JP5541890B2 - Lighting device and lighting apparatus - Google Patents

Lighting device and lighting apparatus Download PDF

Info

Publication number
JP5541890B2
JP5541890B2 JP2009190376A JP2009190376A JP5541890B2 JP 5541890 B2 JP5541890 B2 JP 5541890B2 JP 2009190376 A JP2009190376 A JP 2009190376A JP 2009190376 A JP2009190376 A JP 2009190376A JP 5541890 B2 JP5541890 B2 JP 5541890B2
Authority
JP
Japan
Prior art keywords
temperature
life
lighting
wear amount
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009190376A
Other languages
Japanese (ja)
Other versions
JP2011044266A (en
Inventor
明 中城
大志 城戸
竜介 浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009190376A priority Critical patent/JP5541890B2/en
Priority to US12/858,646 priority patent/US8310162B2/en
Priority to EP10173404.4A priority patent/EP2291059B1/en
Priority to CN2010102606889A priority patent/CN101998714B/en
Publication of JP2011044266A publication Critical patent/JP2011044266A/en
Application granted granted Critical
Publication of JP5541890B2 publication Critical patent/JP5541890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

本発明は、点灯装置及び照明器具に関するものである。   The present invention relates to a lighting device and a lighting fixture.

従来から、光源を点灯させる点灯装置において、光源を点灯させている時間の累計である累積点灯時間を計時するとともに、累積点灯時間が所定の寿命時間に達したときに点灯装置が寿命末期であると判定して出力の停止や報知などの適宜の動作を行うものが提供されている(例えば、特許文献1参照)。すなわち、点灯装置を構成する部品の経年劣化に起因した過熱等の発生を防止するものである。   Conventionally, in a lighting device that turns on a light source, the cumulative lighting time that is the cumulative time during which the light source is turned on is counted, and the lighting device is at the end of its life when the cumulative lighting time reaches a predetermined lifetime. And performing an appropriate operation such as stoppage of output or notification (see, for example, Patent Document 1). That is, it is intended to prevent the occurrence of overheating or the like due to the aging deterioration of the parts constituting the lighting device.

ここで、点灯装置を構成する部品において、一定温度の環境下で使用した場合に寿命末期に達する(つまり部品の複数個のサンプルのうち経年劣化により所定の性能を満たさなくなったサンプルの割合が所定の割合に達する)までの時間を該周囲温度に対してプロットした曲線(以下、「寿命曲線」と呼ぶ。)の3通りの例を、図13に曲線PC1〜PC3で示す。   Here, the components that make up the lighting device reach the end of their life when used under a constant temperature environment (that is, the proportion of the samples that do not satisfy the specified performance due to aging out of a plurality of samples of the components is predetermined). The three types of curves (hereinafter referred to as “life curves”) plotted with respect to the ambient temperature are shown as curves PC1 to PC3 in FIG.

図13に示されているように、部品の経年劣化は概して温度が高いほど速くなるので、上記のような点灯装置において寿命時間を一定とすると、高温の環境下では寿命末期と判定されるタイミング以前に経年劣化による故障が発生してしまうことが考えられ、逆に、低温の環境下では寿命末期と判定されるタイミングが実際の経年劣化に対して早くなりすぎるといったことが考えられる。   As shown in FIG. 13, the aging of parts generally becomes faster as the temperature is higher. Therefore, when the lifetime is constant in the lighting device as described above, the timing at which the end of the lifetime is determined in a high temperature environment. It is conceivable that a failure due to aging has occurred before, and conversely, in a low temperature environment, the timing determined as the end of life may be too early with respect to actual aging.

そこで、周囲の温度を検出するとともに、検出された温度に応じて累積点灯時間のカウントの速さを変更することが提案されている(例えば、特許文献2及び特許文献3参照)。   Therefore, it has been proposed to detect the ambient temperature and change the counting speed of the cumulative lighting time according to the detected temperature (see, for example, Patent Document 2 and Patent Document 3).

特開平6−333687号公報JP-A-6-333687 特開2006−236664号公報JP 2006-236664 A 特開2006−278238号公報JP 2006-278238 A

上記のように温度に応じて累積点灯時間のカウントの速さを変更する動作としては、例えば、温度の関数である寿命関数を用い、検出された温度を寿命関数に代入して得られた数値に反比例する速さで累積点灯時間をカウントすることが考えられる。具体的には、光源を点灯させている期間には所定の加算時間おきに定期的に累積損耗量に数値(以下、「加算損耗量」と呼ぶ。)を加算し、この累積損耗量が限界損耗量に達したときに寿命末期であると判定する動作において、上記の加算損耗量を、検出された温度を寿命関数に代入して得られた数値(以下、「仮寿命値」と呼ぶ。)で加算時間と限界損耗量との積を除して得られた数値とする。つまり、仮寿命値が限界損耗量に一致していれば加算損耗量は加算時間に一致し、仮寿命値が限界損耗量よりも大きければ加算損耗量が加算時間よりも小さくされることで累積損耗量の増加が遅くされ、逆に仮寿命値が限界損耗量よりも小さければ加算損耗量が加算時間よりも大きくされることで累積損耗量の増加が速くされる。   As an operation for changing the speed of counting the cumulative lighting time according to the temperature as described above, for example, a numerical value obtained by substituting the detected temperature into the life function using a life function that is a function of temperature. It is conceivable to count the cumulative lighting time at a speed inversely proportional to. Specifically, during a period in which the light source is turned on, a numerical value (hereinafter referred to as “additional wear amount”) is periodically added to the cumulative wear amount every predetermined addition time, and this cumulative wear amount is limited. In the operation of determining the end of life when the amount of wear is reached, the above-mentioned additional wear amount is referred to as a numerical value obtained by substituting the detected temperature into the life function (hereinafter referred to as “provisional life value”). ) To obtain the value obtained by dividing the product of the addition time and the limit wear amount. In other words, if the provisional life value matches the limit wear amount, the additional wear amount matches the addition time, and if the provisional life value is greater than the limit wear amount, the cumulative wear amount is made smaller than the addition time. The increase in the amount of wear is delayed, and conversely, if the provisional life value is smaller than the limit amount of wear, the increase in the cumulative wear amount is accelerated by making the additional wear amount larger than the addition time.

ここで、上記の寿命関数として、寿命曲線が図13に曲線PC1で示すようなものであるような部品に合わせて、図13に曲線LFで示すような寿命関数を用いた場合、曲線LFが部品の寿命曲線PC2,PC3よりも上側(長寿命側)となるような温度範囲(例えば10℃)での使用を継続した場合に、累積損耗量が限界損耗量に達して寿命末期が判定される前に、寿命曲線が曲線PC2で示される部品や寿命曲線が曲線PC3で示される部品が寿命末期となって故障が発生してしまう可能性がある。   Here, when the lifetime function as shown by the curve LF in FIG. 13 is used as the above-mentioned lifetime function in accordance with a component whose lifetime curve is as shown by the curve PC1 in FIG. When the product is used in a temperature range (for example, 10 ° C) that is above (long life side) above the component life curves PC2 and PC3, the cumulative wear amount reaches the limit wear amount and the end of life is determined. There is a possibility that a part whose life curve is indicated by the curve PC2 or a part whose life curve is indicated by the curve PC3 will end at the end of the life and cause a failure.

本発明は、上記事由に鑑みて為されたものであり、その目的は、部品の経年劣化による故障が発生する前に寿命末期との判定が得られやすい点灯装置及び照明器具を提供することにある。   The present invention has been made in view of the above-mentioned reasons, and its object is to provide a lighting device and a lighting fixture in which it is easy to determine the end of life before a failure due to aging of parts occurs. is there.

請求項1の発明は、電気的な光源に電力を供給して点灯させる点灯部と、不揮発性メモリからなり点灯部の部品の経年劣化の度合いを示す数値である累積損耗量が格納される記憶部と、点灯部が光源に電力を出力している期間には所定の加算時間毎に定期的に累積損耗量に数値を加算するとともに累積損耗量を所定の限界損耗量と比較して累積損耗量が限界損耗量に達したときに点灯部が寿命末期であると判定する寿命判定部と、寿命判定部により点灯部が寿命末期であると判定されたときに使用者に対して寿命末期を報知する報知部と、点灯部の部品のうちの少なくとも1個の温度に対して正の相関を有するような温度を検出する温度検出部とを備え、寿命判定部は、温度の関数であって点灯部の動作が想定される温度の範囲である適用温度範囲の少なくとも一部で温度に対して負の相関を有する寿命関数を用い、累積損耗量に数値を加算する際には、温度検出部によって検出された温度を寿命関数に代入して得られる数値によって加算時間と限界損耗量との積を除して得られる数値を累積損耗量に加算するものであって、寿命関数は、温度範囲がそれぞれ異なる複数の関数であってそれぞれ温度に対して正または負の相関を有する複数の関数で構成されていて、且つ、適用温度範囲の全体にわたって点灯部の複数個の部品のうちのいずれの寿命よりも数値が小さくなることを特徴とする。 According to the first aspect of the present invention, there is provided a lighting unit for supplying electric power to an electric light source for lighting, and a storage for storing a cumulative amount of wear that is a numerical value indicating a degree of aging of components of the lighting unit. During the period when power is output to the light source by the lighting unit and the lighting unit, a numerical value is periodically added to the cumulative wear amount at every predetermined addition time, and the cumulative wear amount is compared with a predetermined limit wear amount. A life determination unit that determines that the lighting unit is at the end of life when the amount reaches the limit wear amount, and a life end for the user when the lighting determination unit determines that the lighting unit is at the end of life. A notification unit for notification, and a temperature detection unit for detecting a temperature having a positive correlation with the temperature of at least one of the components of the lighting unit, and the life determination unit is a function of temperature. Applicable temperature that is the temperature range in which the operation of the lighting part is assumed When using a life function that has a negative correlation with temperature in at least a part of the range, and adding a numerical value to the cumulative amount of wear, a value obtained by substituting the temperature detected by the temperature detector into the life function The value obtained by dividing the product of the addition time and the limit wear amount by the above is added to the cumulative wear amount, and the life function is a plurality of functions with different temperature ranges, each of which is positive with respect to the temperature. Or it is comprised by the several function which has a negative correlation, and a numerical value becomes smaller than the lifetime of any of several components of a lighting part over the whole application temperature range, It is characterized by the above-mentioned.

