アジマス方向に圧縮された高分解能画像を生成するフルアジマスフーリエ変換部とを有する。 The radar image processing apparatus according to the present invention includes: an azimuth direction dividing unit that generates a divided signal divided in the azimuth direction by dividing the received signal in the azimuth direction; and a Fourier transform into the divided signal divided in the azimuth direction. An azimuth Fourier transform unit that generates a received signal after azimuth Fourier transform by applying the azimuth direction to the azimuth direction, and a range direction compressing unit that generates a range direction compressed received signal by performing pulse compression processing on the received signal after the azimuth Fourier transform in the range direction If, for the range direction compressing the received signals, by multiplying the azimuth direction of the reference function for removing modulation of the azimuth direction, azimuth reference for generating the azimuth direction phase compensation signal modulated it is removed in the azimuth direction Function multiplication unit and scaling processing to the azimuth direction phase compensation signal in the azimuth direction An azimuth scaling unit that generates a received signal after azimuth scaling, an azimuth inverse Fourier transform unit that performs an inverse Fourier transform in the azimuth direction on the received signal after azimuth scaling to generate a received signal after azimuth inverse Fourier transform, and the azimuth the radar image processing apparatus and a azimuth direction coupling unit received signal after inverse Fourier transform are synthesized to generate a high resolution image, the azimuth direction dividing section, and f r indicating the transmission frequency, the speed of light and c illustrating a V p indicating the moving speed of the radar, and theta sq showing a squint angle with the movement of the radar apparatus, and theta a shows the azimuth direction of the beam width, and f c indicating the center frequency of the transmitted wave, and f tau showing a frequency modulation, the equation in the specification with reference to the B r indicating the range band (4) to (7), the Doppler circumference under observation Maximum / minimum instantaneous Doppler frequency calculating section, the maximum instantaneous Doppler frequency and the minimum instantaneous Doppler frequency sandwiched by the received signal to calculate the f Dop_min showing the f Dop_max and minimum instantaneous Doppler frequency indicating the maximum instantaneous Doppler frequency of several When the plurality of divided regions are generated by dividing the Doppler frequency in the direction of the observation time, the difference between the maximum value and the minimum value of the Doppler frequency included in each of the plurality of divided regions is the pulse repetition frequency. An azimuth direction cut-out range determining unit that determines a divided region width of each of the plurality of divided regions, and an azimuth direction cut-out unit that cuts out the received signal according to the divided region width and generates a received signal after cutting out The squint angle accompanying the movement of the radar device and the transmission An azimuth-direction zero-padded width calculation unit that calculates a time width corresponding to the expanded width of the Doppler frequency according to the range band of the signal wave, and a 0-signal for the time width corresponding to the expanded width of the Doppler frequency, The azimuth direction zero padding unit for generating a divided signal divided in the azimuth direction, the azimuth direction coupling unit in the azimuth direction with respect to the received signal after the azimuth inverse Fourier transform An azimuth de-ramp processing unit that generates a reception signal after azimuth de-ramp by performing phase compensation using a compensation function for de-ramp processing, and a processing signal addition unit that generates a combined signal by adding the reception signal after azimuth de-ramping And applying a Fourier transform in the azimuth direction to the combined signal to generate a full-resolution image compressed in the azimuth direction. And a mass Fourier transform unit.

この発明に係るレーダ画像処理装置は、受信パルスの変調によるドップラー帯域の拡大分の折り返しを0詰め処理で回避することで、従来よりもスクイントの大きい観測やレンジ帯域幅が大きな観測データに対しても、信号劣化のない画像を効率よく作成可能となる。   The radar image processing apparatus according to the present invention avoids folding of the expanded Doppler band due to modulation of the received pulse by zero padding processing, so that observation with a larger squint and observation data with a larger range bandwidth than conventional ones can be performed. However, it is possible to efficiently create an image without signal degradation.

この発明の実施の形態1に係るレーダ画像処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the radar image processing apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るレーダ画像処理装置のアジマス方向分割部の構成を示すブロック図である。It is a block diagram which shows the structure of the azimuth direction division | segmentation part of the radar image processing apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るレーダ画像処理装置のアジマス方向結合部の構成を示すブロック図である。It is a block diagram which shows the structure of the azimuth direction coupling | bond part of the radar image processing apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るレーダ画像処理装置のアジマス方向分割部の動作の概略を説明するための図である。It is a figure for demonstrating the outline of operation | movement of the azimuth direction division | segmentation part of the radar image processing apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るレーダ画像処理装置のアジマス方向結合部の動作の概略を説明するための図である。It is a figure for demonstrating the outline of operation | movement of the azimuth direction coupling | bond part of the radar image processing apparatus which concerns on Embodiment 1 of this invention.