この発明によれば、寿命関数の数値が、適用温度範囲内のいずれかの温度で、点灯部の複数個の部品のうちのいずれかの寿命を上回る場合に比べ、部品の経年劣化による故障が発生する前に寿命末期との判定が得られやすい。また、寿命関数を単一の指数関数で構成する場合に比べ、寿命関数を、温度範囲毎に最も寿命が短くなる部品の寿命曲線に近くすることができる。 According to the present invention, the failure due to aging deterioration of the component is greater than the case where the numerical value of the lifetime function exceeds the lifetime of any of the plurality of components of the lighting unit at any temperature within the applicable temperature range. It is easy to determine the end of life before it occurs. In addition, the life function can be made closer to the life curve of a component having the shortest life for each temperature range as compared with the case where the life function is constituted by a single exponential function.

請求項2の発明は、請求項1の発明において、寿命関数において、互いの温度差が10℃である2点をどのようにとっても、高温側の点での数値に対する低温側の点での数値の比が2未満であることを特徴とする。   The invention of claim 2 is the numerical value at the point on the low temperature side with respect to the numerical value at the point on the high temperature side, regardless of the two points where the temperature difference between them is 10 ° C. in the life function. The ratio is less than 2.

請求項の発明は、請求項1又は請求項2の発明において、点灯部が点灯させる光源は、無電極放電灯と発光ダイオードと有機ELとのいずれかであることを特徴とする。 According to a third aspect of the present invention, in the first or second aspect of the present invention, the light source to be lit by the lighting unit is any one of an electrodeless discharge lamp, a light emitting diode, and an organic EL.

請求項の発明は、請求項1〜のいずれか1項に記載の点灯装置と、点灯装置によって点灯される光源と点灯装置とをそれぞれ保持する器具本体とを備えることを特徴とする。 Invention of Claim 4 is provided with the lighting device of any one of Claims 1-3 , and the fixture main body which hold | maintains the light source and lighting device which are lit by the lighting device, respectively.

請求項1の発明によれば、寿命関数は、適用温度範囲の全体にわたって点灯部の複数個の部品のうちのいずれの寿命よりも数値が小さくなるので、寿命関数の数値が、適用温度範囲内のいずれかの温度で、点灯部の複数個の部品のうちのいずれかの寿命を上回る場合に比べ、部品の経年劣化による故障が発生する前に寿命末期との判定が得られやすい。また、寿命関数を単一の関数で構成する場合に比べ、寿命関数を、温度範囲毎に最も寿命が短くなる部品の寿命曲線に近くすることができる。 According to the first aspect of the present invention, the lifetime function has a numerical value smaller than any lifetime of the plurality of components of the lighting unit over the entire applied temperature range. Compared to the case where the lifetime of any of the plurality of components of the lighting unit is exceeded at any one of the temperatures, it is easy to obtain the end of life determination before a failure due to aging of the component occurs. In addition, the life function can be made closer to the life curve of a component that has the shortest life for each temperature range, as compared with the case where the life function is composed of a single function.

(a)(b)はそれぞれ本発明の実施形態を示す説明図であり、(a)は寿命関数のグラフと点灯部の3個の部品の寿命曲線とを示し、(b)は温度検出部によって検出される温度と加算損耗量との関係を示す。(A) (b) is explanatory drawing which respectively shows embodiment of this invention, (a) shows the graph of a lifetime function, and the lifetime curve of three components of a lighting part, (b) is a temperature detection part. Shows the relationship between the temperature detected by the above and the amount of additional wear. 同上を示す回路ブロック図である。It is a circuit block diagram which shows the same as the above. 同上の使用形態の一例を示す斜視図である。It is a perspective view which shows an example of the usage pattern same as the above. 無電極放電灯の構造の一例を示す説明図である。It is explanatory drawing which shows an example of the structure of an electrodeless discharge lamp. 同上の変更例における寿命関数のグラフと点灯部の3個の部品の寿命曲線とを示す説明図である。It is explanatory drawing which shows the graph of the lifetime function in the example of a change same as the above, and the lifetime curve of three components of a lighting part. (a)(b)はそれぞれ同上の別の変更例を示す説明図であり、(a)は寿命関数のグラフと点灯部の3個の部品の寿命曲線とを示し、(b)は温度検出部によって検出される温度と加算損耗量との関係を示す。(A) (b) is explanatory drawing which shows another example of a change respectively same as the above, (a) shows the graph of a lifetime function, and the lifetime curve of three components of a lighting part, (b) is temperature detection The relationship between the temperature detected by a part and the amount of additional wear is shown. (a)(b)はそれぞれ同上の更に別の変更例を示す説明図であり、(a)は寿命関数のグラフと点灯部の3個の部品の寿命曲線とを示し、(b)は温度検出部によって検出される温度と加算損耗量との関係を示す。(A) (b) is explanatory drawing which shows another example of a change respectively same as the above, (a) shows the graph of a lifetime function, and the lifetime curve of three components of a lighting part, (b) is temperature The relationship between the temperature detected by a detection part and an additional wear amount is shown. 同上の更に別の変更例における寿命関数のグラフと点灯部の3個の部品の寿命曲線とを示す説明図である。It is explanatory drawing which shows the graph of the life function in another example of a change same as the above, and the life curve of three components of a lighting part. 同上の更に別の変更例を示す回路ブロック図である。It is a circuit block diagram which shows another example of a change same as the above. 同上を用いた照明器具の一例を示す一部破断した正面図である。It is the partially broken front view which shows an example of the lighting fixture using the same. 同上を用いた照明器具の別の例を示す正面図である。It is a front view which shows another example of the lighting fixture using the same as the above. (a)〜(c)はそれぞれ同上を用いた照明器具の更に別の例を示し、(a)は正面図、(b)は下面図、(c)は左側面図である。(A)-(c) shows another example of the lighting fixture using each same as the above, (a) is a front view, (b) is a bottom view, (c) is a left view. 従来例における寿命関数のグラフと点灯部の3個の部品の寿命曲線とを示す説明図である。It is explanatory drawing which shows the graph of the lifetime function in a prior art example, and the lifetime curve of three components of a lighting part.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

本実施形態は、図2に示すように、光源としての無電極放電灯6に近接配置される誘導コイル5と、誘導コイル5に高周波電力を出力することにより無電極放電灯6を点灯させる点灯部1と、点灯部1を制御する制御部2とを備える。   In the present embodiment, as shown in FIG. 2, an induction coil 5 disposed close to an electrodeless discharge lamp 6 as a light source, and lighting for lighting the electrodeless discharge lamp 6 by outputting high-frequency power to the induction coil 5. The control part 2 which controls the part 1 and the lighting part 1 is provided.

誘導コイル5は図3に示すように円筒形状のカプラ50に巻回される。図3の例では、本実施形態の点灯部1と制御部2とはそれぞれ金属製のケース10に収納され、点灯部1は給電線10aを介して誘導コイル5に電気的に接続されている。   The induction coil 5 is wound around a cylindrical coupler 50 as shown in FIG. In the example of FIG. 3, the lighting unit 1 and the control unit 2 of the present embodiment are each housed in a metal case 10, and the lighting unit 1 is electrically connected to the induction coil 5 via a feeder line 10 a. .

無電極放電灯6は、図4に示すように、例えばガラスのような透明な材料からなり外面に凹部60を有する中空のバルブ61と、合成樹脂からなる筒形状であってバルブ61に対し凹部60の開口を囲む形で取り付けられた口金62とを有し、凹部60にカプラ50が挿入されることによって誘導コイル5の近傍に配置される。バルブ61には、例えば不活性ガスと金属蒸気とを含む放電ガスが封入されている。また、バルブ61の凹部60の底面には、カプラ50に挿入される凸部60aが突設されている。さらに、バルブ61の内面には保護膜61aと蛍光体膜61bとが設けられている。すなわち、誘導コイル5が発生させる高周波電磁界によってバルブ61内にアーク放電が発生すると、発生した紫外線が蛍光体膜61bにおいて可視光に変換されることにより、無電極放電灯6が発光する。   As shown in FIG. 4, the electrodeless discharge lamp 6 includes a hollow bulb 61 made of a transparent material such as glass and having a recess 60 on the outer surface, and a cylindrical shape made of synthetic resin. And a base 62 attached so as to surround the opening of 60. The coupler 50 is inserted into the recess 60 and is disposed in the vicinity of the induction coil 5. For example, a discharge gas containing an inert gas and metal vapor is sealed in the bulb 61. Further, a convex portion 60 a to be inserted into the coupler 50 protrudes from the bottom surface of the concave portion 60 of the valve 61. Further, a protective film 61a and a phosphor film 61b are provided on the inner surface of the bulb 61. That is, when arc discharge is generated in the bulb 61 by the high-frequency electromagnetic field generated by the induction coil 5, the generated ultraviolet light is converted into visible light in the phosphor film 61b, so that the electrodeless discharge lamp 6 emits light.

点灯部1は、交流電源ACから供給された交流電力を直流電力に変換する直流電源回路11と、直流電源回路11が出力した直流電力を高周波の交流電力に変換して誘導コイル5に出力するインバータ回路12とからなる。   The lighting unit 1 converts the AC power supplied from the AC power source AC into DC power, and converts the DC power output from the DC power circuit 11 into high-frequency AC power and outputs it to the induction coil 5. And an inverter circuit 12.

直流電源回路11は、交流電源ACから供給された交流電流を全波整流するダイオードブリッジDBと、ダイオードブリッジDBの出力端間に接続されたインダクタL0とダイオードD0と出力コンデンサC0との直列回路と、インダクタL0とダイオードD0との接続点とダイオードブリッジDBの低電圧側の出力端との間に接続されたスイッチング素子Q0と、スイッチング素子Q0を周期的にオンオフ駆動する駆動回路11aとを備える、周知の昇圧型コンバータ(ブーストコンバータ)である。駆動回路11aは、出力コンデンサC0の両端電圧(すなわちインバータ入力電圧)Vdcを検出するとともに、検出されたインバータ入力電圧Vdcを一定の目標電圧とするようなデューティ比でスイッチング素子Q0をオンオフ駆動するというフィードバック制御を行う。このような駆動回路11aは周知技術で実現可能であるので、詳細な図示並びに説明は省略する。また、制御部2の電源は、直流電源回路11の出力電圧を降圧する適宜の降圧回路(図示せず)により生成される。   The DC power supply circuit 11 includes a diode bridge DB that full-wave rectifies an AC current supplied from the AC power supply AC, and a series circuit of an inductor L0, a diode D0, and an output capacitor C0 connected between the output terminals of the diode bridge DB. A switching element Q0 connected between a connection point between the inductor L0 and the diode D0 and an output terminal on the low voltage side of the diode bridge DB, and a drive circuit 11a that periodically drives the switching element Q0 on and off. This is a well-known step-up converter (boost converter). The drive circuit 11a detects the voltage across the output capacitor C0 (that is, the inverter input voltage) Vdc, and drives the switching element Q0 on and off with a duty ratio that sets the detected inverter input voltage Vdc as a constant target voltage. Perform feedback control. Since such a drive circuit 11a can be realized by a known technique, detailed illustration and description thereof will be omitted. The power supply for the control unit 2 is generated by an appropriate step-down circuit (not shown) that steps down the output voltage of the DC power supply circuit 11.

インバータ回路12は、直流電源回路11の出力端間すなわち出力コンデンサC0の両端間に接続されたスイッチング素子Q1,Q2と検出抵抗Rdとの直列回路と、スイッチング素子Q1,Q2の接続点に一端が接続されたインダクタLsと、インダクタLsの他端に一端が接続されて他端が誘導コイル5の一端に接続された直列コンデンサCsと、一端がインダクタLsと直列コンデンサCsとの接続点に接続され他端が検出抵抗Rdと誘導コイル5との接続点に接続された並列コンデンサCpと、スイッチング素子Q1,Q2を交互にオンオフ駆動する駆動回路12aとを備える。つまり、スイッチング素子Q1,Q2が交互にオンオフされることで、インダクタLsと直列コンデンサCsと並列コンデンサCpと誘導コイル5とが構成する共振回路と直流電源回路11との接続が切り換えられ、この共振回路の共振により、直流電源回路11が出力した直流電力が高周波の交流電力に変換されて誘導コイル5に供給される。また、各スイッチング素子Q1,Q2はそれぞれNチャネル型のFETからなり、駆動回路12aは、各スイッチング素子Q1,Q2のゲートに対してそれぞれ矩形波状の駆動信号を出力することによって各スイッチング素子Q1,Q2をそれぞれオンオフ駆動する。さらに、駆動回路12aは、制御端子CONを有し、制御端子CONから流出する制御電流Ioが多いほど、スイッチング素子Q1,Q2をオンオフする周波数(以下、「動作周波数」と呼ぶ。)を高くする。通常、動作周波数は、上述した共振回路の共振周波数(以下、単に「共振周波数」と呼ぶ。)よりも高い範囲とされており、制御電流Ioが少なくなって動作周波数が低くなるほど、点灯部1が誘導コイル5に出力する電圧(以下、「コイル電圧」と呼ぶ。)Vxの振幅(以下、「電圧振幅」と呼ぶ。)|Vx|は大きくなり、インバータ回路12から誘導コイル5に供給される電力は増加する。   The inverter circuit 12 has one end at the connection point between the switching elements Q1, Q2 and the series circuit of the switching elements Q1, Q2 and the detection resistor Rd connected between the output ends of the DC power supply circuit 11, that is, between both ends of the output capacitor C0. The connected inductor Ls, a series capacitor Cs having one end connected to the other end of the inductor Ls and the other end connected to one end of the induction coil 5, and one end connected to a connection point between the inductor Ls and the series capacitor Cs. A parallel capacitor Cp whose other end is connected to a connection point between the detection resistor Rd and the induction coil 5 and a drive circuit 12a for alternately turning on and off the switching elements Q1 and Q2 are provided. That is, when the switching elements Q1 and Q2 are alternately turned on and off, the connection between the resonance circuit formed by the inductor Ls, the series capacitor Cs, the parallel capacitor Cp, and the induction coil 5 and the DC power supply circuit 11 is switched. Due to the resonance of the circuit, the DC power output from the DC power supply circuit 11 is converted into high-frequency AC power and supplied to the induction coil 5. The switching elements Q1 and Q2 are each composed of an N-channel FET, and the drive circuit 12a outputs a rectangular wave drive signal to the gates of the switching elements Q1 and Q2, respectively. Q2 is driven on and off, respectively. Furthermore, the drive circuit 12a has a control terminal CON, and the higher the control current Io flowing out from the control terminal CON, the higher the frequency at which the switching elements Q1 and Q2 are turned on and off (hereinafter referred to as “operation frequency”). . Usually, the operating frequency is in a range higher than the resonant frequency of the above-described resonant circuit (hereinafter simply referred to as “resonant frequency”), and the lighting unit 1 decreases as the control current Io decreases and the operating frequency decreases. Is output to the induction coil 5 (hereinafter referred to as “coil voltage”) Vx amplitude (hereinafter referred to as “voltage amplitude”) | Vx | increases and is supplied from the inverter circuit 12 to the induction coil 5. The power to be increased.

また、制御部2は、無電極放電灯6の始動時に動作周波数を徐々に低下させることによりインバータ回路12から誘導コイル5への出力電力を徐々に増加させるスイープ動作を行うスイープ回路21を備える。さらに、本実施形態は、電圧振幅|Vx|が大きいほど高い電圧値の直流電圧である検出電圧Vxsを出力する電圧検出部3を備えており、スイープ回路21は、電圧検出部3が出力した検出電圧Vxsに基いてインバータ回路12を制御する。電圧検出部3は、コイル電圧Vxを抵抗で分圧してダイオードで整流するとともにコンデンサで平滑化することで検出電圧Vxsを生成するものである。   The control unit 2 also includes a sweep circuit 21 that performs a sweep operation that gradually increases the output power from the inverter circuit 12 to the induction coil 5 by gradually decreasing the operating frequency when the electrodeless discharge lamp 6 is started. Furthermore, the present embodiment includes a voltage detection unit 3 that outputs a detection voltage Vxs that is a DC voltage having a higher voltage value as the voltage amplitude | Vx | is larger, and the sweep circuit 21 is output from the voltage detection unit 3. The inverter circuit 12 is controlled based on the detection voltage Vxs. The voltage detector 3 divides the coil voltage Vx with a resistor, rectifies it with a diode, and smoothes it with a capacitor, thereby generating a detected voltage Vxs.