以下、本発明のレーダ画像処理装置の好適な実施の形態につき図面を用いて説明する。
実施の形態1.
図1は、本発明の実施形態1に係るレーダ画像処理装置の構成を表すブロック図である。
本発明の実施形態1に係るレーダ画像処理装置は、図1に示すように、アジマス方向分割部10、アジマスフーリエ変換部20、レンジ方向圧縮部30、アジマス参照関数乗算部40、アジマススケーリング部50、アジマス逆フーリエ変換部60、アジマス方向結合部70を備える。
Hereinafter, a preferred embodiment of a radar image processing apparatus of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a block diagram showing the configuration of a radar image processing apparatus according to Embodiment 1 of the present invention.
As shown in FIG. 1, the radar image processing apparatus according to the first embodiment of the present invention includes an azimuth direction division unit 10, an azimuth Fourier transform unit 20, a range direction compression unit 30, an azimuth reference function multiplication unit 40, and an azimuth scaling unit 50. The azimuth inverse Fourier transform unit 60 and the azimuth direction coupling unit 70 are provided.

図2は、図1に示したアジマス方向分割部10の内部構成を表すブロック図である。
アジマス方向分割部10は、図2に示すように、最大/最小瞬時ドップラー周波数算出部11、アジマス方向切り出し範囲決定部12、アジマス方向0詰め幅算出部13、アジマス方向切り出し部14、アジマス方向0詰め部15を備える。
FIG. 2 is a block diagram showing an internal configuration of the azimuth direction dividing unit 10 shown in FIG.
As shown in FIG. 2, the azimuth direction division unit 10 includes a maximum / minimum instantaneous Doppler frequency calculation unit 11, an azimuth direction cut-out range determination unit 12, an azimuth direction 0-filling width calculation unit 13, an azimuth direction cut-out unit 14, and an azimuth direction 0. A stuffing unit 15 is provided.

図3は、図1に示したアジマス方向結合部70の内部構成を表すブロック図である。
アジマス方向結合部70は、図3に示すように、アジマスデランプ処理部71、処理信号加算部72、フルアジマスフーリエ変換部73を備える。
FIG. 3 is a block diagram illustrating an internal configuration of the azimuth direction coupling unit 70 illustrated in FIG. 1.
As illustrated in FIG. 3, the azimuth direction coupling unit 70 includes an azimuth de-ramp processing unit 71, a processing signal addition unit 72, and a full azimuth Fourier transform unit 73.

次に、本発明の実施形態1に係るレーダ画像処理装置の動作を説明する。
一般に合成開口レーダはレンジ方向とアジマス方向の両方を高分解能化する信号処理が行われる。しかし、本発明はアジマス方向の高分解能化する信号処理に関するものであるため、レンジ方向の高分解能化処理、具体的にはパルス圧縮処理については特に言及しない。実際には一般的に知られている手法を用いればよい。
Next, the operation of the radar image processing apparatus according to the first embodiment of the present invention will be described.
In general, the synthetic aperture radar performs signal processing for increasing the resolution in both the range direction and the azimuth direction. However, since the present invention relates to signal processing for increasing the resolution in the azimuth direction, no particular mention is made of the resolution increasing processing in the range direction, specifically the pulse compression processing. In practice, a generally known method may be used.

図1のレーダ画像処理装置は、アジマス方向分割部10で行うアジマス方向の分割処理とアジマス方向結合部70で行うアジマス方向の結合処理以外は、従来のサブアパーチャ法と同様の信号処理を行う。   The radar image processing apparatus of FIG. 1 performs signal processing similar to the conventional sub-aperture method except for the azimuth direction division processing performed by the azimuth direction division unit 10 and the azimuth direction combination processing performed by the azimuth direction coupling unit 70.

まず、アジマス方向分割部10では、分割された受信信号のドップラー周波数がPRFよりも小さい周波数幅に収まるように、受信信号をアジマス方向に分割する。ここでの具体的な動作については後述する。   First, the azimuth direction division unit 10 divides the reception signal in the azimuth direction so that the Doppler frequency of the divided reception signal falls within a frequency width smaller than the PRF. The specific operation here will be described later.

アジマスフーリエ変換部20では、各分割信号にフーリエ変換をアジマス方向に施してアジマスフーリエ変換後受信信号を生成する。
次に、レンジ方向圧縮部30では、アジマスフーリエ変換後受信信号にパルス圧縮処理をレンジ方向に施し高分解能化し、レンジ方向圧縮受信信号を生成する。
次に、アジマス参照関数乗算部40では、レンジ方向圧縮受信信号にアジマス方向の参照関数を乗算し、アジマス方向の変調を取り除き、アジマス方向位相補償信号を生成する。
次に、アジマススケーリング部50では、アジマス結合時に必要な変調を加えるために、アジマス方向位相補償信号にスケーリング処理をアジマス方向に施し、位相補償を実施し、アジマススケーリング後受信信号を生成する。
次に、アジマス逆フーリエ変換部60では、アジマススケーリング後受信信号にアジマス方向の逆フーリエ変換を施し、アジマス方向の結合処理に必要な変調を有したアジマス逆フーリエ変換後受信信号を生成する。
The azimuth Fourier transform unit 20 performs Fourier transform on each divided signal in the azimuth direction to generate a reception signal after azimuth Fourier transform.
Next, the range direction compression unit 30 applies pulse compression processing to the received signal after azimuth Fourier transform in the range direction to increase the resolution, and generates a range direction compressed received signal.
Next, the azimuth reference function multiplication unit 40 multiplies the range direction compressed reception signal by the azimuth direction reference function to remove the azimuth direction modulation and generates an azimuth direction phase compensation signal.
Next, the azimuth scaling unit 50 applies a scaling process to the azimuth direction phase compensation signal in the azimuth direction in order to apply a modulation necessary at the time of azimuth coupling, performs phase compensation, and generates a reception signal after azimuth scaling.
Next, the azimuth inverse Fourier transform unit 60 performs an inverse Fourier transform in the azimuth direction on the received signal after azimuth scaling, and generates a reception signal after the azimuth inverse Fourier transform having a modulation necessary for the coupling process in the azimuth direction.

次に、アジマス方向結合部70では、分割開口毎に得られた低分解能な画像を合成することにより、一つの高分解能な画像を生成する。先の非特許文献1では、スペクトル解析法(SPECAN)を利用して合成を行っている。ここでの具体的な動作については後述する。   Next, the azimuth direction coupling unit 70 generates one high-resolution image by synthesizing the low-resolution images obtained for each divided aperture. In the previous Non-Patent Document 1, synthesis is performed using a spectrum analysis method (SPECAN). The specific operation here will be described later.

次に、アジマス方向分割部10の動作を説明する。
まず、最大/最小瞬時ドップラー周波数算出部11では、観測点に対する受信信号のヒット毎の最大瞬時ドップラー周波数fdop_maxと最小瞬時ドップラー周波数fdop_minを式(1)と式(2)から算出する。
Next, the operation of the azimuth direction dividing unit 10 will be described.
First, the maximum / minimum instantaneous Doppler frequency calculation unit 11 calculates the maximum instantaneous Doppler frequency fdop_max and the minimum instantaneous Doppler frequency fdop_min for each hit of the received signal with respect to the observation point from Expressions (1) and (2).

このとき、送信周波数fは式(4)に従うとし、送信パルスが線形周波数変調を持つことを考慮する。ここで、fは送信波の中心周波数、fτは周波数変調を示しており、この周波数変調fτは、式(5)に示すように、レンジ帯域Bの幅を持つ。 In this case, the transmission frequency f r is a according to equation (4), consider that the transmission pulses have a linear frequency modulation. Here, f c indicates the center frequency of the transmission wave, and f τ indicates frequency modulation, and this frequency modulation f τ has a width of the range band B r as shown in Equation (5).

Figure 0005542615
Figure 0005542615

従って、観測点から連続して受信した信号に含まれる最大瞬時ドップラー周波数fdop_maxと最小瞬時ドップラー周波数fdop_minは、式(6)、式(7)となり、レーダの移動速度Vに依存するドップラー周波数と、レンジ帯域Bに依存するドップラー周波数から決定される。 Therefore, the maximum instantaneous Doppler frequency f Dop_max and minimum instantaneous Doppler frequency f Dop_min included in the signal received in succession from the observation point, the formula (6), depends formula (7), and the moving velocity V p of the radar Doppler and the frequency is determined from the Doppler frequency depending on the range band B r.