スイープ回路21は、反転入力端子が抵抗を介して出力端子に接続されるとともに抵抗を介して電圧検出部3の出力端に接続されたオペアンプOP1を備える。オペアンプOP1の出力端子は、逆流防止用のダイオードと抵抗との直列回路を介して駆動回路12aの制御端子CONに接続されている。また、スイープ回路21は、一端に定電圧Vdが入力された抵抗R1と、この抵抗R1の他端に一端が接続され他端が回路のグランドに接続されたスイッチSWと抵抗R2とコンデンサC1との並列回路とを有し、オペアンプOP1の非反転入力端子は上記の並列回路と抵抗R1との接続点に接続されている。本実施形態のスイープ回路21では上記のようにオペアンプOP1の反転入力端子が抵抗を介して電圧検出部3の出力端に接続されているので、電圧振幅|Vx|が大きいほど、つまりインバータ回路12から誘導コイル5に供給される電力が多いほど、オペアンプOP1の出力電圧が低くなって駆動回路12aの制御端子CONからスイープ回路21に流入する電流(以下、「スイープ電流」と呼ぶ。)Iswが増加し動作周波数が高くなることにより、インバータ回路12から誘導コイル5に供給される電力は少なくなる。すなわち、スイープ回路21は電圧検出部3が出力する検出電圧Vxsを用いたフィードバック動作も行う。また、スイープ回路21において、コンデンサC1の両端電圧Vc1が安定した状態での動作を考えると、スイッチSWがオフされている場合には、スイッチSWがオンされている場合に比べ、コンデンサC1の両端電圧Vc1が高くなりオペアンプOP1の出力電圧が高くなってスイープ電流Iswが減少し動作周波数が低くなることにより、インバータ回路12から誘導コイル5に供給される電力は多くなる。また、スイッチSWがオンからオフに切り換えられたときには、抵抗R1,R2とコンデンサC1とが構成する回路の時定数により、オペアンプOP1の出力電圧が徐々に高くなりスイープ電流Iswが徐々に減少することで動作周波数が徐々に低くされインバータ回路12から誘導コイル5への供給電力が徐々に増加するスイープ動作が行われる。   The sweep circuit 21 includes an operational amplifier OP1 having an inverting input terminal connected to an output terminal via a resistor and connected to an output terminal of the voltage detection unit 3 via a resistor. The output terminal of the operational amplifier OP1 is connected to the control terminal CON of the drive circuit 12a via a series circuit of a backflow preventing diode and a resistor. The sweep circuit 21 includes a resistor R1 having a constant voltage Vd input at one end, a switch SW having one end connected to the other end of the resistor R1 and the other end connected to the circuit ground, a resistor R2, and a capacitor C1. The non-inverting input terminal of the operational amplifier OP1 is connected to the connection point between the parallel circuit and the resistor R1. In the sweep circuit 21 of the present embodiment, since the inverting input terminal of the operational amplifier OP1 is connected to the output terminal of the voltage detection unit 3 through the resistor as described above, the larger the voltage amplitude | Vx |, that is, the inverter circuit 12 is. As the power supplied to the induction coil 5 increases, the output voltage of the operational amplifier OP1 becomes lower and the current Isw that flows from the control terminal CON of the drive circuit 12a into the sweep circuit 21 (hereinafter referred to as “sweep current”) Isw. As the operating frequency increases and the operating frequency increases, the power supplied from the inverter circuit 12 to the induction coil 5 decreases. That is, the sweep circuit 21 also performs a feedback operation using the detection voltage Vxs output from the voltage detection unit 3. Further, in the sweep circuit 21, considering the operation in a state where the both-end voltage Vc1 of the capacitor C1 is stable, when the switch SW is turned off, the both ends of the capacitor C1 are compared with the case where the switch SW is turned on. As the voltage Vc1 increases and the output voltage of the operational amplifier OP1 increases, the sweep current Isw decreases and the operating frequency decreases, the power supplied from the inverter circuit 12 to the induction coil 5 increases. When the switch SW is switched from on to off, the output voltage of the operational amplifier OP1 gradually increases and the sweep current Isw gradually decreases due to the time constant of the circuit formed by the resistors R1 and R2 and the capacitor C1. Thus, a sweep operation is performed in which the operating frequency is gradually lowered and the power supplied from the inverter circuit 12 to the induction coil 5 is gradually increased.

また、制御部2は、インバータ回路12においてローサイドのスイッチング素子Q2と検出抵抗Rdとの接続点の電圧、すなわちインバータ回路12に流れる電流に基いて動作周波数を制御するフィードバック回路22を有する。フィードバック回路22は、非反転入力端子に所定の基準電圧Vrが入力されるとともに出力端子が逆流防止用のダイオードと抵抗とを介して駆動回路12aの制御端子CONに接続されたオペアンプOP2を有する。このオペアンプOP2の反転入力端子は、抵抗とコンデンサとの並列回路を介してオペアンプOP2の出力端子に接続されるとともに、抵抗を介してインバータ回路12のスイッチング素子Q2と検出抵抗Rdとの接続点に接続されている。すなわち、駆動回路12aの制御端子CONからフィードバック回路22に流入する電流(以下、「フィードバック電流」と呼ぶ。)Ifbは、誘導コイル5に流れる電流が多いほど(すなわち誘導コイル5に供給される電力が多いほど)多くなって誘導コイル5への供給電力を減少させるように作用するのであり、フィードバック回路22はインバータ回路12が誘導コイル5に供給する電力を一定に維持するように動作する。スイープ回路21とフィードバック回路22とは、それぞれ、インバータ入力電圧Vdcが目標電圧で且つスイープ回路21においてスイッチSWがオフされてコンデンサC1の両端電圧が安定している状態では、動作周波数が、無電極放電灯6においてH放電(高周波電磁界放電や誘導結合型放電とも呼ばれるアーク放電)が発生する程度の電力がインバータ回路12から誘導コイル5に供給されるような周波数となり、且つ、インバータ入力電圧Vdcが目標電圧で且つスイープ回路21においてスイッチSWがオンされてコンデンサC1の両端電圧が安定している状態では、動作周波数が、無電極放電灯6においてE放電(高周波電界放電や容量結合型放電とも呼ばれるグロー放電)が発生する程度の電力がインバータ回路12から誘導コイル5に供給されるような周波数となるように設計されている。スイープ回路21とフィードバック回路22とのフィードバックにより、インバータ入力電圧Vdcが目標電圧よりも低い場合には動作周波数は上記よりも低くされ、逆にインバータ入力電圧Vdcが目標電圧よりも高い場合には動作周波数は上記よりも高くされる。つまり、電圧振幅|Vx|の目標値は、スイープ回路21においてスイッチSWがオフされてコンデンサC1の両端電圧が安定している状態では無電極放電灯6においてアーク放電(H放電)が発生する程度とされ、スイープ回路21においてスイッチSWがオンされてコンデンサC1の両端電圧が安定している状態では無電極放電灯6においてアーク放電(H放電)が発生せずグロー放電(E放電)が発生する程度とされる。   The control unit 2 also includes a feedback circuit 22 that controls the operating frequency based on the voltage at the connection point between the low-side switching element Q2 and the detection resistor Rd in the inverter circuit 12, that is, the current flowing through the inverter circuit 12. The feedback circuit 22 has an operational amplifier OP2 in which a predetermined reference voltage Vr is input to a non-inverting input terminal and an output terminal is connected to a control terminal CON of the drive circuit 12a via a backflow prevention diode and a resistor. The inverting input terminal of the operational amplifier OP2 is connected to the output terminal of the operational amplifier OP2 through a parallel circuit of a resistor and a capacitor, and at the connection point between the switching element Q2 of the inverter circuit 12 and the detection resistor Rd through the resistor. It is connected. That is, the current (hereinafter referred to as “feedback current”) Ifb flowing from the control terminal CON of the drive circuit 12a into the feedback circuit 22 increases as the current flowing through the induction coil 5 increases (that is, the power supplied to the induction coil 5). The higher the frequency, the more the power supplied to the induction coil 5 decreases, and the feedback circuit 22 operates so that the power supplied from the inverter circuit 12 to the induction coil 5 is kept constant. The sweep circuit 21 and the feedback circuit 22 each have an operating frequency of no electrode when the inverter input voltage Vdc is the target voltage and the switch SW is turned off in the sweep circuit 21 and the voltage across the capacitor C1 is stable. The discharge lamp 6 has such a frequency that H power (arc discharge also called high frequency electromagnetic field discharge or inductively coupled discharge) is generated from the inverter circuit 12 to the induction coil 5 and the inverter input voltage Vdc. Is the target voltage and the switch SW is turned on in the sweep circuit 21 and the voltage across the capacitor C1 is stable, the operating frequency of the electrodeless discharge lamp 6 is E discharge (both high frequency field discharge and capacitively coupled discharge). Electric power to generate a so-called glow discharge) is induced from the inverter circuit 12 It is designed to be a frequency as supplied to the coil 5. By the feedback of the sweep circuit 21 and the feedback circuit 22, the operation frequency is lowered when the inverter input voltage Vdc is lower than the target voltage, and conversely, the operation is performed when the inverter input voltage Vdc is higher than the target voltage. The frequency is made higher than above. That is, the target value of the voltage amplitude | Vx | is such that arc discharge (H discharge) is generated in the electrodeless discharge lamp 6 when the switch SW is turned off in the sweep circuit 21 and the voltage across the capacitor C1 is stable. When the switch SW is turned on in the sweep circuit 21 and the voltage across the capacitor C1 is stable, no arc discharge (H discharge) occurs in the electrodeless discharge lamp 6 and glow discharge (E discharge) occurs. It is said to be about.

電源が投入されると、まずスイープ回路21のスイッチSWがオン状態に維持されることで無電極放電灯6にグロー放電が発生し且つアーク放電が発生しない程度に電圧振幅|Vx|を小さく維持する始動準備動作が所定時間だけ行われ、その後、スイープ回路21のスイッチSWがオフされることで、無電極放電灯6にアーク放電が発生する程度まで電圧振幅|Vx|を大きくする始動動作への移行がなされる。始動動作中に無電極放電灯6にアーク放電が発生することで無電極放電灯6が点灯を開始(すなわち始動)し、その後は誘導コイル5への出力電力が略一定に維持される定常動作への移行がなされる。上記のようなスイッチSWのオンオフ制御は、例えばタイマ回路(図示せず)を用いて周知技術によって実現可能である。   When the power is turned on, first, the switch SW of the sweep circuit 21 is maintained in the ON state, so that the voltage amplitude | Vx | is kept small to such an extent that glow discharge occurs in the electrodeless discharge lamp 6 and arc discharge does not occur. The start preparation operation to be performed is performed for a predetermined time, and then the switch SW of the sweep circuit 21 is turned off, whereby the start operation to increase the voltage amplitude | Vx | to the extent that arc discharge occurs in the electrodeless discharge lamp 6 is started. The transition is made. A steady operation in which the electrodeless discharge lamp 6 starts to light (ie, starts) when arc discharge occurs in the electrodeless discharge lamp 6 during the starting operation, and thereafter the output power to the induction coil 5 is maintained substantially constant. Transition to is made. The on / off control of the switch SW as described above can be realized by a known technique using, for example, a timer circuit (not shown).