Figure 0005542615
Figure 0005542615

アジマス方向切り出し範囲決定部12の動作を図4を用いて説明する。図4は観測中のドップラー周波数の変化を表しており、式(6)、式(7)により求めた最大瞬時ドップラー周波数fdop_maxと最小瞬時ドップラー周波数fdop_minに挟まれた領域が観測領域内のドップラー周波数である。
図4に示すように、受信信号のドップラー周波数はアジマス時間の経過とともに変化し、観測時間全体としては広いドップラー周波数帯域を持ち、PRFよりも広帯域となる。図4 に示すように観測領域のドップラー周波数がPRF内に収まるように観測データを分割していき、分割領域(サブアパーチャ)として切り出す開始/終了位置を決定する。この時、分割領域間にオーバーラップは設けない。図4では6個の分割領域(サブアパーチャ)に分けた例を示している。通常、瞬時ドップラー帯域の最大値と最小値との差分はヒット毎に変化するため、各分割領域幅は異なる値となる。
The operation of the azimuth direction cutout range determination unit 12 will be described with reference to FIG. Figure 4 represents the change in Doppler frequency in the observation equation (6), equation (7) by the maximum instantaneous Doppler frequency f Dop_max and minimum instantaneous Doppler frequency f Dop_min region sandwiched obtained is within the observation area Doppler frequency.
As shown in FIG. 4, the Doppler frequency of the received signal changes as the azimuth time elapses, and the observation time as a whole has a wide Doppler frequency band, which is wider than the PRF. As shown in FIG. 4, the observation data is divided so that the Doppler frequency of the observation region falls within the PRF, and the start / end positions to be cut out as the division region (sub-aperture) are determined. At this time, no overlap is provided between the divided areas. FIG. 4 shows an example divided into six divided regions (sub-apertures). Usually, since the difference between the maximum value and the minimum value of the instantaneous Doppler band changes with each hit, each divided region width has a different value.

アジマス方向0詰め幅算出部13では、以下の様にして分割信号毎に0詰めする幅を算出する。まず、式(8)に従い各分割信号に受信パルスの変調により発生するドップラー帯域の拡大幅に相当するアジマス時間幅Textを算出する。ここで、θsq(ηst)は分割領域の開始時刻ηstにおけるスクイント角、θsq(ηed)は分割領域の終了時刻ηedにおけるスクイント角を表す。 The azimuth direction zero padding width calculation unit 13 calculates a padding width for each divided signal as follows. First, the azimuth time width T ext corresponding to the expanded width of the Doppler band generated by modulation of the received pulse in each divided signal is calculated according to the equation (8). Here, θ sqst ) represents the squint angle at the start time η st of the divided region, and θ sqed ) represents the squint angle at the end time η ed of the divided region.

Figure 0005542615
Figure 0005542615

式(8)により算出したアジマス時間幅Textはアジマス逆フーリエ変換後に折り返しが発生する時間幅に相当するため、このアジマス時間幅以上の領域を0詰め処理することで折り返しが回避可能となる。 Since the azimuth time width T ext calculated by the equation (8) corresponds to a time width in which aliasing occurs after the azimuth inverse Fourier transform, the aliasing can be avoided by performing zero padding on an area that is larger than the azimuth time width.

この時、アジマス方向切り出し範囲決定部12で決定した分割領域幅と、式(8)により算出した0詰め時間幅の和が各分割信号に必要な総処理時間幅となるが、これは分割領域毎に異なる。分割領域毎に総処理時間幅が異なるまま以下に続く再生処理を行うと、アジマス方向結合時に信号刻みが不連続となり処理が煩雑になるため、再生処理時には分割信号毎の総処理時間幅は統一されていることが望ましい。その為、各分割信号の総処理時間幅の中で最大時間幅を再生処理時の処理時間幅とし、そこから各分割領域幅を差し引いた時間幅を0詰め幅とすればよい。   At this time, the sum of the divided region width determined by the azimuth direction cut-out range determining unit 12 and the zero padded time width calculated by the equation (8) is the total processing time width required for each divided signal. Different for each. If the following playback processing is performed while the total processing time width is different for each divided area, the signal ticks become discontinuous when combining in the azimuth direction and the processing becomes complicated, so the total processing time width for each divided signal is unified during the playback processing. It is desirable that Therefore, the maximum time width among the total processing time widths of the respective divided signals may be set as the processing time width at the time of reproduction processing, and the time width obtained by subtracting the width of each divided area from the time width may be set as zero-padded width.

アジマス方向切り出し部14では受信信号からアジマス方向切り出し範囲決定部12で決定した切り出し開始/終了位置を用いて受信信号から分割領域(サブアパーチャ)を切り出す。   The azimuth direction cutout unit 14 cuts out a divided area (sub-aperture) from the received signal using the cutout start / end positions determined by the azimuth direction cutout range determining unit 12 from the received signal.

次に、アジマス方向0詰め部15にて、分割領域毎の受信信号にアジマス方向0詰め幅算出部13で算出したアジマス時間幅分の0詰めを行ってアジマス方向に分割された受信信号を生成し、アジマス方向分割部10から出力する。   Next, the azimuth direction zero padding unit 15 performs zero padding for the azimuth time width calculated by the azimuth direction zero pad width calculation unit 13 on the reception signal for each divided region to generate a reception signal divided in the azimuth direction. And output from the azimuth direction dividing unit 10.

次に、アジマス方向結合部70の動作を図5に従い説明する。
まず、アジマスデランプ処理部71にて、処理された各分割信号に対し、式(9)に示すアジマス方向にデランプ処理用補償関数Hdrによる位相補償を行う。ここで、ηは観測時刻(アジマス時刻)を示す。
Next, the operation of the azimuth direction coupler 70 will be described with reference to FIG.
First, the azimuth de-ramp processing unit 71 performs phase compensation on each processed divided signal by the de-ramp processing compensation function H dr in the azimuth direction shown in Expression (9). Here, η indicates the observation time (azimuth time).

Figure 0005542615
Figure 0005542615

このアジマスデランプ処理により、アジマス方向に付与されていた2次の位相変化を取り除かれ、フルアジマスフーリエ変換部73でのアジマスフーリエ変換にてアジマス方向の圧縮画像が得られる。   By this azimuth de-ramp process, the secondary phase change applied in the azimuth direction is removed, and a compressed image in the azimuth direction is obtained by azimuth Fourier transform in the full azimuth Fourier transform unit 73.

処理信号加算部72の動作について図5を用いて示す。アジマス方向分割部10で分割され、アジマスフーリエ変換部20からアジマスデランプ処理部71までの過程を経て処理された処理信号は、アジマス方向0詰め部で拡張した0詰め領域の分だけ隣り合う分割領域とオーバーラップした信号となる。そこで、オーバーラップ部分は加算処理を行うことで分割処理した各処理済み信号を結合し、全分割領域を結合した処理信号を作成する。   The operation of the processing signal adder 72 will be described with reference to FIG. The processing signal divided by the azimuth direction dividing unit 10 and processed through the process from the azimuth Fourier transform unit 20 to the azimuth de-ramp processing unit 71 is divided by the zero-padded area expanded by the azimuth direction zero-padded unit. The signal overlaps with the area. Therefore, the overlapped portion is subjected to addition processing to combine the processed signals that have been divided and create a processed signal that combines all the divided regions.

最後に、フルアジマスフーリエ変換部73にて、結合した全信号をアジマス方向にフーリエ変換することで高分解能化したSAR画像を出力する。   Finally, the full azimuth Fourier transform unit 73 outputs a SAR image with high resolution by performing Fourier transform on all the combined signals in the azimuth direction.

本発明の従来技術との相違は、受信パルスの変調によるドップラー帯域の拡大を考慮してアジマス方向の分割処理を行うことである。さらに分割信号にドップラー帯域拡大分に相当する領域を0詰め補填してから信号処理を行い、処理信号を合成する際に加算処理にてオーバーラップ部分を結合処理することである。   The difference from the prior art of the present invention is that the division processing in the azimuth direction is performed in consideration of the expansion of the Doppler band by modulation of the received pulse. Further, the signal processing is performed after the area corresponding to the Doppler band expansion is zero-padded in the divided signal, and the overlapping portion is combined by addition processing when the processed signals are synthesized.

本実施の形態のレーダ画像処理装置によれば、受信パルスの変調によるドップラー帯域の拡大分の折り返しを0詰め処理で回避することで、従来よりもスクイントの大きい観測やレンジ帯域幅が大きな観測データに対しても、信号劣化のない画像を効率よく作成可能となる。   According to the radar image processing apparatus of the present embodiment, observation with a larger squint and a larger range bandwidth than in the past can be achieved by avoiding aliasing of the expanded Doppler band due to modulation of the received pulse by zero padding processing. However, it is possible to efficiently create an image without signal deterioration.

10 アジマス方向分割部、11 最大/最小瞬時ドップラー周波数算出部、12 アジマス方向切り出し範囲決定部、13 アジマス方向0詰め幅算出部、14 アジマス方向切り出し部、15 アジマス方向0詰め部、20 アジマスフーリエ変換部、30 レンジ方向圧縮部、40 アジマス参照関数乗算部、50 アジマススケーリング部、60 アジマス逆フーリエ変換部、70 アジマス方向結合部、71 アジマスデランプ処理部、72 処理信号加算部、73 フルアジマスフーリエ変換部。   DESCRIPTION OF SYMBOLS 10 Azimuth direction division | segmentation part, 11 Maximum / minimum instantaneous Doppler frequency calculation part, 12 Azimuth direction cutout range determination part, 13 Azimuth direction 0 padding width calculation part, 14 Azimuth direction cutout part, 15 Azimuth direction 0 padding part, 20 Azimuth direction Fourier transform Unit, 30 range direction compression unit, 40 azimuth reference function multiplication unit, 50 azimuth scaling unit, 60 azimuth inverse Fourier transform unit, 70 azimuth direction coupling unit, 71 azimuth de-ramp processing unit, 72 processing signal addition unit, 73 full azimuth Fourier Conversion part.