さらに、制御部2は、点灯部1が寿命末期か否かを判定する寿命検出回路23と、寿命検出回路23によって寿命末期と判定されたときに誘導コイル5への出力電力を減少させるような保護動作を行う保護回路24とを備える。保護動作としては、具体的には、直流電源回路11の出力電圧を低下させるという動作や、動作周波数を高くすることで誘導コイル5への出力電力を減少させるという動作や、インバータ回路12の駆動回路12aを停止させて各スイッチング素子Q1,Q2をそれぞれオフ状態に維持することで誘導コイル5への電力の出力を停止させるという動作などが考えられる。上記のような保護動作による無電極放電灯6の光出力の低下や消灯を見て、使用者は寿命末期を知ることができる。つまり、本実施形態の保護回路24は請求項における報知部である。また、上記のような保護回路24に代えて、又は上記のような保護回路24に加えて、寿命検出回路23によって寿命末期と判定されたときに使用者に対して寿命末期を報知する報知手段を設けてもよい。報知手段としては、例えば、報知用の別途の光源(例えば発光ダイオード)を発光又は点滅させることにより寿命末期を報知するものや、警報音や音声により寿命末期を報知するものや、無線信号や電話回線を用いて外部の装置に対して寿命末期を報知するものなどが考えられる。上記のような保護回路24や報知手段はいずれも周知技術により実現可能であるので詳細な図示並びに説明は省略する。   Furthermore, the control unit 2 reduces the output power to the induction coil 5 when the lighting unit 1 determines whether or not the lighting unit 1 is at the end of life, and when the life detection circuit 23 determines that the end of life is reached. And a protection circuit 24 that performs a protection operation. Specifically, as the protection operation, an operation of lowering the output voltage of the DC power supply circuit 11, an operation of reducing the output power to the induction coil 5 by increasing the operating frequency, or driving of the inverter circuit 12 An operation of stopping the output of electric power to the induction coil 5 by stopping the circuit 12a and maintaining each of the switching elements Q1, Q2 in an off state can be considered. The user can know the end of life by observing the decrease or extinction of the light output of the electrodeless discharge lamp 6 due to the protective operation as described above. That is, the protection circuit 24 of the present embodiment is a notification unit in the claims. Further, informing means for notifying the user of the end of life when the end of life is determined by the life detecting circuit 23 instead of or in addition to the above protecting circuit 24. May be provided. As the notification means, for example, a device that notifies the end of life by emitting or blinking a separate light source (for example, a light emitting diode), a device that notifies the end of life by an alarm sound or sound, a radio signal or a telephone One that notifies the end of life to an external device using a line is conceivable. Since the protection circuit 24 and the notification means as described above can be realized by a well-known technique, detailed illustration and description thereof are omitted.

寿命検出回路23は、不揮発性メモリからなり点灯部1の部品の経年劣化の度合いを示す数値である累積損耗量が格納される記憶部231と、点灯部1が電力を出力している期間には累積損耗量に数値(以下、「加算損耗量」と呼ぶ。)を加算するカウント動作を所定の加算時間おき(つまり定期的)に行うとともに累積損耗量を所定の限界損耗量と比較して累積損耗量が限界損耗量に達したときに点灯部1が寿命末期であると判定する寿命判定部232とを備える。寿命判定部232は周知の電子回路により実現可能であるので、詳細な図示及び説明は省略する。   The life detection circuit 23 includes a storage unit 231 that includes a nonvolatile memory and stores a cumulative wear amount that is a numerical value indicating the degree of aging of the components of the lighting unit 1, and a period during which the lighting unit 1 outputs power. Performs a counting operation for adding a numerical value (hereinafter referred to as “additional wear amount”) to the accumulated wear amount at predetermined addition time intervals (that is, periodically) and compares the accumulated wear amount with a predetermined limit wear amount. A life determination unit 232 that determines that the lighting unit 1 is at the end of its life when the cumulative amount of wear reaches the limit amount of wear. Since the life determination unit 232 can be realized by a known electronic circuit, detailed illustration and description thereof are omitted.

ここで、本実施形態は、直流電源回路11において比較的に経年劣化しやすい部品である出力コンデンサC0の温度を検出する温度検出部4を備え、寿命判定部232は、温度検出部4は、上記のカウント動作における加算損耗量を、温度検出部4に検出された温度に応じた数値とすることにより、累積損耗量の増加速度を、温度による経年劣化の速さの差に対応させる。   Here, the present embodiment includes a temperature detection unit 4 that detects the temperature of the output capacitor C0, which is a component that is relatively easily deteriorated with time in the DC power supply circuit 11, and the life determination unit 232 includes: By making the additional wear amount in the above-described counting operation a numerical value corresponding to the temperature detected by the temperature detection unit 4, the increasing rate of the accumulated wear amount is made to correspond to the difference in the aging deterioration rate due to the temperature.

詳しく説明すると、温度検出部4は、温度による抵抗値の変化が殆どない抵抗と、温度による抵抗値の変化量が比較的に大きい素子である感温抵抗(サーミスタ)との直列回路が、直流電源回路11の出力端間に接続されてなり、上記の抵抗と感温抵抗との接続点を出力端とするものである。上記の感温抵抗は、温度を検出される部品(以下、「検出対象部品」と呼ぶ。)である出力コンデンサC0に近接配置されており、温度検出部4の出力電圧は、出力コンデンサC0の温度に応じた電圧となる。上記のような感温抵抗としては白金抵抗などが知られている。感温抵抗としてピン挿入型のものを用いる場合、表面実装型の感温抵抗を用いる場合に比べ、ピンの曲がり方によるばらつきが発生してしまう反面、ピンを適宜曲げることで感温抵抗と検出対象部品との距離をより小さくすることができる。ただし、検出対象部品をプリント配線板とする場合、ピン挿入型よりも表面実装型のほうがより検出対象部品に近接させやすい。また、温度検出部4としては上記のように感温抵抗を用いるもの以外にも、例えば、サーモパイル等を用いた、いわゆる放射温度計を採用することもできる。   More specifically, the temperature detection unit 4 includes a series circuit of a resistor that hardly changes in resistance value due to temperature and a temperature-sensitive resistor (thermistor) that is a relatively large amount of change in resistance value due to temperature. It is connected between the output terminals of the power supply circuit 11, and the connection point between the above-mentioned resistance and the temperature-sensitive resistor is used as the output terminal. The temperature-sensitive resistor is disposed close to the output capacitor C0, which is a component whose temperature is detected (hereinafter referred to as “detection target component”), and the output voltage of the temperature detection unit 4 is the output voltage of the output capacitor C0. The voltage depends on the temperature. As the above temperature sensitive resistance, platinum resistance or the like is known. When using a pin insertion type as the temperature-sensitive resistor, variations due to the bending of the pin occur compared to using a surface-mounted type temperature-sensitive resistor, but on the other hand, the temperature-sensitive resistor is detected by appropriately bending the pin. The distance from the target part can be further reduced. However, when the detection target component is a printed wiring board, the surface mounting type is more easily brought closer to the detection target component than the pin insertion type. As the temperature detection unit 4, a so-called radiation thermometer using, for example, a thermopile can be employed in addition to the one using the temperature sensitive resistance as described above.

次に、寿命判定部232が加算損耗量を決定する方法について説明する。寿命判定部232は、温度の関数であって点灯部1の動作が想定される温度の範囲(以下、「適用温度範囲」と呼ぶ。)の少なくとも一部で温度に対して負の相関を有する寿命関数を、予め例えばROMに保持している。そして、カウント動作においては、温度検出部4によって検出された温度を寿命関数に代入して得られる数値で、加算時間(すなわちカウント動作の周期)と限界損耗量との積を除して得られた数値を加算損耗量として累積損耗量に加算する。加算損耗量を導出する具体的手段としては、温度検出部4の出力と加算損耗量との対応関係を示すデータテーブルや数式を用いることができ、データテーブルを用いる場合と数式を用いる場合とのいずれであっても寿命判定部232は周知技術で実現可能であるので詳細な説明は省略する。   Next, a method in which the life determination unit 232 determines the additional wear amount will be described. The life determination unit 232 is a function of temperature and has a negative correlation with the temperature in at least a part of the temperature range in which the operation of the lighting unit 1 is assumed (hereinafter referred to as “applied temperature range”). The life function is held in advance in, for example, a ROM. In the count operation, a value obtained by substituting the temperature detected by the temperature detection unit 4 into the life function is obtained by dividing the product of the addition time (that is, the cycle of the count operation) and the limit wear amount. The numerical value is added to the cumulative wear amount as the added wear amount. As a specific means for deriving the additional wear amount, a data table or a mathematical expression indicating a correspondence relationship between the output of the temperature detection unit 4 and the additional wear amount can be used. In any case, the life determination unit 232 can be realized by a well-known technique, and thus detailed description thereof is omitted.

ここで、上記の寿命関数は、適用温度範囲の全体にわたり、点灯部1のいずれの部品の寿命曲線よりも下側(短寿命側)に位置する。例えば、適用温度範囲が−20℃〜40℃であって、点灯部1の部品のうち比較的に寿命が短い3個の部品の寿命曲線が図1に曲線PC1〜PC3で示すようなものであった場合、寿命関数は図1(a)に曲線LF1で示すようなものとされる。図1(a)に示した寿命関数は、温度Tと係数A,Bとを用いてAexp(−ln2・T/B)との数式で表される指数関数であって、B>10とされている。すなわち、温度Tの差が10℃である2点をどのようにとっても、その2点のうち高温側の点での数値に対する低温側の点での数値の比が2未満となる。また、上記の寿命関数から得られる加算損耗量は、図1(b)に示すように温度Tに対して単調増加する。   Here, said lifetime function is located below (short lifetime side) rather than the lifetime curve of any components of the lighting part 1 over the whole application temperature range. For example, the application temperature range is −20 ° C. to 40 ° C., and the life curves of three parts having a relatively short life among the parts of the lighting unit 1 are as shown by curves PC1 to PC3 in FIG. If so, the lifetime function is as shown by the curve LF1 in FIG. The life function shown in FIG. 1 (a) is an exponential function expressed by an equation of Aexp (−ln2 · T / B) using the temperature T and coefficients A and B, and B> 10. ing. That is, for any two points where the difference in temperature T is 10 ° C., the ratio of the numerical value at the low temperature side to the numerical value at the high temperature side of the two points is less than 2. Further, the additional wear amount obtained from the above life function monotonously increases with respect to the temperature T as shown in FIG.

上記構成によれば、寿命関数が、適用温度範囲の全体にわたって、点灯部1の部品のうち寿命曲線PC1〜PC3に対応する3個の部品のいずれの寿命よりも数値が小さくなる関数とされていることにより、寿命関数の数値が、適用温度範囲内のいずれかの温度で、点灯部1の上記3個の部品のうちのいずれかの寿命を上回る場合に比べ、部品の経年劣化による故障が発生する前に寿命末期との判定が得られやすい。   According to the above configuration, the lifetime function is a function whose numerical value is smaller than the lifetime of any of the three components corresponding to the lifetime curves PC1 to PC3 among the components of the lighting unit 1 over the entire application temperature range. As a result, the failure due to aging deterioration of the component is greater than the case where the value of the lifetime function exceeds the lifetime of any of the above three components of the lighting unit 1 at any temperature within the applicable temperature range. It is easy to determine the end of life before it occurs.

なお、寿命関数は、図1(a)に示したような指数関数に限られず、図5に曲線LF2で示すようにグラフが上に凸の部分を有する曲線となるような関数であってもよい。   Note that the lifetime function is not limited to the exponential function as shown in FIG. 1A, but may be a function in which the graph becomes a curve having a convex portion as shown by a curve LF2 in FIG. Good.

または、寿命関数を、図6(a)に曲線LF3で示すように、温度範囲と係数とがそれぞれ異なる複数の指数関数で構成してもよい。詳しく説明すると、図6(a)に示された3個の部品の寿命曲線PC1〜PC3は、それぞれ寿命Lが温度Tと係数A,Bとを用いてL=Aexp(−ln2・T/B)との数式で表される指数関数となっていて、係数A,Bが部品毎に異なっている。そして、適用温度範囲のうち、温度Tが0℃未満の範囲では、係数Bが最も大きい40(℃)である(つまり40℃半減則に従う)寿命曲線PC3が最も下側(短寿命側)に位置している。また、温度Tが0℃から20℃までの範囲では、係数Bが2番目に大きい20(℃)である(つまり20℃半減則に従う)寿命曲線PC2が最も下側(短寿命側)に位置している。さらに、温度Tが20℃以上の範囲では、係数Bが最も小さい10(℃)である(つまり10℃半減則に従う)寿命曲線PC1が最も下側(短寿命側)に位置している。そして、図6(a)に曲線LF3で示した寿命関数は、上記の3個の温度範囲−20℃〜0℃、0℃〜20℃、20℃〜40℃で、それぞれ異なる関数(上記の係数A,Bが互いに異なる指数関数)とされており、各温度範囲について、それぞれ、係数Bは寿命曲線PC1〜PC3のうち最も下側に位置するものの係数Bと同じとされ、係数Aは該寿命曲線の係数Aよりも小さく且つ互いに隣接する温度範囲間で寿命関数同士が互いに連続するように決定されている。上記の寿命関数に対応する加算損耗量も、図6(b)に示すように3個の指数関数が組み合わされた形となる。または、各温度範囲についてそれぞれ各係数A,Bをともに寿命曲線PC1〜PC3のうち最も下側に位置するものの係数A,Bと同じとした曲線を、下側(短寿命側)に平行移動したような寿命関数としてもよい。上記のように複数個の指数関数が組み合わされた寿命関数とすることで、寿命関数を単一の指数関数で構成する場合に比べ、寿命関数を、温度範囲毎に最も寿命が短くなる部品の寿命曲線に近くすることができる。   Alternatively, the life function may be composed of a plurality of exponential functions having different temperature ranges and coefficients, as indicated by a curve LF3 in FIG. More specifically, in the life curves PC1 to PC3 of the three components shown in FIG. 6A, the life L is L = Aexp (−ln2 · T / B) using the temperature T and the coefficients A and B, respectively. ) And the coefficients A and B are different for each part. And in the range where the temperature T is less than 0 ° C. among the applicable temperature ranges, the life curve PC3 having the largest coefficient B is 40 (° C.) (that is, according to the 40 ° C. half law) is on the lowest side (short life side). positioned. In addition, in the range where the temperature T is from 0 ° C. to 20 ° C., the life curve PC2 having the second largest coefficient B is 20 (° C.) (that is, according to the 20 ° C. half law) is located on the lowest side (short life side). doing. Furthermore, when the temperature T is in the range of 20 ° C. or higher, the life curve PC1 having the smallest coefficient B of 10 (° C.) (that is, according to the 10 ° C. half law) is located on the lowermost side (short life side). The life function indicated by the curve LF3 in FIG. 6 (a) is different from each other in the above three temperature ranges −20 ° C. to 0 ° C., 0 ° C. to 20 ° C., and 20 ° C. to 40 ° C. The coefficients A and B are different exponential functions), and for each temperature range, the coefficient B is the same as the coefficient B of the lowermost one of the life curves PC1 to PC3, and the coefficient A is The lifetime functions are determined so as to be continuous between the temperature ranges smaller than the coefficient A of the lifetime curve and adjacent to each other. The additional wear amount corresponding to the above life function is also in a form in which three exponential functions are combined as shown in FIG. Alternatively, for each temperature range, the coefficients A and B are both the same as the coefficients A and B of the life curves PC1 to PC3, which are located at the lowermost side. Such a life function may be used. By using a life function in which a plurality of exponential functions are combined as described above, the life function can be reduced to the part with the shortest life for each temperature range compared to the case where the life function is composed of a single exponential function. It can be close to the life curve.

さらに、寿命関数は上記の例のように適用温度範囲全体で温度に対して負の相関を有する単調減少関数でなくともよく、例えば図7(a)に示す寿命曲線PC4のように低温領域(−20℃〜−10℃)において温度が低いほど経年劣化が促進されるような部品が存在する場合には、これに合わせて図7(a)に曲線LF4で示すように低温領域で温度に対して正の相関を有する寿命関数としてもよい。この場合、加算損耗量は図7(b)に示すように低温領域で温度に対して負の相関を有する。   Further, the life function may not be a monotonically decreasing function having a negative correlation with the temperature in the entire applied temperature range as in the above example. For example, the life function may be a low temperature region (such as a life curve PC4 shown in FIG. In the case where there is a part whose deterioration with time is accelerated as the temperature is lower at −20 ° C. to −10 ° C.), the temperature is adjusted to a temperature in a low temperature region as shown by a curve LF4 in FIG. Alternatively, it may be a lifetime function having a positive correlation. In this case, the added wear amount has a negative correlation with the temperature in the low temperature region as shown in FIG.

また、寿命関数の曲線は点灯部1の全ての部品の寿命曲線よりも下側である必要は必ずしもなく、例えば寿命曲線PC1に対応する部品について別途に寿命末期を検出する寿命検出手段が設けられている場合には、寿命関数を決定する際には該寿命曲線PC1を考慮から除外し、図8に曲線LF5で示すようにグラフが一部において寿命曲線PC1よりも上側(長寿命側)となるような寿命関数としてもよい。上記別途の寿命検出手段としては、例えば直流電源回路1の出力のリプルの大きさに基いて出力コンデンサC0の寿命末期を検出する周知の回路が考えられる。   In addition, the life function curve is not necessarily lower than the life curves of all the components of the lighting unit 1. For example, a life detection means for separately detecting the end of life is provided for a component corresponding to the life curve PC1. If the life function is determined, the life curve PC1 is excluded from consideration, and the graph is partially above the life curve PC1 (long life side) as shown by a curve LF5 in FIG. It is good also as such a lifetime function. As the additional life detecting means, for example, a known circuit for detecting the end of life of the output capacitor C0 based on the output ripple of the DC power supply circuit 1 can be considered.