Claims (1)

受信信号をアジマス方向に分割することで、アジマス方向に分割された分割信号を生成するアジマス方向分割部と、
前記アジマス方向に分割された分割信号にフーリエ変換をアジマス方向に施してアジマスフーリエ変換後受信信号を生成するアジマスフーリエ変換部と、
前記アジマスフーリエ変換後受信信号にパルス圧縮処理をレンジ方向に施してレンジ方向圧縮受信信号を生成するレンジ方向圧縮部と、
前記レンジ方向圧縮受信信号に対して、前記アジマス方向の変調を取り除くためのアジマス方向の参照関数を乗算して、前記アジマス方向の変調が取り除かれたアジマス方向位相補償信号を生成するアジマス参照関数乗算部と、
前記アジマス方向位相補償信号にスケーリング処理をアジマス方向に施してアジマススケーリング後受信信号を生成するアジマススケーリング部と、
前記アジマススケーリング後受信信号にアジマス方向の逆フーリエ変換を施してアジマス逆フーリエ変換後受信信号を生成するアジマス逆フーリエ変換部と、
前記アジマス逆フーリエ変換後受信信号を合成して高分解能画像を生成するアジマス方向結合部と
を備えレーダ画像処理装置であって、
前記アジマス方向分割部は、
送信周波数を示すf と、光速度を示すcと、レーダの移動速度を示すV と、レーダ装置の移動に伴うスクイント角を示すθ sq と、アジマス方向のビーム幅を示すθ と、送信波の中心周波数を示すf と、周波数変調を示すf τ と、レンジ帯域を示すB とを用いて下式
Figure 0005542615
によって、観測中のドップラー周波数の最大瞬時ドップラー周波数を示すf dop_max および最小瞬時ドップラー周波数を示すf dop_min を算出する最大/最小瞬時ドップラー周波数算出部と、
前記最大瞬時ドップラー周波数と前記最小瞬時ドップラー周波数に挟まれた前記受信信号のドップラー周波数を、観測時間の方向に分割することで複数の分割領域を生成する場合に、前記複数の分割領域のそれぞれに含まれるドップラー周波数の最大値と最小値との差分がパルス繰り返し周波数を超えないように、前記複数の分割領域のそれぞれの分割領域幅を決定するアジマス方向切り出し範囲決定部と、
前記受信信号を前記分割領域幅に従って切り出して切り出し後受信信号を生成するアジマス方向切り出し部と、
前記レーダ装置の移動に伴うスクイント角と前記送信波のレンジ帯域によるドップラー周波数の拡大幅に相当する時間幅を算出するアジマス方向0詰め幅算出部と、
前記ドップラー周波数の拡大幅に相当する時間幅分の0信号を、前記切り出し後受信信号に設定することで、前記アジマス方向に分割された分割信号を生成するアジマス方向0詰め部と
を有し、
前記アジマス方向結合部は、
前記アジマス逆フーリエ変換後受信信号に対して、アジマス方向にデランプ処理用補償関数による位相補償を行うことで、アジマスデランプ後受信信号を生成するアジマスデランプ処理部と、
前記アジマスデランプ後受信信号を加算処理により結合信号を生成する処理信号加算部と、
前記結合信号にアジマス方向のフーリエ変換を施すことにより、アジマス方向に圧縮された高分解能画像を生成するフルアジマスフーリエ変換部と
を有するレーダ画像処理装置。
An azimuth direction dividing unit that generates a divided signal divided in the azimuth direction by dividing the received signal in the azimuth direction;
An azimuth Fourier transform unit that generates a received signal after azimuth Fourier transform by performing a Fourier transform on the divided signal divided in the azimuth direction;
A range direction compression unit that generates a range direction compressed reception signal by applying a pulse compression process to the reception signal after the azimuth Fourier transform;
For the range direction compressing the received signal, said multiplying azimuth direction of the reference function for removing the azimuth direction of the modulation, the azimuth reference function multiplier that generates the azimuth direction phase compensation signal modulated is removed in the azimuth direction And
An azimuth scaling unit for performing a scaling process on the azimuth direction phase compensation signal in the azimuth direction to generate a reception signal after azimuth scaling;
An azimuth inverse Fourier transform unit that performs an inverse azimuth transform in the azimuth direction on the received signal after azimuth scaling to generate a received signal after azimuth inverse Fourier transform;
A radar image processing apparatus comprising: an azimuth direction coupling unit that synthesizes the received signal after the azimuth inverse Fourier transform to generate a high-resolution image ;
The azimuth direction dividing unit is
And f r indicating the transmission frequency, and c indicating the speed of light, and V p indicating the moving speed of the radar, and theta sq showing a squint angle with the movement of the radar apparatus, and theta a shows the azimuth direction of the beam width, and f c indicating the center frequency of the transmitted wave, the following expression by using the f tau showing a frequency modulation, and a B r indicating the range band
Figure 0005542615
Accordingly, the maximum / minimum instantaneous Doppler frequency calculation unit for calculating a f Dop_min showing the f Dop_max and minimum instantaneous Doppler frequency indicating the maximum instantaneous Doppler frequency Doppler frequency under observation,
When generating a plurality of divided regions by dividing the Doppler frequency of the received signal sandwiched between the maximum instantaneous Doppler frequency and the minimum instantaneous Doppler frequency in the direction of the observation time, each of the plurality of divided regions An azimuth direction cut-out range determination unit that determines a divided region width of each of the plurality of divided regions so that a difference between a maximum value and a minimum value of Doppler frequencies included does not exceed a pulse repetition frequency;
An azimuth direction cut-out unit that cuts out the received signal according to the divided region width and generates a received signal after cutting out;
An azimuth-direction zero-padded width calculating unit that calculates a time width corresponding to an expanded width of a Doppler frequency according to a squint angle associated with movement of the radar device and a range band of the transmission wave;
An azimuth direction zero padding unit that generates a divided signal divided in the azimuth direction by setting a zero signal for a time width corresponding to the expansion width of the Doppler frequency to the reception signal after extraction;
Have
The azimuth direction coupling portion is:
An azimuth de-ramp processing unit that generates a received signal after azimuth de-ramp by performing phase compensation by a compensation function for de-ramp processing in the azimuth direction on the received signal after azimuth inverse Fourier transform;
A processing signal adding unit that generates a combined signal by adding the received signal after the azimuth delamp;
A radar image processing apparatus comprising: a full azimuth Fourier transform unit that generates a high-resolution image compressed in the azimuth direction by performing Fourier transform in the azimuth direction on the combined signal .
JP2010241289A 2010-10-27 2010-10-27 Radar image processing device Active JP5542615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010241289A JP5542615B2 (en) 2010-10-27 2010-10-27 Radar image processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010241289A JP5542615B2 (en) 2010-10-27 2010-10-27 Radar image processing device