さらに、図9に示すように、複数個(図では3個)の温度検出部4a〜4cをそれぞれ異なる部品の近傍の温度を検出する形で設けるとともに、それぞれ1個ずつの温度検出部4a〜4cの出力を用いて独自に累積損耗量のカウント及び寿命末期の判定を行う寿命検出回路23a〜23cを温度検出部4a〜4cと同数設け、保護回路24はいずれかの寿命検出回路23a〜23cで寿命末期が判定されたときに保護動作や報知を行うようにしてもよい。図9の例では、直流電源回路11においてダイオードブリッジDBの出力端間にアクロスザラインコンデンサCxが接続されている。そして、1個の温度検出部4aは図1の温度検出部4と同様に直流電源回路11の出力コンデンサC0近傍の温度を検出し、別の1個の温度検出部4bは上記のアクロスザラインコンデンサCx近傍の温度を検出し、残りの1個の温度検出部4cはインバータ回路12のインバータLs近傍の温度を検出している。図9の例においていずれかの寿命検出回路23a〜23cで寿命末期が判定されたときに保護回路24が行う保護動作は、スイープ回路21のスイッチSWを周期的に開閉制御することで点灯部1の出力電力を減少させるというものである。上記の開閉制御の周期が短ければ無電極放電灯6の光出力が低下して見えることにより、上記の開閉制御の周期が長ければ無電極放電灯6が点滅して見えることにより、それぞれ使用者は寿命末期を知ることができる。   Further, as shown in FIG. 9, a plurality (three in the figure) of temperature detection units 4 a to 4 c are provided so as to detect temperatures in the vicinity of different parts, and one temperature detection unit 4 a to 4 c is provided. The same number of life detection circuits 23a to 23c as the temperature detection units 4a to 4c are provided to independently count the accumulated wear amount and determine the end of life using the output of 4c, and the protection circuit 24 has one of the life detection circuits 23a to 23c. When the end of life is determined, the protection operation or notification may be performed. In the example of FIG. 9, across the line capacitor Cx is connected between the output ends of the diode bridge DB in the DC power supply circuit 11. One temperature detection unit 4a detects the temperature in the vicinity of the output capacitor C0 of the DC power supply circuit 11 in the same manner as the temperature detection unit 4 of FIG. 1, and another temperature detection unit 4b is the above-mentioned across the line. The temperature near the capacitor Cx is detected, and the remaining one temperature detection unit 4c detects the temperature near the inverter Ls of the inverter circuit 12. In the example of FIG. 9, the protection operation performed by the protection circuit 24 when any one of the life detection circuits 23 a to 23 c determines the end of life is performed by periodically opening and closing the switch SW of the sweep circuit 21. The output power is reduced. If the above open / close control cycle is short, the light output of the electrodeless discharge lamp 6 appears to decrease, and if the above open / close control cycle is long, the electrodeless discharge lamp 6 appears to blink. Can know the end of life.

または、上記のように温度検出部4,4a〜4cが部品近傍の温度を検出するものとする代わりに、温度検出部4を各部品から十分に配置し、環境の気温を検出するようにしてもよい。この場合において温度検出部4によって検出される温度は、温度検出部4が特定の部品に近接配置される場合に比べ、より多くの部品の温度に対して正の相関を有することになる。さらに、温度検出部4を複数個設け、寿命検出回路23(寿命判定部232)が、複数個の温度検出部4によって検出された温度の平均値を用いて加算損耗量を決定するようにしてもよい。   Alternatively, instead of the temperature detectors 4, 4a to 4c detecting the temperature in the vicinity of the components as described above, the temperature detector 4 is sufficiently arranged from each component to detect the ambient temperature. Also good. In this case, the temperature detected by the temperature detection unit 4 has a positive correlation with the temperature of more components than when the temperature detection unit 4 is disposed close to a specific component. Further, a plurality of temperature detection units 4 are provided, and the life detection circuit 23 (life determination unit 232) determines an additional wear amount using an average value of temperatures detected by the plurality of temperature detection units 4. Also good.

また、点灯部1は上記のように無電極放電灯6を点灯させるものに限られず、白熱灯や熱陰極型の放電灯や有機ELや発光ダイオードなど他の電気的光源を点灯させるものであってもよい。特に、光源として無電極放電灯6や有機ELや発光ダイオードを用いる場合、他の電気的光源に比べて比較的に長寿命であって光源に問題が発生しにくいことにより、点灯部1の寿命検出の重要性が相対的に高くなる。   Further, the lighting unit 1 is not limited to the one that lights the electrodeless discharge lamp 6 as described above, but is one that lights other electric light sources such as an incandescent lamp, a hot cathode type discharge lamp, an organic EL, and a light emitting diode. May be. In particular, when an electrodeless discharge lamp 6, an organic EL, or a light emitting diode is used as a light source, the life of the lighting unit 1 is relatively long as compared with other electrical light sources and the light source is less likely to cause problems. The importance of detection is relatively high.

さらに、制御部2は、一部又は全部を1チップの集積回路として集積化してもよい。   Furthermore, the control unit 2 may be partly or entirely integrated as a one-chip integrated circuit.

また、温度検出部4によって検出された温度が適用温度範囲外であったときに、寿命検出回路23が、保護回路24を介して点灯部1を制御し、直流電源回路11の出力電圧の低下やインバータ回路12の出力の停止といった保護動作を行わせるようにしてもよい。   Further, when the temperature detected by the temperature detection unit 4 is outside the applicable temperature range, the life detection circuit 23 controls the lighting unit 1 via the protection circuit 24, and the output voltage of the DC power supply circuit 11 is reduced. Alternatively, a protective operation such as stopping the output of the inverter circuit 12 may be performed.

上記各種の無電極放電灯点灯装置は、例えば図10や図11に示すように、無電極放電灯6やカプラ50とともに適宜形状の器具本体71に保持されて照明器具7を構成することができる。このような器具本体71や照明器具7は周知技術で実現可能であるので、詳細な図示並びに説明は省略する。   The above-mentioned various electrodeless discharge lamp lighting devices can constitute a lighting fixture 7 by being held in an appropriately shaped fixture body 71 together with the electrodeless discharge lamp 6 and the coupler 50 as shown in FIGS. . Since such a fixture main body 71 and the lighting fixture 7 can be realized by a well-known technique, detailed illustration and description thereof are omitted.

また、一般に、無電極放電灯6は、内部に電極を有する放電灯に比べ、長寿命であり故障も発生しにくいので、例えばトンネル内のように整備作業が困難な場所で使用される照明器具の光源として好適である。そこで、上記の無電極放電灯点灯装置は、図12(a)〜(c)に示すような構造のトンネル照明用の照明器具7に用いてもよい。以下、上下左右は図12(a)を基準とし、図12(b)の上下方向を前後方向と呼んで、図12(a)〜(c)の照明器具7について詳しく説明する。   Also, in general, the electrodeless discharge lamp 6 has a longer life and is less likely to fail than a discharge lamp having an electrode inside, so that it is used in places where maintenance work is difficult such as in tunnels. It is suitable as a light source. Therefore, the above electrodeless discharge lamp lighting device may be used for the lighting device 7 for tunnel illumination having a structure as shown in FIGS. Hereinafter, the lighting fixture 7 of FIGS. 12A to 12C will be described in detail with reference to FIG. 12A for the vertical and horizontal directions and the vertical direction of FIG.

図12(a)〜(c)の照明器具7において、器具本体71は、例えばステンレスからなる前面が開口した直方体形状のボディ71aと、例えば強化ガラスのような透光性を有する材料からなりボディ71aを開閉自在に閉塞するカバー71bとを備える。また、ボディ71aの内底面には、例えばアルミニウムからなり無電極放電灯6の光を前方へ配光する断面U字形状の反射板71cが固定されており、器具本体71に収納された無電極放電灯6の光はカバー71bを通じて前方へ出射される。さらに、ボディ71aの内底面には、無電極放電灯6が取り付けられるカプラ50と、無電極放電灯点灯装置を収納したケース10と、ケース10内の直流電源回路11に電気的に接続された端子台8とが、それぞれ固定されている。端子台8には、一端が交流電源ACに接続された電線(図示せず)の他端が接続されるのであり、直流電源回路11は、上記の電線と端子台8とを介して交流電源ACに電気的に接続される。また、ボディ71aの下側の壁には、端子台8に接続される電線を挿通するための電線挿通穴71dが上下に貫設されている。さらに、カバー71bは、上端部においてヒンジ71eを介してボディ71aの上端部に連結されることにより、図12(a)〜(c)のようにボディ71aを閉塞する閉位置と、閉位置での下端を前方に向けてボディ71aを解放する開位置との間で、左右方向から見た面内でボディ71aに対して回転可能となっている。また、ボディ71aの下端には、閉位置のカバー71bの下端部を係止するラッチ71fが設けられている。上記のようなヒンジ71eやラッチ71fは周知技術で実現可能であるので、詳細な図示並びに説明は省略する。さらに、ボディ71aの後面には、それぞれ例えば鋼板からなり器具本体71を壁面等の取付面(図示せず)に対して固定する際に用いられる2個の取付足71gが左右に並べて固定されている。各取付足71gの上下両端部はそれぞれ前方から見てボディ71aよりも上下に突出しており、この突出した部位にはそれぞれねじ挿通穴71hが前後に貫設されている。器具本体71は、ねじ挿通穴71hに挿通されて取付面に螺合するねじ(図示せず)によって取付面にねじ止め固定される。   12 (a) to 12 (c), the fixture body 71 is made of, for example, a rectangular parallelepiped body 71a made of stainless steel and a transparent material such as tempered glass. A cover 71b for closing and opening the 71a. Further, a U-shaped reflecting plate 71c made of, for example, aluminum and distributing light of the electrodeless discharge lamp 6 forward is fixed to the inner bottom surface of the body 71a, and the electrodeless electrode housed in the instrument body 71 is fixed. The light from the discharge lamp 6 is emitted forward through the cover 71b. Furthermore, on the inner bottom surface of the body 71a, the coupler 50 to which the electrodeless discharge lamp 6 is attached, the case 10 housing the electrodeless discharge lamp lighting device, and the DC power supply circuit 11 in the case 10 are electrically connected. Terminal blocks 8 are fixed to each other. The terminal block 8 is connected to the other end of an electric wire (not shown) whose one end is connected to the AC power supply AC. The DC power supply circuit 11 is connected to the AC power supply via the electric wire and the terminal block 8. Electrically connected to AC. In addition, an electric wire insertion hole 71d for inserting an electric wire connected to the terminal block 8 is vertically provided in the lower wall of the body 71a. Further, the cover 71b is connected to the upper end portion of the body 71a via the hinge 71e at the upper end portion, thereby closing the body 71a as shown in FIGS. 12 (a) to 12 (c). It can rotate with respect to the body 71a in the plane seen from the left-right direction between the open position where the lower end of the body is directed forward and the body 71a is released. A latch 71f that locks the lower end of the cover 71b in the closed position is provided at the lower end of the body 71a. Since the hinge 71e and the latch 71f as described above can be realized by a well-known technique, detailed illustration and description are omitted. Furthermore, on the rear surface of the body 71a, two mounting legs 71g made of, for example, a steel plate and fixed to the mounting surface (not shown) such as a wall surface are fixed side by side. Yes. The upper and lower end portions of each mounting foot 71g protrude vertically from the body 71a as viewed from the front, and screw insertion holes 71h are provided through the protruding portions in the front-rear direction. The instrument body 71 is screwed and fixed to the mounting surface by a screw (not shown) that is inserted into the screw insertion hole 71h and screwed into the mounting surface.

1 点灯部
4 温度検出部
5 誘導コイル
6 無電極放電灯
7 照明器具
24 保護回路(請求項における報知部)
71 器具本体
231 記憶部
233 寿命判定部
DESCRIPTION OF SYMBOLS 1 Lighting part 4 Temperature detection part 5 Induction coil 6 Electrodeless discharge lamp 7 Lighting fixture 24 Protection circuit (notification part in a claim)
71 Instrument body 231 Storage unit 233 Life determination unit

Claims (4)

電気的な光源に電力を供給して点灯させる点灯部と、
不揮発性メモリからなり点灯部の部品の経年劣化の度合いを示す数値である累積損耗量が格納される記憶部と、
点灯部が光源に電力を出力している期間には所定の加算時間毎に定期的に累積損耗量に数値を加算するとともに累積損耗量を所定の限界損耗量と比較して累積損耗量が限界損耗量に達したときに点灯部が寿命末期であると判定する寿命判定部と、
寿命判定部により点灯部が寿命末期であると判定されたときに使用者に対して寿命末期を報知する報知部と、
点灯部の部品のうちの少なくとも1個の温度に対して正の相関を有するような温度を検出する温度検出部とを備え、
寿命判定部は、温度の関数であって点灯部の動作が想定される温度の範囲である適用温度範囲の少なくとも一部で温度に対して負の相関を有する寿命関数を用い、累積損耗量に数値を加算する際には、温度検出部によって検出された温度を寿命関数に代入して得られる数値によって加算時間と限界損耗量との積を除して得られる数値を累積損耗量に加算するものであって、
寿命関数は、温度範囲がそれぞれ異なる複数の関数であってそれぞれ温度に対して正または負の相関を有する複数の関数で構成されていて、且つ、適用温度範囲の全体にわたって点灯部の複数個の部品のうちのいずれの寿命よりも数値が小さくなることを特徴とする点灯装置。
A lighting unit that supplies power to an electric light source to light it, and
A storage unit that stores a cumulative wear amount that is a numerical value that indicates a degree of aging of a component of the lighting unit, which includes a nonvolatile memory,
During the period when the lighting unit is outputting power to the light source, a numerical value is periodically added to the cumulative wear amount at every predetermined addition time, and the cumulative wear amount is compared with the predetermined limit wear amount to limit the cumulative wear amount. A life determination unit that determines that the lighting unit is at the end of its life when the wear amount is reached;
A notification unit that notifies the user of the end of life when it is determined by the life determination unit that the lighting unit is at the end of life,
A temperature detection unit that detects a temperature having a positive correlation with the temperature of at least one of the components of the lighting unit;
The lifetime determination unit uses a lifetime function that is a function of temperature and has a negative correlation with the temperature in at least a part of the applied temperature range in which the operation of the lighting unit is assumed. When adding a numerical value, the numerical value obtained by dividing the product of the addition time and the limit wear amount by the numerical value obtained by substituting the temperature detected by the temperature detector into the life function is added to the cumulative wear amount. And
The life function is composed of a plurality of functions having different temperature ranges, each having a positive or negative correlation with respect to the temperature, and a plurality of functions of the lighting unit over the entire application temperature range. A lighting device characterized in that the numerical value is smaller than the lifetime of any of the parts.
寿命関数において、互いの温度差が10℃である2点をどのようにとっても、高温側の点での数値に対する低温側の点での数値の比が2未満であることを特徴とする請求項1記載の点灯装置。   The ratio of the numerical value at the point on the low temperature side to the numerical value at the point on the high temperature side is less than 2 for any two points having a temperature difference of 10 ° C. in the life function. The lighting device according to 1. 点灯部が点灯させる光源は、無電極放電灯と発光ダイオードと有機ELとのいずれかであることを特徴とする請求項1又は請求項2記載の点灯装置。 The lighting device according to claim 1 or 2 , wherein the light source to be lit by the lighting unit is any one of an electrodeless discharge lamp, a light emitting diode, and an organic EL . 請求項1〜3のいずれか1項に記載の点灯装置と、点灯装置によって点灯される光源と点灯装置とをそれぞれ保持する器具本体とを備えることを特徴とする照明器具。A lighting fixture comprising: the lighting device according to any one of claims 1 to 3; and a fixture main body that holds the light source and the lighting device that are turned on by the lighting device.
JP2009190376A 2009-08-19 2009-08-19 Lighting device and lighting apparatus Active JP5541890B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009190376A JP5541890B2 (en) 2009-08-19 2009-08-19 Lighting device and lighting apparatus
US12/858,646 US8310162B2 (en) 2009-08-19 2010-08-18 Lighting apparatus and lighting fixture
EP10173404.4A EP2291059B1 (en) 2009-08-19 2010-08-19 Lighting apparatus and lighting fixture
CN2010102606889A CN101998714B (en) 2009-08-19 2010-08-19 Lighting apparatus and lighting fixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009190376A JP5541890B2 (en) 2009-08-19 2009-08-19 Lighting device and lighting apparatus

Publications (2)

Publication Number Publication Date
JP2011044266A JP2011044266A (en) 2011-03-03
JP5541890B2 true JP5541890B2 (en) 2014-07-09

Family

ID=43831563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009190376A Active JP5541890B2 (en) 2009-08-19 2009-08-19 Lighting device and lighting apparatus

Country Status (1)

Country Link
JP (1) JP5541890B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101695264B1 (en) * 2016-05-20 2017-01-11 주식회사 금강에너텍 Converter for led lighting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4698269B2 (en) * 2005-03-30 2011-06-08 三菱電機株式会社 Lamp lighting device and lighting fixture
JP2006312528A (en) * 2005-05-09 2006-11-16 Mitsubishi Electric Corp Electric power storage device of elevator
JP2006330179A (en) * 2005-05-24 2006-12-07 Matsushita Electric Ind Co Ltd Fixing device and image forming apparatus with the same

Also Published As

Publication number Publication date
JP2011044266A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
JP5294920B2 (en) LED light source lighting device and LED lighting apparatus using the same
JP2016085813A (en) Illumination lamp and lighting device
CN101998714B (en) Lighting apparatus and lighting fixture
JP6153023B2 (en) LIGHT EMITTING ELEMENT LIGHTING DEVICE, LIGHT EMITTING MODULE, LIGHTING DEVICE, AND LIGHT EMITTING ELEMENT LIGHTING METHOD
JP4736464B2 (en) Lighting device, lighting apparatus, and lighting system
JP5541890B2 (en) Lighting device and lighting apparatus
JP4661262B2 (en) Discharge lamp lighting device and lighting fixture
JP4506073B2 (en) Discharge lamp lighting device and lighting device
JP5771770B2 (en) Lighting apparatus and lighting apparatus using the same
JP4989388B2 (en) Organic EL lighting device and lighting fixture
JP5789769B2 (en) lighting equipment
JP4438496B2 (en) Discharge lamp lighting device, lighting fixture, and lighting system
JP2010009859A (en) Electrodeless discharge lamp lighting device and lighting apparatus
JP5351685B2 (en) Lighting lighting device and lighting fixture
JP2008232494A (en) Refrigerator
JP5469353B2 (en) Electrodeless discharge lamp lighting device and lighting fixture
JP2006236667A (en) Light source lighting device and luminaire
JP4590991B2 (en) Discharge lamp lighting device and lighting device
JP4952973B2 (en) Discharge lamp lighting device and lighting apparatus
JP2010009870A (en) Electrodeless discharge lamp lighting device and lighting apparatus
JP2010218734A (en) Electrodeless discharge lamp lighting device and luminaire
JP2010009860A (en) Electrodeless discharge lamp lighting device and lighting apparatus
JP2010009869A (en) Electrodeless discharge lamp lighting device and lighting apparatus
JP2010218732A (en) Electrodeless discharge lamp lighting device and luminaire
JP6547498B2 (en) Lighting, lighting device and lighting control device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140502

R151 Written notification of patent or utility model registration

Ref document number: 5541890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151