Publications (2)

Publication Number Publication Date
JP2012093257A JP2012093257A (en) 2012-05-17
JP5542615B2 true JP5542615B2 (en) 2014-07-09

Family

ID=46386741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010241289A Active JP5542615B2 (en) 2010-10-27 2010-10-27 Radar image processing device

Country Status (1)

Country Link
JP (1) JP5542615B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576147A (en) * 2012-08-02 2014-02-12 中国科学院电子学研究所 Imaging method of synthetic aperture radar in large squint angle mode
JP6053596B2 (en) * 2013-04-08 2016-12-27 三菱電機株式会社 Radar image generation apparatus and radar image generation method
CN103675812B (en) * 2013-08-21 2016-02-03 中国科学院电子学研究所 A kind of angle dimension scattered information based on circle mark SAR data is extracted and characterizing method
JP6178245B2 (en) * 2014-01-08 2017-08-09 株式会社東芝 Synthetic aperture radar apparatus and image processing method thereof
CN103885061B (en) * 2014-03-27 2016-08-17 西安电子科技大学 Based on the Bistatic SAR motion compensation process improving Phase gradient autofocus
JP6289388B2 (en) * 2015-01-13 2018-03-07 三菱電機株式会社 Image radar device
JP6289389B2 (en) * 2015-01-13 2018-03-07 三菱電機株式会社 Image radar device
WO2017195297A1 (en) * 2016-05-11 2017-11-16 三菱電機株式会社 Radar processing apparatus
CN110940958B (en) * 2019-10-30 2023-03-31 湖北大学 Radar resolution measuring method
CN112505698B (en) * 2020-11-20 2023-09-12 内蒙古工业大学 Multichannel sliding SAR azimuth signal preprocessing method, device and storage medium
CN113341413B (en) * 2021-06-28 2024-04-09 南京航空航天大学 High-resolution squint SAR echo Doppler spectrum recovery method and system
CN115704892A (en) * 2021-08-13 2023-02-17 复旦大学 Multi-rotor unmanned aerial vehicle-mounted synthetic aperture radar segmented aperture imaging and positioning method
DE112021008217T5 (en) 2021-11-18 2024-07-25 Mitsubishi Electric Corporation Radar signal processing device, radar signal processing method and target observation system
WO2024150807A1 (en) * 2023-01-12 2024-07-18 日本電気株式会社 Signal processing device, signal processing method, and recording medium
WO2024150806A1 (en) * 2023-01-12 2024-07-18 日本電気株式会社 Signal processing apparatus, signal processing method, and recording medium

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60259915A (en) * 1984-06-07 1985-12-23 Toyota Motor Corp Data sampling method
JPH0727021B2 (en) * 1989-02-10 1995-03-29 三菱電機株式会社 Synthetic aperture radar device
JPH02243987A (en) * 1989-03-17 1990-09-28 Hitachi Ltd Decentralized synthetic aperture radar signal processing system
JP2953602B2 (en) * 1993-02-08 1999-09-27 三菱電機株式会社 Radar equipment
EP0929824B1 (en) * 1996-09-30 2003-11-19 The Johns Hopkins University Delay compensated doppler radar altimeter
SE9804417L (en) * 1998-12-18 1999-12-20 Foersvarets Forskningsanstalt A SAR radar system
JP2002214334A (en) * 2001-01-23 2002-07-31 Mitsubishi Heavy Ind Ltd Target detection apparatus
JP3610052B2 (en) * 2002-04-18 2005-01-12 三菱電機株式会社 Radar equipment
JP2007292531A (en) * 2006-04-24 2007-11-08 Mitsubishi Space Software Kk Sar-mounted machine velocity measuring instrument, program, and method, and image enhancement device and program
JP5029060B2 (en) * 2007-02-23 2012-09-19 日本電気株式会社 Synthetic aperture radar and synthetic aperture radar image reproduction processing method
JP5094436B2 (en) * 2008-01-16 2012-12-12 三菱電機株式会社 Radar image reconstruction system for synthetic aperture radar
JP2010066131A (en) * 2008-09-11 2010-03-25 Mitsubishi Electric Corp Image radar device and image radar system
JP5219897B2 (en) * 2009-03-24 2013-06-26 三菱電機株式会社 Image radar device
JP2011169869A (en) * 2010-02-22 2011-09-01 Mitsubishi Electric Corp Apparatus for processing radar signal
JP2011247597A (en) * 2010-05-21 2011-12-08 Mitsubishi Electric Corp Radar signal processor
JP2013167580A (en) * 2012-02-16 2013-08-29 Furuno Electric Co Ltd Target speed measuring device, signal processing apparatus, radar device, target speed measuring method, and program

Also Published As

Publication number Publication date
JP2012093257A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
JP5542615B2 (en) Radar image processing device
US6670907B2 (en) Efficient phase correction scheme for range migration algorithm
JP2011169869A (en) Apparatus for processing radar signal
CN103760558B (en) Terahertz radar ISAR imaging method
JPH0727021B2 (en) Synthetic aperture radar device
JP6178245B2 (en) Synthetic aperture radar apparatus and image processing method thereof
US7551119B1 (en) Flight path-driven mitigation of wavefront curvature effects in SAR images
JPWO2016125206A1 (en) Synthetic aperture radar signal processor
US20110152689A1 (en) Color doppler ultrasonic diagnosis apparatus
CN110095787B (en) SAL full-aperture imaging method based on MEA and deramp
WO2013018964A1 (en) Apparatus and method for adaptive reception beam focusing
CN103885061A (en) Bistatic SAR motion compensation method based on phase gradient autofocus improvement
CN102788978B (en) Squint spaceborne/airborne hybrid bistatic synthetic aperture radar imaging method
JP5489813B2 (en) Radar image processing device
US10921441B2 (en) Synthetic aperture radar signal processing device
CN111273292B (en) Synthetic aperture radar high-frequency vibration compensation method and device, electronic equipment and medium
JP5106323B2 (en) Radar image playback device
Frölind et al. Evaluation of angular interpolation kernels in fast back-projection SAR processing
JP2007225442A (en) Radar device
WO2014010000A1 (en) Radar system and data processing device
JP2008054800A (en) Ultrasonic diagnostic apparatus
JP2010066131A (en) Image radar device and image radar system
JP5888153B2 (en) Image radar apparatus and signal processing apparatus
Yang et al. A coordinate-transform based FFBP algorithm for high-resolution spotlight SAR imaging
US20170224310A1 (en) Ultrasonic diagnostic apparatus and ultrasonic signal processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140507

R150 Certificate of patent or registration of utility model

Ref document number: 5542615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250